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Quasi-particle interference of heavy fermions in
resonant x-ray scattering
András Gyenis,1* Eduardo H. da Silva Neto,2,3,4,5*† Ronny Sutarto,6 Enrico Schierle,7 Feizhou He,6

Eugen Weschke,7 Mariam Kavai,8 Ryan E. Baumbach,9 Joe D. Thompson,9 Eric D. Bauer,9

Zachary Fisk,10 Andrea Damascelli,2,3 Ali Yazdani,1‡ Pegor Aynajian8‡

Resonant x-ray scattering (RXS) has recently become an increasingly important tool for the study of ordering
phenomena in correlated electron systems. Yet, the interpretation of RXS experiments remains theoretically
challenging because of the complexity of the RXS cross section. Central to this debate is the recent proposal that
impurity-induced Friedel oscillations, akin to quasi-particle interference signals observed with a scanning tunneling
microscope (STM), can lead to scatteringpeaks in RXS experiments. Thepossibility that quasi-particle properties canbe
probed inRXSmeasurements opens upanewavenue to study thebulk band structureofmaterialswith theorbital and
element selectivity provided by RXS. We test these ideas by combining RXS and STM measurements of the heavy
fermion compound CeMIn5 (M = Co, Rh). Temperature- and doping-dependent RXSmeasurements at the Ce-M4 edge
showabroadscatteringenhancement that correlateswith theappearanceofheavy f-electronbands in thesecompounds.
The scattering enhancement is consistentwith themeasuredquasi-particle interference signal in the STMmeasurements,
indicating that the quasi-particle interference can be probed through themomentumdistribution of RXS signals. Overall,
our experiments demonstrate new opportunities for studies of correlated electronic systems using the RXS technique.
INTRODUCTION
The quest to understand strongly correlated electronic states has pushed
the frontiers of experimental measurements of solids to the develop-
ment of new experimental techniques andmethodologies. Understanding
these exotic electronic states, such as those in heavy fermions, cuprates,
and pnictides, requires precise knowledge of their low-energy excitations.
Angle-resolved photoemission spectroscopy (ARPES) and spectroscopic
imaging with the scanning tunneling microscope (SI-STM) have pro-
vided a great deal of information on the nature of these low-energy states
through precisemeasurements of their energy dispersion and interference
properties (1–4). In the past decade, advances in resonant x-ray scattering
(RXS) have provided a new tool to probe orbital-specific ordering
phenomena in condensed matter systems, such as the charge order in
the cuprates (5–20). Recently, theoretical investigations led by Abbamonte
et al. (21), and subsequently by Dalla Torre et al. (22), proposed the
extension of this technique to probe band structure effects, in resem-
blance to the quasi-particle interference signal measured using SI-STM.
Remarkably, these theoretical studies demonstrate a simple and di-
rect relation between the RXS intensity and SI-STM. Although this
relation can be used to reinterpret (22) RXS measurements of charge
order in the high-temperature superconducting cuprates (5–20), the
equivalence between RXS and SI-STM is expected to hold more gen-
erally. Moreover, the element-specific sensitivity to the bulk electronic
structure gives RXS a fundamental advantage over the surface-sensitive
STM and ARPES probes. To test these hypotheses, we carried out com-
plementary RXS and STMstudies to assess the impact and significance of
the quasi-particle interference in RXS experiments.

