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Identification of
therapeutically potential
targets and their ligands
for the treatment of OSCC

Pratima Kumari1,2, Sugandh Kumar1, Madhusmita Sethy1,
Shyamlal Bhue1,2, Bineet Kumar Mohanta1,2

and Anshuman Dixit1*

1Computational Biology and Bioinformatics Laboratory, Institute of Life Sciences,
Bhubaneswar, India, 2Regional Centre for Biotechnology (RCB), Faridabad, India
Recent advancements in cancer biology have revealed molecular changes

associated with carcinogenesis and chemotherapeutic exposure. The available

information is being gainfully utilized to develop therapies targeting specific

molecules involved in cancer cell growth, survival, and chemoresistance.

Targeted therapies have dramatically increased overall survival (OS) in many

cancers. Therefore, developing such targeted therapies against oral squamous

cell carcinoma (OSCC) is anticipated to have significant clinical implications. In

the current work, we have identified drug-specific sensitivity-related

prognostic biomarkers (BOP1, CCNA2, CKS2, PLAU, and SERPINE1) using

gene expression, Cox proportional hazards regression, and machine learning

in OSCC. Dysregulation of these markers is significantly associated with OS in

many cancers. Their elevated expression is related to cellular proliferation and

aggressive malignancy in various cancers. Mechanistically, inhibition of these

biomarkers should significantly reduce cellular proliferation and metastasis in

OSCC and should result in better OS. It is pertinent to note that no effective

small-molecule candidate has been identified against these biomarkers to date.

Therefore, a comprehensive in silico drug design strategy assimilating

homology modeling, extensive molecular dynamics (MD) simulation, and

ensemble molecular docking has been applied to identify potential

compounds against identified targets, and potential molecules have been

identified. We hope that this study will help in deciphering potential genes

having roles in chemoresistance and a significant impact on OS. It will also

result in the identification of new targeted therapeutics against OSCC.
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GRAPHICAL ABSTRACT
Introduction

Oral squamous cell carcinoma (OSCC) constitutes a major

subset of head and neck squamous cell carcinoma (HNSCC) and

accounted for an estimated 0.37 million cases in the year 2020

(1). The high morbidity and mortality of OSCC pose a great

challenge to its management (1, 2). The overall 5-year survival

rate in OSCC is comparatively lower (~50%) than that in many

other cancers (3, 4). For example, in India, 0.13 million new

cases were detected, whereas 75,000 patients died in 2020 (1).

Current treatment modalities include surgery, radiotherapy,

chemotherapy, or their combinations. These are successful in

patients with primary tumors, whereas patients with high-risk

features (invasion/perineural invasion, metastasis, T3/T4 stage,

or involvement of two or more lymph nodes) show less

improvement. There is no clinical evidence to support the

likely outcome in the case of high-risk oral cancer (5, 6).

Patient response to chemotherapy has been linked to tumor

lineage and genetics. Changes in cellular gene expression in
Abbreviations: ACC, adrenocortical carcinoma; BLCA, bladder urothelial

carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell

carcinoma; COAD, colon adenocarcinoma; DLBC, diffuse large B-cell

lymphoma; ESCA, esophageal carcinoma; GBM, glioblastoma multiforme;

HNSCC, head and neck squamous cell carcinoma; KICH, kidney

chromophobe; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal

papillary cell carcinoma; AML, acute myeloid leukemia; LGG, brain lower-

grade glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung

adenocarcinoma; LUSC, lung squamous cell carcinoma; OV, ovarian serous

cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; READ, rectum

adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma;

STAD, stomach adenocarcinoma; TGCT, testicular germ cell tumor;

THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus

endometrial carcinoma; UCS, uterine carcinosarcoma; MESO,

mesothelioma; UVM, uveal melanoma; GEM, gemcitabine; GC, gastric

cancer; OC, ovarian cancer, TMZ, temozolomide; NSCLC, non-small cell

lung carcinoma.

Frontiers in Oncology 02
response to small-molecule treatments can provide insights into

cellular processes governing the clinical outcome. Identifying the

responsive features and mechanism of action is of immense

value in cancer therapy and can be critical for the development

of novel medicines. Furthermore, the heterogeneous response of

patients to cancer therapies and the frequent development of

drug resistance highlight the importance of a therapeutic

response (7, 8). However, an accurate prediction of a

therapeutic response and the identification of new anticancer

drugs have remained a challenging task.

In recent years, the increasing understanding of genomics

and the advent of next-generation sequencing (NGS) with

advancements in bioinformatics approaches have made it

possible to identify potential molecular targets for the

betterment of chemotherapy. Numerous cancer studies with

the help of NGS were able to identify novel and rare somatic

mutations in more efficient and accurate ways. In a variety of

cancers such as bladder cancer, renal cell carcinoma, small-cell

lung cancer, prostate cancer, acute myelogenous leukemia, and

chronic lymphocytic leukemia, researchers were able to

accurately identify genetic alterations. On the other hand,

together with NGS, the bioinformatics approach was successful

in exploiting the heterogeneous nature of cancer to develop

cancer diagnostic, prognostic, and predictive markers (9). Gene-

based approaches are being used for the development of new

therapeutic agents. The targeted approaches have been proven

highly useful in the development of therapies for many

cancers (10).

