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ABSTRACT OF THE DISSERTATION

Three Essays on Causal Inference with High-dimensional Data and Machine Learning

Methods

by

Neng-Chieh Chang

Doctor of Philosophy in Economics

University of California, Los Angeles, 2020

Professor Denis Nikolaye Chetverikov, Chair

This dissertation consists of three chapters that study causal inference when applying ma-

chine learning methods. In Chapter 1, I propose an orthogonal extension of the semiparamet-

ric difference-in-differences estimator proposed in Abadie (2005). The proposed estimator

enjoys the so-called Neyman-orthogonality (Chernozhukov et al. 2018) and thus it allows

researchers to flexibly use a rich set of machine learning (ML) methods in the first-step esti-

mation. It is particularly useful when researchers confront a high-dimensional data set when

the number of potential control variables is larger than the sample size and the conventional

nonparametric estimation methods, such as kernel and sieve estimators, do not apply. I ap-

ply this orthogonal difference-in-differences estimator to evaluate the effect of tariff reduction

on corruption. The empirical results show that tariff reduction decreases corruption in large

magnitude.

In Chapter 2, I study the estimation and inference of the mode treatment effect. Mean,

median, and mode are three essential measures of the centrality of probability distributions.

In program evaluation, the average treatment effect (mean) and the quantile treatment

effect (median) have been intensively studied in the past decades. The mode treatment

effect, however, has long been neglected in program evaluation. This paper fills the gap by
ii



discussing both the estimation and inference of the mode treatment effect. I propose both

traditional kernel and machine learning methods to estimate the mode treatment effect. I also

derive the asymptotic properties of the proposed estimators and find that both estimators

follow the asymptotic normality but with the rate of convergence slower than the regular

rate
√
N , which is different from the rates of the classical average and quantile treatment

effect estimators.

In Chapter 3 (joint with Liqiang Shi), we study the estimation and inference of the doubly

robust extension of the semiparametric quantile treatment effect estimation discussed in

Firpo (2007). This proposed estimator allows researchers to use a rich set of machine learning

methods in the first-step estimation, while still obtaining valid inferences. Researchers can

include as many control variables as they consider necessary, without worrying about the

over-fitting problem which frequently happens in the traditional estimation methods. This

paper complements Belloni et al. (2017), which provided a very general framework to discuss

the estimation and inference of many different treatment effects when researchers apply

machine learning methods.
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Chapter 1

Double/Debiased Machine Learning

for Difference-in-Differences Models
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1.1 Introduction

The difference-in-differences (DiD) estimator has been widely used in empirical economics to

evaluate causal effects when there exists a natural experiment with a treated group and an

untreated group. By comparing the variation over time in an outcome variable between the

treated group and the untreated group, the DiD estimator can be used to calculate the effect

of treatment on the outcome variable. Applications of DiD include but are not limited to

studies of the effects of immigration on labor markets (Card 1990), the effects of minimum

wage law on wages (Card & Krueger 1994), the effect of tariffs liberalization on corruption

(Sequeira 2016), the effect of household income on children’s personalities (Akee et al. 2018),

and the effect of corporate tax on wages (Fuest et al. 2018).

The traditional linear DiD estimator depends on a parallel trend assumption that in

the absence of treatment, the difference of outcomes between treated and untreated groups

remains constant over time. In many situations, however, this assumption may not hold

because there are other individual characteristics that may be associated with the varia-

tions of the outcomes. The treatment may be taken as exogenous only after controlling for

these characteristics. However, as noted by Meyer et al. (1995), including control variables

in the linear specification of the traditional DiD estimator imposes strong constraints on

the heterogeneous effect of treatment. To address this problem, Abadie (2005) proposed

the semiparametric DiD estimator. Compared to the traditional linear DiD estimator, the

advantages of Abadie’s estimator are threefold. First, the characteristics are treated non-

parametrically so that any estimation error caused by functional specification is avoided.

Second, the effect of treatment is allowed to vary among individuals, while the traditional

linear DiD estimator does not allow this heterogeneity. Third, the estimation framework

proposed in Abadie (2005) will enable researchers to estimate how the effect of treatment

varies with changes in the characteristics.

This paper provides an orthogonal extension of Abadie’s semiparametric DiD estima-

2



tor (DMLDiD hereafter)1. Abadie’s semiparametric DiD estimator behaves well when re-

searchers use conventional nonparametric methods, such as kernel and sieve estimators, to

estimate propensity score in the first-step estimation. As shown in the classical semipara-

metric estimation literature, Abadie’s DiD estimator is
√
N -consistent and asymptotically

normal when using kernel or sieve in the first-step estimation. However, according to the gen-

eral theory of inference developed in Chernozhukov et al. (2018), these desirable properties

may fail if researchers use a rich set of newly developed nonparametric estimation methods,

the so-called machine learning (ML) methods, such as Lasso, Logit Lasso, random forests,

boosting, neural network, and their hybrids in the first-step estimation. This is especially a

problem when researchers confront a high-dimensional data set where the number of poten-

tial control variables is more than the sample size, and thus the conventional nonparametric

estimation methods do not apply.

In this paper, I propose DMLDiD for three different data structures: repeated outcomes,

repeated cross-sections, and multilevel treatment, which are all based on the original paper

by Abadie (2005) as well as the papers on the general inference theory of ML methods by

Chernozhukov et al. (2018) and Chernozhukov et al. (2016). DMLDiD will allow researchers

to apply a broad set of ML methods and still obtain valid inferences. The key difference is

that DMLDiD, in contrast to Abadie’s original DiD estimator, is constructed based on a score

function that satisfies the so-called Neyman-orthogonality (Chernozhukov et al. 2018), which

is an important property for obtaining valid inference when applying ML methods. With

this property, DMLDiD can overcome the bias caused by the first-step ML estimation and

achieve
√
N -consistency and asymptotic normality as long as the ML estimator converges

to its true value at a rate faster than N−1/4. Figure 1.1 shows the Monte Carlo simulation

that illustrates the negative effect of directly combining ML methods on Abadie’s estimator

and the benefit of using DMLDiD. The histogram in the left panel shows that the simulated

distribution of Abadie’s estimator is biased, while the simulated distribution of DMLDiD in
1The R codes can be found on my Github: https://github.com/NengChiehChang/Diff-in-Diff
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the right panel is centred at the true value.

Figure 1.1: Comparison of Abadie’s DiD and DMLDiD with the first-step ML estimation.

As an empirical example, I study the effect of tariff reduction on corruption using the

trade data between South Africa and Mozambique during 2006 and 2014. The source of

exogenous variation is the large tariff reduction on certain commodities occurring in 2008.

This natural experiment was previously studied by Sequeira (2016) using the traditional

linear DiD estimator. Based on Sequeira’s linear specification, I include the interaction terms

between the treatment and a vector of control variables. After controlling for the interaction

terms, I find that the traditional linear DiD estimate becomes insignificantly different from

zero. This suggests the existence of heterogeneous treatment effects, and Sequeira’s result

can be interpreted as a weighted average of these heterogeneous effects. As pointed out by

Abadie (2005), it is ideal to treat the control variables nonparametrically when there exists

heterogeneity in treatment effects, in order to avoid any inconsistency caused by functional

form misspecification. I apply both Abadie’s semiparametric DiD and DMLDiD on the same

data set (Table 9 of Sequeira (2016)). In comparison to Sequeira’s result, though with the

same sign, Abadie’s estimator is at least twice as large as previously reported by Sequeira

(2016). This large effect, however, may be due to the lack of robustness of this estimation

method and the finite sample bias in the first-step nonparametric estimation. DMLDiD

removes the first-order bias and suggests a smaller effect that is closer to Sequeira’s estimate.

The value becomes only 60% higher than Sequeira’s result. This extra effect can be explained

by the misspecification of the traditional linear DiD estimator. Therefore, I obtain the same
4



conclusion as Sequeira (2016) that tariff reduction decreases corruption, but my estimate

suggests an even larger magnitude.

The DMLDiD proposed in this paper relies heavily on the recent high-dimensional and

ML literature: Belloni et al. (2012), Belloni et al. (2014), Chernozhukov et al. (2015), Belloni

et al. (2017), and Chernozhukov et al. (2018). This paper is also closely related to the

robustness of average treatment effect estimation discussed in (Robins & Rotnitzky, 1995)

and the general discussion in (Chernozhukov, Escanciano, Ichimura, & Newey, 2016). The

asymptotic properties of the robust estimators discussed in these papers remain unaffected

if only one of the first-step estimation with classical nonparametric method is inconsistent.

In independent and contemporaneous works, Zimmert (2019), Sant’Anna & Zhao (2019), Li

(2019), and Lu, Nie, & Wager (2019) also consider the orthogonal property of Abadie’s DiD

estimator. Zimmert (2019) further discusses its efficiency while Sant’Anna & Zhao (2019)

and Li (2019) focuses on classical first-step estimation. Lu, Nie, & Wager (2019) discusses

the situation where control variables are correlated with time.

Plan of the paper. Section 2 reviews both the traditional linear DiD estimator and

Abadie’s semiparametric DiD estimator and discusses their limitations. Section 3 presents

DMLDiD and discusses its theoretical properties. Section 4 conducts the Monte Carlo sim-

ulation to shed some light on the finite sample performance of the proposed DiD estimator.

Section 5 provides the empirical application, and Section 6 concludes the paper.

1.2 The Semiparametric DiD Estimator

In this section, I review the traditional linear DID estimator and Abadie’s semiparametric

DID estimator. Let Yi (t) be the outcome of interest for individual i at time t and Di (t) ∈

{0, 1} the treatment status. The population is observed in a pre-treatment period t = 0,

and in a post-treatment period t = 1. With potential outcome notations (Rubin 1974), we

have Yi (t) = Y 0
i (t) +

(
Y 1
i (t)− Y 0

i (t)
)
Di (t), where Y 0

i (t) is the outcome that individual i

5



would attain at time t in the absence of the treatment, and Y 1
i (t) represents the outcome

that individual i would attain at time t if exposed to the treatment. Since individuals are

only exposed to treatment at t = 1, we have Di (0) = 0 for all i. To reduce notation, I define

Di ≡ Di (1). Then the specification for the traditional linear DiD without control variables

is

Yi (t) = µ+ τ ·Di + δ · t+ α ·Di (t) + εi (t) ,

where α is the parameter of interest, εi (t) is an exogenous shock that has mean zero, and

(µ, τ, δ) are constant parameters. If the common trend assumption holds unconditionally,

then the parameter α captures the effect of treatment. When the treated and untreated

groups are thought to be unbalanced with some characteristics, researchers often include a

vector of control variables, Xi ∈ Rd, into the above linear specification:

Yi (t) = µ+X ′iπ (t) + τ ·Di + δ · t+ α ·Di (t) + εi (t) .

As noted by Meyer, Viscusi, & Durbin (1995), including control variables in this linear

specification may not be appropriate if the treatment has different effects for different groups

in the population. One may also need to include the interaction terms between Xi and

Di (t) to capture the heterogeneous effect of treatment. Hence, it is ideal to treat the

control variables nonparametrically as suggested by Abadie (2005). In the following, I review

Abadie’s semiparametric DiD estimator.

Let the parameter of interest be the average treatment effect on the treated (ATT)

θ0 ≡ E
[
Y 1
i (1)− Y 0

i (1) | Di = 1
]
.

Abadie (2005) discussed three data types: repeated outcomes, repeated cross sections, and

multi-level treatment. To avoid repetition, I only focus on the first two cases. The discussion

6



for multilevel treatments is provided in appendix.

Case 1 (Repeated outcomes): Suppose that researchers observe both pre-treatment

and post-treatment outcomes for individual of interest. That is, researchers observe {Yi(0),

Yi(1), Di, Xi}Ni=1. In this case, we can identify the ATT under the following assumptions

(Abadie 2005):

Assumption 1.1. E
[
Y 0
i (1)− Y 0

i (0) | Xi, Di = 1
]

= E
[
Y 0
i (1)− Y 0

i (0) | Xi, Di = 0
]
.

Assumption 1.2. P (Di = 1) > 0 and P
(
Di = 1 | Xi

)
< 1 with probability one.

Assumption 1.1 is the conditional parallel trend assumption. It states that conditional

on individual’s characteristics Xi, the average outcomes for treated and untreated groups

would have followed parallel paths in the absence of treatment. Assumption 1.2 states that

the support of the propensity score of the treated group is a subset of the support for the

untreated. With these two assumptions, Abadie (2005) identified the ATT:

θ0 = E

[
Yi (1)− Yi (0)
P (Di = 1)

Di − P
(
Di = 1 | Xi

)
1− P

(
Di = 1 | Xi

) ] . (1.1)

Case 2 (Repeated cross sections): Suppose what researchers observe is repeated

cross-section data. That is, researchers observe {Yi, Di, Ti, Xi}Ni=1, where Yi = Yi (0) +

Ti
(
Yi (1)− Yi (0)

)
and Ti is a time indicator that takes value one if the observation belongs

to the post-treatment sample.

Assumption 1.3. Conditional on T = 0, the data are i.i.d. from the distribution of(
Y (0) , D,X

)
, and conditional on T = 1, the data are i.i.d. from the distribution of(

Y (1) , D,X
)
.

Supposing Assumptions 1.1-1.3 hold, the ATT is identified (Abadie 2005) as

θ0 = E

[
Ti − λ0

λ0 (1− λ0)
Yi

P (Di = 1)
Di − P

(
Di = 1 | Xi

)
1− P

(
Di = 1 | Xi

) ] , (1.2)

where λ0 ≡ P (Ti = 1).
7



Then the semiparametric DiD estimator would be the sample analog of 1.1 and 1.2. For

example, in Case 1 in which researchers confront repeated outcomes data, the sample analog

of 1.1 is

θ̂ = 1
N

N∑
i=1

Yi (1)− Yi (0)
p̂

Di − ĝ (Xi)
1− ĝ (Xi)

.

where p̂ is the estimator of p0 ≡ P (D = 1) and ĝ(Xi) is the estimator of the propensity

score g0(X) ≡ P
(
D = 1 | X

)
. When ĝ is estimated using classical nonparametric methods

such as the kernel or series estimators, the estimator θ̂ is able to achieve
√
N -consistent and

asymptotically normal under certain conditions, as shown in the semiparametric estimation

literature (Newey 1994; Newey & McFadden 1994).

When ĝ is an ML estimator, however, the estimator θ̂ is not necessarily to be
√
N -

consistent in general. According to the general theory of inference of ML methods developed

in Chernozhukov et al. (2018), the reason is twofold. First, the score function based on 1.1,

ϕ (W, θ0, p0, g0) ≡ Y (1)−Y (0)
P (D=1)

D−g0(X)
1−g0(X) −θ0, has a non-zero directional (Gateaux) derivative with

respect to the propensity score g0:

∂gE
[
ϕ (W, θ0, p0, g0)

]
[g − g0] 6= 0,

where the directional (Gateaux) derivative is defined in Section 1.3. Second, ML estimators

usually have a convergence rate slower than N−1/2 due to regularization bias. Similarly, the

estimators obtained by directly plugging ML estimators into 1.2 will not be
√
N -consistent

in general. The Monte Carlo simulation in Section 1.4 supports this theoretical insight and

reveals significant bias on the estimators based on 1.1 and 1.2 when using ML estimators in

the first-step nonparametric estimation.

The next section proposes DMLDiD based on 1.1 and 1.2. A distinctive feature of

DMLDiD is that the Gateaux derivatives of the score functions are zero with respect to their

infinite-dimensional nuisance parameters. This property helps us remove the first-order bias

of the first-step ML estimation.

8



1.3 The DMLDiD Estimator

In this section, I propose DMLDiD based on Abadie’s results 1.1 and 1.2. In section 1.2, I

present the new score functions derived from 1.1 and 1.2 and propose an algorithm to con-

struct DMLDiD. In section 1.3.1, I show the theoretical properties of the proposed estimator.

Suppose Assumptions 1.1-1.3 hold and consider the following new score functions.

Case 1 (Repeated outcomes): The new score function for repeated outcomes is

ψ1 (W, θ0, p0, η10) = Y (1)− Y (0)
P (D = 1)

D − P
(
D = 1 | X

)
1− P

(
D = 1 | X

) − θ0

− D − P
(
D = 1 | X

)
P (D = 1)

(
1− P

(
D = 1 | X

))E [Y (1)− Y (0) | X,D = 0
]

︸ ︷︷ ︸
c1

(1.3)

with the unknown constant p0 = P (D = 1) and the infinite-dimensional nuisance parameter

η10 =
(
P
(
D = 1 | X

)
, E

[
Y (1)− Y (0) | X,D = 0

])
≡ (g0, `10) .

Case 2 (Repeated cross sections): The new score function for repeated cross sections

is

ψ2 (W, θ0, p0, λ0, η20) = T − λ0

λ0 (1− λ0)
Y

P (D = 1)
D − P

(
D = 1 | X

)
1− P

(
D = 1 | X

) − θ0 − c2, (1.4)

where the adjustment term c2 is

c2 = D − P
(
D = 1 | X

)
λ0 (1− λ0) · P (D = 1) ·

(
1− P

(
D = 1 | X

)) × E [(T − λ0)Y | X,D = 0
]
.

The nuisance parameters are the unknown constants p0 = P (D = 1) and λ0 = P (T = 1),

9



and the unknown function

η20 =
(
P
(
D = 1 | X

)
, E

[
(T − λ)Y | X,D = 0

])
≡ (g0, `20) .

Notice that the above the new functions are equal to the original score functions 1.1 and

1.2 plus the adjustment terms, (c1, c2), which have zero expectations. Thus, the new score

functions 1.3 and 1.4 still identify the ATT in each case. The purpose of the adjustment

terms is to make the Gateaux derivative of the new score functions zero with respect to

infinite-dimensional nuisance parameters, which is the so-called Neyman-orthogonal property

in Chernozhukov et al. (2018). I combine the new scores 1.3 and 1.4 with the cross-fitting

algorithm of Chernozhukov et al. (2018) to propose DMLDiD.

Definition. (a) Take a K-fold random partition (Ik)Kk=1 of observation indices [N ] = {1, ...

, N}. For simplicity, assume that each fold Ik has the same size n = N/K. For each

k ∈ [K] = {1, ..., K}, define the auxiliary sample Ick ≡ {1, ..., N} \ Ik. (b) For each k,

construct the intermediate ATT estimators

θ̃k = 1
n

∑
i∈Ik

Di − ĝk (Xi)
p̂k
(
1− ĝk (Xi)

) × (Yi (1)− Yi (0)− ˆ̀1k (Xi)
)

(rep-outcomes)

θ̃k = 1
n

∑
i∈Ik

Di − ĝk (Xi)
p̂kλ̂k

(
1− λ̂k

) (
1− ĝk (Xi)

) × ((Ti − λ̂k)Yi − ˆ̀2k (Xi)
)

(rep-cross-sections)

where p̂k = 1
n

∑
i∈Ic

k
Di , λ̂k = 1

n

∑
i∈Ic

k
Ti, and

(
ĝk, ˆ̀1k, ˆ̀2k

)
are the estimators of (g0, `10, `20)

constructed using the auxiliary sample Ick. (c) Construct the final ATT estimator θ̃ =
1
K

∑K
k=1 θ̃k.

The estimators
(
ĝk, ˆ̀1k, ˆ̀2k

)
can be constructed using any ML methods or classical esti-

mators such as kernel or series estimators. For completeness, I present the Logit Lasso and

Lasso estimators here.

10



Consider a class of approximating functions of Xi,

qi ≡
(
q1 (Xi) , ..., qp (Xi)

)′
.

For example, qi can be polynomials or B-splines. Let Λ (u) ≡ 1/
(
1 + exp (−u)

)
be the cu-

mulative distribution function of the standard Logistic distribution, construct the estimator

of the propensity score g0 by

ĝk (xi) ≡ Λ
(
q′iβ̂k

)
, (3.4)

where

β̂k ≡ arg min
β∈Rp

1
M

∑
i∈Ic

k

{
−Di(q′iβ) + log

(
1 + exp

(
q′iβ

))}
+ λk ‖ β ‖1

is the Logit Lasso estimator and M = N − n is the sample size of the auxiliary sample Ick.

Next, define Mk the sample size of Ick ∩ {i : Di = 0}. Construct the estimators of `10 and `20

by
ˆ̀1k (xi) ≡ q′iβ̂1k,

ˆ̀2k (xi) ≡ q′iβ̂2k,

where

β̂1k ∈ arg min
β∈Rp

 1
Mk

∑
i∈Ic

k

(1−Di)
(
Yi (1)− Yi (0)− q′iβ

)2

+ λ1k

Mk

‖ Υ̂1kβ ‖1

and

β̂2k ∈ arg min
β∈Rp

 1
Mk

∑
i∈Ic

k

(1−Di)
((
Ti − λ̂k

)
Yi − q′iβ

)2
+ λ2k

Mk

‖ Υ̂2kβ ‖1

are the modified Lasso estimators proposed in Belloni et al. (2012). The choices of the

penalty levels and loadings
(
λ1k, λ2k, Υ̂1k, Υ̂2k

)
suggested by Belloni et al. (2012) are provided

in appendix.
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1.3.1 Asymptotic Properties

In this section, I show the theoretical properties of the DMLDiD estimator θ̃. In particular,

I will show that the estimator θ̃ can achieve
√
N -consistency and asymptotic normality as

long as the first-step estimators converge at rates faster than N−1/4. This rate of convergence

can be achieved by many ML methods, including Lasso and Logit Lasso.

The critical difference between DMLDiD and Abadie’s DiD estimator is the score func-

tions on which they are based. The new score functions 1.3 and 1.4 have the directional (or

the Gateaux) derivatives equal to zero with respect to their infinite-dimensional nuisance

parameters, while the scores based on 1.1 and 1.2 do not have this property. This property

is the so-called Neyman orthogonality in Chernozhukov et al. (2018).

The definition of the Neyman-orthogonal score provided here is slightly different from

the definition in Chernozhukov et al. (2018). Instead of being orthogonal against all nui-

sance parameters, the Neyman-orthogonal score defined here is orthogonal against only those

infinite-dimensional nuisance parameters. Formally, let θ0 ∈ Θ be the low-dimensional pa-

rameter of interest, ρ0 be the true value of the finite-dimensional nuisance parameter ρ, and

η0 the true value of the infinite-dimensional nuisance parameter η ∈ T . Suppose that W is

a random element taking values in a measurable space (W ,AW) with probability measure P .

Define the directional (or the Gateaux) derivative against the infinite-dimensional nuisance

parameter Dr : T̃ → R, where T̃ = {η − η0 : η ∈ T },

Dr [η − η0] ≡ ∂r

{
EP

[
ψ
(
W, θ0, ρ0, η0 + r (η − η0)

)]}
, η ∈ T ,

for all r ∈ [0, 1). For convenience, denote

∂ηEPψ (W, θ0, ρ0, η0) [η − η0] ≡ D0 [η − η0] , η ∈ T .

In addition, let TN ⊂ T be a nuisance realization set such that the estimator of η0 take

12



values in this set with high probability.

Definition. The score ψ obeys the Neyman orthogonality condition at (θ0, ρ0, η0) with respect

to the nuisance parameter realization set TN ⊂ T if the directional derivative map Dr [η − η0]

exists for all r ∈ [0, 1) and η ∈ TN and vanishes at r = 0:

∂ηEPψ (W, θ0, ρ0, η0) [η − η0] = 0, for all η ∈ TN .

Lemma 1.1. The new score functions 1.3 and 1.4 obey the Neyman orthogonality.

The proof of this lemma can be found in the online appendix. In fact, it is also possible

to derive the Neyman-orthogonal scores with respect to both finite- and infinite-dimensional

nuisance parameters. However, the functional forms are much more complicated than the

score functions 1.3 and 1.4, and this will make the corresponding estimator not as neat as

the estimators proposed here. Since they will enjoy the same asymptotic properties, here I

only focus on the estimators based on 1.3 and 1.4.

In the following, I will discuss the theoretical properties of the new estimator θ̃ when data

belongs to repeated outcomes and repeated cross sections. The results of multilevel treatment

can be proven using the same arguments. Let κ and C be strictly positive constants, K ≥ 2

be a fixed integer, and εN be a sequence of positive constants approaching zero. Denote by

‖ · ‖P,q the Lq norm of some probability measure P : ‖ f ‖P,q≡ (
∫
| f (w) |q dP (w))1/q and

‖ f ‖P,∞≡ supw | f (w) |.