Here, we investigate these proposed ideas on an archetypical
correlated heavy fermion system and further our understanding of
heavy quasi-particle formation through RXS measurements. Un-
conventional superconductivity and quantum criticality in f-electron
materials develop as a consequence of heavy quasi-particle excitations
emerging through the hybridization of f-orbitals with conduction elec-
trons (23–29). Understanding these remarkable phenomena requires
probing the energy-momentumstructure of the emergent narrowheavy
bands near the Fermi energy (EF) with high precision. The CeMIn5
(M = Co, Rh) family of heavy fermion compounds (30, 31) is an ideal
system for this task, because STM measurements can be carried out
on these materials (32–34) and the energies of the Ce-M4,5 edges (3d-
to-4f transition) allow RXS measurements to be performed in the
currently available state-of-the-art synchrotron soft x-ray end stations.
In these Kondo lattice systems, the hybridization between the f-orbitals
of the Ce atom and the itinerant spd conduction electrons leads to the
formation of a narrow heavy band at the Fermi energy, below a char-
acteristic coherence temperature T* (Fig. 1A). As a result, the heavy f-
like band and its associated quasi-particle interference can be markedly
suppressed above T*, allowing temperature to be used as a control par-
ameter. Alternatively, isovalent substitution of the transition metal site
M between Rh and Co controls the hybridization strength and, conse-
quently, the large density of f-electron states near EF (27). Finally, the
ground state of CeCoIn5 can be modified between superconductivity
and antiferromagnetism by hole doping with Cd, which enables us
to study the low-energy electronic states in the vicinity of different
ordered phases (35, 36). Overall, the CeMIn5 system allows the band
structure to be easily tuned as a function of temperature and doping,
providing an ideal test bench for the impact of band structure effects
on the RXS experiment and its connection to SI-STM.
1 of 7



SC I ENCE ADVANCES | R E S EARCH ART I C L E
RESULTS
Our earlier STM studies (32, 33) showed that the cleaved (001)-oriented
surfaces of CeCoIn5 expose three different chemical terminations:
surfaces A, B, and C. In these previous works, we demonstrated the
surface-dependent sensitivity to the heavy fermion excitations: The
light quasi-particles were detected on surface A, whereas surface B
predominantly showed the heavy quasi-particles of the hybridized band
structure. Here, we carried out spectroscopic measurements in the
normal state (T = 10 K) on surface B of CeCo(In1−xCdx)5 to study
the heavy f–quasi-particle interference and compare it with the 4f-
sensitive RXS data. Previously (32), the hallmark of heavy-band for-
mation was observed through the temperature-dependent large density
of states in the STM spectra (Fig. 1B). Here, we use SI-STM to visualize
its energy-momentum structure. Figure 1 (C and D) shows the real-
space conductance map (x = 0.15) at specified energies near EF. The
Gyenis et al. Sci. Adv. 2016;2 : e1601086 14 October 2016
Fourier transforms of the conductance maps (Fig. 1, E and F) reveal
an enhancement of local density of states modulations along the [H,H]
crystallographic direction. The energy-momentum structure of these
quasi-particles in the [H,H] direction signals the presence of rapidly
dispersive bands as a function of energy (Fig. 1G). Similar results were
obtained for the x= 0.0075 Cd-doped sample (Fig. 1H). Therefore, both
results reveal the formation of heavy quasi-particle bands near the
chemical potential, which are independent of the Cd doping: The quasi-
particle interference is unaffected by the underlying ground state at
this temperature. Overall, the dispersive nature of themodulations in
the STM conductance maps, with the absence of nondispersive fea-
tures, relates its origin to the quasi-particle interference of heavy f-
electrons. The quasi-particle interference that originates from the heavy
bands and the hybridization energy scale agree with ARPES measure-
ments of heavy f–quasi-particles close to the Fermi energy (37, 38).
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Fig. 1. STMstudies on heavy fermion CeCoIn5. (A) Illustration of heavy fermion band formation as a result of hybridization below the T* coherence temperature of the Kondo
lattice. (B) Temperature dependence of the averaged tunneling spectra on surface B of pure CeCoIn5 and CeRhIn5 (dashed line). Data are from Aynajian et al. (32). (C andD) Real-
space conductance map near the Fermi energy on surface B of CeCo(In1−xCdx)5 at x = 0.15 doping level, which shows clear heavy–quasi-particle interference waves (Vbias =
−100 mV, Iset point = 1.6 nA). (E and F) Fourier transforms of the real-space conductance maps at the corresponding energies, which display dispersing peaks in the [H,H]
direction. Red dot indicates the (0.4,0.4) point in the reciprocal space. (G andH) Energy-momentum cuts of the Fourier transforms in the [H,H] direction [dashed line on (E)]
for x = 0.15 and x = 0.0075. The heavy fermion band formation and quasi-particle interference are unaffected by the Cd doping. rlu, reciprocal lattice units; PSD, power
spectral density.
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However, from the experimental perspective, because both RXS and
STM are momentum-transfer (Q-space) probes, the comparison be-
tween them becomes more direct.