Doxorubicin is known to inhibit the topoisomerase-II

(TOP2) activity in eliciting its antineoplastic effect. It is one of

the most effective anticancer drugs widely used in the treatment

of several cancers including breast cancer, lung cancer, gastric

cancer, ovarian cancer, thyroid cancer, non-Hodgkin’s and

Hodgkin’s lymphoma, multiple myeloma, sarcoma, and

pediatric cancer (11). High toxicity and early resistant

phenotype have limited the use of doxorubicin (12). Thus, it is

imperative to study the molecular changes associated with

doxorubicin resistance. Therefore, in the current work, we

aimed to explore gene expression changes in the response to
frontiersin.org
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doxorubicin treatment in OSCC using various datasets and the

ways to reduce the chances of emergence of such resistance by

molecularly targeted therapies. We have also identified potential

ligands that may increase the effect of doxorubicin and/or can

delay the progression of drug-related resistant phenotypes or

sensitize oral cancer cells to chemotherapy.
Materials and methods

Data collection and differential gene
expression analysis

In the present study, data were collected from two

sources: The Cancer Genome Atlas (TCGA) (https://portal.

gdc.cancer.gov/) and Gene Expression Omnibus (GEO)

(https://www.ncbi.nlm.nih.gov/geo/). Since we wanted to

analyze OSCC data, we further filtered out the OSCC

samples according to the International Classification of

Diseases (ICD) code. The ICD classifies diseases based on

the site of disease occurrence (Supplementary Table S1).

Finally, 319 OSCC and 44 normal adjacent tissue (NAT)

samples were obtained. Additionally, two more datasets

were obtained from GEO (13, 14): 1) mRNA expression

profiling data of 27 OSCC patients (GEO ID-GSE23558)

and 2) mRNA expression profiling data of the doxorubicin-

treated SCC25 cell line (GSE58074). Two replicates of each

(mock and treatment) were taken for expression analysis. The

clinical details of TCGA patients are given in Supplementary

Table S2.

The gene expression analysis was performed using R studio

(http://www.rstudio.com/) version 3.4.4 using the limma-voom

library for TCGA samples, whereas GEO samples were analyzed

using GEO2R. Genes with |log2FC ≥1| and p-value<0.05 were

considered significantly differentially expressed genes (DEGs).

The ggplot2, complex heatmap, and circular library in R were

used for volcano plot and heatmap. Common DEGs in all of the

three datasets were considered genes of interest for

further analysis.
Functional enrichment analysis

Gene Ontology (GO) and pathway enrichment of common

genes present in all of the datasets were used to identify enriched

biological events as a result of doxorubicin perturbation. We

have used Reactome (https://reactome.org) (15, 16) and GO

(http://geneontology.org/) (17, 18) online databases for

enrichment analysis of the gene sets. Enriched biological

pathways and GO terms were considered significant if p-

value ≤0.05.
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Cox proportional hazards regression

Cox proportional hazards regression (Coxph) is a

semiparametric model used to predict the outcome of disease

based on one or more predictors in survival time (time-to-event)

through the hazard ratio (HR) function. It assumes that the

effects of predictor variables have an additive effect on the

hazard, i.e.,

h tð Þ  =  h0 tð Þ  exp  b1x1  +⋯⋯  + bnxnð Þ (1)

where h(t) is the hazard at time t for a subject with a set of

predictors x1…xn, h0(t) is the baseline hazard function, and

b1,.,bn are the model coefficients describing the effect of the

predictors on the overall hazard. HR is used for the

interpretation of the Cox model. The HR examination shows

selective factors that influence the rate of an event happening

(e.g., death) at a particular point in time. An HR above 1

indicates a predictor that is positively associated with the event

probability (death) and thus negatively associated with the

length of survival, indicating worse prognosis; a negative HR

indicates a protective effect of the predictors with which it is

associated; while an HR equal to 1 means no effect. The DEGs

were subjected to a Cox regression analysis using the “survival”

package in R (https://github.com/therneau/survival).
Identification of biomarker signature and
validation of prognosis-related genes

Machine learning (ML) is becoming popular in cancer

biology in identifying prognostic, diagnostic, and therapeutic

biomarkers. Therefore, we implemented two commonly used

machine learning algorithms, viz., random forest (RF) and

partial least square (PLS) regression method, to identify

prognostic targets. RF is a frequently used algorithm for the

identification of prognostic biomarkers in many diseases

including cancer (19, 20).
Survival analysis

To evaluate the reliability of the predicted prognosis

signature, Kaplan–Meier (K-M) plots were generated to

estimate the survival of the patients based on their median

mRNA expression. An mRNA expression above the median

value was considered high, whereas an expression below the

median was counted as low expression. The R package

“survival” was used to plot the patient’s overall survival

(OS), and significance was calculated based on the log-rank

p-value. To further reflect the sensitivity and specificity of

signature mRNAs, we employed a time-dependent receiver
frontiersin.org
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operating characteristic (ROC) curve analysis via the R

package “survivalROC.”
Risk assessment and validation of
the risk model

The risk score is an additive model of the mRNA expression

level multiplied by their Cox regression coefficient. The risk

score was calculated as follows:

Risk score 

=  Coefficients of signature Gene A 

� mRNA expression of A  + ……
… : 

+ Coefficients of signature Gene N 

� mRNA expression of N (2)

The median risk score was used to divide the patients into

high- and low-risk groups.
Use of the protein–protein interaction
network to understand the potential
signature biomarker

Next, we constructed the protein–protein interaction (PPI)

network to understand the importance of key targets in the

human interactome. The Search Tool for the Retrieval of

Interacting Genes/Proteins (STRING) database (https://string-

db.org/) was used to create a PPI network of identified genes

with a cutoff score of >0.4, which was equivalent to medium

confidence. Subsequently, a cluster analysis using MCODE (21)

was done to decipher the modules in the created network. To

understand the functional significance of the modules, pathway

analysis was done using Reactome (www.reactome.org).
Identification of candidate
small-molecule drugs

Protein structures
The X-ray crystal structures of SERPINE1 [Protein Data

Bank (PDB): 4AQH], CCNA2 (PDB: 1H1R], PLAU (PDB:

1OWE), and CKS2 (PDB: 5HQ0) were used in the current

studies. The three-dimensional (3D) structure of BOP1 is not

available in the PDB.