Assumption 1.4. (Regularity Conditions for Repeated Outcomes) Let P be the probability

law for
(
Y (0) , Y (1) , D,X

)
. Let D = g0 (X) + U and Y (1) − Y (0) = `10 (X) + V1 with

EP
[
U | X

]
= 0 and EP

[
V1 | X,D = 0

]
= 0. Define G1p0 ≡ EP

[
∂pψ1 (W, θ0, p0, η10)

]
and

Σ10 ≡ EP

[(
ψ1 (W, θ0, p0, η10) +G1p0 (D − p0)

)2
]
. For the above definition, the following

conditions hold: (a) Pr
(
κ ≤ g0 (X) ≤ 1− κ

)
= 1; (b) ‖ UV1 ‖P,4≤ C; (c) E

[
U2 | X

]
≤ C;

(d) E
[
V 2

1 | X
]
≤ C; (e) Σ10 > 0; and (f) given the auxiliary sample Ick, the estimator

13



η̂1k =
(
ĝk, ˆ̀1k

)
obeys the following conditions. With probability 1−o (1), ‖ η̂1k−η10 ‖P,2≤ εN ,

‖ ĝk − 1/2 ‖P,∞≤ 1/2− κ, and ‖ ĝk − g0 ‖2
P,2 + ‖ ĝk − g0 ‖P,2 × ‖ ˆ̀1k − `10 ‖P,2≤ (εN)2.

Assumption 1.5. (Regularity Conditions for Repeated Cross Sections) Let P be the prob-

ability law for (Y, T,D,X). Let D = g0 (X) + U and (T − λ0)Y = `20 (X) + V2 with

Ep
[
U | X

]
= 0 and Ep

[
V2 | X,D = 0

]
= 0. Define G2p0 ≡ EP

[
∂pψ2 (W, θ0, p0, λ0, η20)

]
,

G2λ0 ≡ EP
[
∂λψ2 (W, θ0, p0, λ0, η20)

]
, and Σ20 ≡ EP [(ψ1 (W, θ0, p0, η10) + G2p0 (D − p0) +

G2λ0 (T − λ0))2]. For the above definition, the following conditions hold: (a) Pr(κ ≤ g0 (X)

≤ 1 − κ) = 1; (b) ‖ UV2 ‖P,4≤ C; (c) E
[
U2 | X

]
≤ C; (d) E

[
V 2

2 | X
]
≤ C; (e)

EP
[
Y 2 | X

]
≤ C; (f) | EP [Y U ] |≤ C; (g) Σ20 > 0; and (h) given the auxiliary sample

Ick, the estimators η̂2k =
(
ĝk, ˆ̀2k

)
obeys the following conditions. With probability 1 − o (1),

‖ η̂2k − η20 ‖P,2≤ εN , ‖ ĝk − 1/2 ‖P,∞≤ 1/2 − κ, and ‖ ĝk − g0 ‖2
P,2 + ‖ ĝk − g0 ‖P,2 × ‖

ˆ̀2k − `20 ‖P,2≤ (εN)2.

Theorem 1.1. For repeated outcomes, suppose Assumptions 1.1, 1.2 and 1.4 hold. For

repeated cross sections, suppose Assumptions 1.1-1.3 and 1.5 hold. If εN = o
(
N−1/4

)
, the

new ATT estimator θ̃ obeys
√
N
(
θ̃ − θ0

)
→ N (0,Σ)

with Σ = Σ10 for repeated outcomes and Σ = Σ20 for repeated cross sections.

Theorem 1.2. Construct the estimators of the asymptotic variances as

Σ̂1 = 1
K

K∑
k=1

En,k
[(
ψ1
(
W, θ̃, p̂k, η̂1k

)
+ Ĝ1p (D − p̂k)

)2
]

(repeated outcomes)

Σ̂2 = 1
K

K∑
k=1

En,k
[(
ψ2
(
W, θ̃, p̂k, λ̂k, η̂2k

)
+ Ĝ2p (D − p̂k) + Ĝ2λ

(
T − λ̂k

))2
]

(repeated cross sections)

where En,k
[
f (W )

]
= n−1∑

i∈Ik
f (Wi), Ĝ1p = Ĝ2p = −θ̃/p̂k, and Ĝ2λ is a consistent estima-

tor of G2λ0. If the assumptions of Theorem 1.1 hold, Σ̂1 = Σ10+oP (1) and Σ̂2 = Σ20+oP (1) .
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Theorem 1.1 shows that DMLDiD θ̃ can achieve
√
N -consistency and asymptotic nor-

mality if the first-step estimators of the infinite dimensional nuisance parameters converge

at a rate faster than N−1/4. This rate of convergence can be achieved by many ML methods.

In particular, Van de Geer (2008) and Belloni et al. (2012) provided detail conditions for

Logit Lasso and the modified Lasso estimators to satisfy this rate of convergence. Theorem

3.2 provides consistent estimators for the asymptotic variance of θ̃. The proofs of Theorem

1.1 and Theorem 1.2 can be found in the appendix.

1.4 Simulation

In the online appendix, I conduct Monte Carlo simulations to shed some light on the finite

sample properties of Abadie (2005)’s DiD estimator and the DMLDiD estimator θ̃ in all

three data structures: repeated outcomes, repeated cross sections, and multilevel treatment.

For the first-step ML estimation, I generate high-dimensional (HD) data and estimate the

propensity score by Logit Lasso, SVM, regression tree, random forests, boosting, and neural

nets. I use random forests with 500 regression trees to estimate the remaining infinite-

dimensional nuisance parameters. I find that while Abadie’s DiD estimator suffers from the

bias of a variety of ML methods, the DMLDiD estimator θ̃ can successfully correct the bias

and is centred at the true value. Figure 1.2 shows the Monte Carlo simulation for repeated

outcomes. Other cases and details are provided in the online appendix.
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(a) Logit Lasso (b) SVM

(c) Regression Tree (d) Random Forests

(e) Boosting (f) Neural Nets

Figure 1.2: The simulation for repeated outcomes with the true value θ0 = 3.

The DGP for Repeated outcomes: Let N = 200 be the sample size and p = 100

the dimension of control variables, Xi ∼ N
(
0, Ip×p

)
. Let γ0 = (1, 1/2, 1/3, 1/4, 1/5, 0,

..., 0) ∈ Rp and Di is generated by the propensity score P (D = 1 | X) = 1
1+exp(−X′γ0) .

Also, let the potential outcomes be Y 0
i (0) = X ′iβ0 + ε1, Y

0
i (1) = Y 0

i (0) + 1 + ε2, and

Y 1
i (1) = θ0 + Y 0

i (1) + ε3, where β0 = γ0 + 0.5 and θ0 = 3, and all error terms follow

N (0, 0.1). Researchers observe
{
Yi (0) , Yi (1) , Di, Xi

}
for i = 1, ..., N , where Yi (0) = Y 0

i (0)
16



and Yi (1) = Y 0
i (1) (1−Di) + Y 1

i (1)Di.

1.5 Empirical Example

In this example, I analyze the effect of tariffs reduction on corruption behaviors using the

bribe payment data collected by Sequeira (2016) between South Africa and Mozambique.

There have been theoretical and empirical debates on whether higher tariff rates increase

incentives for corruption to (Clotfelter 1983; Sequeira & Djankov 2014) or lower tariffs en-

courage agents to pay higher bribes through an income effect (Feinstein 1991; Slemrod &

Yitzhaki 2002). The former argues that an increase in the tariff rate makes it more profitable

to evade taxes on the margin, while the latter asserts that an increased tariff rate makes the

taxpayers less wealthy and this, under the decreasing risk aversion of being penalized, tend

to reduce evasion (Allingham & Sandmo 1972).

Sequeira (2016) collected primary data on the bribed payments between the ports in

Mozambique and South Africa from 2007 to 2013. The cargo owners bribed the border

officials who were in charge of validating clearance documentation and collecting all tariff

payments in exchange for tariff evasion. The exogenous variation used in Sequeira (2016)

to study the effect of tariff reduction on corruption was the significant reduction in the

average nominal tariff rate (of 5 percent) on certain products occurring in 2008. Since not

all products were on the tariff reduction list, a credible control group of products is available.

This credible control group allows for a DiD estimation. Sequeira (2016) pooled together

the cross section data between 2007 and 2013 and estimated the effect of treatment through

the traditional linear DiD with many control variables. Table 9 of Sequeira (2016) presented

the result of the following specification:
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yit = γ1TariffChangeCategoryi × POST

+ µPOST + β1TariffChangeCategoryi

+ β2BaselineTariffi+ Γi + pi + wt + δi + εit, (1.5)

where yit is the natural log of the amount of bribe paid for shipment i in period t, conditional

on paying a bribe. TariffChangeCategory ∈ {0, 1} denotes the treatment status of com-

modities, POST ∈ {0, 1} is an indicator for the years following 2008, and BaselineTariff

is the tariff rate before the tariff reduction. The specification also includes a vector of charac-

teristics Γi, and time and individual fixed effects pi, wt, and δi. The parameter γ1 is the pa-

rameter of interest in Eq. 1.5. Sequeira (2016) found that the amount of bribe paid dropped

after the tariff reduction (γ̂1 = −2.928∗∗). However, as noted by Meyer et al. (1995), this

result of Equation 1.5 excludes the heterogeneous treatment effects. The estimate might be

different if we take into account the heterogeneity. To shed some light on the heterogeneous

treatment effect, I include the interaction terms between TariffChangeCategory×POST

(TP ) and the characteristics Γi into 1.5. The specification becomes

yit = γ1TariffChangeCategoryi × POST + γ2TPi × Γi

+ µPOST + β1TariffChangeCategoryi

+ β2BaselineTariffi+ Γi + pi + wt + δi + εit, (1.6)

where γ2 is a 10× 1 vector. Table 1 shows the comparison of the estimates of 1.5 and 1.6.

Column (2) of Table 1.1 shows that (a) after controlling for the interaction terms, the

estimate for γ1 becomes insignificantly different from zero and (b) most of the coefficients of

the interaction terms are negative. This suggests that there exists a large set of negative het-
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erogeneous treatment effects and that Sequeira’s estimate may be a weighted average of these

heterogeneous treatment effects. The negative coefficients of the interaction terms justify

the sign of Sequeira’s estimate. However, it is ideal to treat the covariates nonparametri-

cally when there exists heterogeneity in treatment effects, in order to avoid any potential

inconsistency created by functional form misspecification (Abadie 2005).

Table 1.1: Estimation results of interaction.

Eq. (5.1) Eq. (5.2)
γ̂1 -2.928** 0.934

(0.944) (2.690)
TP × diff -0.986

(0.959)
TP × agri -1.170**

(0.580)
TP × lvalue -0.098

(0.129)
TP × perishable 0.859

(1.213)
TP × largefirm -0.576

(0.988)
TP × day_arri -0.002

(0.106)
TP × inspection -0.525

(0.911)
TP ×monitor -0.482

(0.713)
TP × 2007tariff 0.009

(0.048)
TP × SouthAfrica -2.706***

(0.912)

I estimate the average treatment effect on the treated using both Abadie’s DiD estimator

and DMLDiD. Since the data is repeated cross sections, I construct the estimators based

on 1.2 and 1.4, respectively. The estimators with first-step kernel estimation contain one

individual characteristic (the natural log of shipment value per ton), which is the only sig-

nificant and continuous control variable in Table 9 of Sequeira (2016). The estimators with

first-step Lasso estimation contain a list of the covariates included in Table 9 of Sequeira

(2016), which consists of the characteristics of product, shipment, firm, and border officials.

I choose both the bandwidth kernel and penalty level of Lasso by 10-fold cross-validations.

Table 1.2 shows the estimation result. First, we can observe that the estimates with first-step
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kernel are much larger than the estimates with first-step Lasso. The reason may be that

more control variables are included in the latter estimates. Second, though with the same

sign, Abadie’s estimator (-8.168 or -6.432) is at least twice as large as previously reported

by Sequeira (2016). This large effect, however, may be due to not only the robustness of

semiparametric estimation on the functional form but also the finite-sample bias in the first-

step nonparametric estimation. The DMLDiD estimator (-5.222) removes the first-order

bias and suggests a smaller effect that is closer to Sequeira’s estimate. Its value is only 60%

higher than Sequeira’s result. This extra effect can be explained by the misspecification of

the traditional linear DiD estimator. Therefore, I obtain the same conclusion as Sequeira

(2016) that tariff reduction decreases corruption, but my estimate suggests an even larger

magnitude.

Table 1.2: The results of DMLDiD estimation.

Sequeira (2016) Abadie (kernel) DMLDiD (kernel) Abadie (Lasso) DMLDiD (Lasso)
ATT -2.928** -8.168** -6.998* -6.432** -5.222*

(0.944) (3.072) (3.752) (2.737) (2.647)

1.6 Conclusion

The DiD estimator survive as one of the most popular methods in the causal inference

literature. A practical problem that empirical researchers face is the selection of important

control variables when they confront a large number of candidate variables. Researchers may

want to use ML methods to handle a rich set of control variables while taking the strength of

the DiD estimator. I improve its original versions by proposing DMLDiD to allow researchers

to use ML methods while still obtains valid inferences. This additional benefits will make

DiD more flexible for empirical researchers to explore a broader set of popular estimation

methods and analyze more types of data sets.
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1.A Appendix

1.A.1 More on Estimation

Multilevel treatments: Individuals can also be exposed to different levels of treatment.

Let W ∈ {0, w1, ..., wJ} be the level of treatment, where W = 0 denotes the untreated

individuals. Researchers observe
{
Yi (0) , Yi (1) ,Wi, Xi

}N
i=1. For w ∈ {0, w1, ..., wJ} and

t ∈ {0, 1}, let Y w (t) be the potential outcome for treatment level w at period t. Denote the

ATT for each level of treatment w by

θw0 ≡ E
[
Y w (1)− Y 0 (1) | W = w

]
.

Suppose that Assumptions (2.1) and (2.2) hold for each w ∈ {w1, ..., wJ}:

E
[
Y 0
i (1)− Y 0

i (0) | Xi,Wi = w
]

= E
[
Y 0
i (1)− Y 0

i (0) | Xi,Wi = 0
]
,

P (Wi = w) > 0 and with probability one P
(
Wi = w | Xi

)
< 1. Then we have (Abadie 2005)

θw0 = E

[
Y (1)− Y (0)
P (W = w)

I (W = w) · P
(
W = 0 | X

)
− I (W = 0) · P

(
W = w | X

)
P
(
W = 0 | X

) ]
,

where I (·) is an indicator function. The Neyman-orthogonal score function for multilevel

treatments is

ψw (W, θw0, pw0, ηw0) = Y (1)− Y (0)
P (W = w)

I(W = w)P (W = 0 | X)− I(W = 0)P (W = w | X)
P
(
W = 0 | X

)
− θw0 − cw. (1.7)
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The adjustment term cw is

cw =
(
I (W = w) · P

(
W = 0 | X

)
− I (W = 0) · P

(
W = w | X

)
P (W = w) · P

(
W = 0 | X

) )
×

E
[
Y (1)− Y (0) | X, I (W = 0) = 1

]
.

The nuisance parameters are the unknown constant pw0 ≡ P (W = w) and the infinite-

dimensional parameter ηw0 = (gw0, gz0, `30), where gw0 = P (W = w | X), gz0 = P (W = 0 |

X), and `30 = E
[
Y (1)− Y (0) | X, I (W = 0) = 1

]
.

Multilevel treatments algorithm:

(i) Take a K-fold random partition (Ik)Kk=1 of observation indices [N ] = {1, ..., N} such

that the size of each fold Ik is n = N/K. For each k ∈ [K] = {1, ..., K}, define the

auxiliary sample Ick ≡ {1, ..., N} \ Ik.

(ii) For each k ∈ [K], construct the estimator of p0 and λ0 by p̂w = 1
n

∑
i∈Ic

k
Di. Also,

construct the estimators of gw, gz, and `30 using the auxiliary sample Ick: ĝwk =

ĝw

(
(Wi)i∈Ic

k

)
, ĝzk = ĝz

(
(Wi)i∈Ic

k

)
, and ˆ̀3k = ˆ̀3

(
(Wi)i∈Ic

k

)
.

(iii) For each k, construct the intermediate ATT estimators

θ̃wk = 1
n

∑
i∈Ik

I (Wi = w) · ĝzk (Xi)− I (Wi = 0) · ĝwk (Xi)
p̂wĝzk (Xi)

×
(
Y (1)− Y (0)− ˆ̀3k (Xi)

)
,

(iv) Construct the final ATT estimators θ̃ = 1
K

∑K
k=1 θ̃k.

Lasso penalty. The following is suggested by Belloni, Chen, Chernozhukov, & Hansen

(2012). Let yi denote Yi (1) − Yi (0) or
(
Ti − λ̂k

)
, λk denote λ1k or λ2k, and Υ̂k denote Υ̂1k
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or Υ̂2k. For k ∈ [K], the loading Υ̂k is a diagonal matrix with entries γ̂kj, j = 1, ..., p,

constructed by the following steps:

Initial γ̂kj =
√√√√ 1
Mk

∑
i∈Ic

k

(1−Di) q2
ij (yi − ȳk)2, λk = 2c

√
MkΦ−1 (1− γ/2p) ,

Refined γ̂kj =
√√√√ 1
Mk

∑
i∈Ic

k

(1−Di) q2
ij ε̂

2
i , λk = 2c

√
MkΦ−1 (1− γ/2p) ,

where ȳk = M−1∑
i∈Ic

k
yi, c > 1 and γ → 0. The empirical residual ε̂i is calculated by the

modified Lasso estimator β∗k in the previous step: ε̂i = yi − q′iβ∗k . Repeat the second step

B > 0 times to obtain the final loading.

1.A.2 Monte Carlo

ML Estimation (Repeated cross sections): Let N be the sample size and p the dimen-

sion of control variables, Xi ∼ N
(
0, Ip×p

)
. Also, let γ0 = (1, 1/2, 1/3, 1/4, 1/5, 0, ..., 0) ∈ Rp

and D is generated by the propensity score

P
(
D = 1 | X

)
= 1

1 + exp (−X ′γ0)(Logistic).

The potential outcomes are generated by Y 0
i (0) = 1 + ε1, Y

0
i (1) = Y 0

i (0) + 1 + ε2, Y
1
i (1) =

θ0 + Y 0
i (1) + ε3, where β0 = γ0 + 0.5 and θ0 = 3, and all error terms follow N (0, 0.1).

Define Yi (0) = Y 0
i (0) and Yi (1) = Y 0

i (1) (1−Di) + Y 1
i (1)Di. Let Ti follow a Bernoulli

distribution with parameter 0.5. Researchers observe {Yi, Ti, Di, Xi} for i = 1, ..., N , where

Yi = Yi (0) + Ti
(
Yi (1)− Yi (0)

)
.

ML Estimation (Multilevel Treatments): Suppose there are two levels of treatment

so that W ∈ {0, 1, 2}. Let N be the sample size and p the dimension of control variables,
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Xi ∼ N
(
0, Ip×p

)
. Also, let γ0 ∈∈ Rp such that γ0 =

(
1, 1/2, 1/3, 1/4, 1/5, 0, ..., 0

)
and

(
P (W = 0) , P (W = 1) , P (W = 2)

)
= (0.3, 0.3, 0.4)

The potential outcome are generated by Y 0
i (0) = X ′β0+ε1, Y

0
i (1) = Y 0

i (0)+1+ε2, Y
1
i (1) =

θ10 +Y 0
i (1)+ε3, Y

2
i (1) = θ20 +Y 0

i (1)+ε4, where β0 = γ0 +0.5 and θ10 = 3 and θ20 = 6, and

all error terms follow N (0, 0.1). Researchers observe
{
Yi (0) , Yi (1) ,Wi, Xi

}
for i = 1, ..., N ,

where Yi (0) = Y 0
i (0) and Yi (1) = Y 0

i (1) I (Wi = 0) + Y 1
i (1) I (Wi = 1) + Y 2

i (1) I (Wi = 2).

I focus on the estimation of the second level ATT θ20.
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(a) Logit Lasso (b) SVM

(c) Regression Trees (d) Random Forests

(e) Boosting (f) Neural Nets

Figure 1.3: Repeated Cross Sections
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(a) Logit Lasso

(b) Neural Nets (c) SVM

(d) Regression Trees (e) Random Forests

Figure 1.4: Multi-level Treatment

1.A.3 Proofs of the Neyman-orthogonal Scores

Proof of Lemma 1.1

Repeated outcomes:
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The Gateaux derivative of 1.3 in the direction η1 − η10 = (g − g0, `1 − `10) is

∂η1EP
[
ψ1 (W, θ0, p0, η10)

]
=EP

(D − 1)
(
Y (1)− Y (0)− `10 (X)

)
p0
(
1− g0 (X)

)2 (
g (X)− g0 (X)

)
− EP

[
D − g0 (X)

p0
(
1− g0 (X)

) (`1 (X)− `10 (X)
)]

=− EP
[
g (X)− g0 (X)
p0
(
1− g0 (X)

)E[Y (1)− Y (0)− `10(X) | X,D = 0]
]

− EP
[(
`1 (X)− `10 (X)

)
p0
(
1− g0 (X)

) EP
[
D − g0 (X) | X

]]

=− EP
[
g (X)− g0 (X)
p0
(
1− g0 (X)

) (`10 (X)− `10 (X)
)]
− 0

=0,

where the second inequality follows from the law of iterated expectations, the third from the

definition of `10 (X) and EP
[
D − g0 (X) | X

]
= 0.

Repeated cross sections:

Similar to the proof of repeated outcomes, the Gateaux derivative of 1.4 in the direction

η2 − η20 = (g − g0, `2 − `20) is

∂η2EP
[
ψ2 (W, θ0, p0, λ0, η20)

]
=EP

(D − 1)
(
(T − λ0)Y − `20 (X)

)
p′0
(
1− g0 (X)

)2 (
g (X)− g0 (X)

)
− EP

[
D − g0 (X)

p′0
(
1− g0 (X)

) (`2 (X)− `20 (X)
)]

=− EP
[
g (X)− g0 (X)
p′0
(
1− g0 (X)

) (`20 (X)− `20 (X)
)]

− EP
[

`2 (X)− `20 (X)
pλ (1− λ)

(
1− g (X)

)EP [D − g0 (X) | X
]]

=0,

where p′0 ≡ p0λ0 (1− λ0).

Multilevel treatment:
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Let ∆w = gw − gw0, ∆z = gz − gz0, and ∆`3 = `3 − `30. The Gateaux derivative of 1.7 in the

direction ηw − ηw0 = (gw − gw0, gz − gz0, `3 − `30) is

∂ηwEP
[
ψw (W, θ0, pw0, ηw0)

]
=EP

I (W = 0) gw0 (X)
pw0gz0 (X)2

(
Y (1)− Y (0)− `30

)
∆w


− EP

[
I (W = 0)
pw0gz0 (X)

(
Y (1)− Y (0)− `30

)
∆z

]

+ EP

[
I (W = 0) gw0 (X)− I (W = w) gz0 (X)

pw0gz0 (X) ∆`3

]

=0

by the law of iterated expectation on each terms. �

1.A.4 Additional proofs

Proof of Theorem 1.1:

The proof proceeds in five steps. In Step 1, I show the main result using the auxiliary

results (A.1)-(A.4). In Step 2-5, I prove the auxiliary results.

sup
η1∈TN

(
E
[
‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖2

])1/2
≤ εN , (A.1)

sup
r∈(0,1),η1∈TN

‖ ∂2
rE

[
ψ1
(
W, θ0, p0, η10 + r (η1 − η10)

)]
‖≤ (εN)2 , (A.2)

sup
η1∈TN

(
EP

[
‖ ∂pψ1 (W, θ0, p0, η1)− ∂pψ1 (W, θ0, p0, η10) ‖2

])1/2
≤ εN , (A.3)

sup
p∈PN ,η1∈TN

(
EP

[
‖ ∂2

pψ1 (W, θ0, p, η1)− ∂2
pψ1 (W, θ0, p0, η10) ‖2

])1/2
≤ εN , (A.4)

where TN is the set of all η1 = (g, `1) consisting of P -square-integrable functions g and `1
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such that

‖ η1 − η10 ‖P,2≤ εN ,

‖ g − 1/2 ‖P,∞≤ 1/2− κ,

‖ g − g0 ‖2
P,2 + ‖ g − g0 ‖P,2 × ‖ `1 − `10 ‖P,2≤ (εN)2 ,

and PN is the set of all p > 0 such that | p − p0 |≤ N−1/2. Then by Assumption 1.4 and

| p̂k − p0 |= OP

(
N−1/2

)
, we have η̂1k ∈ TN and p̂k ∈ PN with probability 1− o (1).