WenowmovetoourRXSmeasurementsperformedonCeCo(In1−xCdx)5
samples (x = 0 and x = 0.1) and on CeRhIn5. To enhance the sensitivity
of our scattering measurements to the f-electron states, we tuned the
photon energy near the Ce-M4,5 edges, as determined by the x-ray ab-
sorption spectrum (XAS). The XAS in Fig. 2A displays peaks due to the
3d-to-4f transition, with twomain regions separated byD3d

SOC ~ 17 eV,
which is the spin-orbit splitting of the J= 3/2 and J= 5/2 states of the 3d
core hole, and corresponding to the M4,5 edges, respectively (39, 40).
Recent dynamical mean field theory calculations (41, 42) show the
f–quasi-particle peak near the Fermi energy (also seen in our STM data
in Fig. 1) to be entirely of J = 5/2 character, whereas the J = 7/2 f-band is
located about 280 meV above the chemical potential. These strongly
dispersing f-bands near the Fermi energy have been experimentally ob-
served by ARPES measurements (37, 38) and STM measurements
(33, 34). Dipole selection rules (DJ = 0, ±1) dictate that whereas at
the M5 edge both J = 5/2 and J = 7/2 unoccupied 4f states can be
reached, only the J = 5/2 state can be reached at theM4 edge. There-
fore, we conclude that the RXS measurement at theM4 edge is selec-
tively sensitive to the narrow heavy f–quasi-particle peak at EF and thus
allows a direct comparison to the SI-STM data of Fig. 1 in an energy
window smaller than the XAS broadening. In the following, there-
fore, we focus on RXS measurements at the Ce-M4 edge.

The RXSmeasurements were performed using a standard scattering
geometry (Fig. 2B) in the (HHL) plane with s polarization and using
a photon energy of Eph = 900.3 eV in resonance with the Ce-M4 edge,
unless otherwise noted. Because of the geometric limitations imposed
by this small photon energy, the momentum scans are not restricted
to a single value of momentum transfer L along the crystallographic
c axis (see the Supplementary Materials), similar to previous works on
the cuprates (5–11).

Figure 3A shows momentum scans plotted as a function of in-plane
momentum transfer along the two high-symmetry directions [H,0] and
[H,H] in CeCoIn5 at the Ce-M4 edge and also at the Co-L2 edge
(corresponding to a 2p-to-3d transition). All scans exhibit a sharp in-
Gyenis et al. Sci. Adv. 2016;2 : e1601086 14 October 2016
crease (decrease) of intensity for smallH < 0.15 rlu (largeH > 0.4 rlu)
related to the geometry of the RXS experiment, where we defined rlu
as 2p/a = 1.36 Å−1, with a = 4.6 Å, the tetragonal in-plane lattice con-
stant. The momentum scans reveal a broad scattering enhancement
residing on top of a temperature-independent fluorescence back-
ground in the 0.2 < H < 0.4 rlu range, along the [H,H] direction when
tuned to theCe-M4 edge, but there was no enhancement along the [H,0]
direction. Similar momentum scans, with the x-ray photon energy
tuned to the Co-L2 absorption edge, show the absence of the scattering
enhancement along [H,H]. Furthermore, momentum scans for photon
energies finely tuned around the Ce-M4 resonance (Fig. 3B) demon-
strate that the scattering enhancement nearH=0.35 rlu is resonantwith
theM4 edge. These results indicate that the scattering enhancement ob-
served at theM4 edge along the [H,H] direction originates from heavy
quasi-particles of f-character just above EF.