Homology modeling
The 3D structure of BOP1 was modeled by a homology

modeling approach using modeler v9.20. Delta-blast was used to

identify suitable templates for modeling against the PDB database.
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The template was selected based on the expected value (E-value),

bit score, and percentage of query coverage and identity. The

carboxy-terminal domain of Erb1 of Escherichia coli (PDB-ID:

4U7A chain A, identity 40.1%, coverage 83%) was finally selected

as the template to model the structure of BOP1. Twenty models

were generated for each protein, and the final model was selected

based on the lowest molpdf score.
System setup and molecular
dynamics simulation

In the current study, the preliminary topology and

coordinates for all proteins were generated in VMD v1.93,

whereas the simulations were run in NAMD v2.14. All protein

structures (BOP1, PLAU, SERPINE1, CKS2, and CCNA2 after

stripping cocrystallized ligands) were prepared and solvated in a

rectangular water box (TIP3P water model) with a buffering

distance of 10 Å. Ions were added to ensure the electroneutrality

of the solvated system. The SETTLE algorithm was used for the

water molecules. The associated system topology and

coordinates were generated by applying charmm34 force field

parameters for molecular dynamics (MD) simulation. Prior to

the simulation, the system was properly minimized with a

stepwise minimization protocol. Firstly, the water molecules

and ions were minimized that was then followed by hydrogen

atoms and the side chains of the complex. The side chains were

minimized for 40,000 steps, whereas the backbone atoms and the

bond lengths of hydrogen atoms were kept fixed. Thereafter, all

of the atoms were allowed to relax freely, and the whole system

was energy-minimized for 40,000 steps with nominal restraints

on Ca atoms (10 kcal/mol) to prevent any abrupt change in the

structure. Subsequently, an equilibration protocol was followed

where the system was heated gradually from 0 to 310 K in steps

of 30 K with a canonical ensemble [constant volume, constant

temperature (NVT)]. At each step, a 20-picosecond (ps)

simulation was run to allow the system to adjust to the

temperature. Once the system attained 310 K, an isobaric and

isothermic ensemble [constant pressure, constant temperature

(NPT)] was applied for a period of 100 ps with a constant

pressure of 1.0 bar using Langevin dynamics. Finally, the

applied restraints on Ca atoms were removed, and the system

was equilibrated for 1 ns at 310 K using the Langevin piston

coupling algorithm. During the whole simulation, the Particle

Mesh Ewald (PME) algorithm was used to calculate the long-

range electrostatic interactions with fixed periodic boundary

conditions. The covalent bond interactions involving hydrogen

were constrained using the SHAKE algorithm. Once the system

was simulated with a constant 310 K temperature and 1.0 bar

pressure, then the production run was done for a time period of

100 ns. The analyses of the MD trajectories were performed to

analyze the structure and dynamic behavior of all proteins

during MD. The trajectories were analyzed for root mean
frontiersin.org
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square deviation (RMSD) and radius of gyration (Rg); these

analyses were performed using VMD and in-house Perl and Tcl

scripts. Five additional equidistant frames were generated from

each trajectory for ensemble docking studies.

To study the stability of the protein–ligand complex, another

simulation was run for 300 ns with selected ligands docked in the

protein targets. The ligand parameters were generated using the

Antechamber module of AMBER12 molecular simulation

package (www.ambermd.org). The complex was solvated in a

box of water with 10 Å buffering distance. AMBER parameters

and coordinate files were generated using the tleap module of

AMBER12. Equilibration and simulation were done using

NAMD v2.14 as described above. The trajectories were

analyzed for RMSD, hydrogen bonds, and salt bridges to

assess the stability and strength of the interactions between the

ligand and the protein.
Molecular docking

The frames obtained from the MD simulation for the

selected proteins were prepared using the protein preparation

wizard module of Schrödinger molecular modeling software

v9.3. OPLS-2005 force field was used for energy minimization,

whereas Schrödinger’s LigPrep module was employed to

generate 3D conformers and energy minimization of the

potential small-molecule drugs from the US Food and Drug

Administration (US FDA) library. A maximum of 32

conformers were generated per ligand. Before docking, the

grid box (active site) was defined as residues within 5 Å of
Frontiers in Oncology 05
cocrystallized ligands. The active site of the modeled proteins

or proteins without cocrystallized ligands was predicted

through the sitemap algorithm as implied in Schrödinger.

Docking was performed using standard precision (SP) mode

with flexible ligand sampling in Schrödinger’s Glide module.

The average docking score was calculated based on the glide

score in the five frames. The flowchart of methodology is given

in Figure 1.
Results

Identification of differentially
expressed genes

We identified 3,976, 5,418, and 1,241 DEGs in TCGA,

GSE23558, and GSE58074 datasets, respectively. In TCGA

samples, 2,163 genes were overexpressed and 1,813 genes were

underexpressed, whereas 2,221 and 3,197 genes were found

overexpressed and underexpressed, respectively, in GSE23558.

In GSE58074, which contained doxorubicin-treated cell line

data, 724 genes were overexpressed and 517 genes were

underexpressed (Figure 2A and Supplementary Table S3).

Among the three datasets, 168 common DEGs were identified.