Step 1. Observe that we have the decomposition

√
N
(
θ̃ − θ0

)
=
√
N

 1
K

K∑
k=1

θ̃k − θ0


=
√
N

1
K

K∑
k=1

En,k
[
ψ1 (W, θ0, p̂k, η̂1k)

]
=
√
N

1
K

K∑
k=1

En,k
[
ψ1 (W, θ0, p0, η̂1k)

]
+
√
N

1
K

K∑
k=1

En,k
[
∂pψ1 (W, θ0, p0, η̂1k)

]
(p̂k − p0)︸ ︷︷ ︸

a

+
√
N

1
K

K∑
k=1

En,k
[
∂2
pψ1 (W, θ0, p̄k, η̂1k)

]
(p̂k − p0)2

︸ ︷︷ ︸
b

,

where p̄k ∈ (p̂k, p0). By the triangle inequality, the expectation in term (a) satisfies

∣∣∣∣En,k [∂pψ1 (W, θ0, p0, η̂1k)
]
− EP

[
∂pψ1 (W, θ0, p0, η10)

]∣∣∣∣ ≤ J1,k + J2,k,

where

J1,k =
∣∣∣∣En,k [∂pψ1 (W, θ0, p0, η̂1k)

]
− En,k

[
∂pψ1 (W, θ0, p0, η10)

]∣∣∣∣ ,
J2,k =

∣∣∣∣En,k [∂pψ1 (W, θ0, p0, η10)
]
− Ep

[
∂pψ1 (W, θ0, p0, η10)

]∣∣∣∣ .
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The goal is to show that J1,k = op (1) and J2,k = op (1). To bound J2,k, we have EP
[
J2,k

]
= 0

and

EP
[
J2

2,k

]
≤n−1EP

[(
∂pψ1 (W, θ0, p0, η10)2

)]

=n−1EP

 1
p4

0

U2V 2
1

(1− g0)2


≤n−1

(
C2

p4
0κ

2

)
,

where the last inequality follows from Assumption (3.1). By Chebyshev’s inequality, J2,k =

OP

(
n−1/2

)
= oP (1). Next, we bound J1,k. Conditional on the auxiliary sample Ick, η̂1k can

be treated as fixed. Under the event that η̂1k ∈ TN , we have

EP

[
J2

1,k | (Wi)i∈Ic
k

]
=EP

[
‖ ∂pψ1 (W, θ0, p0, η̂1k)− ∂pψ1 (W, θ0, p0, η10) ‖2| (Wi)i∈Ic

k

]
≤ sup

η1∈TN

EP
[
‖ ∂pψ1 (W, θ0, p0, η1)− ∂pψ1 (W, θ0, p0, η10) ‖2

]
=ε2

N

by (A.3). Since conditional convergence implies unconditional convergence (Lemma A.1),

J1,k = OP (εN) = oP (1). Together, we have

En,k
[
∂pψ1 (W, θ0, p0, η̂1k)

]
p→ Ep

[
∂pψ1 (W, θ0, p0, η10)

]
= G1p0.

By the triangle inequality again, the expectation in term (b) satisfies

∣∣∣∣En,k [∂2
pψ1 (W, θ0, p̄k, η̂1k)

]
− Ep

[
∂2
pψ1 (W, θ0, p0, η10)

]∣∣∣∣ ≤ J3,k + J4,k,

where

J3,k =
∣∣∣∣En,k [∂2

pψ1 (W, θ0, p̄k, η̂1k)
]
− En,k

[
∂2
pψ1 (W, θ0, p0, η10)

]∣∣∣∣ ,
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J4,k =
∣∣∣∣En,k [∂2

pψ1 (W, θ0, p0, η10)
]
− Ep

[
∂2
pψ1 (W, θ0, p0, η10)

]∣∣∣∣ .
To bound J4,k, we have

EP
[
J2

4,k

]
≤n−1EP

[(
∂2
pψ1 (W, θ0, p0, η10)2

)]

=n−1EP

 4
p6

0

U2V 2
1

(1− g0)2


≤n−1

(
4C2

p6
0κ

2

)
,

where the last inequality follows from the regularity conditions. By Chebyshev’s inequality,

J4,k = OP

(
n−1/2

)
= oP (1). Conditional on Ick, both p̄k and η̂1k can be treated as fixed.

Under the event that p̂k ∈ PN (thus p̄k ∈ PN) and η̂1k ∈ TN , we have

EP

[
J2

3,k | (Wi)i∈Ic
k

]
=EP

[
‖ ∂2

pψ1 (W, θ0, p̄k, η̂1k)− ∂2
pψ1 (W, θ0, p0, η10) ‖2| (Wi)i∈Ic

k

]
≤ sup

p∈PN ,η1∈TN

EP
[
‖ ∂pψ1 (W, θ0, p, η1)− ∂pψ1 (W, θ0, p0, η10) ‖2

]
≤ε2

N

by (A.4). By Lemma A.1 again, J3,k = OP (εN) = oP (1). Hence,

En,k
[
∂2
pψ1 (W, θ0, p̄k, η̂1k)

]
p→ EP

[
∂2
pψ1 (W, θ0, p̄k, η̂1k)

]
.

Combine the above results with that p̂k − p0 = En,k[D − p0] and (p̂k − p0)2 = OP (N−1),
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the decomposition of θ̃ becomes

√
N
(
θ̃ − θ0

)
=
√
N

1
K

K∑
k=1

En,k
[
ψ1 (W, θ0, p0, η̂1k)

]

+
√N 1

K

K∑
k=1

G1p0En,k
[
(D − p0)

]
+ op (1)

+Op

(
N−1/2

)

=
√
N

1
K

K∑
k=1

En,k
[
ψ1 (W, θ0, p0, η̂1k) +G1p0 (D − p0)

]
+ oP (1)

= 1√
N

N∑
i=1

[
ψ1 (Wi, θ0, p0, η10) +G1p0 (Di − p0)

]
+
√
NRN + oP (1) ,

where

RN = 1
K

K∑
k=1

En,k
[
ψ1 (W, θ0, p0, η̂1k) +G1p0 (D − p0)

]

− 1
N

N∑
i=1

[
ψ1 (Wi, θ0, p0, η10) +G1p0 (Di − p0)

]

= 1
K

K∑
k=1

En,k
[
ψ1 (W, θ0, p0, η̂1k)

]
− 1
N

N∑
i=1

ψ1 (Wi, θ0, p0, η10) .

It remains to show that
√
NRN = oP (1).

This part is essentially identical to Step 3 in the proof of Theorem 3.1 (DML2) in Cher-

nozhukov et al. (2018). I reproduce it here for reader’s convenience. Since K is a fixed

integer, which is independent of N , it suffices to show that for any k ∈ [K],

En,k
[
ψ1 (W, θ0, p0, η̂1k)

]
− 1
n

∑
i∈Ik

ψ1 (Wi, θ0, p0, η10) = oP
(
N−1/2

)
.

Define the empirical process notation:

Gn,k

[
φ (W )

]
= 1√

n

∑
i∈Ik

(
φ (Wi)−

∫
φ (w) dP

)
,
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where φ is any P -integrable function on W . By the triangle inequality, we have

‖ En,k
[
ψ1 (W, θ0, p0, η̂1k)

]
− 1
n

∑
i∈Ik

ψ1 (Wi, θ0, p0, η10) ‖≤ I1,k + I2,k√
n

,

where

I1,k ≡‖ Gn,k

[
ψ1 (W, θ0, p0, η̂1k)

]
−Gn,k

[
ψ1 (W, θ0, p0, η10)

]
‖,

I2,k ≡
√
n ‖ EP

[
ψ1 (W, θ0, p0, η̂1k) | (Wi)i∈Ic

k

]
− EP

[
ψ1 (W, θ0, p0, η10)

]
‖ .

To bound I1,k, note that conditional on (Wi)i∈Ic
k
the estimator η̂1k is nonstochastic. Under

the event that η̂1k ∈ TN , we have

EP

[
I2

1,k | (Wi)i∈Ic
k

]
=EP

[
‖ ψ1 (W, θ0, p0, η̂1k)− ψ1 (W, θ0, p0, η10) ‖2| (Wi)i∈Ic

k

]
≤ sup

η1∈TN

EP

[
‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖2| (Wi)i∈Ic

k

]

= sup
η1∈TN

EP
[
‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖2

]
= (εN)2

by (A.1). Hence, I1,k = OP (εN) by Lemma A.1. To bound I2,k, define the following function

fk (r) = EP

[
ψ1
(
W, θ0, p0, η10 + r (η̂1k − η10)

)
| (Wi)i∈Ic

k

]
− E

[
ψ1 (W, θ0, p0, η10)

]

for r ∈ [0, 1). By Taylor series expansion, we have

fk (1) = fk (0) + f ′k (0) + f ′′k (r̃) /2, for some r̃ ∈ (0, 1) .

Note that fk (0) = 0 since E
[
ψ1 (W, θ0, p0, η10) | (Wi)i∈Ic

k

]
= E

[
ψ1 (W, θ0, p0, η10)

]
. Further,

on the event η̂1k ∈ TN ,

‖ f ′k (0) ‖=‖ ∂η1EPψ1 (W, θ0, p0, η10) [η̂1k − η10] ‖= 0
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by the orthogonality of ψ1. Also, on the event η̂1k ∈ TN ,

‖ f ′′k (r̃) ‖≤ sup
r∈(0,1)

‖ f ′′k (r) ‖≤ (εN)2

by (A.2). Thus,

I2,k =
√
n ‖ fk (1) ‖= OP

(√
n (εN)2

)
.

Together with the result on I1,k, we have

En,k
[
ψ1 (W, θ0, p0, η̂1k)

]
− 1
n

∑
i∈Ik

ψ1 (Wi, θ0, p0, η10) ≤I1,k + I2,k√
n

=OP

(
n−1/2εN + (εN)2

)
=oP

(
N−1/2

)

by n = O (N) and εN = o
(
N−1/4

)
. Hence,

√
NRN = oP (1).

Step 2. In this step, I present the proof of (A.1). We have the following decomposition:

ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) = D − g (X)
p0
(
1− g (X)

) (Y (1)− Y (0)− `1 (X)
)

− D − g0 (X)
p0
(
1− g0 (X)

) (Y (1)− Y (0)− `10 (X)
)

=U + g0 (X)− g (X)
p0
(
1− g (X)

) (
V1 + `10 (X)− `1 (X)

)
− UV1

p0
(
1− g0 (X)

) .
Thus, we have

ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) = UV1

p0
(
1− g (X)

) + U
(
`10 (X)− `1 (X)

)
p0
(
1− g (X)

)
+
(
g0 (X)− g (X)

)
V1

p0
(
1− g (X)

) − UV1

p0
(
1− g0 (X)

)
+
(
g0 (X)− g (X)

) (
`10 (X)− `1 (X)

)
p0
(
1− g (X)

) .
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Given κ ≤ g0 (X) ≤ 1− κ and κ ≤ g (X) ≤ 1− κ,

‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖P,2≤
1

p0κ2 ‖ UV1
(
1− g0 (X)

)
+ U

(
`10 (X)− `1 (X)

) (
1− g0 (X)

)
+ V1

(
g0 (X)− g (X)

) (
1− g0 (X)

)
+ (g0 − g) (`10 − `1)

(
1− g0 (X)

)
− UV1

(
1− g (X)

)
‖P,2 .

By κ ≤ g0 (X) ≤ 1− κ and κ ≤ g (X) ≤ 1− κ again, we can obtain

‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖P,2≤
1− κ
p0κ2 ‖ UV1 + U

(
`10 (X)− `1 (X)

)
+ V1

(
g0 (X)− g (X)

)
+
(
g0 (X)− g (X)

) (
`10 (X)− `1 (X)

)
− UV1 ‖P,2 .

Thus, by EP
[
U2 | X

]
≤ C and EP

[
V 2

1 | X
]
≤ C,

‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖P,2≤
(1− κ)

√
C

p0κ2 ‖ `10 − `1 ‖P,2

+ (1− κ)
√
C

p0κ2 ‖ g0 − g ‖P,2

+ (1− κ)
p0κ2 ‖ g0 − g ‖P,2‖ `10 − `1 ‖P,2

≤O
(
εN + εN + (εN)2

)
=O (εN) .
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Step 3. In this step, I present the proof of (A.2). Define

f (r) = EP
[
ψ1
(
W, θ0, p0, η10 + r (η1 − η10)

)]
.

Then its second-order derivative is

∂2
rf (r) = 2

p0
EP

 (D − 1) (g − g0)2(
1− g0 − r (g − g0)

)3 (Y (1)− Y (0)− `10 − r (`1 − `10)
)

− 2
p0
EP

 D − 1(
1− g0 − r (g − g0)

)2 (`1 − `10) (g − g0)
 .

It follows that

| ∂2
rf (r) |≤ O

(
‖ (g − g0) ‖2

P,2 + ‖ (g − g0) ‖P,2 × ‖ (`1 − `10) ‖P,2
)
≤ (εN)2 .

Step 4. Notice that

∂pψ1 (W, θ, p, η1) =− 1
p

D − g (X)
1− g (X)

(
Y (1)− Y (0)− `1 (X)

)
=− 1

p

(
ψ1 (W, θ, p, η1) + θ

)
,

then we have

‖ ∂pψ1 (W, θ0, p0, η1)− ∂pψ1 (W, θ0, p0, η10) ‖P,2

= 1
p0
‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖P,2

= O (εN)

by Step 2.
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Step 5. Notice that

∂2
pψ1 (W, θ, p, η1) = 2

p3
D − g (X)
1− g (X)

(
Y (1)− Y (0)− `1 (X)

)
= 2
p2
(
ψ1 (W, θ, p, η1) + θ

)
,

then we have

∂2
pψ1 (W, θ0, p, η1)− ∂2

pψ1 (W, θ0, p0, η10) =∂2
pψ1 (W, θ0, p0, η1)− ∂2

pψ1 (W, θ0, p0, η10)

+ ∂3
p3ψ1 (W, θ0, p̄, η1) (p− p0)

= 2
p2

0

(
ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10)

)
− 6
p̄4

(D − g (X))
(
Y (1)− Y (0)− `1 (X)

)
1− g (X)

× (p− p0) ,

where p̄ ∈ (p, p0). Thus, ‖ ∂2
pψ1 (W, θ0, p, η1)− ∂2

pψ1 (W, θ0, p0, η10) ‖P,2 is bounded by

2
p2

0
‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖P,2

+ ‖ 6
p̄4
D − g (X)
1− g (X)

(
Y (1)− Y (0)− `1 (X)

)
‖P,2 × | p− p0 | .
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The term in the second line is bounded by

6
p̄4κ
‖ (U + g0 − g) (V1 + `10 − `1) ‖P,2≤

6
p̄4κ
‖ UV1 ‖P,2 + 6

p̄4κ
‖ U (`10 − `1) ‖P,2

+ 6
p̄4κ
‖ V1 (g0 − g) ‖P,2

+ 6
p̄4κ
‖ g0 − g ‖P,2‖ `10 − `1 ‖P,2

≤ 6
p̄4κ

(
C +
√
C ‖ `10 − `1 ‖P,2

)
+ 6
p̄4κ

√
C ‖ g0 − g ‖P,2

+ 6
p̄4κ
‖ g0 − g ‖P,2‖ `10 − `1 ‖P,2

=O (1)

by ‖ UV1 ‖P,2≤‖ UV1 ‖P,4≤ C , EP
[
U2 | X

]
≤ C, EP

[
V 2

1 | X
]
≤ C, and the conditions on

the rates of convergence. Together with Step 2, we obtain

‖ ∂2
pψ1 (W, θ0, p, η1)− ∂2

pψ1 (W, θ0, p0, η10) ‖P,2≤O (εN) +O (1)×O
(
N−1/2

)
=O (εN) ,

where I assume that εN converges to zero no faster than N−1/2.

Repeated cross sections:

In step 1, I show the main result with the following auxiliary results:

sup
η2∈TN

(
E
[
‖ ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) ‖2

])1/2
≤ εN , (A.5)

sup
r∈(0,1),η2∈TN

‖ ∂2
rE

[
ψ2
(
W, θ0, p0, λ0, η20 + r (η2 − η20)

)]
‖≤ (εN)2 . (A.6)

sup
η2∈TN

(
EP

[
‖ ∂pψ2 (W, θ0, p0, λ0, η2)− ∂pψ2 (W, θ0, p0, λ0, η20) ‖2

])1/2
≤ εN , (A.7)

38



sup
η2∈TN

(
EP

[
‖ ∂λψ2 (W, θ0, p0, λ0, η2)− ∂λψ2 (W, θ0, p0, λ0, η20) ‖2

])1/2
≤ εN , (A.8)

sup
p∈PN ,η2∈TN

(
EP

[
‖ ∂2

pψ2 (W, θ0, p, λ0, η2)− ∂2
pψ2 (W, θ0, p0, λ0, η20) ‖2

])1/2
≤ εN , (A.9)

sup
p∈PN ,λ∈ΛN ,η2∈TN

(
EP

[
‖ ∂2

λψ2 (W, θ0, p, λ, η2)− ∂2
λψ2 (W, θ0, p0, λ0, η20) ‖2

])1/2
≤ εN , (A.10)

sup
p∈PN ,η2∈TN

(
EP

[
‖ ∂λ∂pψ2 (W, θ0, p, λ0, η2)− ∂λ∂pψ2 (W, θ0, p0, λ0, η20) ‖2

])1/2
≤ εN , (A.11)

where TN is the set of all η2 = (g, `2) consisting of P -square-integrable functions g and `2

such that

‖ η2 − η20 ‖P,2≤ εN ,

‖ g − 1/2 ‖P,∞≤ 1/2− κ,

‖ (g − g0) ‖2
P,2 + ‖ (g − g0) ‖P,2 × ‖ (`2 − `20) ‖P,2≤ (εN)2 ,

PN and ΛN are the sets consisting all p > 0 and λ > 0 such that | p − p0 |≤ N−1/2 and

| λ− λ0 |≤ N−1/2, respectively. By the regularity condition (3.2), | p̂k − p0 |= OP

(
N−1/2

)
,

and | λ̂k − λ0 |= OP

(
N−1/2

)
, we have η̂2k ∈ TN , p̂k ∈ PN , and λ̂k ∈ ΛN with probability

1− o (1).

In Step 2-4, I show the above auxiliary results.
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Step 1. Notice that

√
N
(
θ̃ − θ0

)
=
√
N

 1
K

K∑
k=1

θ̃k − θ0


=
√
N

1
K

K∑
k=1

En,k
[
ψ2
(
W, θ0, p̂k, λ̂k, η̂2k

)]

=
√
N

1
K

K∑
k=1

En,k
[
ψ2 (W, θ0, p0, λ0, η̂2k)

]
+
√
N

1
K

K∑
k=1

En,k
[
∂pψ2 (W, θ0, p0, λ0, η̂2k)

]
(p̂k − p0)

+
√
N

1
K

K∑
k=1

En,k
[
∂λψ2 (W, θ0, p0, λ0, η̂2k)

] (
λ̂k − λ0

)
+ oP (1) ,

where the term oP (1), by the same arguments for the term b in repeated outcomes and the

auxiliary results (A.9)-(A.11), contains the second-order terms

√
N

1
K

K∑
k=1

En,k
[
∂2
pψ2 (W, θ0, p̄k, λ0, η̂2k)

]
(p̂k − p0)2 ,

√
N

1
K

K∑
k=1

En,k
[
∂2
λψ2

(
W, θ0, p̂k, λ̄k, η̂2k

)] (
λ̂k − λ0

)2
,

√
N

1
K

K∑
k=1

En,k
[
∂λ∂pψ2 (W, θ0, p̄k, λ0, η̂2k)

] (
λ̂k − λ0

)
(p̂k − p0) ,

where p̄k ∈ (p̂k, p0) and λ̄k ∈
(
λ̂k, λ0

)
. On the other hand, by the same arguments for the

term a in repeated outcomes and the auxiliary results (A.7)-(A.8), we have

En,k
[
∂pψ2 (W, θ0, p0, λ0, η̂2k)

]
p→ Ep

[
∂pψ2 (W, θ0, p0, λ0, η20)

]
= G2p0,

En,k
[
∂λψ2 (W, θ0, p0, λ0, η̂2k)

] p→ Ep
[
∂λψ2 (W, θ0, p0, λ0, η20)

]
= G2λ0.
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Hence, since p̂k − p0 = En,k [D − p0] and λ̂k − λ0 = En,k [T − λ0], we have

√
N
(
θ̃ − θ0

)
=
√
N

1
K

K∑
k=1

En,k
[
ψ2 (W, θ0, p0, λ0, η̂2k)

]
=
√
N

1
K

K∑
k=1

En,k
[
ψ2 (W, θ0, p0, λ0, η̂1k) +G2p0 (D − p0) +G2λ0 (T − λ0)

]
+ oP (1)

= 1√
N

N∑
i=1

[
ψ2 (Wi, θ0, p0, λ0, η20) +G2p0 (Di − p0) +G2λ0 (Ti − λ0)

]
+
√
NR′N + oP (1) ,

where

R′N = 1
K

K∑
k=1

En,k
[
ψ2 (W, θ0, p0, λ0, η̂2k) +G2p0 (D − p0) +G2λ0 (T − λ0)

]

− 1
N

N∑
i=1

[
ψ2 (Wi, θ0, p0, λ0, η20) +G2p0 (Di − p0) +G2λ0 (Ti − λ0)

]

= 1
K

K∑
k=1

En,k
[
ψ2 (W, θ0, p0, λ0, η̂2k)

]
− 1
N

N∑
i=1

ψ2 (Wi, θ0, p0, λ0, η10) .

Using (A.5)-(A.6) and the same arguments as the step 1 in repeated outcomes, one can show

that
√
NR′N = oP (1). Hence, it remains to prove the auxiliary results (A.5)-(A.11).

Step 2. Recall that p′0 = p0λ0 (1− λ0). For (A.5), notice that

ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) = D − g (X)
p′0
(
1− g (X)

) ((T − λ0)Y − `2 (X)
)

− D − g0 (X)
p′0
(
1− g0 (X)

) ((T − λ0)Y − `20 (X)
)

=U + g0 (X)− g (X)
p′0
(
1− g (X)

) (V2 + `20 (X)− `2(X))

− UV2

p′0
(
1− g0 (X)

) .
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The decomposition becomes

ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) = UV2

p′0
(
1− g (X)

) + U
(
`20 (X)− `2 (X)

)
p′0
(
1− g (X)

)
+
(
g0 (X)− g (X)

)
V2

p′0
(
1− g (X)

)
+
(
g0 (X)− g (X)

) (
`20 (X)− `2 (X)

)
p′0
(
1− g (X)

)
− UV2

p′0
(
1− g0 (X)

) .
Given that κ ≤ g0 (X) ≤ 1− κ, κ ≤ g (X) ≤ 1− κ, we have

‖ ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) ‖P,2≤
1

p′0κ
2 ‖ UV2

(
1− g0 (X)

)
+ U

(
`20 (X)− `2 (X)

) (
1− g0 (X)

)
+ V2

(
g0 (X)− g (X)

) (
1− g0 (X)

)
+ (g0 − g) (`20 − `2)

(
1− g0 (X)

)
− UV2

(
1− g (X)

)
‖P,2 .

By κ ≤ g0 (X) ≤ 1− κ, κ ≤ g (X) ≤ 1− κ again, we obtain

‖ ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) ‖P,2≤
1− κ
p′0κ

2 ‖ UV2

+ U
(
`20 (X)− `2 (X)

)
+ V2

(
g0 (X)− g (X)

)
+ (g0 − g) (`20 − `2)

− UV2 ‖P,2 .
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Given EP
[
U2 | X

]
≤ C, EP

[
V 2

2 | X
]
≤ C, and the conditions on the rates of convergence,

‖ ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) ‖P,2≤
(1− κ)

√
C

p′0κ
2 ‖ `20 (X)− `2 (X) ‖P,2

+(1− κ)
√
C

p′0κ
2 ‖ g0 (X)− g (X) ‖P,2

+(1− κ)
p′0κ

2 ‖ g0 − g ‖P,2‖ `20 − `2 ‖P,2

≤O
(
εN + εN + (εN)2

)
=O (εN) .

For (A.6), let f (r) = EP
[
ψ2
(
W, θ0, p0, λ0, η20 + r (η2 − η20)

)]
. Then the second-order deriva-

tive is

∂2
rf (r) = 2

p′0
EP

 (D − 1) (g − g0)2(
1− g0 − r (g − g0)

)3 ((T − λ0)Y − `20 − r (`2 − `20)
)

− 2
p′0
EP

 D − 1(
1− g0 − r (g − g0)

)2 (`2 − `20) (g − g0)


It follows that

| ∂2
rf (r) |≤ O

(
‖ (g − g0) ‖2

P,2 + ‖ (g − g0) ‖P,2 × ‖ (`2 − `20) ‖P,2
)
≤ (εN)2 .