Typically, resonant enhancement in scattering experiments is asso-
ciated with electronic ordering. In this context, it must be noted that
CeCo(In1−xCdx)5 is located close to an antiferromagnetic (AFM) quan-
tum critical point (35, 36), with Cd doping driving the system toward
the AFM ground state (TN ~ 3 K at x = 0.10). Hence, although all our
measurements were performed in the absence of static order, it would
be conceivable that at 10 K our RXS measurements, which are energy-
integrated and therefore also sensitive to inelastic processes, could be
picking up fluctuations of an ordered state. However, this possibility is
repudiated by the insensitivity of the RXS scattering enhancement to Cd
doping (Fig. 3C), demanding an alternative explanation.

To further investigate the origin of this resonant scattering enhance-
ment, we next consider its temperature and material dependences.
Figure 3D displays momentum scans along the [H,H] direction for
several temperatures at the Ce-M4 edge. The data reveal a significant
temperature dependence, with a rapid suppression of the scattering en-
hancement up to 100 K and its saturation above. Identical measure-
ments carried out on the isostructural material CeRhIn5, where heavy
f–quasi-particles are expected to be absent from the Fermi surface at
20 K (32), show no temperature-dependent scattering features in the
same temperature window (Fig. 3E). These temperature- and material-
dependent RXS measurements provide a direct connection to the STM
880 890 900 910
hν (eV)

A

TE
Y

x = 0.1

x = 0

Ce In

BCeCo(In1–xCdx)5

M4M5

h
σ

a
ν

b

Fig. 2. Resonant transition of the heavy 4f state. (A) Linearly polarized XAS spectra [measured through the total electron yield (TEY)] on CeCo(In1−xCdx)5 at x= 0 (blue) and x=
0.1 (green) doping level at 10 K, which demonstrates the transition between the 3d and 4f states. The curves are shifted vertically for clarity. (B) RXS scattering geometry, with the
scattering plane lying at 45° relative to the a and b axes.
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measurements (Fig. 1B) and further provide an important finding. The
robust presence of the heavy fermion band in CeCo(In1−xCdx)5 (for x =
0.1 and 0.15) and its absence in CeRhIn5 from STM and RXS indicate
that the AFM ground state, which forms at lower temperatures in both
compounds, has different origins, presumably related to the itinerant or
localized character of the Ce’s f-moments. This is an important piece of
information in the context of Kondo destruction and quantum criticality
in heavy fermions (43) and deserves further investigation.
Gyenis et al. Sci. Adv. 2016;2 : e1601086 14 October 2016
Figure 3F displays the amplitude of the scattering peak enhancement
in RXS obtained at a given temperature as the difference between the
area under themomentum scan at that temperature and at 200K. Com-
parison to the temperature dependence of the f-weight from STM
spectra shows a good agreement with the RXS results, indicating not
only a strong correspondence between the two techniques but also that
RXS canbe amomentum-resolvedprobe of the band structure ofmaterials
beyond ordering phenomena.
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Exactly how this sensitivity to the band structure occurs remains an
open question in the field. To illustrate one possible scenario, in which a
strongly dispersing (flat) band above the Fermi energy can give rise to a
broad scattering enhancement in the RXS measurement, we follow the
procedure proposed by Abbamonte et al. (21) and Dalla Torre et al. (22),
using the experimentally obtained quasi-particle interference information
rather than simulated data. The derived phenomenological picture re-
lates the Fourier transform of STM conductance maps, g(q,w), to the
RXS intensity

IRXS q; Eph
� � ¼

�����
∫
∞

0

gðq;w′Þ
Eph � w′� Eh þ iGh

dw′

�����

2

; ð1Þ

where the integral runs only over unoccupied states, whereas Eh and
Гh refer to the core-hole energy and broadening, respectively. At the
resonant condition (that is, Eph = Eh), this integral effectively relates
IRXS to the sum of g(q,w) inside an envelope of width Гh, which is typ-
ically ~200 meV.