These were considered for further analysis (Figure 2B). DEGs are

represented in a volcano plot with log2FC and -log10 p-value

(Supplementary Figure S1). The heatmap represents the

expression of common DEGs from the three datasets, with

134, 132, and 85 overexpressed genes and 34, 36, and 83

underexpressed genes in TCGA, GSE23558, and GSE58074,
FIGURE 1

Methodology for identification of drug response related signature and identification of their inhibitors. The TCGA samples had 319 OSCC & 44
normal samples. GSE23558 had 27 OSCC patients’ data. GSE58074 examined the effect of doxorubicin on SCC25 cell lines to check for
molecular markers underlying doxorubicin response..
frontiersin.org

http://www.ambermd.org
https://doi.org/10.3389/fonc.2022.910494
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kumari et al. 10.3389/fonc.2022.910494
respectively (Figure 2C and Supplementary Table S3). From the

heatmap, it is clearly visible that genes that are overexpressed in

cancer prior to any treatment get downregulated after treatment

and vice versa, whereas some of the genes present do not respond to

the treatment, as there are no changes in their expression patterns.
Functional enrichment analysis

The common DEGs (n = 168) were studied for functional

enrichment to investigate their involvement in various

cellular processes. The top 10 enriched GO functions

and pathways are shown in Figure 3. Biological process

(BP) terms related to immune response, biological

stress, cell proliferation, and survival were found to be

significantly enriched. Enriched cellular component (CC)

terms include extracellular related components, protein

complex, membrane-bound components, and cellular

vesicles. Molecular function (MF) enriched terms included

various signaling pathways involved in ligand–receptor

complex, enzymatic functions, G protein–related function,

kinases, and other protein-binding functions. Pathway
Frontiers in Oncology 06
enrichment shows that most of the signaling related to cell

cycle and its regulation such as G2/M transition, nucleotide

salvage pathways, and DNA damage bypass. The detailed

pathway and GO term information is provided in

Supplementary Table S4 and Supplementary Figure S2.
Exploration of prognostic biomarkers

The prognostic significance of the selected DEGs (168 genes)

was assessed through univariate Coxph regression analysis. A

total of 59 genes were found to be significantly (p-value<0.05)

associated with OS (Figure 4A and Supplementary Table S3). As

indicated earlier, the higher values of HR (HR >1) indicate worse

prognosis, whereas negative HR values (<-1) show favorable

prognosis. Next, machine learning algorithms, viz., RF and PLS

regression, were employed to identify the potential predictive

prognostic signature genes. We selected the top predictive genes

based on the robustness of the prediction. A cutoff percentile

score of ≥80 was used; nine genes were selected from RF,

whereas seven genes were predicted by PLS (a total of 16)

(Supplementary Table S5). Then, we performed survival
B

CA

FIGURE 2

Differentially expressed genes (A) Bar graph representing total DEGs both up (blue) and down (yellow) in three datasets. (B) Venn diagram
showing number of DEGs (common and unique) among TCGA, GSE23558 and GSE58074. A total of 168 common DEGs were obtained.
(C) Heatmap shows DEGs related to doxorubicin response (GSE58074) and non-treated samples in OSCC from TCGA and GSE23558. Three
types of distinct expression pattern are discernible (1) 52 genes overexpressed (orange) in all the three data sets, (2) 76 genes underexpressed in
GSE58074 (purple) while overexpressed in TCGA (orange) and GSE23558 (orange), and (3) 26 genes underexpressed in TCGA (purple) and
GSE23558 (purple) while overexpressed in GSE58074 (orange).
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analysis to identify the potential prognostic markers. We found

that five genes, viz., BOP1, PLAU, SERPINE1, CCNA2, and

CKS2, were significantly related to the survival of the patients.

The risk assessment score was calculated with the help of Cox

regression analysis that resulted in the following equation (Eq. 2)

and was used to determine the risk score (high and low):

Risk score 

=   3:207785  � expressionBOP1ð Þ 
+  1:986074 � expressionPLAUð Þ 
−  1:962924 � expressionSERPINE1ð Þ 
+  2:913185 � expressionCCNA2ð Þ 
+  4:164371 � expressionCKS2ð Þ (2)

Importantly, low-risk patients have a low expression of these

mRNAs as compared with those of high-risk patients

(Figure 4B). It can be seen clearly in Figures 4D–H that the

low–risk score group had better OS; therefore, the expression of

the identified mRNAs has significant impact on the OS of the

patients. To further assess the accuracy of the prognostic model,

we constructed an ROC curve to assess the impact of the

expression of these genes on patients’ OS for 1, 3, and 5 years.

The ROC curve is shown in Figure 4C, and the area under the
Frontiers in Oncology 07
curve (AUC) was 0.773, 0.806, and 0.928 for 1, 3, and 5

years, respectively.
Assessment of the Five Prognostic
Signature Genes Across Cancers

The Cox regression and Machine learning (ML) analysis

showed that overexpression of the identified genes is related to

poor prognosis. Furthermore, we investigated the expression of

these genes across different cancers and OS of patients to assess their

clinical importance. For this, we have used GEPIA2 database (22).

GEPIA2 retrieves data from TCGA and the Genotype-Tissue

Expression (GTEx) portal. The expression analysis showed that

these five genes were significantly upregulated (|log2FC >1|, p-

value<0.05) in most of the tumor tissues as compared with those in

normal tissues (Figure 5A and Supplementary Table S6). Survival

analysis across various cancers showed that a high expression of

these five genes is related to poor survival in most of the cancers

(Figure 5B). Moreover, we also checked the expression of these

genes in response to drug treatment. For this, we analyzed the

expression array data available in the NCBI-GEO dataset

(Supplementary Table S7). Two types of analysis were done: 1)

expression analysis in drug-sensitive cells and 2) expression analysis

in drug-resistant cells (Figures 5C, D). We found that the mRNA
B

C D

A

FIGURE 3

Enriched GO terms and pathways (top 10) common DEGs associated with doxorubicin response. (A) biological process, (B) cellular components,
(C) molecular function, and (D) pathways.
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B