Step 3. For (A.7), notice that

∂pψ2 (W, θ, p, λ, η2) =− 1
p2λ (1− λ)

D − g (X)
1− g (X)

(
(T − λ)Y − `2 (X)

)
=− 1

p

(
ψ2 (W, θ, p, λ, η2) + θ

)
,

43



then we have

‖ ∂pψ2 (W, θ0, p0, λ0, η2)− ∂pψ2 (W, θ0, p0, λ0, η20) ‖P,2= 1
p0
‖ ψ2 (W, θ0, p0, λ0, η2)

− ψ2 (W, θ0, p0, λ0, η20) ‖P,2

=O (εN)

by the proof of (A.5).

For (A.8), notice that

∂λψ2 (W, θ, p, λ, η2) =− 1− 2λ
λ2 (1− λ)2

D − g (X)
p
(
1− g (X)

) ((T − λ)Y − `2 (X)
)

− Y

pλ (1− λ)
D − g (X)
1− g (X) .

Define ∂λψ20 ≡ ∂λψ2 (W, θ0, p0, λ0, η20), then

‖ ∂λψ2(W, θ0, p0, λ0, η2)− ∂λψ20 ‖P,2= ‖ ψ2(W, θ0, p0, λ0, η2)− ψ2(W, θ0, p0, λ0, η20) ‖P,2

× | 1− 2λ0 |
λ0 (1− λ0)

+ ‖ Y
p′0

(
D − g (X)
1− g (X) −

D − g0 (X)
1− g0 (X)

)
‖P,2

=O (εN) + ‖ Y
p′0

(
D − g (X)
1− g (X) −

D − g0 (X)
1− g0 (X)

)
‖P,2

≤O (εN) + 1
p′0κ

2 ‖ Y (g − g0) (D − 1) ‖P,2

≤O (εN) +
√
C

p′0κ
2 ‖ g − g0 ‖P,2

=O (εN) ,

by (A.5) and EP
[
Y 2 | X

]
≤ C.
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Step 4. For (A.9), notice that we have

∂2
pψ2 (W, θ, p, λ, η2) = 2

p3λ (1− λ)
D − g (X)
1− g (X)

(
(T − λ)Y − `2 (X)

)
.

Define ∂2
pψ20 ≡ ∂2

pψ2 (W, θ0, p0, λ0, η20), then we have

∂2
pψ2 (W, θ0, p, λ0, η2)− ∂2

pψ20 =∂2
pψ2 (W, θ0, p0, λ0, η2)− ∂2

pψ20

+ ∂3
pψ2 (W, θ0, p̄, λ0, η2) (p− p0)

= 2
p2
(
ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20)

)
+ ∂3

pψ2 (W, θ0, p̄, λ0, η2) (p− p0) ,

where p̄ ∈ (p, p0). Hence, we have

‖ ∂2
pψ2 (W, θ0, p, λ0, η2)− ∂2

pψ20 ‖P,2≤
2
p2 ‖ ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) ‖

+ ‖ D − g (X)
1− g (X)

(
(T − λ0)Y − `2 (X)

)
‖P,2

× 6
p̄4λ0 (1− λ0) | p− p0 | .

By (A.5), we have ‖ ψ2 (W, θ0, p0, λ0, η2) − ψ2 (W, θ0, p0, λ0, η20) ‖P,2= O (εN). The term in

the second line is bounded by

1
κ
‖ (U + g0 − g) (V2 + `20 − `2) ‖P,2≤

1
κ
‖ UV2 ‖P,2 + 1

κ
‖ U (`20 − `2) ‖P,2

+ 1
κ
‖ V2 (g0 − g) ‖P,2

+ 1
κ
‖ g0 − g ‖P,2‖ `20 − `2 ‖P,2

≤1
κ

(
C +
√
C ‖ `20 − `2 ‖P,2 +

√
C ‖ g0 − g ‖P,2

)
+ 1
κ
‖ g0 − g ‖P,2‖ `20 − `2 ‖P,2

=O (1)
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by ‖ UV2 ‖P,2≤‖ UV2 ‖P,4≤ C, EP
[
U2 | X

]
≤ C, and EP

[
V 2

2 | X
]
≤ C. Thus, we obtain

‖ ∂2
pψ2 (W, θ0, p, λ0, η2)− ∂2

pψ20 ‖P,2≤O (εN) +O (1)×O
(
N−1/2

)
=O (εN) ,

where I assume that εN converges to zero no faster than N−1/2.

For (A.10), notice that we have

∂2
λψ2 (W, θ, p, λ, η2) = c1

pλ3 (1− λ)3
D − g (X)
1− g (X)

(
(T − λ)Y − `2 (X)

)
+ 2− 4λ
pλ2 (1− λ)2

D − g (X)
1− g (X) Y,

where c1 is a constant depending on λ. Define ∂2
λψ20 ≡ ∂2

λψ2 (W, θ0, p0, λ0, η20), we have

∂2
λψ2 (W, θ0, p, λ, η2)− ∂2

λψ20 =∂2
λψ2 (W, θ0, p0, λ0, η2)− ∂2

λψ20

+ ∂2
λ∂pψ2 (W, θ0, p̄, λ, η2) (p− p0)

+ ∂3
λψ2

(
W, θ0, p0, λ̄, η2

)
(λ− λ0)

= c1

λ2
0 (1− λ0)2 (ψ2 (W, θ0, p0, λ0, η2)− ψ2(W, θ0, p0, λ0, η20))

+ 2− 4λ0

p0λ2
0 (1− λ0)2

(
D − g (X)
1− g (X) −

D − g0 (X)
1− g0 (X)

)
Y

+ ∂2
λ∂pψ2 (W, θ0, p̄, λ, η2) (p− p0)

+ ∂3
λψ2

(
W, θ0, p0, λ̄, η2

)
(λ− λ0) ,
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where p̄ ∈ (p, p0) and λ̄ ∈ (λ, λ0). By the triangle inequality, we have

‖ ∂2
λψ2 (W, θ0, p, λ, η2)− ∂2

λψ20 ‖P,2≤
| c1 |

λ2 (1− λ)2×

‖ ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) ‖P,2

+ | 2− 4λ0 | Y
p0λ2

0 (1− λ0)2 ‖
(
D − g (X)
1− g (X) −

D − g0 (X)
1− g0 (X)

)
‖P,2

+ ‖ ∂2
λ∂pψ2 (W, θ0, p̄, λ, η2) ‖P,2| p− p0 |

+ ‖ ∂3
λψ2

(
W, θ0, p0, λ̄, η2

)
‖P,2| λ− λ0 | .

The norm term is the second line is bounded by

1
κ2 ‖ Y (D − 1) (g − g0) ‖P,2≤

√
C

κ2 ‖ g − g0 ‖P,2

=O (εN) ,

by EP
[
Y 2 | X

]
≤ C and D ∈ {0, 1}. The two high-order terms are bounded by

‖ ∂2
λ∂pψ2 (W, θ0, p̄, λ, η2) ‖P,2≤

| c1 |
p̄2λ3 (1− λ)3 ‖

D − g (X)
1− g (X)

(
(T − λ)Y − `2 (X)

)
‖P,2

+ | 2− 4λ |
p̄λ2 (1− λ)2 ‖

D − g (X)
1− g (X) Y ‖P,2 .

and

‖ ∂3
λψ2

(
W, θ0, p0, λ̄, η2

)
‖P,2≤

| c2 |

p0λ̄4
(
1− λ̄

)4 ‖
D − g (X)
1− g (X)

((
T − λ̄

)
Y − `2 (X)

)
‖P,2

+ | c3 |

p0λ̄3
(
1− λ̄

)3 ‖
D − g (X)
1− g (X) × Y ‖P,2,

where c2 and c3 are constants depending on λ. Using the same arguments in (A.9), one can

show that

‖ D − g (X)
1− g (X)

(
(T − λ)Y − `2 (X)

)
‖P,2≤ O (1) ,
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‖ D − g (X)
1− g (X)

((
T − λ̄

)
Y − `2 (X)

)
‖P,2≤ O (1) .

Also, we have

‖ D − g (X)
1− g (X) × Y ‖P,2= ‖ U + g0 (X)− g (X)

1− g (X) × Y ‖P,2

≤1
κ

(
‖ UY ‖P,2 + ‖ (g0 − g)Y ‖P,2

)
≤1
κ

(
C +
√
C ‖ g0 − g ‖P,2

)
=O (1)

by ‖ UY ‖P,2≤ C and EP
[
Y 2 | X

]
≤ C.

Finally, we obtain

‖ ∂2
λψ2 (W, θ0, p, λ, η2)− ∂2

λψ20 ‖P,2≤O (εN) +O (εN) +O (1)O
(
N−1/2

)
+O (1)O

(
N−1/2

)
=O (εN) ,

where I assume that εN converges to zero no faster than N−1/2.

For (A.11), notice that the derivative is

∂λ∂pψ2 (W, θ, p, λ, η2) = 1− 2λ
p2λ2 (1− λ)2

D − g (X)
1− g (X)

(
(T − λ)Y − `2 (X)

)
+ Y

p2λ (1− λ)
D − g (X)
1− g (X) .

Define ∂λ∂pψ20 ≡ ∂λ∂pψ2 (W, θ0, p0, λ0, η20) , then we have

∂λ∂pψ2 (W, θ0, p, λ0, η2)− ∂λ∂pψ20 =∂λ∂pψ2 (W, θ0, p0, λ0, η2)− ∂λ∂pψ20

+ ∂λ∂
2
pψ2 (W, θ0, p̄, λ0, η2) (p− p0) ,
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where p̄ ∈ (p, p0). By the triangle inequality, we obtain

‖ ∂λ∂pψ2 (W, θ0, p, λ0, η2)− ∂λ∂pψ20 ‖P,2≤
1
p
‖ ∂λψ2 (W, θ0, p0, λ0, η2)− ∂λψ20 ‖P,2

+ ‖ ∂λ∂2
pψ2 (W, θ0, p̄, λ0, η2) ‖P,2| p− p0 | .

Using the same arguments in (A.9) and (A.10), one can show that the high-order term is

bounded by

‖ ∂λ∂2
pψ2 (W, θ0, p̄, λ0, η2) ‖P,2≤ ‖

2− 4λ0

p̄3λ2
0 (1− λ0)2

D − g (X)
1− g (X)

(
(T − λ0)Y − `2 (X)

)
‖P,2

+ ‖ 2Y
p̄3λ0 (1− λ0)

D − g (X)
1− g (X) ‖P,2

≤O (1) .

Together with (A.8), we obtain

‖ ∂λ∂pψ2 (W, θ0, p, λ0, η2)− ∂λ∂pψ20 ‖P,2≤O (εN) +O (1)O
(
N−1/2

)
=O (εN) ,

where I assume that εN converges to zero no faster than N−1/2.

�

Proof of Theorem 1.2:

In Step 1, I show the main result using the auxiliary results

sup
p∈PN ,η1∈TN

(
EP

[
‖ ψ̄1 (W, θ0, p, η1)− ψ̄1 (W, θ0, p0, η10) ‖2

])1/2
≤ εN , (A.12)

(
EP

[
ψ̄1 (W, θ0, p0, η10)4

])1/4
≤ C1, (A.13)
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where PN and TN are specified in the proof of Theorem 3.1, C1 is a constant, and

ψ̄1 (W, θ, p, η1) ≡ 1
p

D − g (X)
1− g (X)

(
Y (1)− Y (0)− `1 (X)

)
− Dθ

p
.

In fact, we have EP
[(
ψ̄1 (W, θ0, p0, η10)

)2
]

= Σ10. In Step 2, I show the auxiliary results

(A.12) and (A.13).

Step 1. Notice that

Σ̂1 = 1
K

K∑
k=1

En,k
[(
ψ1
(
W, θ̃, p̂k, η̂1k

)
+ Ĝ1p (D − p̂k)

)2
]

= 1
K

K∑
k=1

En,k


 1
p̂k

D − ĝk (X)
1− ĝk (X)

(
Y (1)− Y (0)− ˆ̀1k (X)

)
− Dθ̃

p̂k

2


= 1
K

K∑
k=1

En,k
[
ψ̄1
(
W, θ̃, p̂k, η̂1k

)2
]
,

where the second equality follows from Ĝ1p = −θ̃/p̂k.

Since K is fixed, which is independent of N , it suffices to show that for each k ∈ [k],

Ik ≡
∣∣∣∣∣En,k

[
ψ̄1
(
W, θ̃, p̂k, η̂1k

)2
]
− EP

[
ψ̄1 (W, θ0, p0, η10)2

]∣∣∣∣∣ = oP (1) .

By the triangle inequality, we have

Ik ≤ I3,k + I4,k,

where

I3,k ≡
∣∣∣∣∣En,k

[
ψ̄1
(
W, θ̃, p̂k, η̂1k

)2
]
− En,k

[
ψ̄1 (W, θ0, p0, η10)2

]∣∣∣∣∣ ,
I4,k ≡

∣∣∣∣En,k [ψ̄1 (W, θ0, p0, η10)2
]
− EP

[
ψ̄1 (W, θ0, p0, η10)2

]∣∣∣∣ .
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To bound I4,k, we have

EP
[
I2

4,k

]
≤n−1EP

[
ψ̄1 (W, θ0, p0, η10)4

]
≤n−1C4

1 ,

where the last inequality follows from (A.13). Then we have I4,k = OP

(
n1/2

)
.

Next, we bound I3,k. This part is essentially identical to the proof of Theorem 3.2 in

Chernozhukov et al. (2018), I reproduce it here for reader’s convenience. Observe that for

any number a and δa,

| (a+ δa)2 − a2 |≤ 2 (δa) (a+ δa) .

Denote ψi = ψ̄1 (Wi, θ0, p0, η10) and ψ̂i = ψ̄1
(
Wi, θ̃, p̂k, η̂1k

)
, and a ≡ ψi, a+ δa ≡ ψ̂i. Then

I3,k = | 1
n

∑
i∈Ik

(
ψ̂i
)2
− (ψi)2 |≤ 1

n

∑
i∈Ik

|
(
ψ̂i
)2
− (ψi)2 |

≤ 2
n

∑
i∈Ik

| ψ̂i − ψi | ×
(
| ψi | + | ψ̂i − ψi |

)

≤

 2
n

∑
i∈Ik

| ψ̂i − ψi |2
1/2 2

n

∑
i∈Ik

(
| ψi | + | ψ̂i − ψi |

)2
1/2

≤

 2
n

∑
i∈Ik

| ψ̂i − ψi |2
1/2


 2
n

∑
i∈Ik

| ψi |2
1/2

+
 2
n

∑
i∈Ik

| ψ̂i − ψi |2
1/2

 .

Thus,

I2
3,k . SN ×

 1
n

∑
i∈Ik

‖ ψ̄1 (Wi, θ0, p0, η10) ‖2 +SN

 ,
where

SN ≡
1
n

∑
i∈Ik

‖ ψ̄1
(
Wi, θ̃, p̂k, η̂1k

)
− ψ̄1 (Wi, θ0, p0, η10) ‖2 .

Since 1
n

∑
i∈Ik
‖ ψ̄1 (Wi, θ0, p0, η0) ‖2= OP (1), it suffices to bound SN . We have the decom-
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position

SN = 1
n

∑
i∈Ik

‖ ψ̄1 (Wi, θ0, p̂k, η̂1k) + ∂θψ̄1
(
Wi, θ̄, p̂k, η̂1k

) (
θ̃ − θ0

)
− ψ̄1 (Wi, θ0, p0, η10) ‖2

= 1
n

∑
i∈Ik

‖ ψ̄1 (Wi, θ0, p̂k, η̂1k) + Di

p̂k

(
θ̃ − θ0

)
− ψ̄1 (Wi, θ0, p0, η10) ‖2

≤ 1
n

∑
i∈Ik

‖ Di

p̂k

(
θ̃ − θ0

)
‖2 + 1

n

∑
i∈Ik

‖ ψ̄1 (Wi, θ0, p̂k, η̂1k)− ψ̄1 (Wi, θ0, p0, η10) ‖2,

where θ̄ ∈
(
θ̃ − θ0

)
. The first term is bounded by

1
n

∑
i∈Ik

‖ Di

p̂k

(
θ̃ − θ0

)
‖2≤

 1
n

∑
i∈Ik

(
Di

p̂k

)2
 ‖ θ̃ − θ0 ‖2

=
 1
n

∑
i∈Ik

(
Di

p0

)2

+ oP (1)
 ‖ θ̃ − θ0 ‖2

=OP (1)×OP

(
N−1

)
.

Also, notice that conditional on (Wi)i∈Ic
k
, both p̂k and η̂1k can be treated as fixed. Under the

event that p̂k ∈ PN and η̂1k ∈ TN , we have

EP

[
‖ ψ̄1 (Wi, θ0, p̂k, η̂1k)− ψ̄1 (Wi, θ0, p0, η10) ‖2| (Wi)i∈Ic

k

]
≤ sup

p∈PN ,η1∈TN

EP
[
‖ ψ̄1 (Wi, θ0, p, η1)− ψ̄1 (Wi, θ0, p0, η10) ‖2

]
= (εN)2

by (A.12). It follows that SN = OP

(
N−1 + (εN)2

)
. Therefore, we obtain

Ik = OP

(
N−1/2

)
+OP

(
N−1/2 + εN

)
= oP (1) .

Hence, Σ̂1
p→ Σ10.
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Step 2. It remains to prove (A.12) and (A.13). By Taylor series expansion,

ψ̄1 (W, θ0, p, η1)− ψ̄1 (W, θ0, p0, η10) =ψ̄1 (W, θ0, p0, η1)− ψ̄1 (W, θ0, p0, η10)

+ ∂pψ1 (W, θ0, p̄, η1) (p− p0)

=ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10)

+ ∂pψ1 (W, θ0, p̄, η1) (p− p0) ,

where p̄ ∈ (p, p0). Then we have

‖ ψ̄1 (W, θ0, p, η1)− ψ̄1 (W, θ0, p0, η10) ‖P,2≤ ‖ ψ1 (W, θ0, p0, η1)− ψ1 (W, θ0, p0, η10) ‖P,2

+ ‖ 1
p̄2
D − g (X)
1− g (X)

(
Y (1)− Y (0)− `1 (X)

)
+ Dθ0

p̄2 ‖P,2 × | p− p0 | .

By (A.1), we have ‖ ψ1 (W, θ0, p0, η1) − ψ1 (W, θ0, p0, η10) ‖P,2= O (εN). The term in the

second line is bounded by

‖ 1
p̄2
U + g0 − g

1− g (U + `10 − `1) ‖P,2 + ‖ Dθ0

p̄2 ‖P,2

≤ 1
p̄2κ
‖ UV1 ‖P,2 + 1

p̄2κ
‖ U (`10 − `1) ‖P,2

+ 1
p̄2κ
‖ V1 (g0 − g) ‖P,2 + 1

p̄2 | θ0 |

+ 1
p̄2κ
‖ g0 − g1 ‖P,2‖ `10 − `1 ‖P,2

≤ 1
p̄2κ

(
C +
√
C ‖ `10 − `1 ‖P,2 +

√
C ‖ g0 − g ‖P,2

)
+ C

p̄2p0κ
+ 1
p̄2κ
‖ g0 − g1 ‖P,2‖ `10 − `1 ‖P,2

=O (1) ,
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where I use ‖ UV1 ‖P,2≤‖ UV1 ‖P,4≤ C , EP
[
U2 | X

]
≤ C, EP

[
V 2

1 | X
]
≤ C, and

| θ0 |= | EP
[
Y (1)− Y (0)

p0

D − g0 (X)
1− g0 (X)

]
|

≤ 1
p0κ
| EP

[(
Y (1)− Y (0)

)
U
]
|

= 1
p0κ
| EP

[(
`10 (X) + V1

)
U
]
|

= 1
p0κ
| EP [UV1] |

≤ C

p0κ

by | EP [UV1] |≤‖ UV1 ‖P,4≤ C. Thus, we obtain

‖ ψ̄1 (W, θ0, p, η1)− ψ̄1 (W, θ0, p0, η10) ‖P,2≤O (εN) +O (1)O
(
N−1/2

)
=O (εN) ,

where I assume that εN converges to zero no faster than N−1/2.

For (A.13),

‖ ψ̄1 (W, θ0, p0, η10) ‖P,4= ‖ 1
p0

UV1

1− g0
− Dθ0

p0
‖P,4

≤ ‖ 1
p0

UV1

1− g0
‖P,4 + ‖ Dθ0

p0
‖P,4

≤ 1
p0κ
‖ UV1 ‖P,4 + 1

p0
| θ0 |

≤ C

p0κ
+ C

p2
0κ

since ‖ UV1 ‖P,4≤ C.

Repeated cross sections:
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In Step 1, I show the main result with the auxiliary results:

sup
p∈PN ,λ∈ΛN ,η2∈TN

(EP [‖ ψ̄2 (W, θ0, p, λ,G2λ0, η2)− ψ̄2 (W, θ0, p0, λ0, G2λ0, η20) ‖2])2 ≤ εN ,

(A.14)

(
EP

[
ψ̄2 (W, θ0, p0, λ0, G2λ0, η20)4

])1/4
≤ C2, (A.15)

where (PN ,ΛN , TN) are specified in the proof of Theorem 3.1, C2 is a constant, and

ψ̄2 (W, θ, p, λ,G2λ, η2) ≡ 1
λ (1− λ) p

D − g (X)
1− g (X)

(
(T − λ)Y − `2 (X)

)
− Dθ

p
+G2λ (T − λ) .

In fact, we have EP
[(
ψ̄2 (W, θ0, p0, λ0, G2λ0 , η20)

)2
]

= Σ20. In Step 2, I prove (A.14) and

(A.15).

Step 1. Notice that

Σ̂2 = 1
K

K∑
k=1

En,k
[(
ψ2
(
W, θ̃, p̂k, η̂1k

)
+ Ĝ2p (D − p̂k) + Ĝ2λ

(
T − λ̂k

))2
]

= 1
K

K∑
k=1

En,k
[
ψ̄2
(
W, θ̃, p̂k, λ̂k, Ĝ2λ, η̂2k

)2
]
,

where the second inequality follows from Ĝ2p = −θ̃/p̂k .

Since K is fixed, which is independent of N , it suffices to show that

Jk ≡
∣∣∣∣∣En,k

[
ψ̄2
(
W, θ̃, p̂k, λ̂k, Ĝ2λ, η̂2k

)2
]
− EP

[
ψ̄2 (W, θ0, p0, λ0, G2λ0, η20)2

]∣∣∣∣∣ = oP (1) .

By the triangle inequality, we have

Jk ≤ J5,k + J6,k,
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where

J5,k ≡
∣∣∣∣∣En,k

[
ψ̄2
(
W, θ̃, p̂k, λ̂k, Ĝ2λ, η̂2k

)2
]
− En,k

[
ψ̄2 (W, θ0, p0, λ0, G2λ0, η20)2

]∣∣∣∣∣ ,

J6,k ≡
∣∣∣∣En,k [ψ̄2 (W, θ0, p0, λ0, G2λ0, η20)2

]
− EP

[
ψ̄2 (W, θ0, p0, λ0, G2λ0, η20)2

]∣∣∣∣ .
Using the same arguments for I3,k and I4,k in the proof of repeated outcomes and the con-

ditions (A.14) and (A.15), we can show J5,k = oP (1) and J6,k = oP (1). Hence, Σ̂2
p→ Σ20.

Step 2. It remains to show (A.14) and (A.15). Define ψ̄20 ≡ ψ̄2 (W, θ0, p0, λ0, G2λ0, η20).