Before applying Eq. 1 to our experimental data, we discuss the ap-
proximations and assumptions that it entails. First, we point out that
choosing the proper integration boundaries is critical to the result of
Eq. 1. Naturally, the limited energy range (few hundreds ofmillielectron
volts) of an STMmeasurement requires us to introduce a cutoff energy
for the upper bound of the integral. However, as we discussed earlier,
because of dipole selection rules, the Ce-M4 edge is expected to repre-
sent only the J= 5/2 heavy-electron states near EF. Therefore, we restrict
the integration only up to 20 meV, where we detect the strongly dis-
persing f-band, which is also the energy window where the tunneling
spectrum exhibits a temperature dependence (Fig. 1B). Extending the
integration to higher energies would suppress the strength of the signal
associated with the heavy band relative to the background intensity
of g(q,w) and would also introduce spurious contributions from bands
that may not play a role in the RXS measurement.

Second, it is important to note that the quasi–three-dimensional
nature of the band structure of CeCoIn5 is not accounted for in Eq. 1.
Both STM and RXS techniques are sensitive to theQx andQy (orH and
K in reciprocal lattice units) in-plane components of theQ = ki – kf mo-
mentum transfer, as well as theQz (or L) out-of-plane component. Gen-
erally, quasi-particle interferencemapsmeasured by STM in amaterial
with three-dimensional band structure can be approximated by the
weighted average quasi-particle interference over kz slices (44), though
the exact nature of this sum is not known.On the other hand, the scat-
tering geometry in RXS measurements precisely determines the value
of L (see the Supplementary Materials), but not the initial and final
values of kz. Therefore, because the sensitivity to kz may be different in
the two techniques, an exact connection between RXS and STM using
Eq. 1may not hold. The calculations below should be interpreted as a
qualitative description.

Figure 4 shows the calculated RXS intensity based on our STM
conductance maps acquired on surface B along the [H,H] direction.
We observe that the flat band indicated by the dashed area in Fig. 4A
leads to a broad scattering enhancement in the 0.2 <H < 0.3 rlu range
(Fig. 4B). Quantitatively, the momentum range of enhanced quasi-
particle interference in the STM data is smaller than that seen in the
RXS measurements (Fig. 4C). This difference could be the result of the
quasi–three-dimensionality of the CeCoIn5 band structure as discussed
above. Regardless, because the integration is taken over fast dispersing
Gyenis et al. Sci. Adv. 2016;2 : e1601086 14 October 2016
(heavy) bands, the RXS scattering signal predicted using Eq. 1 is expected
to be broad in momentum space, similar to the RXS data in Fig. 3.
DISCUSSION
Here, we showed the results of a complementary SI-STM and RXS
study that probes the significance of band structure effects in RXS scat-
tering measurements. The temperature, material, and photon energy
dependences of the RXS data indicate their sensitivity to the formation
of the Kondo lattice in the CeMIn5 system. On the basis of the exper-
imental data, ourmodel calculations show that the strongly dispersing
f-bands can give rise to an enhancement of the RXS in a similar mo-
mentum range. These observations suggest that the bulk quasi-particle
interference, asproposedbyAbbamonte et al. (21) andDallaTorre et al. (22),
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is responsible for the RXS signal in the present measurements. We
should emphasize that although the quasi-particle interference in STM
conductance maps arises from native defects, atomic step edges, and
impurities, itmay have an additional contribution in RXSmeasurements.
When an x-ray photon excites a core electron to the valence band, it
creates a localized core-hole potential, which can act as a scattering
center. Therefore, this perturbation can also lead to the scattering and
interference of the itinerant quasi-particles (45).