C

D

E

F

G

H

A

FIGURE 4

(A) Volcano plot of cox regression showing hazard ratio (HR) for 168 genes. (B) Patient stratification according to risk score to predict the
survival time of patients with high- and low-expression level of prognostic genes. (C) ROC depicting the effect of selected genes on overall
survival (1, 3, and 5 years). (D–H) depict the effect of signature gene expression on overall survival of OSCC patients..
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expression level decreased for most of the genes upon drug

treatment. For example, CCNA2 mRNA levels were found to be

decreased significantly with fold change -1.07, -4.33, -1.06, and -4.17

when treated with romidepsin, SNAO32, dauricine, and

doxorubicin in A549, primary ovarian cancer, BxPC3, and MCF7

cell lines, respectively. Similarly, PLAU, CKS2, and SERPINE1

mRNA levels were also found to be decreased in response to

various drugs, whereas in the case of the drug-resistant cell line,

an increase in mRNA expression levels of PLAU, CKS2, CCNA2,

BOP1, and SERPINE1 was observed. For example, PLAU showed

increased mRNA expression with fold changes of 2.14, 1.8, 1.5, 1.4,

and 1.2 in Panc1 gemcitabine-, MKN28 gemcitabine-, AsPc1

cisplatin-, IGROV1 cisplatin-, and IGROV1 oxaliplatin-resistant

cell lines, respectively. Additionally, we analyzed the presence of

genetic alterations (e.g., amplification, mutation, deletion, structural

variant) in these five genes using CBioPortal (https://www.

cbioportal.org/), which is an online consortium for cancer

genomics. We investigated the TCGA Pan-Cancer Atlas dataset

for the genomic alteration study (23, 24). It clearly showed that

amplification is the most common alteration observed in BOP1,
Frontiers in Oncology 09
PLAU, SERPINE1, and CKS2 across the cancers, whereas in

CCNA2 , mutation and deep deletion are prevalent

(Supplementary Figure S3).
Protein–protein interaction network

The PPIs are at the heart of various molecular mechanisms.

Therefore, a PPI network was constructed to understand the

interactions of selected proteins with other proteins in the

human interactome for better understanding of their

regulatory roles (Figure 6). We identified three distinct clusters

in the network; the proteins in those clusters are involved in 1)

the regulation of rRNA processing; 2) the regulation of the cell

cycle; and 3) angiogenesis, growth factors, and transcription

factors such as Suppressor of Mothers against Decapentaplegic

(SMAD) SMAD2/SMAD3. The overall network analysis

indicates that these genes are connected to many important

genes, and targeting them will affect cellular processes playing

critical roles in the pathogenesis of OSCC.
B

C D

A

FIGURE 5

Expression & significance of selected prognostic genes. (A) Differential gene expression analysis across different cancers. Red, blue and white
squares depict over, under and insignificant expression respectively. It is clear that these genes are upregulated in most of the cancers.
(B) Survival map: Red and blue squares indicate poor survival due to over and under expression respectively. The figure clearly indicates the
expression of these genes have significant effect on survival of the patients across cancers. (C) Heatmap represents expression level of these
genes in drug sensitive cells. These genes were found to be significantly differentially expressed (|log2Fc| > 1 and pvalue < 0.05). The down-
(blue) and up- (red) regulated genes in response to drug; green square indicates down-regulated genes with significant pvalue but |log2Fc| < 1.
Grey square indicated no differential expression. (D) The expression of selected genes in drug resistant cells. Red and blue squares indicate
significant (|log2Fc| > 1 and pvalue < 0.05) up- and down-regulated genes; yellow square indicates up-regulated genes with significant pvalue
(|log2Fc| < 1); grey square indicated no differential expression of the genes.
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Molecular dynamics simulations

The MD analysis was performed to assess the flexibility of

the binding site that is not discernible through PDB structures.

The generated structural ensembles were used for the

identification of small-molecule binders. MD simulations were

done for 100 ns on each protein (total 500 ns), and the stability

of the simulation was evaluated using RMSD. The RMSD values

reveal the structural changes that occurred during the MD. The

RMSD plots for all proteins indicated that each system was

stabilized quickly and then remained stable throughout the

simulation time, as evidenced by the movement of the RMSD

curve within 2 Å. These plots suggested that each system was

quite stable for the docking study. Five equidistant frames for

each protein at 20-ns distance (from 100-ns simulation),

representing the dynamics of the protein structure, were

extracted. Docking studies were then performed on these frames.
Screening of potential compounds
from the US Food and Drug
Administration–approved library

The binding affinity of US FDA-approved drugs with each of

the proteins was assessed through molecular docking. The

average glide docking score (average of five frames) was used

to identify potential binders of the individual proteins. The top
Frontiers in Oncology 10
20 compounds for each protein, based on their glide score, are

given in Supplementary Table S8. Details for individual proteins

are given below.

BOP1 is a RNA-binding protein involved in ribosome

biogenesis, cell cycle, and cell proliferation (25). The docking

analysis indicated saquinavir to be the best binder with an

average docking score of -10.9 (Figure 7A). The active site of

BOP1 is surrounded by multiple beta sheets forming a barrel-

like structure. The molecule saquinavir is ensconced in a pocket

lined by Trp182, Pro104, Pro229, Pro63, Thr181, Pro368,

Gly184, Leu266, Val268, and Val309. Analysis of docking

poses indicates that saquinavir has several hydrogen-bonding

interactions with residues, viz., Trp182, Val268, and Val309.

CCNA2 (cyclin A2) binds with both CDK2 and CDK1. It is

required for entry into the S and M phases of the cell cycle. The

overexpression of CCNA2 leads to cell growth and proliferation.

Diacetolol was found to be the best binder, with an average

docking score of -7.6. It is a beta-blocker used as an

antihypertensive and antiarrhythmic agent. The docking study

indicated that the ligand diacetolol binds in a cavity lined by

residues His233, Gln337, Ser340, Tyr347, Tyr350, Pro352,

Val354, Ile355, Ala356, Cys390, Asp393, and Leu394 of

CCNA2. It makes HB interaction with Tyr347 (Figure 7B). It

can be an attractive chemotherapeutic option for OSCC.