By the triangle inequality and

ψ̄2 (W, θ0, p0, λ0, G2λ0, η2)− ψ̄20 = ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) ,

we have

‖ ψ̄2 (W, θ0, p, λ,G2λ0, η2)− ψ̄20 ‖P,2≤ ‖ ψ2 (W, θ0, p0, λ0, η2)− ψ2 (W, θ0, p0, λ0, η20) ‖P,2

+ ‖ ∂λψ̄2
(
Wi, θ0, p0, λ̄, G2λ0, η2

)
‖P,2| λ− λ0 |

+ ‖ ∂pψ̄2 (Wi, θ0, p̄, λ,G2λ0, η2) ‖P,2| p− p0 |,

where p̄ ∈ (p, p0) and λ̄ ∈ (λ, λ0). The term in the second line is bounded by

‖ ∂λψ̄2
(
Wi, θ0, p0, λ̄, G2λ0, η2

)
‖P,2≤

| 1− 2λ̄ |
p0λ̄2

(
1− λ̄

)2 ‖
D − g (X)
1− g (X) ((T − λ̄)Y − `2(X)) ‖P,2

+ 1
p0λ̄

(
1− λ̄

) ‖ D − g (X)
1− g (X) × Y ‖P,2 + | G2λ0 |

≤O (1)
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by the same arguments in (A.9)-(A.11) and

| G2λ0 |= | EP

− 1− 2λ0

λ2
0 (1− λ0)2 p0

D − g0

1− g0

(
(T − λ0)Y − `20

)
− Y

λ0 (1− λ0) p0

D − g0

1− g0

 |
≤ | 1− 2λ0 |
λ2

0 (1− λ0)2 p0κ
| EP [UV2] | + 1

λ0 (1− λ0) p0κ
| EP [Y U ] |

≤ | 1− 2λ0 |
λ2

0 (1− λ0)2 p0κ
C + 1

λ0 (1− λ0) p0κ
C

=O (1)

since | EP [UV2] |≤‖ UV2 ‖P,4≤ C and | EP [Y U ] |≤ C. Also, we have

‖ ∂pψ̄2 (Wi, θ0, p̄, λ,G2λ0, η2) ‖P,2≤
1

λ (1− λ) p̄2 ‖
D − g (X)
1− g (X)

(
(T − λ)Y − `2 (X)

)
‖P,2

+ ‖ Dθ0

p̄2 ‖P,2

≤O (1)

by the same arguments in (A.9)-(A.11) and

| θ0 |= | EP
[

D − g0 (X)
p′0
(
1− g0 (X)

) (T − λ0)Y
]
|

≤ 1
p′0κ
| EP

[
(T − λ0)Y U

]
|

= 1
p0κ
| EP

[(
`20 (X) + V2

)
U
]
|

= 1
p0κ
| EP [UV2] |

≤ C

p0κ
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since | EP [UV2] |≤‖ UV2 ‖P,4≤ C. Together with (A.5), we have

‖ ψ̄2 (W, θ0, p, λ,G2λ0, η2)− ψ̄20 ‖P,2≤O (εN) +O (1)O
(
N−1/2

)
+O (1)O

(
N−1/2

)
=O (εN) ,

where I assume that εN converges to zero no faster than N−1/2.

For (A.15), we have

‖ ψ̄2 (W, θ0, p0, λ0, G2λ0, η20) ‖P,4= ‖ 1
λ0 (1− λ0) p0

UV2

1− g0
− Dθ0

p0
+G2λ0 (T − λ0) ‖P,4

≤ 1
λ0 (1− λ0) p0κ

‖ UV2 ‖P,4 + 1
p0
| θ0 | + | G2λ0 |

≤O (1)

since ‖ UV2 ‖P,4≤ C.

�

Lemma A.1 (CONDITIONAL CONVERGENCE IMPLIES UNCONDITIONAL)

Let {Xm} and {Ym} be sequences of random vectors. (i) If for εm → 0, Pr(‖ Xm ‖> εm |

Ym) p→ 0, then Pr
(
‖ Xm ‖> εm

)
→ 0. This occurs if E

[
‖ Xm ‖q /εqm | Ym

] p→ 0 for some

q ≥ 1, by Markov’s inequality. (ii) Let {Am} be a sequence of positive constants. If ‖ Xm ‖=

OP (Am) conditional on Ym, namely, that for any `m → ∞, Pr
(
‖ Xm ‖> `mAm | Ym

) p→ 0,

then ‖ Xm ‖= OP (Am) unconditionally, namely, that for any `m →∞, Pr
(
‖ Xm ‖> `mAm

)
→ 0.

PROOF: This lemma is the Lemma 6.1 in Chernozhukov et al. (2018).
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Chapter 2

Mode Treatment Effect
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2.1 Introduction

The effects of policies on the distribution of outcomes have long been of central interest in

many areas of empirical economics. A policy maker might be interested in the difference of

the distribution of outcome under treatment and the distribution of outcome in the absence

of treatment. The empirical studies of distributional effects include but not are not limited

to Freeman (1980), Card (1996), DiNardo, Fortin, & Lemieux (1995), and Bitler, Gelbach, &

Hoynes (2006). Most researches use the difference of the averages or quantiles of the treated

and untreated distribution, known as average treatment effect and quantile treatment effect,

as a summary for the effect of treatment on distribution. The mode of a distribution, which

is also an important summary statistics of data, has long been ignored in the literature. This

paper fills up the gap by studying the mode treatment effect: the difference of the modes of

the treated and untreated distribution. Compared to the average and the quantile treatment

effect, the mode treatment effect has two advantages: (1) mode captures the most probable

value of the distribution under treatment and in the absence of treatment. It provides a

better summary of centrality than average and quantile when the distributions are highly

skewed; (2) mode is robust to heavy-tailed distributions where outliers don’t follow the same

behavior as the majority of a sample. In economic studies, it is especially often to confront

a skewed and heavy-tailed distribution when the outcome of interest is income or wage.

This paper discusses the estimation and inference of the mode treatment effect under the

Strong Ignorability assumption (Rosenbaum & Rubin, 1983), which states that conditional

on a vector of control variables the treatment is randomly assigned. The first estimator I

propose is the kernel estimator. I estimate the density function of the outcome distribution

using the kernel method and define the maximum of the estimated density function as

the estimator of the mode. While the kernel estimator is a straightforward estimator, it

requires to estimate the conditional density function in the process, and the estimation of

the conditional density function may be difficult in practice when there exist more than two

or three control variables, due to the curse of dimension. The kernel estimator is appropriate
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if there are less than three control variables. In practice, however, researchers may want to

include as many control variables as possible in order to make their identification robust. In

this circumstance, the curse of dimension may lead to inaccurate estimation and misleading

inference.

To address this problem, I propose the ML estimator. The key feature of the proposed

ML estimator is that it translates the estimation of the conditional density function into

the estimation of conditional expectation, which we can apply a rich set of ML methods,

such as Lasso, random forests, neural nets, and etc, to estimate. This feature provides

researchers with the flexibility to apply ML methods to estimate the density function of

the outcome distribution. By the virtue of ML methods, the proposed ML estimator can

handle the situation when there exist many control variables, even the number of control

variables is comparable to or more than the sample size. However, it is well-known that the

regularization bias embedded in ML methods may lead to the bias of the final estimator and

misleading inference (Chernozhukov et al., 2018). To solve this problem, I further derive the

Neyman-orthogonal scores (Chernozhukov et al., 2018) for each estimation which requires

the first-step estimation of the conditional expectation. These Neyman-orthogonal scores,

to my best knowledge, are new results. The proposed ML estimator is built on the newly

derived Neyman-orthogonal score, and hence, it is robust to the regularization bias of the

first-step ML estimation.

I derive the asymptotic properties for both the proposed kernel and ML estimators. I show

that both estimators are consistent and asymptotically normal with the rate of convergence
√
Nh3, where N is the sample size and h is the bandwidth of the chosen kernel, which is

slower than the traditional rate of convergence
√
N in the estimation of mean and quantile.

In fact, this rate of convergence complies the intuition. While the estimators of mean and

quantile are the weighted average of all the available observations, only a small portion of

observations near the mode provides the information to the estimator of the mode. This

explains the slower rate of convergence for the proposed estimators.
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This paper contributes to the program evaluation literature which includes the studies of

average treatment effect: Rosenbaum & Rubin (1983), Heckman & Robb (1985), Heckman,

Ichimura, & Todd (1997), Hahn (1998), and Hirano, Imbens, & Ridder (2003); the studies

of quantile treatment effect: Abadie, Angrist, & Imbens (2002), Chernozhukov & Hansen

(2005), and Firpo (2007); the studies of mode estimation and mode regression: Parzen

(1962), Eddy et al. (1980), Lee (1989), Yao & Li (2014), and Chen, Genovese, Tibshirani,

Wasserman, et al. (2016); as well as the causal inference of ML methods: Belloni et al. (2012),

Belloni et al. (2014), Chernozhukov et al. (2015), Belloni et al. (2017), Chernozhukov et al.

(2018), and Athey et al. (2019). This paper is also closely related to the robustness of av-

erage treatment effect estimation discussed in (Robins & Rotnitzky, 1995) and the general

discussion in (Chernozhukov, Escanciano, Ichimura, & Newey, 2016). The asymptotic prop-

erties of the robust estimators discussed in these papers remain unaffected if only one of the

first-step estimation with classical nonparametric method is inconsistent.

Plan of the paper. Section 2 sets up the notation and framework for the discussion of

the mode treatment effect. Section 3 discusses the kernel method and derives the asymptotic

properties. Section 4 presents the ML estimator for density estimation and the corresponding

Neyman-orthogonal score. I combine the Neyman-orthogonal score with the cross-fitting al-

gorithm to propose the ML estimator of the mode treatment effect, and derive its asymptotic

properties. Section 5 concludes this paper.

2.2 Notation and Framework

Let Y be a continuous outcome variable of interest, D the binary treatment indicator, and

X d × 1 vector of control variables. Denote by Y1 an individual’s potential outcome when

D = 1 and Y0 if D = 0. Let fY1 (y) and fY0 (y) be the marginal probability density function

(p.d.f.) of Y1 and Y0, respectively. The modes of Y1 and Y0 are the values that appear with
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the highest probability. That is,

θ∗1 ≡ arg max
y∈Y1

fY1 (y) and θ∗0 ≡ arg max
y∈Y0

fY0 (y) ,

where Y1 and Y0 are the supports of Y1 and Y0. Here I assume that θ∗1 and θ∗0 are unique,

meaning that both Y1 and Y0 are unimodal. I also assume that the modes θ∗1 and θ∗0 are in

the interior of the common supports of Y1 and Y0. These conditions are formally stated in

the following assumption:

Assumption 2.1. (Uni-mode)

• For all ε > 0,

sup
y:|y−θ∗1 |>ε

fY1 (y) < fY1 (θ∗1) for y ∈ Y1,

and

sup
y:|y−θ∗0 |>ε

fY0 (y) < fY0 (θ∗0) for y ∈ Y0.

• θ∗1, θ∗0 ∈ Int (Y1 ∩ Y0).

Assumption 2.1 has been widely adopted in many studies (Parzen, 1962; Eddy et al.,

1980; Lee, 1989; Yao & Li, 2014). Under Assumption 1, the mode treatment effect is uniquely

defined as ∆∗ ≡ θ∗1−θ∗0. The following states the strong ignorability assumption (Rosenbaum

& Rubin, 1983):

Assumption 2.2. (strong ignorability)

• (Y0, Y1) ⊥ D | X

• 0 < P
(
D = 1 | X

)
< 1

The first part of Assumption 2.2 assumes that potential outcomes are independent of

treatment after conditioning on the observable covariates X. The second part states that

for all values of X, both treatment status occur with a positive probability. Under the
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strong ignorability condition, both fY1 and fY0 can be identified from the observable variables

(Y,D,X) since

fY |D=1,X
(
y | x

)
= fY1|D=1,X

(
y | x

)
= fY1|X

(
y | x

)
,

and thus

fY1(y) = E
[
fY1|X

(
y | X

)]
= E

[
fY |D=1,X

(
y | X

)]
. (2.1)

Similarly, we have

fY0 (y) = E
[
fY |D=0,X

(
y | X

)]
. (2.2)

Equation 2.1 and 2.2 shows the identification result of the density function fY1 and fY0 .

Then it is straightforward to identify their modes θ∗1 and θ∗0:

θ∗1 = arg max
y∈Y1

E
[
fY |D=1,X

(
y | X

)]
and θ∗0 = arg max

y∈Y0

E
[
fY |D=0,X

(
y | X

)]
. (2.3)

If both fY |D=1,X
(
y | X

)
and fY |D=0,X

(
y | X

)
are differentiable with respect to y, we can

further identify the modes using the first-order conditions under Assumption 2.1:

E
[
f

(1)
Y |D=1,X

(
θ∗1 | X

)]
= 0 and E

[
f

(1)
Y |D=0,X

(
θ∗0 | X

)]
= 0, (2.4)

where m(s) (y, x) ≡ ∂sm (y, x) /∂ys denotes the partial derivatives with respect to y.

Equation 2.1-2.4 provide us a direct way to estimate the modes θ∗1 and θ∗0. Intuitively,

we estimate the density functions fY1(y) and fY0(y) in the first step and use the maximizers

of the estimated density functions as the estimators of the modes. Section 3 and 4 presents

the kernel and ML estimation method, respectively.
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2.3 The Kernel Estimation

In this section, I propose kernel estimators for θ∗1, θ∗0, and the mode treatment effect ∆∗ =

θ∗1−θ∗0. Let K(·) be a kernel function with bandwidth h. Define the estimators of the density

functions fY1 (y) and fY0 (y) as,

f̂Y1 (y) = 1
n

n∑
i=1

f̂Y |D=1,X
(
y | Xi

)
,

f̂Y0 (y) = 1
n

n∑
i=1

f̂Y |D=0,X
(
y | Xi

)
with the kernel estimators

f̂Y |D=1,X
(
y | x

)
=
∑n
j=1DjKh

(
y − Yj

)
Kh

(
x−Xj

)
∑n
j=1DjKh

(
x−Xj

) ,

f̂Y |D=0,X
(
y | x

)
=
∑n
j=1

(
1−Dj

)
Kh

(
y − Yj

)
Kh

(
x−Xj

)
∑n
j=1

(
1−Dj

)
Kh

(
x−Xj

)
where Kh

(
y − Yj

)
= h−1K

(
y−Yj

h

)
and

Kh

(
x−Xj

)
= h−dK

(
x1 −Xj1

h

)
× ...×K

(
xd −Xjd

h

)
.

Then it is straightforward to define the estimators of the modes θ∗1 and θ∗0:

θ̂1 ≡ arg max
y

f̂Y1 (y) ,

θ̂0 ≡ arg max
y

f̂Y0 (y) .

The estimator of the mode treatment effect ∆∗ is ∆̂ ≡ θ̂1 − θ̂0. Through out the paper, I

impose the following conditions on the kernel K (·):

Assumption 2.3. •
∣∣K (u)

∣∣ ≤ K̄ <∞.
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•
∫
K (u) du = 1,

∫
uK (u) du = 0,

∫
u2K (u) du <∞.

• K (u) is differentiable.

The first part of Assumption 2.3 requires that K (u) is bounded. Although the second

part implies that K (u) is a first-order kernel, the arguments in this paper can be easily

extended to higher-order kernels. We assume the first-order kernel here just for simplicity.

The third part imposes enough smoothness on K (u).

Theorem 2.1. (Consistency) Suppose Assumption 2.1-2.3 hold. Assume that the density

functions fY |D=1,X
(
y | x

)
and fY |D=0,X

(
y | x

)
are (i) continuous in y, (ii) bounded by some

function d (x) with E
[
d (X)

]
< ∞ for all y ∈ Y, and (iii) y ∈ Y and x ∈ X with compact

Y and X . We also assume that the density functions fX|D=1 (x) and fX|D=0 (x) are bounded

away from zero. If n → ∞, h → 0, and lnn
(
nhd+1

)−1
→ 0, then we have θ̂1

p→ θ∗1 and

θ̂0
p→ θ∗0.

Theorem 2.2. Suppose that the assumptions of Theorem 2.1 hold. Assume that f (2)
Y |X,D=1(y |

x) and f (2)
Y |X,D=0

(
y | x

)
are continuous at y = θ∗1 and y = θ∗0 for all x, respectively. If n→∞,

h→ 0,
√
nh3 (lnn)

(
nhd+3

)−1
→ 0, (lnn)

(
nhd+5

)−1
→ 0, and

√
nh3h2 → 0, then

√
nh3

(
θ̂1 − θ∗1

)
d→ N

(
0,M−1

1 V1M
−1
1

)
√
nh3

(
θ̂0 − θ∗0

)
d→ N

(
0,M−1

0 V0M
−1
0

)
where

M1 ≡ E
[
f

(2)
Y |X,D=1

(
θ∗1 | X

)]
,

M0 ≡ E
[
f

(2)
Y |X,D=0

(
θ∗0 | X

)]
,

V1 = κ
(1)
0 E

[
fY |X,D=1

(
θ∗1 | X

)
P
(
D = 1 | X

) ]
,
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V0 = κ
(1)
0 E

[
fY |X,D=0

(
θ∗0 | X

)
P
(
D = 0 | X

) ]
,

and κ(1)
0 =

∫
K(1) (u)2 du. Further, we have

√
nh3

(
∆̂−∆∗

)
d→ N (0,M1V1M1 +M0V0M0) .

Theorem 2.1 and 2.2 show that the asymptotic properties of the estimator of the mode

treatment effect. We can see that the proposed estimators follows the asymptotic normality

but with the rate of convergence slower than the regular rate
√
N . The intuition is that,

unlike the estimation of the average and the quantile treatment effect, the estimation of

modes only uses a small portion of total observations which are around the modes. The

usage rate of observations determines that the rate of convergence is slower than the regular

rate
√
N .

To estimate the asymptotic variances, we define π0 (X) ≡ P
(
D = 1 | X

)
to be the

propensity score. The consistent variance estimators are

M̂1 = 1
n

n∑
i=1

f̂
(2)
Y |X,D=1

(
θ̂1 | Xi

)
,

M̂0 = 1
n

n∑
i=1

f̂
(2)
Y |X,D=0

(
θ̂0 | Xi

)
,

V̂1 = κ
(1)
0

1
n

n∑
i=1

f̂Y |X,D=1
(
θ̂1 | Xi

)
π̂ (Xi)

,

V̂0 = κ
(1)
0

1
n

n∑
i=1

f̂Y |X,D=0
(
θ̂0 | Xi

)
π̂ (Xi)

.

Theorem 2.3. (Variance Estimation) Suppose that the assumptions in Theorem 2.2 hold.

Let π̂ (x) be an uniformly consistent estimator for π0 (x). If n→∞, h→ 0, and lnn(nhd+5)

→ 0, then M̂1
p→ M1, M̂0

p→ M0, V̂1
p→ V1, V̂0

p→ V0. Thus we have M̂−1
1 V̂1M̂

−1
1

p→

M−1
1 V1M

−1
1 and M̂−1

0 V̂0M̂
−1
0

p→M−1
0 V0M

−1
0 .
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2.4 The Machine Learning Estimation

In this section, I propose the ML estimator of the mode treatment effect. The ML estimator

can accommodate a large number of control variables, potentially more than the sample

size. This flexibility will enable researcher to include as many control variables they consider

important to make their identification assumptions more plausible. The key to implement

ML methods is to replace the estimation of the conditional density function with the estima-

tion of the conditional expectation. To begin with, the estimation of the conditional density

function in the traditional kernel estimation is

f̂Y |D=1,X
(
y | x

)
=
∑n
j=1DjKh

(
y − Yj

)
Kh

(
x−Xj

)
∑n
j=1DjKh

(
x−Xj

) .

Notice that we can divide both the numerator and the denominator by ∑n
j=1Kh

(
x−Xj

)
to obtain

f̂Y |D=1,X
(
y | x

)
=
∑n
j=1DjKh

(
y − Yj

)
Kh

(
x−Xj

)
/
∑n
j=1Kh

(
x−Xj

)
∑n
j=1DjKh

(
x−Xj

)
/
∑n
j=1Kh

(
x−Xj

) .

The numerator is an kernel estimator of E
[
DKh (y − Y ) | X

]
and the denominator is an

kernel estimator of the propensity score E
[
D | X

]
= π (X). Hence, f̂Y |D=1,X

(
y | x

)
is an

estimator of E
[
DKh (y − Y ) | X

]
/π (X). Then the marginal density estimator

f̂Y1 (y) = 1
n

n∑
i=1

f̂Y |D=1,X
(
y | Xi

)

defined in the previous section can be interpreted as an estimator of

E

[
E
[
DKh (y − Y ) | X

]
π (X)

]
= E

[
DKh (y − Y )

π (X)

]
.

Therefore, we can use the machine learning estimator of E
[
DKh(y−Y )

π(X)

]
as an estimator for

fY1 (y). We have successfully translate the estimation of the conditional density function
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into the estimation of the conditional expectation, which is the propensity score π(X).

Here we pursue a little bit further to construct the Neyman-orthogonal score (Cher-

nozhukov et al., 2018) for the robustness of the first-step estimation:

m1 (Z, y, η10) = DKh (y − Y )
π0 (X) − D − π0 (X)

π0 (X) E
[
Kh (y − Y ) | X,D = 1

]
, (2.5)

where Z = (Y,D,X) and η0 = (π0, g10) with g10 (X) ≡ E
[
Kh (y − Y ) | X,D = 1

]
. Similary,

the Neyman-orthogonal score for fY0 (y) is

m2 (Z, y, η20) = (1−D)Kh (y − Y )
1− π0 (X) − π0 −D (X)

1− π0 (X) E
[
Kh (y − Y ) | X,D = 0

]
, (2.6)

where η20 = (π0, g20) with g20 (X) ≡ E
[
Kh (y − Y ) | X,D = 0

]
. Equation 2.5 and 2.6, to my

best knowledge, should be the new results for density estimation. The Neyman orthogonality

will make the estimation of the density functions more robust to the first-step estimation.

Now I combine 2.5 and 2.6 with the cross-fitting algorithm (Chernozhukov et al., 2018) to

propose the new estimator:

Definition. (Algorithm)

(i) Take a K-fold random partition (Ik)Kk=1 of [N ] = {1, ..., N} such that the size of each

Ik is n = N/K. For each k ∈ [K] = {1, ..., K}, define the auxiliary sample Ick ≡

{1, ..., N}.

(ii) For each k ∈ [K], use the auxiliary sample Ick to construct machine learning estimators

π̂k (x) , ĝ1k (x) , and ĝ2k (x)

of π0 (x), g10 (x), and g20 (x).
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(iii) Construct the estimator of fY1 (y) and fY0 (y):

f̂Y1 (y) = 1
K

K∑
k=1

En,k
[
m1 (Z, y, η̂1k)

]
and f̂Y0 (y) = 1

K

K∑
k=1

En,k
[
m2 (Z, y, η̂2k)

]

where En,k
[
m (Z)

]
= n−1∑

i∈Ik
m (Zi).

(iv) Construct the estimator for θ∗1 and θ∗0

θ̂1 = arg max
y

f̂Y1 (y) and θ̂0 = arg max
y

f̂Y0 (y) .

(v) Construct the estimator for the mode treatment effect ∆̂ = θ̂1 − θ̂0.

Theorem 2.4. Suppose that with probability 1−o (1), ‖ η̂1k−η10 ‖P,2≤ εN , ‖ π̂k−1/2 ‖P,∞≤

1/2− κ, and ‖ π̂k − π0 ‖2
P,2 + ‖ π̂k − π0 ‖P,2 × ‖ ĝ1k − g10 ‖P,2≤ (εN)2. If εN = o((Nh3)−1/4)

and Nh7 → 0, then we have

√
nh3

(
θ̂1 − θ∗1

)
d→ N

(
0,M−1

1 V1M
−1
1

)
,

√
nh3

(
θ̂0 − θ∗0

)
d→ N

(
0,M−1

0 V0M
−1
0

)
.

As for the variance estimation, recall that the kernel estimator of M1 in the previous

section is M̂1 = N−1∑N
i=1 f̂

(2)
Y |D=1,X(θ̂1 | x), where

f̂
(2)
Y |D=1,X

(
y | x

)
=
∑n
j=1DjKh

(
y − Yj

)(2)
Kh

(
x−Xj

)
∑n
j=1DjKh

(
x−Xj

) .

Notice that we can divide both the numerator and the denominator by ∑n
j=1Kh

(
x−Xj

)
to obtain

f̂
(2)
Y |D=1,X

(
y | x

)
=
∑n
j=1DjKh

(
y − Yj

)(2)
Kh

(
x−Xj

)
/
∑n
j=1Kh

(
x−Xj

)
∑n
j=1DjKh

(
x−Xj

)
/
∑n
j=1Kh

(
x−Xj

) .
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Observe that the numerator is an kernel estimator of E
[
DKh (y − Y ) | X

]
and the denomina-

tor is an kernel estimator of the propensity score E
[
D | X

]
= π (X). Hence, f̂Y |D=1,X

(
y | x

)
is an estimator of E

[
DK

(2)
h (y − Y ) | X

]
/π (X). Hence, we can use the machine learning

estimator of E
[
DK

(2)
h

(y−Y )
π(X)

]
as an estimator for M1. We can also construct a DML estimator

using the Neyman-orthogonal functional form

DK
(2)
h (y − Y )
π (X) − D − π0 (X)

π0 (X) E
[
K

(2)
h (y − Y ) | X,D = 1

]

In step 1, we use machine learning methods to estimate π0(X) and E[K(2)
h

(
θ̂1 − Y

)
| X,D =

1] using auxiliary sample Ick. In Step 2, we construct the DML estimator of M1:

M̂1 = 1
K

K∑
k=1

∑
i∈Ik

DiK
(2)
h

(
θ̂1 − Yi

)
π̂ (Xi)

− Di − π̂0 (Xi)
π̂0 (Xi)

Ê
[
K

(2)
h

(
θ̂1 − Y

)
| Xi, D = 1

]
.

By the general DML theory (Chernozhukov et al., 2018), M̂1 is a consistent estimator ofM1.