It must also be noted that orbital degrees of freedom and their struc-
ture factors play a key role in RXS and SI-STM measurements, as in
the case of the d-wave form factor of the charge order in the cuprates
(12, 13). To obtain the relation between RXS and SI-STM expressed
in Eq. 1, Abbamonte et al. (21) purposely disregarded the atomic orbital
components of the electronic wave function. This is a particularly in-
appropriate approximation for f-electron systems, where the atomic
multiplet structure is usually well defined in core-hole spectroscopies.
This opens the possibility, for example, that the broad scattering en-
hancement in the RXS is related to how the polarized light couples to
particular orbitals (39), which might only become available to the x-ray
scattering process after bandhybridizationbelowT*. In our experiments,
this scenario seems unlikely, given that all our measurements were done
in s-scattering geometry (that is, light polarization constantly in the a-b
plane of the sample throughout themomentum scans, as Fig. 2B shows).
This suggests that the momentum structure observed in our RXS
data is likely related to the band structure of CeCoIn5, as supported
by the temperature-dependent measurements and their similarity to
the SI-STM signal. Nevertheless, given the complexity of the RXS
cross section, a comprehensive treatment of the scattering process,
which takes into account the atomic multiplets in f-electron systems,
would provide a more natural explanation to our results.

Our experiments, which demonstrate the relevance of quasi-particle
interference in RXS,may also be relevant to the cuprates. In the past few
years, a universal charge-order instability emerged as the most exciting
progress in the study of high-temperature superconductivity in cuprates
(5–20). The ubiquitous nature of this electronic phenomenon in the bulk
of hole- and electron-doped cuprates came from RXS experiments on
(Y,Nd)Ba2Cu3Oy, Bi-2201, Bi-2212,HgBa2CuO4+d, andNd2−xCexCuO4

(6–11). These measurements reveal an incommensurate scattering
peak, with correlation lengths ranging from 20 to 75 Å, depending on
the material and doping. Making a parallel between our RXS experi-
ment on CeCoIn5 and those on the cuprates suggests that the bulk quasi-
particle interference features might be present in the RXS signal of the
latter, perhaps even in coexistence with the charge-order peak. At this
point, only further experiments can clarify the impact of quasi-particle
interference to the RXS measurements in the cuprates.

Our experiments demonstrate thatRXScanbeapowerfulmomentum-
and energy-resolved probe of the bulk band structure ofmaterials, even in
the absence of any ordering phenomena. These results not only pave the
way to future RXS experiments on f-electron materials but also support
the complementary relationship between RXS and STM measurements.
MATERIALS AND METHODS
Sample growth, STM, and RXS measurement technique
The single-crystal samples used for themeasurements were grown from
excess indium at the Los Alamos National Laboratory. Small, flat crystals
were oriented along the crystallographic axes and cut into sizes suitable
for STM andRXSmeasurements (0.5 to 2mm× 0.5 to 2mm×0.2mm).
The samples used for the STMmeasurementswere cleavedperpendicular
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to the c axis in ultrahigh vacuum at room temperature and immediately
inserted into our homebuilt variable-temperature STM. Differential
conductance measurements were performed using standard lock-in
techniques, with bias applied to the sample.

The reported RXS experiments were performed at the REIXS (Res-
onant Elastic and Inelastic X-ray Scattering) beamline of the Canadian
Light Source using a four-circle diffractometer in the temperature range of
22 to 200 K (46) and at the UE46_PGM-1 beamline of the Helmholtz-
Zentrum Berlin at BESSY II (Berliner Elektronenspeicherring für Syn-
chrotronstrahlung) with a two-circle diffractometer between 10 and 200K.
Reciprocal-space scans were acquired by rocking the sample angle (q)
at a fixed detector position (qdet = 170°). The sampleswere preoriented
using Laue diffraction.
SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/2/10/e1601086/DC1
STM measurements and data analysis
RXS comparison on Cd-doped sample
L dependence of the RXS enhancement
Anomalous drop in the RXS signal
fig. S1. STM measurements on CeCo(In1−xCdx)5.
fig. S2. Symmetrization of the conductance map.
fig. S3. Comparison of the RXS cross section on CeCo(In1−xCdx)5.
fig. S4. L dependence of the RXS measurement.
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