PLAU encodes a serine protease (uPA) that converts

plasminogen to plasmin. uPA is involved in the degradation of

the basement membrane and extracellular matrix (26). PLAU is
FIGURE 6

PPI network for selected genes (pink circles) to understand their interactions & significance. Other interacting proteins are depicted in blue
circles. Three clusters are visible. The enriched functions are shown along the clusters.
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FIGURE 7

Virtual screening of FDA approved drugs against identified proteins. Top scoring 20 molecules for each of the five proteins are shown in
heatmap (figures A–D). The first column depicts the heatmap of docking scores in five MD frames. The average docking score is also depicted
for better understanding. In the second column, proteins are shown in cartoon while the ligands are shown in sticks. The dotted lines depict
hydrogen bonds. The third column depicts the interaction map of the ligand receptor interactions. The pink arrows show hydrogen bonds. The
arrowhead depicts the HB-acceptor molecule. Pi-pi stacking interactions are depicted by green line. (A) The docking of saquinavir with BOP1. It
makes hydrogen bonding interactions with backbone of TRP-182, VAL-268, VAL-309, and sidechain of THR-181. (B) The binding of molecules
in CCNA2. The diacetolol is shown in blue sticks. The ligand makes hydrogen bonds with Tyr347 (C) The binding of ligands in PLAU. NADH is
shown in binding site of PLAU. It makes hydrogen bonding interactions with THR30, TYR31, LYS154, and SER157. (D) The binding of ligands in
SERPINE1, and docked molecule labetalol. The drug forms hydrogen bonds with sidechain of ASP-95, TYR37.
Frontiers in Oncology frontiersin.org11

https://doi.org/10.3389/fonc.2022.910494
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Kumari et al. 10.3389/fonc.2022.910494
one of the potential biomarkers for HNSCC and several other

cancers. Nicotinamide adenine dinucleotide hydrogen (NADH),

argatroban, diminazene (DIZE), and pentamidine are among the

molecules that showed good binding affinity with PLAU. NADH

binding to PLAU is shown in Figure 7C. It makes hydrogen-

bonding interactions with Thr30, Tyr31, Lys154, and Ser157.

NADH, due to its role in energy production, may help against

wastage and weakness of cancer patients. It is also used to

improve mental alertness. It can be given orally and has

cleared clinical trials as a chemotherapeutic agent for other

illnesses (27).

SERPINE1 (PAI-I) inhibits the plasminogen activator uPA/

uPAR complex that promotes cell matrix degradation and cell

migration. Overexpression of SERPINE1 is highly associated

with poor survival in primary tumor, lymph node, and head

and neck cancer metastasis. The docking study showed that

NADH, reproterol, and labetalol bind to SERPINE1 with high

affinity. The molecule labetalol makes hydrogen-bonding

interactions with Tyr37, Ser41, Asp95, Phe117, and Arg118.

The phenyl ring sits in the vicinity of hydrophobic residues such

as Phe64, Ile66, and Phe117 (Figure 7D). We could not find a

good binder for CKS2. The overall analysis indicates that the

identified small molecules hold potential as possible therapeutics

for OSCC and other cancers.
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Stability analysis of the
drug–ligand complex

Post docking MD simulation was run to check the stability of

the ligands inside the binding cavity of the proteins. The stability

of the simulation was analyzed by RMSD. The hydrogen bond

interactions between ligand and protein were also calculated to

check their strength.

The RMSD analysis of the MD simulation of the BOP1–

saquinavir complex indicated that the simulation stabilized at

about 10 ns. At about 40 ns, there is a slight change in ligand

RMSD (<1 Å). Thereafter, the trajectory is very smooth, and

both the protein and ligand RMSDs show a very stable trajectory

(Figure 8A). The hydrogen bond analysis showed that saquinavir

has two hydrogen-bonding interactions (with Thr149 and

Trp150) with >50% occupancy (Table 1), which indicates that

the HB interactions are strong and the BOP1–ligand complex is

highly stable.

The RMSD during the MD simulation of the PLAU–NADH

complex initially increases until about 10 ns; afterward, its

movement is confined in a small window (<2 Å) (Figure 8B).

This clearly indicated that the simulation is stable. The ligand

RMSD was also calculated. It shows a close trend as that of the

protein, again indicating good stability of the ligand inside the
FIGURE 8

The stability analysis: The root mean square deviation (RMSD) analysis for the protein-ligand complexes. The RMSD of protein is shown in red while
the RMSD of ligand is shown in blue. (A) RMSD for BOP1-Saquinavir complex. (B) RMSD for PLAU-NADH complex. (C) RMSD for CCNA2-Diacetolol
complex. (D) RMSD for SERPINE1-Labetalol complex.
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binding cavity. Hydrogen bonds of the ligand with Lys154 and

Tyr31 showed occupancy of about 71% and 23%, respectively

(Table 1). All of these observations point to the high stability of

the NADH–PLAU complex. The RMSD analysis of the MD

simulation of the CCNA2–diacetolol complex indicated that the

simulation stabilized quickly, as indicated by the movement of

the RMSD in a narrow window. Both the protein and ligand

RMSDs show a stable trajectory; however, we could not find a

strong hydrogen bonding interaction between diacetolol and

CCNA2 (Figure 8C and Table 1).

The MD simulation of Serpine1 indicated that after an initial

increase, the RMSD gets stabilized quickly, as indicated by a

rangebound (<2 Å) movement of the RMSD curve (Figure 8D).

The ligand RMSD was also calculated, and it showed movement

in a very narrow window, indicating the stability of the

simulation and that of the complex. The HB analysis indicated

that the hydrogen bond between the ligand and Asp95 is highly

stable, as measured by an occupancy of >60% (Table 1). Overall

analysis indicates that the Serpine1–labetalol complex is

highly stable.
Discussion

In recent years, prognosis-based gene signature identification

has been of immense interest for the prediction of outcome or for

evaluation of the course of a disease (28, 29). Therapeutic biomarker

prediction models are currently in focus to identify predictive

factors of the response to chemotherapy (30, 31). Non-

responding cancer cells are either refractory to chemotherapy or

have acquired resistance during the course of the treatment. Both

are strongly related to molecular alteration of the targets. The major

challenge is acquired chemoresistance during treatment, which
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eventually leads to cancer regrowth, even if the tumor initially

responds to the chemotherapeutic agent. Moreover, reports suggest

changes in gene and protein expression levels in cancer tissues and

cell lines after chemotherapy. For instance, a xenograft study has

shown that drug treatment (5-fluorouracil and cisplatin) first

reduces the expression level of drug-specific sensitivity-related

genes followed by their upregulation in the regrowth phase and

emergence of chemoresistance in esophageal cancer (32).