Similarly, we can construct the DML estimators for V1, M0, and V0 using the following table:

Table 2.1: Orthogonal Scores

Original Form Equivalent Form

M1 E
[
f

(2)
Y |X,D=1

(
θ∗1 | X

)]
E

[
DK

(2)
h (θ∗1−Y )
π(X) − D−π0(X)

π0(X) E
[
K

(2)
h (y − Y ) | X,D = 1

]]

V1 κ
(1)
0 E

[
fY |X,D=1(θ∗1 |X)
P(D=1|X)

]
E

[
DKh(θ∗1−Y )

π(X)2 − 2D−π0(X)
π2

0(X) E
[
Kh (y − Y ) | X,D = 1

]]

M0 E
[
f

(2)
Y |X,D=0

(
θ∗1 | X

)]
E

[
(1−D)K(2)

h (θ∗1−Y )
1−π(X) − π0(X)−D

1−π0(X) E
[
K

(2)
h (y − Y ) | X,D = 0

]]

V0 κ
(1)
0 E

[
fY |X,D=0(θ∗1 |X)
P(D=0|X)

]
E

[
(1−D)Kh(θ∗1−Y )

(1−π(X))2 − 2 π0(X)−D
(1−π0(X))2E

[
Kh (y − Y ) | X,D = 0

]]
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2.5 Conclusion

This paper studies the estimation and inference of the mode treatment effect, which has been

ignored in the treatment effect literature compared to the estimation of the average and the

quantile treatment effect estimation. I propose both kernel and ML estimators to accom-

modate a variety of data sets faced by researchers. I also derive the asymptotic properties

of the proposed estimators. I show that both estimators are consistent and asymptotically

normal with the rate of convergence
√
Nh3.

2.A Appendix

Proof of Theorem 2.1: We only present the proof of the first claim, θ̂1
p→ θ∗1, since the second

claim follows from the same arguments. The proof proceeds in two steps. In Step 1, we show

the uniform law of large number holds

sup
y
| f̂Y1 (y)− fY1 (y) |= op (1) .

In Step 2, we establish the consistency θ̂1
p→ θ∗1 using the same argument of Theorem 5.7 in

Van der Vaart (2000).

Step 1. Notice that we have the decomposition

f̂Y1 (y)− fY1 (y) = 1
n

n∑
i=1

f̂Y |D=1,X
(
y | Xi

)
− E

[
fY |D=1,X

(
y | X

)]
= 1
n

n∑
i=1

(
f̂Y |D=1,X

(
y | Xi

)
− fY |D=1,X

(
y | Xi

))
︸ ︷︷ ︸

A(y)

+ 1
n

n∑
i=1

fY |D=1,X
(
y | Xi

)
− E

[
fY |D=1,X

(
y | X

)]
︸ ︷︷ ︸

B(y)

.
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Hence,

sup
y
| f̂Y1 (y)− fY1 (y) |≤ sup

y
| A (y) | + sup

y
| B (y) |

By Theorem 6 in Hansen (2008) (uniform rates of convergence of kernel estimators), the first

term supy | A (y) | is bounded by

sup
y

∣∣A (y)
∣∣ ≤ sup

y

1
n

n∑
i=1

∣∣∣f̂Y |D=1,X
(
y | Xi

)
− fY |D=1,X

(
y | Xi

)∣∣∣
≤ sup

y
sup
x

∣∣∣f̂Y |D=1,X
(
y | x

)
− fY |D=1,X

(
y | x

)∣∣∣
≤ sup

x,y

∣∣∣f̂Y |D=1,X
(
y | x

)
− fY |D=1,X

(
y | x

)∣∣∣
= Op

√ lnn
nhd+1 + h2


= op (1) .

On the other hand, by Lemma 1 of Tauchen (1985) (uniform law of large numbers), we have

sup
y∈Y

∣∣B (y)
∣∣ = sup

y∈Y

∣∣∣∣∣∣ 1n
n∑
i=1

fY |D=1,X
(
y | Xi

)
− E

[
fY |D=1,X

(
y | X

)]∣∣∣∣∣∣ p→ 0.

Combining the results of supy | A (y) | and supy | B (y) | gives

sup
y
| f̂Y1 (y)− fY1 (y) |= op (1) .

Step 2. The definition of θ̂1 implies that f̂Y1

(
θ̂1
)
≥ f̂Y1 (θ∗1). Therefore, we have

fY1 (θ∗1)− fY1

(
θ̂1
)

= fY1 (θ∗1)− f̂Y1 (θ∗1) + f̂Y1 (θ∗1)− fY1

(
θ̂1
)

≤ fY1 (θ∗1)− f̂Y1 (θ∗1) + f̂Y1

(
θ̂1
)
− fY1

(
θ̂1
)

≤ 2 sup
y
| f̂Y1 (y)− fY1 (y) | .
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By Step 1, we have that for any δ > 0,

P
(
fY1 (θ∗1)− fY1

(
θ̂1
)
> δ

)
≤ P

(
sup
y
| f̂Y1 (y)− fY1 (y) |> δ/2

)
→ 0.

Further, Assumption 2.1 implies that for any ε > 0, there exists δ > 0 such that

sup
y:|y−θ∗1 |>ε

fY1 (y) < fY1 (θ∗1)− δ.

Then the following inequality holds

P
(
| θ̂1 − θ∗1 |> ε

)
≤ P

(
fY1

(
θ̂1
)
< fY1 (θ∗1)− δ

)
≤ P

(
fY1 (θ∗1)− fY1

(
θ̂1
)
> δ

)
→ 0.

Thus, we prove the consistency θ̂1
p→ θ∗1.

Proof of Theorem 2.2: Here we focus on the result for θ̂1 only. Notice that the first-order

condition for θ̂1 gives

0 = f̂
(1)
Y1

(
θ̂1
)

= 1
n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ̂1 | Xi

)
= 1
n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ∗1 | Xi

)
+ 1
n

n∑
i=1

f̂
(2)
Y |X,D=1

(
θ̃1 | Xi

) (
θ̂1 − θ∗1

)
,

where θ̃1 ∈
(
θ̂1, θ

∗
1

)
. Then we have

√
nh3

(
θ̂1 − θ∗1

)
= −

 1
n

n∑
i=1

f̂
(2)
Y |X,D=1

(
θ̃1 | Xi

)−1√nh3

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ∗1 | Xi

) .
The proof proceeds in six steps. In Step 1, we show that the first term of r.h.s converges to

M1 = E
[
f

(2)
Y |X,D=1

(
θ∗1 | X

)]
in probability. In Step 2-5, we show the asymptotic normality
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of the second term. Then, by Slutsky’s theorem, we can show the asymptotic normality for

θ̂1. In Step 6, we show the asymptotic normality for ∆̂.

For convenience, we define γ10 (x) ≡ f
(1)
Y,X|D=1 (θ∗1, x), γ20 (x) ≡ fX|D=1 (x), and

γ̂1 (x) ≡ 1
n

n∑
j=1

DjK
(1)
h

(
θ∗1 − Yj

)
Kh

(
x−Xj

)
P (D = 1)

γ̂2 (x) ≡ 1
n

n∑
j=1

DjKh

(
x−Xj

)
P (D = 1) .

In these notations, we can express f̂ (1)
Y |X,D=1

(
θ∗1 | x

)
and f (1)

Y |X,D=1
(
θ∗1 | x

)
as γ̂1 (x) /γ̂2 (x) and

γ10 (x) /γ20 (x), respectively. Also, let γ0 = (γ10, γ20)′ and γ̂ = (γ̂1, γ̂2)′.

Step 1. In this step, we show that n−1∑n
i=1 f̂

(2)
Y |X,D=1

(
θ̃1 | Xi

)
p→ E

[
f

(2)
Y |X,D=1

(
θ∗1 | X

)]
.

Notice that
1
n

n∑
i=1

f̂
(2)
Y |X,D=1

(
θ̃1 | Xi

)
= 1
n

n∑
i=1

f
(2)
Y |X,D=1

(
θ∗1 | Xi

)
+ A1 + A2

where

A1 = 1
n

n∑
i=1

f̂
(2)
Y |X,D=1

(
θ̃1 | Xi

)
− f (2)

Y |X,D=1

(
θ̃1 | Xi

)
and

A2 = 1
n

n∑
i=1

f
(2)
Y |X,D=1

(
θ̃1 | Xi

)
− f (2)

Y |X,D=1
(
θ∗1 | Xi

)
.

Since 1
n

∑n
i=1 f

(2)
Y |X,D=1

(
θ∗1 | Xi

) p→ E
[
f

(2)
Y |X,D=1

(
θ∗1 | X

)]
by the law of large numbers, we only

have to show that A1 = op (1) and A2 = op (1). Note that

|A1| ≤
1
n

n∑
i=1

∣∣∣∣f̂ (2)
Y |X,D=1

(
θ̃1 | Xi

)
− f (2)

Y |X,D=1

(
θ̃1 | Xi

)∣∣∣∣
≤ sup

y,x

∣∣∣∣f̂ (2)
Y |X,D=1

(
y | x

)
− f (2)

Y |X,D=1
(
y | x

)∣∣∣∣
= Op

√ lnn
nhd+5 + h2


= op (1) ,
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where the first equality follows from the uniform rates of convergence of kernel estimators

(Hansen, 2008). For A2, we use the argument in Lemma 4.3 of Newey & McFadden (1994).

By consistency of θ̂1, and thus θ̃1, there is δn → 0 such that
∥∥∥θ̃1 − θ∗1

∥∥∥ ≤ δn with probability

approaching to one. Define

∆n (Xi) = sup
‖y−θ∗1‖≤δn

∥∥∥∥f (2)
Y |X,D=1

(
y | Xi

)
− f (2)

Y |X,D=1
(
θ∗1 | Xi

)∥∥∥∥ .
By the continuity of f (2)

Y |X,D=1
(
y | Xi

)
at θ∗1, ∆n (Xi)

p→ 0. Hence, by the dominated conver-

gence theorem, we have E
[
∆n (Xi)

]
→ 0. Then, by Markov’s inequality,

P

 1
n

n∑
i=1

∆n (Xi) > ε

 ≤ E
[
∆n (Xi)

]
/ε→ 0.

Therefore, we have

|A2| ≤
1
n

n∑
i=1

∆n (Xi) + op (1) = op (1) .

Step 2. In this step, we show

√
nh3

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ∗1 | Xi

)
=
√
nh3

n

n∑
i=1

f
(1)
Y |X,D=1

(
θ∗1 | Xi

)
+
√
nh3

n

n∑
i=1

G (Zi, γ̂ − γ0) + op (1) ,

where G (z, γ) = γ20 (x)−1
[
1,−γ10(x)

γ20(x)

]
γ (x) and z = (y, x, d) denotes data observation. To

do this, it suffices to show

√
nh3

n

n∑
i=1

[
f̂

(1)
Y |X,D=1

(
θ∗1 | Xi

)
− f (1)

Y |X,D=1
(
θ∗1 | Xi

)
−G (Zi, γ̂ − γ0)

]
= op (1) .

Using the notation of γ, we have

f̂
(1)
Y |X,D=1

(
θ∗1 | x

)
− f (1)

Y |X,D=1
(
θ∗1 | x

)
= γ̂1 (x)
γ̂2 (x) −

γ10 (x)
γ20 (x) .
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The following argument follows from Newey & McFadden (1994). Consider the algebra

relation ã/b̃ − a/b = b−1
[
1− b̃−1

(
b̃− b

)] [
ã− a−

(
a/b

) (
b̃− b

)]
. The linear part of the

r.h.s is b−1
[
ã− a−

(
a/b

) (
b̃− b

)]
, and the remaining term is of higher order. By letting

a = γ10, ã = γ̂1, b = γ20, and b̃ = γ̂2, this linear term corresponds to the linear functional

G (Zi, γ̂ − γ0). The remaining higher-order term will satisfy

| γ1 (x)
γ2 (x) −

γ10 (x)
γ20 (x) −G (z, γ − γ0) |

≤| γ2 (x) |−1 γ20 (x)−1
[
1 + γ10 (x)

γ20 (x)

] [(
γ1 (x)− γ10 (x)

)2 +
(
γ2 (x)− γ20 (x)

)2]
≤ C sup

x∈X

∥∥γ (x)− γ0 (x)
∥∥2

for some constant C if γ2 and γ20 are bounded away from zero. Hence Lemma 1 holds if
√
nh3 supx∈X

∥∥γ̂ (x)− γ0 (x)
∥∥2 p→ 0. By the uniform rates of convergence of kernel estimators

(Hansen, 2008), we have

sup
x∈X

∥∥γ̂ (x)− γ0 (x)
∥∥2 = sup

x∈X

((
γ̂1 (x)− γ10 (x)

)2 +
(
γ̂1 (x)− γ10 (x)

)2)
≤ sup

x∈X

(
γ̂1 (x)− γ10 (x)

)2 + sup
x∈X

(
γ̂2 (x)− γ20 (x)

)2
= Op

[
(lnn)

(
nhd+3

)−1
+ h4

]
+Op

[
(lnn)

(
nhd

)−1
+ h4

]
= Op

[
(lnn)

(
nhd+3

)−1
+ h4

]
.

The rates of h and n imply that
√
nh3 supx∈X

∥∥γ̂ (x)− γ0 (x)
∥∥2 p→ 0.

Step 3. In this step, we show

√
nh3

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ∗1 | Xi

)
=
√
nh3

n

n∑
i=1

f
(1)
Y |X,D=1

(
θ∗1 | Xi

)
+
√
nh3

∫
G (z, γ̂ − γ0) dF0 (z)

+ op (1) ,
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where F0 is the c.d.f. of z. To do this, it suffices to show that

√
nh3

 1
n

n∑
i=1

G (Zi, γ̂ − γ0)−
∫
G (z, γ̂ − γ0) dF0 (z)

 = op (1) .

Let γ̄ ≡ E [γ̂] and by the linearity of G (z, γ), we have the decomposition

G (z, γ̂ − γ0) = G (z, γ̂ − γ̄) +G (z, γ̄ − γ0) .

Therefore we just need to show that

√
nh3

 1
n

n∑
i=1

G (Zi, γ̂ − γ̄)−
∫
G (z, γ̂ − γ̄) dF0 (z)

 = op (1)

and
√
nh3

 1
n

n∑
i=1

G (Zi, γ̄ − γ0)−
∫
G (z, γ̄ − γ0) dF0 (z)

 = op (1) .

The second condition holds by the central limit theorem since

√
nh3

 1
n

n∑
i=1

G (Zi, γ̄ − γ0)−
∫
G (z, γ̄ − γ0) dF0 (z)

 =
√
nh3Op

(
n−1/2

)
= op (1) .

It remains to show the first condition. We follow the arguments in Newey & McFadden

(1994). Define qj ≡
(
DjK

(1)
h (θ∗1−Yj)
P (D=1) , Dj

P (D=1)

)′
, we can rewrite

γ̂ (x) =

γ̂1 (x)

γ̂2 (x)

 = 1
n

n∑
j=1

qjKh

(
x−Xj

)
.
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We also define

m
(
Zi, Zj

)
= G

[
Zi, qjKh

(
· −Xj

)]
m1 (z) =

∫
m (z, z̃) dF0 (z̃) = G (z, γ̄)

m2 (z) =
∫
m (z̃, z) dF0 (z̃) =

∫
G
[
z̃, qKh (· −X)

]
dF0 (z̃) .

Then the l.h.s. of the first condition equals

√
nh3

 1
n

n∑
i=1

G (Zi, γ̂ − γ̄)−
∫
G (z, γ̂ − γ̄) dF0 (z)


=
√
nh3

 1
n

n∑
i=1

G (z, γ̂)− 1
n

n∑
i=1

G (z, γ̄)−
∫
G (z, γ̂) dF0 (z) +

∫
G (z, γ̄) dF0 (z)


=
√
nh3

 1
n2

n∑
i=1

n∑
j=1

m
(
Zi, Zj

)
− 1
n

n∑
i=1

m1 (Zi)−
1
n

n∑
i=1

m2 (Zi) + E
[
m1 (z)

]
=
√
nh3 ×Op

{
E
[∣∣m (Z1, Z1)

∣∣] /n+
(
E
[∣∣m (Z1, Z2)

∣∣2])1/2
/n

}
,

where the last equality follows from Lemma 8.4 of Newey & McFadden (1994). The last term

converges to zero in probability if we can control the convergence rates of E
[∣∣m (Z1, Z1)

∣∣]
and E

[∣∣m (Z1, Z2)
∣∣2]. Notice that we have

∣∣G (z, γ)
∣∣ ≤ b (z) ‖γ‖2 with

b (z) =
∥∥∥∥∥fX|D=1 (x)−1

[
1,−f (1)

Y |X,D=1 (θ∗1, x)
]∥∥∥∥∥

2

where ‖·‖2 denotes the `2 norm. Then E
[∣∣∣G (z, qKh (· − x)

)∣∣∣] ≤ b (z)h−d ‖q‖2 by the bound-

edness of K (u). By that fX|D=1 (x) is bounded away from zero and fY |X,D=1 (θ∗1, x) is
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bounded from above, we have that E
[
b (z)2

]
≤ ∞. Therefore, we have

√
nh3 ×Op

{
E
[∣∣m (Z1, Z1)

∣∣] /n+
(
E
[∣∣m (Z1, Z2)

∣∣2])1/2
/n

}

=
√
nh3 ×Op

{
E
[
‖q‖2 b (Z1)

]
/n+

(
E
[
‖q‖2

2 b (Z1)2
])1/2 (

nhd
)−1

}

=
√
nh3 ×Op

(
n−1h−d−2

)
= op (1)

by the assumptions on n and h. The additional h−2 in the rates of convergence follows from

that q contains K(1)
h (u) = h−2K(1) (u/h) with bounded K(1) (u).

Step 4. In this step, we show that

√
nh3

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ∗1 | Xi

)
=
√
nh3

n

n∑
i=1

f
(1)
Y |X,D=1

(
θ∗1 | Xi

)
+
√
nh3

n

n∑
i=1

v (Xi) qi + op (1) ,

where v (Xi) = P (D=1)
P(D=1|Xi)

[
1,−γ10(Xi)

γ20(Xi)

]
and qi =

(
DiK

(1)
h (θ∗1−Yi)
P (D=1) , Di

P (D=1)

)′
. To do this, it

suffices to show that

√
nh3

∫
G (z, γ̂ − γ0) dF0 (z)−

√
nh3

n

n∑
i=1

v (Xi) qi = op (1)

Notice that

∫
G (z, γ) dF0 (z) =

∫
γ20 (x)−1

[
1,−γ10 (x)

γ20 (x)

]
γ (x) fX (x) dx

=
∫
fX|D=1 (x)−1

[
1,−γ10 (x)

γ20 (x)

]
γ (x) fX (x) dx

=
∫ P (D = 1)
P
(
D = 1 | X = x

) [1,−γ10 (x)
γ20 (x)

]
γ (x) dx

=
∫
v (x) γ (x) dx,
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where fX (x) is the density function of X and v (x) = P (D=1)
P(D=1|X=x)

[
1,−γ10(x)

γ20(x)

]
. Also, we have

v (x) γ0 (x) = P (D = 1)
P
(
D = 1 | X = x

) [1,−γ10 (x)
γ20 (x)

] γ10 (x)

γ20 (x)


= P (D = 1)
P
(
D = 1 | X = x

) (γ10 (x)− γ10 (x)
)

= 0.

Therefore, we have

∫
G (z, γ̂ − γ0) dF0 (z) =

∫
v (x) γ̂ (x) dx−

∫
v (x) γ0 (x) dx =

∫
v (x) γ̂ (x) dx

= 1
n

n∑
i=1

∫
v (x) qiKh (x−Xi) dx

= 1
n

n∑
i=1

v (Xi) qi +
 1
n

n∑
i=1

∫
v (x) qiKh (x−Xi) dx−

1
n

n∑
i=1

v (Xi) qi


= 1
n

n∑
i=1

v (Xi) qi + 1
n

n∑
i=1

[∫
v (x)Kh (x−Xi) dx− v (Xi)

]
qi.

By Chebyshev’s inequality, sufficient conditions for
√
nh3 times the second term in the last

line converging to zero in probability are that

√
nh3E

[(∫
v (x)Kh (x−Xi) dx− v (Xi)

)
qi

]
→ 0

and

E

[
‖qi‖2

∥∥∥∥∫ v (x)Kh (x−Xi) dx− v (Xi)
∥∥∥∥2
]
→ 0.

The expectation in the first condition is the difference of E
[(∫

v (x)Kh (x−Xi) dx
)
qi
]
and
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E
[
v (Xi) qi

]
. We begin with the second term E

[
v (Xi) qi

]
. Notice that

E
[
v (Xi) qi

]
= E

[
v (Xi)E

[
qi | Xi

]]

= E

v (Xi)E



DiK

(1)
h (θ∗1−Yi)
P (D=1)

Di

P (D=1)

 | Xi




= E

v (Xi)
P
(
D = 1 | Xi

)
P (D = 1) E


K

(1)
h (θ∗1 − Yi)

1

 | Xi, D = 1




by the law of iterated expectations. The inner conditional expectation in the last line satisfies

E
[
K

(1)
h (θ∗1 − Yi) | Xi, D = 1

]
= 1
h2E

K(1)
(
θ∗1 − Yi
h

)
| Xi, D = 1


= 1
h2

∫
K(1)

(
θ∗1 − y
h

)
fY |X,D=1

(
y | Xi

)
dy

= 1
h

∫
K

(
θ∗1 − y
h

)
f

(1)
Y |X,D=1

(
y | Xi

)
dy

=
∫
K (u) f (1)

Y |X,D=1
(
θ∗1 + hu | Xi

)
du

=
∫
K (u) f (1)

Y |X,D=1
(
θ∗1 | Xi

)
du

+
∫
huK (u) f (1)

Y |X,D=1
(
θ∗1 | Xi

)
du

+
∫ h2u2

2 K (u) f (3)
Y |X,D=1

(
θ̃1 | Xi

)
du

= f
(1)
Y |X,D=1

(
θ∗1 | Xi

)
+ h2

2 κ2f
(3)
Y |X,D=1

(
θ̃1 | Xi

)

with θ̃1 ∈ (θ∗1, θ∗1 + hu) and κ2 =
∫
u2K (u) du. The third equality follows from integration

by parts and the forth from change of variables. Hence,
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E
[
v (Xi) qi

]
= E

v (Xi)
P
(
D = 1 | Xi

)
P (D = 1)

f
(1)
Y |X,D=1

(
θ∗1 | Xi

)
1




+ h2

2 κ2E

v (Xi)
P
(
D = 1 | Xi

)
P (D = 1)

f
(3)
Y |X,D=1

(
θ̃1 | Xi

)
0




= E

v (Xi)
P
(
D = 1 | Xi

)
P (D = 1)

f
(1)
Y |X,D=1

(
θ∗1 | Xi

)
1


+O

(
h2
)

=
∫
v (x) P

(
D = 1 | Xi = x

)
P (D = 1)

f
(1)
Y |X,D=1

(
θ∗1 | Xi = x

)
1

 fX (x) dx+O
(
h2
)

=
∫
v (x)

f
(1)
Y |X,D=1

(
θ∗1 | Xi = x

)
1

 fX|D=1 (x) dx+O
(
h2
)

=
∫
v (x)

f
(1)
Y,X|D=1

(
θ∗1 | Xi = x

)
fX|D=1 (x)

 dx+O
(
h2
)

=
∫
v (x) γ0 (x) dx+O

(
h2
)
.

Using the same arguments, we can also show that

E

[(∫
v (x)Kh (x−Xi) dx

)
qi

]
= E

[(∫
v (Xi + hu)K (u) du

)
qi

]

=
∫ (∫

v (x+ hu)K (u) du
)
γ0 (x) dx+O

(
h2
)

Then the first condition equals

√
nh3

∥∥∥∥∥∥E
[(∫

v (x)Kh (x−Xi) dx− v (Xi)
)
qi

]∥∥∥∥∥∥
=
√
nh3

∥∥∥∥∥
∫ (∫

v (x+ hu)K (u) du
)
γ0 (x) dx−

∫
v (x) γ0 (x) dx+O

(
h2
)∥∥∥∥∥ .
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Following the argument in Theorem 8.11 of Newey & McFadden (1994), the last line satisfies

√
nh3

∥∥∥∥∫ ∫
v (x)K (u) γ0 (x− hu) dudx−

∫
v (x) γ0 (x) dx+O

(
h2
)∥∥∥∥

=
√
nh3

∥∥∥∥∥
∫
v (x)

{∫ [
γ0 (x− hu)− γ0 (x)

]
du
}
dx+O

(
h2
)∥∥∥∥∥

≤
√
nh3

∫ ∥∥v (x)
∥∥ ∥∥∥∥∫ [

γ0 (x− hu)− γ0 (x)
]
du
∥∥∥∥ dx+O

(√
nh3h2

)
≤
√
nh3Ch2

∫ ∥∥v (x)
∥∥ dx+O

(√
nh3h2

)
= O

(√
nh3h2

)
.

Therefore the first condition holds if
√
nh3h2 → 0.

Recall that the second condition we would like to show is

E

[
‖qi‖2

∥∥∥∥∫ v (x)Kh (x−Xi) dx− v (Xi)
∥∥∥∥2
]
→ 0.

By Cauchy Schwartz inequality, it suffices to show that

E

[∥∥∥∥∫ v (x)Kh (x−Xi) dx− v (Xi)
∥∥∥∥4
]
→ 0.

By the continuity of v (x), v (x+ hu) → v (x) for all x and u as h → 0. By the dominated

convergence theorem,
∫
v (x)Kh (x− xi) dx =

∫
v (x+ hu)K (u) du →

∫
v (x)K (u) du =

v (x) for all x. Therefore we have

E

[∥∥∥∥∫ v (x)Kh (x−Xi) dx− v (Xi)
∥∥∥∥4
]

= E

[∥∥∥∥∫ v (Xi + hu)K (u) du− v (Xi)
∥∥∥∥4
]
→ 0.
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Step 5. By Step 4 and the definition of v (Xi) and qi, we have

√
nh3

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ∗1 | Xi

)
=
√
nh3

n

n∑
i=1

f
(1)
Y |X,D=1

(
θ∗1 | Xi

)
+
√
nh3

n

n∑
i=1

v (Xi) qi + op (1)

=
√
nh3

n

n∑
i=1

f
(1)
Y |X,D=1

(
θ∗1 | Xi

)
+ op (1)

+
√
nh3

n

n∑
i=1

Di

P
(
D = 1 | Xi

) [K(1)
h (θ∗1 − Yi)− f

(1)
Y |X,D=1

(
θ∗1 | Xi

)]

=
√
nh3

n

n∑
i=1

f
(1)
Y |X,D=1

(
θ∗1 | Xi

) [
1− Di

P
(
D = 1 | Xi

)]

+
√
nh3

n

n∑
i=1

Di

P
(
D = 1 | Xi

)K(1)
h (θ∗1 − Yi) + op (1) .

Since we have E
f (1)

Y |X,D=1
(
θ∗1 | Xi

) [
1− Di

P(D=1|Xi)

] = 0 by the law of iterated expectations,

the central limit theorem holds for the first term of r.h.s. Hence,

√
nh3

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ∗1 | Xi

)
= Op

(√
nh3n−1/2

)
+
√
nh3

nh2

n∑
i=1

Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)

+ op (1)

= Op

(√
h3
)

+ 1√
nh

n∑
i=1

Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)
+ op (1)

= 1√
nh

n∑
i=1

Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)
+ op (1) .

In this step, we show that

1√
nh

n∑
i=1

Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)
d→ N (0, V ) ,

where V = κ
(1)
0 E

[
fY |X,D=1(θ∗1 |X)
P(D=1|X)

]
and κ(1)

0 =
∫
K(1) (u)2 du.

For convenience, we define ĝ (θ∗1) ≡
(
nh2

)−1∑n
i=1

Di

P(D=1|Xi)K
(1)
(
θ∗1−Yi

h

)
. Then it is equiv-
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alent to show that
√
nh3 (ĝ (θ∗1)− 0

) d→ N (0, V ) .

To use central limit theorem, we have to calculate E
[
ĝ (θ∗1)

]
and V ar

(
ĝ (θ∗1)

)
.

E
[
ĝ (θ∗1)

]
= 1
h2E

 Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)
= 1
h2E

 1
P
(
D = 1 | Xi

)E
DiK

(1)
(
θ∗1 − Yi
h

)
| Xi




= 1
h2E

E
K(1)

(
θ∗1 − Yi
h

)
| Xi, D = 1


 .

Since h−2E
[
K(1)

(
θ∗1−Yi

h

)
| Xi, D = 1

]
= f

(1)
Y |X,D=1

(
θ∗1 | Xi

)
+ h2

2 κ2f
(3)
Y |X,D=1

(
θ̃1 | Xi

)
from the

calculation in Step 4, then

E
[
ĝ (θ∗1)

]
= E

[
f

(1)
Y |X,D=1

(
θ∗1 | Xi

)]
+O

(
h2
)

= 0 +O
(
h2
)
.
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For the variance,

V ar
(
ĝ (θ∗1)

)
= 1
nh4V ar

 Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)
= 1
nh4E


 Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)2


− 1
nh4

E
 Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)


2

= 1
nh4E


 Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)2
+ 1

nh4O
(
h4
)

= 1
nh4E

 1
P
(
D = 1 | Xi

)2E
D2

iK
(1)
(
θ∗1 − Yi
h

)2

| X


+ 1

nh4O
(
h4
)

= 1
nh4E

 1
P
(
D = 1 | Xi

)E
K(1)

(
θ∗1 − Yi
h

)2

| X,D = 1

+ 1

nh4O
(
h4
)
.

The inner expectation in the last line equals

E

K(1)
(
θ∗1 − Yi
h

)2

| X,D = 1
 =

∫
K(1)

(
θ∗1 − y
h

)2

fY |X,D=1
(
y | X

)
dy

= h
∫
K(1) (u)2 fY |X,D=1

(
θ∗1 + hu | X

)
du

= hfY |X,D=1
(
θ∗1 | X

) ∫
K(1) (u)2 du

+ h2f
(1)
Y |X,D=1

(
θ̃1 | X

) ∫
uK(1) (u)2 du,

where θ̃1 ∈ (θ∗1, θ∗1 + hu). Define κ(1)
0 =

∫
K(1) (u)2 du and κ(1)

1 =
∫
uK(1) (u)2 du, the variance

equals
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V ar
(
ĝ (θ∗1)

)
= 1
nh4E

[
h

P
(
D = 1 | Xi

)κ(1)
0 fY |X,D=1

(
θ∗1 | X

)]

+ 1
nh4E

[
h2

P
(
D = 1 | Xi

)κ(1)
1 f

(1)
Y |X,D=1

(
θ∗1 | X

)]
+ 1
nh4O

(
h4
)

= 1
nh3

κ(1)
0 E

[
1

P
(
D = 1 | Xi

)fY |X,D=1
(
θ∗1 | X

)]
+O (h) +O

(
h3
)

= 1
nh3

(
V +O (h) +O

(
h3
))

.

Then we are ready to apply the central limit theorem.

Let

Zn,i ≡ (nh)−1/2

 Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)
− E

 Di

P
(
D = 1 | Xi

)K(1)
(
θ∗1 − Yi
h

)
 ,

then E
[
Zn,i

]
= 0 and V ar

(
Zn,i

)
= h3V ar

(
ĝ (θ∗1)

)
= n−1V + o

(
n−1

)
. Then

√
nh3 (ĝ (θ∗1)− 0

)
=
√
nh3

(
ĝ (θ∗1)− E

[
ĝ (θ∗1)

])
+
√
nh3

(
E
[
ĝ (θ∗1)

]
− 0

)
=
√
nh3

(
ĝ (θ∗1)− E

[
ĝ (θ∗1)

])
+
√
nh3O

(
h2
)

=
n∑
i=1

Zn,i +
√
nh3O

(
h2
)

d→ N (0, V )

by Liapunov CLT and
√
nh3h2 → 0.

Step 6. In this step, we show that

√
nh3

θ̂1 − θ∗1
θ̂0 − θ∗0

 d→ N


0

0

 ,
M1V1M1 0

0 M0V0M0



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and thus, by the delta method, we have

√
nh3

(
∆̂−∆∗

)
d→ N (0,M1V1M1 +M0V0M0) .

To show the joint distribution we adopt vector notations. The first-order conditions of

θ̂1 and θ̂ give

0

0

 =

f̂Y1

(
θ̂1
)

f̂Y0

(
θ̂0
)
 = 1

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ̂1 | Xi

)
f̂

(1)
Y |X,D=0

(
θ̂0 | Xi

)
 = 1

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ∗1 | Xi

)
f̂

(1)
Y |X,D=0

(
θ∗0 | Xi

)
+ Jn

θ̂1 − θ∗1
θ̂0 − θ∗0



where

Jn = 1
n

n∑
i=1


∂f̂

(1)
Y |X,D=1(θ̃1|Xi)

∂θ1

∂f̂
(1)
Y |X,D=1(θ̃1|Xi)

∂θ0

∂f̂
(1)
Y |X,D=0(θ̃0|Xi)

∂θ1

∂f̂
(1)
Y |X,D=0(θ̃0|Xi)

∂θ0



= 1
n

n∑
i=1

f̂
(2)
Y |X,D=1

(
θ̃1 | Xi

)
0

0 f̂
(2)
Y |X,D=0

(
θ̃0 | Xi

)
 .

Hence we have

√
nh3

θ̂1 − θ∗1
θ̂0 − θ∗0

 =
(
J−1
n

) √nh3

n

n∑
i=1

f̂
(1)
Y |X,D=1

(
θ̂1 | Xi

)
f̂

(1)
Y |X,D=0

(
θ̂0 | Xi

)


=
(
J−1
n

) 1√
nh

n∑
i=1


Di

P(D=1|Xi)K
(1)
(
θ∗1−Yi

h

)
1−Di

P(D=0|Xi)K
(1)
(
θ∗0−Yi

h

)
+

op (1)

op (1)



where the last equality follows from the Step 5 in the proof of Theorem 2.1. Since

Jn
p→

M1 0

0 M0


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and

1√
nh

n∑
i=1


Di

P(D=1|Xi)K
(1)
(
θ∗1−Yi

h

)
1−Di

P(D=0|Xi)K
(1)
(
θ∗0−Yi

h

)
 d→ N


0

0

 ,
V1 0

0 V0


 ,

then by Slutsky’s theorem we have

√
nh3

θ̂1 − θ∗1
θ̂0 − θ∗0

 d→ N


0

0

 ,
M1V1M1 0

0 M0V0M0


 .

Proof of Theorem 2.3. It is enough to show the results of M̂1 and V̂1. We first show that

M̂1
p→M1. By adding and subtracting additional terms, we have

M̂1 = 1
n

n∑
i=1

f̂
(2)
Y |X,D=1

(
θ̂1 | Xi

)
= 1
n

n∑
i=1

f
(2)
Y |X,D=1

(
θ∗1 | Xi

)
+ A1 + A2

where

A1 = 1
n

n∑
i=1

f̂
(2)
Y |X,D=1

(
θ̂1 | Xi

)
− f (2)

Y |X,D=1

(
θ̂1 | Xi

)
and

A2 = 1
n

n∑
i=1

f
(2)
Y |X,D=1

(
θ̂1 | Xi

)
− f (2)

Y |X,D=1
(
θ∗1 | Xi

)
.

If we can show that A1 = op (1) and A2 = op (1), then M̂
p→ M by law of large numbers.
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Note that

|A1| ≤
1
n

n∑
i=1

∣∣∣∣f̂ (2)
Y |X,D=1

(
θ̂1 | Xi

)
− f (2)

Y |X,D=1

(
θ̂1 | Xi

)∣∣∣∣
≤ sup

y,x

∣∣∣∣f̂ (2)
Y |X,D=1

(
y | x

)
− f (2)

Y |X,D=1
(
y | x

)∣∣∣∣
= Op

√ lnn
nhd+5 + h2


= op (1) ,

where the first equality follows from the uniform rates of convergence of kernel estimators

(Hansen, 2008). For A2, we use the argument in Lemma 4.3 of Newey & McFadden (1994).

By consistency of θ̂1 there is δn → 0 such that
∥∥∥θ̂1 − θ∗1

∥∥∥ ≤ δn with probability approaching to

one. Define ∆n (Zi) = sup‖y−θ∗1‖≤δn

∥∥∥∥f (2)
Y |X,D=1

(
y | Xi

)
− f (2)

Y |X,D=1
(
θ∗1 | Xi

)∥∥∥∥. By the continu-

ity of f (2)
Y |X,D=1

(
y | Xi

)
at θ∗1, ∆n (Zi)

p→ 0. By the dominated convergence theorem, we have

E
[
∆n (Zi)

]
→ 0. By Markov inequality, P

(
n−1∑n

i=1 ∆n (Zi) > ε
)
≤ E

[
∆n (Zi)

]
/ε → 0.

Therefore, we have

|A2| ≤
1
n

n∑
i=1

∆n (Zi) = op (1) .

Next we show that V̂1
p→ V1. We can rewrite

V̂1/κ
(1)
0 = 1

n

n∑
i=1

f̂Y |X,D=1
(
θ̂1 | Xi

)
π̂ (Xi)

= 1
n

n∑
i=1

fY |X,D=1
(
θ∗1 | Xi

)
π (Xi)

+B1 +B2

with

B1 = 1
n

n∑
i=1

f̂Y |X,D=1
(
θ̂1 | Xi

)
π̂ (Xi)

−
fY |X,D=1

(
θ̂1 | Xi

)
π (Xi)

and

B2 = 1
n

n∑
i=1

fY |X,D=1
(
θ̂1 | Xi

)
π (Xi)

−
fY |X,D=1

(
θ∗1 | Xi

)
π (Xi)

.

It remains to show that B1 = op (1) and B2 = op (1). The result of B2 follows from the same
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arguments as in the proof of A2 if fY |X,D=1
(
y | Xi

)
is continuous at θ∗1. Thus, we only focus

on B1. For conenience, define f
(
y | x

)
= fY |X,D=1

(
y | x

)
. For π bounded away from zero,

we have

f̂
(
y | x

)
π̂ (x) − f

(
y | x

)
π (x) = π (x) f̂

(
y | x

)
− π̂ (x) f

(
y | x

)
π̂ (x) π (x)

= π (x) f̂
(
y | x

)
− π (x) f

(
y | x

)
+ π (x) f

(
y | x

)
− π̂ (x) f

(
y | x

)
π̂ (x) π (x)

= f̂
(
y | x

)
− f

(
y | x

)
π̂ (x) + f

(
y | x

)
π̂ (x) π (x)

(
π̂ (x)− π (x)

)
≤ C

((
f̂
(
y | x

)
− f

(
y | x

))
+
(
π̂ (x)− π (x)

))

for some C > 0. By the uniform rates of convergence of kernel estimators (Hansen, 2008),

we have

|B1| ≤
1
n

n∑
i=1

∣∣∣∣∣∣∣
f̂Y |X,D=1

(
θ̂1 | Xi

)
π̂ (Xi)

−
fY |X,D=1

(
θ̂1 | Xi

)
π (Xi)

∣∣∣∣∣∣∣
≤ C sup

y,x

(∣∣∣f̂ (y | x)− f (y | x)∣∣∣+∣∣π̂ (x)− π (x)
∣∣)

= Op

√ lnn
nhd+1 + h2

+ sup
x

∣∣π̂ (x)− π (x)
∣∣

= op (1)

by the rates of n and h and the uniform convergence of π̂ (x).

Proof of Theorem 2.4: Suppose that

f̂Y1(y) = 1
K

K∑
k=1

En,k[m1(Z, y, η̂1k)]
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is differentiable with respect to y. Define

f̂
(1)
Y1 (y) ≡ 1

K

K∑
k=1

En,k[m(1)
1 (Z, y, η̂1k)]

where m(1)
1 (Z, y, η̂1k) ≡ ∂m1(Z, y, η̂1k)/∂y.

By the definition of θ̂1, we have

0 = f̂
(1)
Y1 (θ̂1) = 1

K

K∑
k=1

En,k[m(1)
1 (Z, θ̂1, η̂1k)]

= 1
K

K∑
k=1

En,k[m(1)
1 (Z, θ∗1, η̂1k)] + 1

K

K∑
k=1

En,k[m(2)
1 (Z, θ̃1, η̂1k)](θ̂1 − θ∗1)

and

√
Nh3(θ̂1 − θ∗1) = −

 1
K

K∑
k=1

En,k[m(2)
1 (Z, θ̃1, η̂1k)]

−1√Nh3

K

K∑
k=1

En,k[m(1)
1 (Z, θ∗1, η̂1k)]

 .
In Step 1 and 2 below, we will show that

1
K

K∑
k=1

En,k[m(2)
1 (Z, θ̃1, η̂1k)]

p→M1

and √
Nh3

K

K∑
k=1

En,k[m(1)
1 (Z, θ∗1, η̂1k)] d→ N(0, V1),

respectively. Hence, we can obtain the final result

√
Nh3(θ̂1 − θ∗1) d→ N(0,M−1

1 V1M
−1
1 ).

Step 1. Since K is a fixed integer, which is independent of N , it suffices to show that for

each k ∈ [K],

En,k[m(2)
1 (Z, θ̃1, η̂1k)]

p→M1.
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Then we can show this convergence using the same argument in Step 1 in the proof of

Theorem 2.2.

Step 2. Since K is a fixed integer, which is independent of N , it is enough to consider

the convergence of En,k[m(1)
1 (Z, θ∗1, η̂1k)]. Notice that

En,k[m(1)
1 (Z, θ∗1, η̂1k)] = 1

n

∑
i∈Ik

m
(1)
1 (Z, θ∗1, η10) +R2k

where

R2,k = En,k[m(1)
1 (Z, θ∗1, η̂1k)]−

1
n

∑
i∈Ik

m
(1)
1 (Z, θ∗1, η10).

Then by triangular inequality, ∥∥∥R2,k

∥∥∥ ≤ I1,k + I2,k√
n

,

where

I1,k ≡
∥∥∥∥∥Gn,k

[
m

(1)
1 (Z, θ∗1, η̂1k)

]
−Gn,k

[
m

(1)
1 (Z, θ∗1, η10)

]∥∥∥∥∥ ,
I2,k ≡

√
n

∥∥∥∥∥EP
[
m

(1)
1 (Z, θ∗1, η̂1k) | (Wi)i∈Ic

k

]
− EP

[
m

(1)
1 (Z, θ∗1, η10)

]∥∥∥∥∥ .
Two auxiliary results will be used to bound I1,k and I2,k:

sup
η1∈TN

(
E
[
‖ m(1)

1 (Z, θ∗1, η1)−m(1)
1 (Z, θ∗1, η10) ‖2

])1/2

≤ εN , (A.1)

sup
r∈(0,1),η1∈TN

‖ ∂2
rE

[
m

(1)
1
(
Z, θ∗1, η10 + r (η1 − η10)

)]
‖≤ (εN)2 , (A.2)

where TN is the set of all η1 = (π0, g10) consisting of square-integrable functions π0 and g10

such that

‖ η1 − η10 ‖P,2≤ εN ,
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‖ π − 1/2 ‖P,∞≤ 1/2− κ,

‖ π − π0 ‖2
P,2 + ‖ π − π0 ‖P,2 × ‖ g1 − g10 ‖P,2≤ (εN)2 .

Then by assumption, we have η̂1k ∈ TN with probability 1− o (1).

To bound I1,k, note that conditional on (Wi)i∈Ic
k
the estimator η̂1k is nonstochastic. Under

the event that η̂1k ∈ TN , we have

EP

[
I2

1,k | (Wi)i∈Ic
k

]
=EP

[
‖ m(1)

1 (Z, θ∗1, η̂1k)−m(1)
1 (Z, θ∗1, η10) ‖2| (Wi)i∈Ic

k

]
≤ sup

η1∈TN

EP

[
‖ m(1)

1 (Z, θ∗1, η1)−m(1)
1 (Z, θ∗1, η10) ‖2| (Wi)i∈Ic

k

]

= sup
η1∈TN

EP

[
‖ m(1)

1 (Z, θ∗1, η1)−m(1)
1 (Z, θ∗1, η10) ‖2

]

= (εN)2

by (A.1). Hence, I1,k = OP (εN). To bound I2,k, define the following function

fk (r) = EP

[
m

(1)
1 (Z, θ∗1, η10 + r (η̂1k − η10)) | (Wi)i∈Ic

k

]
− E

[
m

(1)
1 (Z, θ∗1, η10)

]

for r ∈ [0, 1). By Taylor series expansion, we have

fk (1) = fk (0) + f ′k (0) + f ′′k (r̃) /2, for some r̃ ∈ (0, 1) .

Note that fk (0) = E
[
m

(1)
1 (Z, θ∗1, η10) | (Wi)i∈Ic

k

]
= E

[
m

(1)
1 (Z, θ∗1, η10)

]
= O(h2) by the cal-

culation in Step 4 in the proof of Theorem 2.2. Further, on the event η̂1k ∈ TN ,

‖ f ′k (0) ‖=‖ ∂η1E[m(1)
1 (Z, θ∗1, η10)] [η̂1k − η10] ‖= 0

by the orthogonality. Also, on the event η̂1k ∈ TN ,

‖ f ′′k (r̃) ‖≤ sup
r∈(0,1)

‖ f ′′k (r) ‖≤ (εN)2
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by (A.2). Thus,

I2,k =
√
n ‖ fk (1) ‖= OP

(√
n (εN)2 +

√
nh2

)
.

Together with the result on I1,k, we have

∥∥∥R2,k

∥∥∥ ≤I1,k + I2,k√
n

=OP

(
n−1/2εN + (εN)2 + h2

)

Hence,
√
Nh3

∥∥∥R2,k

∥∥∥ = OP (
√
h3εN +

√
Nh3ε2N +

√
Nh3h2) = oP (1)

by the assumptions on the rate of convergence that εN = o((Nh3)−1/4) and Nh7 → 0.

Therefore,

En,k[m(1)
1 (Z, θ∗1, η̂1k)] = 1

n

∑
i∈Ik

m
(1)
1 (Z, θ∗1, η10) + oP (1) d→ N(0, V1).
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Chapter 3

Double/debiased Machine Learning

for Quantile Treatment Effect
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3.1 Introduction

In program evaluation, economists have long been interested in the effect of a treatment

or policy intervention on outcomes beyond simple average. Examples include but are not

limited to the distributional effects on job training programs (LaLonde, 1995), unions (Card,

1996), and minimum wages (DiNardo et al., 1995). One of the most popular way to capture

the distributional effect of a treatment is to compute the difference of the quantiles of the

outcome distribution before and after the treatment, which is called quantile treatment effect.

Like many studies in program evaluation, the main challenge in the estimation of quantile

treatment effect is that the selection for treatment usually affects individual’s potential

outcomes. In order to address the endogenous effect of selection, researchers usually estimate

the treatment effect conditioning on a vector of control variables. Firpo (2007) proposed a

two-step estimator to include control variables nonparametrically in the estimation of the

quantile treatment effect. In the paper, he proposed to estimate the first-step infinite-

dimensional nuisance parameter using the series estimator and plug it into a check function

to obtain a final estimator for the quantile treatment effect. Firpo (2007) also derived in

detail the asymptotic properties and showed the efficiency of the proposed semiparametric

estimator.

This paper discusses an orthogonal extension of the semiparametric estimator proposed in

Firpo (2007). The proposed series estimator in the first-step estimation works well when the

sample size is large compared to the number of control variables. In practice, researcher may

want to include many potential control variables in order to exclude potential endogeneity.

The number of control variables can be comparable to or even larger than the sample size.

In this situation, the series estimator in the first-step estimation would suffer from the curse

of dimension. Researcher may replace series estimator with machine learning (ML) methods

such as Lasso, random forests, neural nets, and etc, in the first-step estimation. As noted

in Chernozhukov et al. (2018), however, the asymptotic properties derived in Firpo (2007)

may fail if researchers use ML methods in the first-step estimation since the regularization
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bias embedded in ML methods would lead to the bias of the final estimator.

To address this problem, we discuss in detail the estimation and inference of the double

machine learning (DML) estimator for quantile treatment effect. The key is to replace the

check function in the second step in Firpo (2007) with a newly derived score function. The

new score function enjoys the Neyman-orthogonal property (Chernozhukov et al., 2018),

which means that the first-order derivative of the score function with respect to the nuisance

parameter is zero. With the property, the regularization bias within ML methods would only

have second or higher order effects on the final estimator. The final estimator obtained based

on this Neyman-orthogonal score can achieve
√
N -consistency and asymptotic normality as

long as the first-step ML estimator converges to its true value with a rate faster than N−1/4,

which is a rate can be achieved by many ML estimators such as Lasso, random forests, neural

nets, and etc.

The result in this paper relies heavily on the recent high-dimensional and ML literature:

Belloni et al. (2012), Belloni et al. (2014), Chernozhukov et al. (2015), Belloni et al. (2017),

and Chernozhukov et al. (2018). In Belloni et al. (2017), they provided a very general frame-

work to derive the Neyman-orthogonal score for many treatment effect estimations, including

quantile treatment effect. This paper complements their paper by presenting in detail the

functional form of the Neyman-orthogonal score and the steps of estimation procedure.

Plan of the paper. Section 2 sets up the notation and framework for the discussion of

the mode treatment effect. Section 3 derives the Neyman-orthogonal score for quantile treat-

ment effect and I combine it with the cross-fitting algorithm to propose the DML estimaor

and derive its asymptotic properties. Section 5 concludes this paper.