Chemoresistance, either intrinsic or acquired, contributes to the

low survival of the patients, necessitating the need for identification

of drug-specific sensitivity-related markers and their modulators to

enhance the sensitivity of cancer cells to subdue/delay

chemoresistance. One such example is inhibition of the

Phosphoinositode-3-kinase/AKT serine/threonine kinase (PI3K/

AKT) pathway to increase the sensitivity and reverse acquired

resistance of esophageal cancer cells to chemotherapeutic drugs

(33). Thus, it is imperative to identify the therapeutic targets that

not only are advantageous in predicting the clinical outcome but

also can resolve the emerging chemotherapy-related issues as well.

In our study, using different genomic data, we examined the

changes in gene expression before and after treatment to

investigate the key genes, pathways, biomarkers, and risk gene

signature. Interestingly, we found that most of the genes that

were highly expressed in OSCC patients are found to be

significantly downregulated after doxorubicin treatment. We

also get another cluster of genes whose expression does not

change significantly after doxorubicin treatment. In fact, the

expression of some of them increases further. In total, 168

overlapping DEGs were found from the three datasets and

were considered for further study. Five gene signatures

(SERPINE1, PLAU, BOP1, CKS2, and CCNA2) were proposed

in this study through Cox regression and machine learning. The

overexpression of these genes increases the risk of adverse
TABLE 1 Hydrogen bond analysis between the ligand and the protein.

Protein S. No. Residue Ligand Occupancy*
BOP

1 THR149 Saquinavir 63.43%

2 TRP150 Saquinavir 63.51%

3 PHE195 Saquinavir 31.31%

PLAU

1 LYS154 NADH 71.71%

2 TYR31 NADH 22.49%

3 SER157 NADH 16.89%

CCNA2

1 TYR176 Diacetolol 19.89%

2 LYS175 Diacetolol 14.47%

SERPINE1

1 ASP95 Labetalol 60.24%

2 TYR37 Labetalol 16.19%
*Defined as the HB interaction present in x% of frames out of a total of 100,000 frames.
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outcome. Application of Cox regression resulted in an equation

that can be used for risk stratification of OSCC patients. From

the survival analysis, we were able to predict that increased

expression of these genes is related to poor prognosis of the

patients. A similar study found SMA and SERPINE1 to be

significantly associated with prognosis in OSCC (34);

SERPINE1, PLAU, and ACTA1 acted as both diagnostic and

prognostic markers (35). Another study by Liu et al. (36)

identified an eight-gene prognostic signature in HNSCC that

included PLAU. CCNA2 is identified as an independent

indicator of worse OS and may serve as a reliable biomarker

to identify high-risk subgroups with poor prognosis in OSCC

(37). Moreover, these five genes were highly expressed and

reported to be associated with cancer progression in various

cancers including HNSCC (35, 38), glioblastoma multiforme

(GBM) (39), epithelial ovarian cancer (40, 41), gastric cancer

(42, 43), breast cancer (44, 45), bladder cancer (46, 47),

esophageal cancer (48), colorectal cancer (49, 50),

hepatocellular carcinoma (51), melanoma (52), and non-small

cell lung carcinoma (NSCLC) (53). In cancer pathogenesis, these

genes perturbed numerous cellular mechanisms such as

extracellular matrix (ECM) modulation, epithelial-to-

mesenchymal transition (EMT), cell migration, and

angiogenesis (39, 47–49, 54–59). Interestingly, from a genetic

study, we also found that gene amplification in SERPINE1,

PLAU, BOP1, and CKS2 is the primary cause of their

overexpression, except in CCNA2, where mutation is the

predominant cause in HNSCC. Experimental evidence showed

that amplification of these genes occurs at both mRNA and

protein levels in several cancers such as breast cancer (60, 61),

prostate cancer (62), rectal cancer (63), hepatocellular cancer

(51), NSCLC (64), gastric cancer (65), and tongue cancer (66).

Overexpression of these markers is indicative of poor

prognosis and corresponds to chemotherapy resistance. We

showed that initially during chemotherapy, there is

downregulation of these genes in the responsive cancer

(Figure 5C), but as treatment continues, these genes are

upregulated to give rise to chemoresistant phenotypes

(Figure 5D). We examined the mRNA expression of these five

genes with different drug treatments, which include doxorubicin,

cisplatin, oxaliplatin, gemcitabine, topotecan, temozolomide,

paclitaxel, JQ1, romidepsin, dauricine, and SNSO32, in various

cancers to support our outcome. All of the drugs that we used in

our study have DNA as their target and inhibit DNA replication

or transcription. In another analysis with the drug olaparib,

which is a poly(ADP-ribose) polymerase 1 (PARP1) inhibitor

(GSE165585), we found that our genes of interest were not

significantly expressed (Supplementary Table S3). In support of

our results, we found that PARP1 inhibitors help in the

sensitization of temozolomide-resistant glioblastoma cancer

(67). We found that after drug treatment, gene expression

changes from high to low or low to high or remains

unchanged. Further additional new gene expression was also
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seen. We found that during the period of treatment

responsiveness, our genes change their expression level from

low to high again, which is the same as the prior treatment.