3.2 Notation and Framework

Let Y be a continuous outcome variable of interest, D the binary treatment indicator, and X

a d× 1 vector of control variables. Denote by Y (1) an individual’s potential outcome when
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D = 1 and Y (0) if D = 0. Then we have Y = Y (1)D + Y (0)(1 − D). Also, we define the

propensity score m0(X) := E[D|X] and for τ ∈ (0, 1) and j ∈ {0, 1}, the τ -th quantile for

potential outcome Y (j) is defined as qj,τ := inf{q : Pr(Y (j) ≤ q) ≥ τ}. We are interested in

the quantile treatment effect

θ0,τ := q1,τ − q0,τ

Assumption 3.1. (strong ignorability)

•
(
Y (0), Y (1)

)
⊥ D | X

• 0 < m0(X) < 1

The first part of Assumption 3.1 assumes that potential outcomes are independent of

treatment after conditioning on the observable covariates X. The second part states that

for all values of X, both treatment status occur with a positive probability. With the strong

ignorability, Firpo (2007) identified q1,τ and q0,τ by the following moment conditions:

E[ T

m0(X)
(
1{Y ≤ q1,τ} − τ

)
] = 0, (3.1)

E[ 1− T
1−m0(X)

(
1{Y ≤ q0,τ} − τ

)
] = 0. (3.2)

In the moment condition 3.1 and 3.2, there is only one unknown nuisance parameter

m0(X). An direct way to apply 3.2 and 3.2 to estimate q1,τ and q0,τ is to estimate m0(X) in

the first-step and then use the estimator of m0(X) with the moment condition 3.1 and 3.2

to obtain the final estimator of q1,τ and q0,τ . Specifically,

Definition (Direct Estimator).

(i) Obtain an nonparametric estimator of m0(X), denoted by m̂(X).

(ii) The estimator of q1,τ and q0,τ is q̂1,τ and q̂0,τ where q̂1,τ and q̂0,τ satisfies
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1
N

N∑
i=1

Ti
m̂(Xi)

(1{Yi ≤ q̂1,τ} − τ) = 0,

1
N

N∑
i=1

1− Ti
1− m̂(Xi)

(1{Yi ≤ q̂0,τ} − τ) = 0.

If m̂(X) is a kernel or a series estimator, by the classical semiparametric estimation results,

we can show that both q̂1,τ and q̂0,τ are
√
N -consistent and asymptotically normal.

In many cases, however, the dimension of X may be large and researchers do not have

enough observations to obtain an accurate kernel or series estimator because of the curse

of dimension. In this situation, researchers may turn to use ML methods such as Lasso,

random forests, boosting, neural nets, and etc, to build m̂(X) and then plug it into the Step

2 above. Unfortunately, as noted in Chernozhukov et al. (2018), the estimator of q1,τ and q0,τ

obtained in this manner may be biased because the regularization bias embedded in the ML

estimator m̂(X) would result in the bias of q̂1,τ and q̂0,τ . In the next section, we derive the

Neyman-orthogonal score of 3.1 and 3.2 and combine them with the cross-fitting algorithm

(Chernozhukov et al., 2018) to propose the DML estimator of the quantile treatment effect.

3.3 Estimation

Based on the moment condition 3.1 and 3.2, we find the corresponding Neyman-orthogonal

scores:

Ψ1(w; q, η1) = t

m0(x)
(
1{y ≤ q} − τ

)
− t−m0(x)

m0(x)0
g1(x), (3.3)

Ψ2(w; q, η2) = 1− t
1−m0(x)

(
1{y ≤ q} − τ

)
− m0(x)− t

1−m0(x)g2(x), (3.4)
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where W = (Y,D,X), η1 = (m0, g1), η2 = (m0, g2), and

g1(x) = E[1{Y ≤ q1,τ} − τ |T = 1, X = x]

and

g2(x) = E[1{Y ≤ q0,τ} − τ |T = 0, X = x].

Notice that 3.3 and 3.4 are valid scores since

E[Ψ1(W ; q1,τ , η1)] = 0,

E[Ψ2(W ; q0,τ , η2)] = 0

by the law of iterated expectation. The key property of 3.3 and 3.4 is that the first-order

Gateaux derivatives of Ψ1 and Ψ2 with respect to the nuisance parameters η1 and η2, respec-

tively, are zero. This is the Neyman orthogonaliy proposed in Chernozhukov et al. (2018).

In contrast, the first-order derivative of 3.3 and 3.4 with respect to their nuisance parameter

m0 does not equal to zero, and hence, 3.3 and 3.4 do not satisfy the Neyman-orthogonal

property. The following lemma establishes the Neyman orthogonality of 3.3 and 3.4.

Lemma 3.1. The scores 3.3 and 3.4 are Neyman-orthogonal.

The quantile treatment effect can be estimated in three steps.

• STEP 1. Non-parametric estimation (machine learning) of the nuisance parameter ηj.

Here we adopt cross-fitting.

• STEP 2. With the first step estimates, estimate qj,τ using the orthogonal scores. The

resulting plug-in type estimators q̂j,τ are called the double machine learning (DML)

estimators.

• STEP 3. Take difference and get θ̂ = q̂1,τ − q̂0,τ .
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Below we provide a formal definition of the DML estimator which reflects the first two

steps described above. Suppose we have i.i.d. observations {Wi}Ni=1. Notice that in the

estimation of η, we have to estimate g1 where g1(x) = E[1{Y ≤ q1,τ}− τ |T = 1, X = x] and

there is an unknown paremeter q1,τ , which happens to be our target parameter. Hence, we

need a preliminary estimator for qj,τ .

Definition. (The preliminary estimator for qj,τ)

• Step 1. Nonparametric or ML estimation of the propensity score m0.

• Step 2. The preliminary estimator q̂1,τ and q̂0,τ solve

1
N

N∑
i=1

Ti
m̂(Xi)

(1{Yi ≤ q̂1,τ} − τ) = 0,

1
N

N∑
i=1

1− Ti
1− m̂(Xi)

(1{Yi ≤ q̂0,τ} − τ) = 0.

Definition (DML estimator for quantiles of potential outcome). (a) Take a K-fold random

partition (Ik)Kk=1 of observation indices [N ] = {1, ..., N} such that the size of each fold Ik is

n = N/K. Also, for each k ∈ [K] = {1, ..., K}, define Ick := {1, ..., N} \ Ik. (b) For each

k ∈ [K], use the preliminary estimator in Definition 1 to construct Machine Learning (ML)

estimators

η̂j,k = η̂j,k((Wi)i∈Ic
k
)

of ηj, j ∈ {0, 1}, where η̂j is a random element in T , and where randomness depends only on

the subset of data indexed by Ick. (c) For each k ∈ [K], construct the estimators q̌j,k,j ∈ {0, 1},

as the solution of the following equation:

En,k[Ψj(W ; q̌j,k, η̂j,k)] = 0

where Ψ is the Neyman orthogonal score, and En,k is the empirical expectation over the kth
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fold of the data; (4) Aggregate the estimators:

q̂j = 1
K

K∑
k=1

q̌j,k

3.3.1 Asymptotic Properties

This section studies the property of the estimator under high-level assumptions on the first

step ML estimator.

Assumption 3.2 (regularity conditions). (a) The true parameter value obeys 3.1 and 3.2,

and is contained in a ball in Θ. (b) map (θ, η) 7→ EP [Ψ(W ; θ, η)] is twice continuously

Gateaux-differentable on Θ × T . (c) The marginal density function fY (1)(q) does not equal

to zero over its support. (d) 2|FY (1)(q)− τ | ≥ |fY (1)(q1,τ )(q − q1,τ )| ∧ c0.

Theorem 3.1. [Asymptotic normality of the DML estimator] Suppose Assumption 1 holds

and with probability 1 − o (1), ‖ η̂1k − η10 ‖P,2≤ εN , ‖ m̂k − 1/2 ‖P,∞≤ 1/2 − κ, and

‖ m̂k −m0 ‖2
P,2 + ‖ m̂k −m0 ‖P,2 × ‖ ĝj1k − gj0 ‖P,2≤ (εN)2. We have

√
N(q̂j − qj) d→ N(0, f−1

Y (j)(q)Vjf
−1
Y (j)(q))

where fY (j)(q) is pdf of Y (j) and Vj = E[Ψj(W ; qj,τ , ηj)2].

Theorem 3.2. Construct the estimator of the asymptotic variance as

V̂j = 1
K

K∑
k=1

En,k[Ψj(W ; q̃j,τ , η̂j)2]

where where En,k
[
f (W )

]
= n−1∑

i∈Ik
f (Wi). If the assumptions of Theorem 1 hold, V̂j =

Vj + oP (1)

Theorem 3.1 shows that DML q̃j can achieve
√
N -consistency and asymptotic normality

if the first-step estimators of the infinite dimensional nuisance parameters converge at a rate

faster than N−1/4. This rate of convergence can be achieved by many ML methods. Theorem
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3.2 provides consistent estimators for the asymptotic variance of q̃j. The proofs of Theorem

3.1 and Theorem 3.2 can be found in the appendix.

3.4 Conclusion

This paper studies the estimation and inference of the orthogonal extension of the semipara-

metric estimation proposed in Firpo (2007) and propose a DML quantile treatment effect

estimator. The proposed estimator can achieve
√
N -consistency and asymptotic normality

when researchers apply ML methods in the first-step estimation. It also provides flexibility

for empirical researchers to explore a broader set of popular estimation methods and analyze

more types of data sets.

3.A Appendix

Proof of 3.1

with respect to g, want to show

∂rE[Ψj(W ; qj,τ ,m0, gj + r(g − gj))]
∣∣∣∣
r=0

= 0, for all g ∈ G (3.5)

for j = 1,

Ψ1(W ; q1,τ ,m0, g1 + r(g − g1)) (3.6)

= T

m0(X)
(
1{Y ≤ q} − τ

)
− T −m0(X)

m0(X) [g1(X) + r(g(X)− g1(X))] (3.7)

105



∂rE[Ψ1(W ; q1,τ ,m0, g1 + r(g − g1))] (3.8)

=E
[
− T −m0(x)

m0(x) [g(X)− g1(X)]
]

(3.9)

=E
[
− E[T −m0(X) | X] 1

m0(X) [g(X)− g1(X)]
]

(3.10)

=0 (3.11)

with respect to m, want to show

∂rE[Ψj(W ; qj,τ ,m0 + r(m−m0), gj)]
∣∣∣∣
r=0

= 0, for all g ∈ G (3.12)

for j = 1,

Ψ1(W ; q1,τ ,m0 + r(m−m0), g1) (3.13)

= T

m0(X) + r[m(X)−m0(X)]
(
1{Y ≤ q} − τ

)
− T −m0(X)− r[m(X)−m0(X)]

m0(X) + r[m(X)−m0(X)] g1(X)

(3.14)

∂rE[Ψ1(W ; q1,τ ,m0 + r(m−m0), g1)] (3.15)

=E
[
− T [m(X)−m0(X)]

(m0(X) + r[m(X)−m0(X)])2

(
1{Y ≤ q} − τ

)
(3.16)

+ T [m(X)−m0(X)]
(m0(X) + r[m(X)−m0(X)])2 g1(X)

]
(3.17)

recall that

g1(X) = E[1{Y ≤ q1,τ} − τ |T = 1, X = x] (3.18)

Hence the result follows from law of iterated expectation and law of total probability.
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proof of Theorem 3.1

Assumption 3.2 should lead to the conditions in Assumption 3.3 and 3.4 in CCDDHNR.

Conditions of Assumption 3.3.

• (a) The true parameter value obeys (2.1), and Θ contains a ball ....

Neyman orthogonal scores are indeed score. Parameter space set to R.

• (b) map (θ, η) 7→ EP [Ψ(W ; θ, η)] is twice continuously Gateaux-differentable on Θ×T .

Directly assume this to our score functions. However, there’s an indicator,

so this could be tricky?

• (c) identification relation

J0 := ∂θEP [Ψ(W ; θ, η0)]
∣∣∣∣
θ=θ0
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in our setting,

∂qE[Ψ1(W ; q,m0, g1)]

=∂qE[ T

m0(X)
(
1{Y ≤ q} − τ

)
− T −m0(X)

m0(X) gj(X)]

=∂qE[ T

m0(X)
(
1{Y ≤ q} − τ

)
]

=∂qE[E[ T

m0(X)
(
1{Y ≤ q} − τ

)
| X]]

=∂qE[E[T
(
1{Y ≤ q} − τ

)
| X] 1

m0(X) ]

=∂qE[E[1{Y (1) ≤ q} − τ | X,T = 1]]

=∂qE[E[1{Y (1) ≤ q} − τ | X]]

=∂qE[1{Y (1) ≤ q} − τ ]

=∂qE[1{Y (1) ≤ q}]

=∂qFY (1)(q)

=fY (1)(q)

Where FY (1)(q) and fY (1)(q) are cdf and pdf of Y (1) Assume potential outcomes

are continuously distributed. Now we need

2‖E[Ψ1(W ; q,m0, g1)]‖ ≥ ‖fY (1)(q1,τ )(q − q1,τ )‖ ∧ c0

E[Ψ1(W ; q,m0, g1)] =E[ T

m0(X)
(
1{Y ≤ q} − τ

)
− T −m0(X)

m0(X) g1(X)]

=E[ T

m0(X)
(
1{Y ≤ q} − τ

)
]

=FY (1)(q)− τ
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Hence we are assuming

2|FY (1)(q)− τ | ≥ |fY (1)(q1,τ )(q − q1,τ )| ∧ c0

• (d) Neyman-orthogonal

see above.

Conditions of Assumption 3.4.

• (a) Exists Tn, and ∆n → 0, so that η̂0 falls into it with probability 1−∆n

Assume our first step estimators η̂1 satisfies the following conditions with probability

1−∆n (MIGHT NOT NEED ALL OF THEM)

‖η̂1 − η1‖P,2 ≤δ′N

‖m̂0 −
1
2‖P,∞ ≤

1
2 − ε

‖m̂0 −m0‖P,2 × ‖ĝ0 − g1‖P,2 ≤δ′NN−1/2

Now define the set Tn as the set of η that satisfies the following conditions

‖η − η1‖P,2 ≤δ′N

‖m− 1
2‖P,∞ ≤

1
2 − ε

‖m−m0‖P,2 × ‖g − g1‖P,2 ≤δ′NN−1/2

Then by the assumption and the definition of Tn, this condition is satisfied.

• (b) EMPIRICAL PROCESS ASSUMPTION
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• (c) There exists positive sequences {δN}N≥1, {νN}N≥1 that converge to zero and

rN := sup
η∈Tn,θ∈Θ

‖E[Ψ(W ; θ, η)]− E[Ψ(W ; θ, η0)]‖ ≤ δNνN

r′N := sup
η∈Tn,‖θ−θ0‖≤νN

(E[‖Ψ(W ; θ, η)−Ψ(W ; θ0, η0)‖2])1/2 and r′N log1/2(1/r′N) ≤ δN

λ′N := sup
r∈(0,1),η∈Tn,‖θ−θ0‖≤νN

‖∂2
rE[Ψ(W ; θ0 + r(θ − θ0), η0 + r(η − η0))]‖ ≤ δNN

−1/2

First, rN . δ′N , since for any q and η ∈ Tn,

E[Ψ1(W ; q, η)]− E[Ψ1(W ; q, η0)]

=E
[ T

m(X)
(
1{Y ≤ q} − τ

)
− T −m(X)

m(X) g(X)− T

m0(X)
(
1{Y ≤ q} − τ

)
+ T −m0(X)

m0(X) g1(X)
]

≤I1 + I2 + I3

.δ′N
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where

I1 =E[|
(
1{Y ≤ q} − τ

)T (m0 −m)
m0m

|]

≤ 1
ε2E[|m0 −m|]

≤ 1
ε2‖m0 −m‖P,2

.δ′N

I2 =E[|g1 − g|]

≤‖g1 − g‖P,2

.δ′N

I3 =E[| T
m0

g1 −
T

m
g|]

=E[|T g1m−m0g

mm0
|]

≤ 1
ε2E[|m0(g1 − g) + g1(m−m0)|]

≤ 1
ε2E[|m0(g1 − g)|] + E[|g1(m−m0)|]

≤ 1
ε2E[|g1 − g|] + E[|m−m0|]

≤ 1
ε2‖g1 − g‖P,2 + ‖m−m0‖P,2

.δ′N

Where we used that |m0(X)| < 1 and |g1(X)| ≤ 1 almost surely because m0(X) =

E[T |X] and g1(X) = E[1{Y ≤ q1} − τ |T = 1, X].
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Next we show that r′N . δ′N + ν
1/2
N . For all q ∈ {q : |q − q1,τ | ≤ νN}, η ∈ TN

‖Ψ1(W ; q, η)−Ψ1(W ; q1, η1)‖P,2

=‖ T

m(X)
(
1{Y ≤ q} − τ

)
− T −m(X)

m(X) g(X)− T

m0(X)
(
1{Y ≤ q1,τ} − τ

)
+ T −m0(X)

m0(X) g1(X)‖P,2

≤I4 + I5 + I6 + I7
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where

I4 =‖ T
m
1{Y ≤ q} − T

m0
1{Y ≤ q1,τ}‖P,2

=‖T 1{Y ≤ q}m0 − 1{Y ≤ q1,τ}m
m0m

‖P,2

≤ 1
ε2‖1{Y ≤ q}m0 − 1{Y ≤ q1,τ}m‖P,2

= 1
ε2‖1{Y ≤ q1,τ}(m0 −m) +m0(1{Y ≤ q} − 1{Y ≤ q1,τ})‖P,2

.‖1{Y ≤ q1,τ}(m0 −m)‖P,2 + ‖m0(1{Y ≤ q} − 1{Y ≤ q1,τ})‖P,2

≤‖m−m0‖P,2 + ‖1{Y ≤ q} − 1{Y ≤ q1,τ}‖P,2

=‖m−m0‖P,2 +
[
Pr(q ∧ q1,τ ≤ Y ≤ q ∨ q1,τ )

]1/2
≤δ′N + [νN sup fY (y)]1/2

.δ′N + ν
1/2
N

I3 =‖τ( T
m0
− T

m
)‖P,2

=‖τT m−m0

mm0
‖P,2

≤ 1
ε2‖m−m0‖P,2

.δ′N

I4 =‖g − g1‖P,2

.δ′N

I5 =‖ T
m0

g1 −
T

m
g‖P,2

=‖T g1m− gm0

m0m
‖P,2

≤ 1
ε2‖g1(m−m0) +m0(g1 − g)‖P,2

.‖g1(m−m0)‖P,2 + ‖m0(g1 − g)‖P,2

.δ′N
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At last we show that

f(r) :=E
[ T

m0 + r(m−m0)1{Y ≤ q1 + r(q − q1)}

+ T −m0 − r(m−m0)
m0 + r(m−m0) (g1 + r(g − g1))

]
=g(r) + h(r)

where

g(r) :=E
[ T

m0 + r(m−m0)1{Y ≤ q1 + r(q − q1)}
]

h(r) :=E
[T −m0 − r(m−m0)

m0 + r(m−m0) (g1 + r(g − g1))
]

g(r) =E
[ m0

m0 + r(m−m0)
1
m0

E[T1{Y ≤ q1 + r(q − q1)} | X]
]

=E
[ m0

m0 + r(m−m0)E[1{Y (1) ≤ q1 + r(q − q1)} | X]
]

=E
[ m0

m0 + r(m−m0)FY (1)|X(q1 + r(q − q1))
]

∂rg(r) =E
[ −m0(m−m0)
(m0 + r(m−m0))2FY (1)|X(q1 + r(q − q1))

+ m0

m0 + r(m−m0)fY (1)|X(q1 + r(q − q1))(q − q1)
]

∂2
rg(x) :=E

[ 2m0(m−m0)2

(m0 + r(m−m0))3FY (1)|X(q1 + r(q − q1))
]

+E
[ −m0(m−m0)
(m0 + r(m−m0))2fY (1)|X(q1 + r(q − q1))(q − q1)

]
+E

[ −m0(m−m0)
(m0 + r(m−m0))2fY (1)|X(q1 + r(q − q1))(q − q1)

]
+E

[ m0

m0 + r(m−m0) ḟY (1)|X(q1 + r(q − q1))(q − q1)2
]
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h(r) =E
[ T

m0 + r(m−m0)(g1 + r(g − g1))− (g1 + r(g − g1))
]

∂rh(r) =E
[ −T (m−m0)
(m0 + r(m−m0))2 (g1 + r(g − g1)) + T (g − g1)

m0 + r(m−m0) − (g − g1)
]

∂2
rh(r) =E

[ 2T (m−m0)2

(m0 + r(m−m0))3 (g1 + r(g − g1))
]

+E
[−T (m−m0)(g − g1)

(m0 + r(m−m0))2

]
+E

[−T (g − g1)(m−m0)
(m0 + r(m−m0))2

]

Proof of Theorem 2

We assume the following auxiliary conditions:

sup
η1∈TN

(
EP

[
‖ Ψj(W ; qj,τ , η)−Ψj(W ; qj,τ , ηj) ‖2

])1/2
≤ εN , (A.12)

(
EP

[
Ψj(W ; qj,τ , ηj)4

])1/4
≤ C1, (A.13)

where TN are specified in the proof of Theorem 1, C1 is a constant. Since K is fixed, which

is independent of N , it suffices to show that for each k ∈ [k],

Ik ≡
∣∣∣∣En,k [Ψj(W ; q̂j,τ , η̂j)2

]
− EP

[
Ψj(W ; qj,τ , ηj)2

]∣∣∣∣ = oP (1) .

By the triangle inequality, we have

Ik ≤ I3,k + I4,k,

where

I3,k ≡
∣∣∣∣En,k [Ψj(W ; q̂j,τ , η̂j)2

]
− En,k

[
Ψj(W ; qj,τ , ηj)2

]∣∣∣∣ ,
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I4,k ≡
∣∣∣∣En,k [Ψj(W ; qj,τ , ηj)2

]
− EP

[
Ψj(W ; qj,τ , ηj)2

]∣∣∣∣ .
To bound I4,k, we have

EP
[
I2

4,k

]
≤n−1EP

[
Ψj(W ; qj,τ , ηj)4

]
≤n−1C4

1 ,

where the last inequality follows from (A.13). Then we have I4,k = OP

(
n1/2

)
.

Next, we bound I3,k. This part is essentially identical to the proof of Theorem 3.2 in

Chernozhukov et al. (2018), I reproduce it here for reader’s convenience. Observe that for

any number a and δa,

| (a+ δa)2 − a2 |≤ 2 (δa) (a+ δa) .

Denote ψi = Ψj(W ; qj,τ , ηj) and ψ̂i = Ψj(W ; q̂j,τ , η̂j), and a ≡ ψi, a+ δa ≡ ψ̂i. Then

I3,k = | 1
n

∑
i∈Ik

(
ψ̂i
)2
− (ψi)2 |≤ 1

n

∑
i∈Ik

|
(
ψ̂i
)2
− (ψi)2 |

≤ 2
n

∑
i∈Ik

| ψ̂i − ψi | ×
(
| ψi | + | ψ̂i − ψi |

)

≤

 2
n

∑
i∈Ik

| ψ̂i − ψi |2
1/2 2

n

∑
i∈Ik

(
| ψi | + | ψ̂i − ψi |

)2
1/2

≤

 2
n

∑
i∈Ik

| ψ̂i − ψi |2
1/2


 2
n

∑
i∈Ik

| ψi |2
1/2

+
 2
n

∑
i∈Ik

| ψ̂i − ψi |2
1/2

 .

Thus,

I2
3,k . SN ×

 1
n

∑
i∈Ik

‖ Ψj(W ; qj,τ , ηj) ‖2 +SN

 ,
where

SN ≡
1
n

∑
i∈Ik

‖ Ψj(W ; q̂j,τ , η̂j)−Ψj(W ; qj,τ , ηj) ‖2 .

Since 1
n

∑
i∈Ik
‖ Ψj(W ; qj,τ , ηj) ‖2= OP (1), it suffices to bound SN . Under the event that
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η̂1k ∈ TN , we have

EP

[
‖ ψ̄1 (Wi, θ0, p̂k, η̂1k)− ψ̄1 (Wi, θ0, p0, η10) ‖2| (Wi)i∈Ic

k

]
≤ sup

p∈PN ,η1∈TN

EP
[
‖ ψ̄1 (Wi, θ0, p, η1)− ψ̄1 (Wi, θ0, p0, η10) ‖2

]
= (εN)2

by (A.12). It follows that SN = OP

(
N−1 + (εN)2

)
. Therefore, we obtain

Ik = OP

(
N−1/2

)
+OP

(
N−1/2 + εN

)
= oP (1) .

Hence, V̂1
p→ V10.
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