Other studies have also determined the involvement of these

genes in resistance generation, for example, SERPINE1 is

upregulated in cisplatin-resistant oral cancer cell lines (SCC9,

SCC4, and H357) (68) and paclitaxel-resistant breast cancer

(44). In the context of therapeutic potential, SERPINE1 has been

identified as a potential therapeutic target, as it acts as a pro-

proliferative oncogenic factor (69). PLAU is found to be

upregulated in cisplatin-resistant oral cancer cell lines (68).

Both PLAU and SERPINE1 were found to be highly expressed

in breast cancer patients with adjuvant endocrine therapy and

related to shorter disease-free survival and OS (70). Whereas in

vivo, BOP1 downregulation was reported to inhibit paclitaxel

resistance and Cancer stem cells (CSC)-like phenotype in triple-

negative breast cancer (TNBC) cells (71). In estrogen receptor–

positive (ER+) breast cancer, tamoxifen resistance is correlated

with the overexpression of CCNA2 (72). CKS2 in complex with

SSPB1 regulates mitochondrion DNA replication in cervical

cancer and can be indicative of chemoradioresistance (73). In

the present study, we found that these genes are upregulated and

are related to resistance, and they are involved in vital biological

processes (Figure 9); therefore, targeting these genes can be of

immense therapeutic benefit.

Thus, it is imperative to identify modulators that can check

aberrant expression of these genes and increase the barrier toward

the emergence of chemoresistance. In this milieu, we also

identified small-molecule ligands that can enhance the efficacy/

sensitivity of chemotherapeutic agents. A combination of

molecules targeting proteins can provide a potent therapeutic

option with reduced changes of emergence of chemoresistance.

Many of the identified molecules are already reported to be

effective against cancers such as colorectal, breast, and lung.

Some of the selected proteins are involved in mutually exclusive

pathways, as evident from the network analysis, and thus have

different mechanisms of action. Simultaneously targeting them

can be advantageous to both primary tumor and advanced

metastatic tumors. Most of the top-scoring molecules for BOP1

were HIV protease inhibitors, e.g., saquinavir, indinavir,

nelfinavir, and ritonavir (Norvir). They are reported to induce

cell death in both the chemosensitive and chemoresistant ovarian

cancer cell lines in a dose-dependent manner (74). The lopinavir/

ritonavir combination is reported to have significant inhibition on

cell growth and migration, whereas it enhanced radiosensitivity in

HNSCC cell lines (75). The anticancer potential of protease

inhibitors is already reported in various previous publications.

Some of these molecules are in clinical trials. Therefore, they may

present attractive options as targeted chemotherapeutic agents

against chemosensitive and chemoresistant OSCC as well (76–78).

Moreover, BOP1 inhibition provides additional advantage for

non-cancerous cells by inducing a cytoprotective nucleolar stress

response and reducing damage to normal tissues from anticancer
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drugs such as camptothecin or methotrexate. It is reported that

BOP1 inhibition together with camptothecin results in selective

killing of p53 null cells, producing a synergistic effect (79, 80).

PLAU encodes uPA, commonly associated with cancer

progression via apoptosis inhibition and breakdown of the

ECM. It also promotes angiogenesis (81). PLAU, as a top

identified molecule, inhibits various biological functions such as

NADH due to its role in energy production and may help against

wastage and weakness of cancer patients. It is also used to improve

mental alertness. It can be given orally and has cleared clinical

trials as a chemotherapeutic agent for other illnesses (27).

Argatroban, which is an antithrombotic agent, inhibits the

metastasis in breast cancer (82) and melanomas (83). It has

significant antineoplastic effect on gliomas as well (84). It

downregulates the MAPK/ERK and STAT phosphorylation that

results in a reduction of interleukin (IL)-6, IL-12, and tumor

necrosis factor (85). The antiparasitic pentamidine has been

shown to be effective against various human cancers such as

melanoma (86), breast cancer (87), lung cancer, ovarian cancer,

and cervical cancer (88, 89). However, the mechanism of its

antineoplastic action has not been elucidated fully. Overall,

these results infuse great confidence in our analysis. Labetalol,

which we have identified as a SERPINE1 binder, blocks both alpha

and beta adrenoceptors and has been used for the treatment of

hypertension. Alpha-blockers have been reported to increase

recurrence-free survival (RFS) (90). Recently, it has been

suggested that beta-blockers hinder mechanisms that initiate

tumorigenesis, angiogenesis, and metastasis. Beta-blockers have

shown good antineoplastic activity in various cancer cell lines.

They are also reported to increase the effect of anticancer

chemotherapy (91, 92). Therefore, labetalol, having a mix of

alpha- and beta-blocker activities, can be a potential candidate

for the treatment of OSCC. Reproterol is a b2-agonist used as an

antiasthmatic drug. Thus, we suggest that targeting BOP1 and/or
Frontiers in Oncology 15
PLAU can be advantageous against both primary and metastatic

tumors. Their inhibitors can also be combined together with

fluorouracil and methotrexate (93). We have also identified

CCNA2 ligands, whereas no direct small-molecule inhibitors for

CCNA2 are yet known. While targeting the CCNA2 function, we

will be able to target the S/G2/G2-M phase of the cell cycle.
Conclusion

In this study, we have identified changes in the gene

expression level as a result of treatment in OSCC. Applying

machine learning techniques and Cox regression, we

constructed a five-gene-based prognostic signature that can

stratify the patients (high and low risk). It is evident that

overexpression of these genes is related to poor prognosis and

reduced survival in many cancers including OSCC. They are also

related to the emergence of chemoresistance against many drugs.

Changes in their expression levels, pretreatment, posttreatment,

and resistant cell lines make them suitable for targeting. We have

also identified potential molecules that can bind to these proteins

with high affinity. Since the identified proteins are involved in

disparate processes, a combination of molecules targeting them

can provide a potent therapeutic option with reduced chances of

chemoresistance. We hope that this study provides new avenues

for the design of better chemotherapeutic agents especially

against chemoresistance in OSCC.
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