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 Abstract 

 Closed Loop Investigation of Hippocampal Replay 

 by 

 William David Croughan 

 Doctor of Philosophy in Neuroscience 

 University of California, Berkeley 

 Professor David Foster, Chair 

 How  people  absorb  and  recall  information  about  the  world  around  them  remains  a 
 central  mystery  of  neuroscience.  One  popular  framework  for  studying  this  process, 
 systems  consolidation,  describes  how  episodic  memories  are  initially  encoded  during  an 
 experience,  consolidated  into  long  term  memory  afterward,  and  recalled  later.  Each  of 
 these  processes  has  been  mapped  to  specific  types  of  neural  activity  in  specific  brain 
 regions.  This  mapping  is  incomplete.  New  progress  each  year  reveals  more  details 
 about  how  our  memory  system  functions  and  new  insights  into  the  neural  activity  of  our 
 brains.  One  such  type  of  neural  activity  is  replay  events.  These  events,  typically 
 investigated  in  rodent  brains,  allow  an  animal  to  simulate  paths  through  an  environment. 
 A  large  body  of  research  has  shown  clear  connections  between  replay  events  and  the 
 consolidation phase of systems consolidation. 

 This  dissertation  expands  on  this  research  in  two  ways.  In  my  behavioral  results,  I 
 describe  a  series  of  experiments  which  suggest  that  replay  may  be  critical  for  all  three 
 parts  of  systems  consolidation,  including  the  encoding,  consolidation,  and  recall  phases. 
 In  these  experiments,  we  interfere  with  the  rats’  ability  to  generate  replay  events  and 
 observe  a  corresponding  loss  of  memory  for  salient  locations  in  an  environment.  These 
 experiments  employ  closed-loop  methods  to  interact  with  ongoing  neural  activity  in  real 
 time,  by  delivering  feedback  whenever  a  replay  event  occurs.  In  my  other  chapter,  I 
 present  a  tool  designed  to  greatly  expand  what  experiments  are  possible  in  such 
 closed-loop  interactions.  While  most  interactions  involve  either  detection  of  all  replay 
 events  or  some  coarse  categorization,  this  tool  allows  experimenters  to  read  out  the 
 simulated path through the environment directly as the replay event is occurring. 
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 Chapter 1: Introduction 

 1a) Memory and the hippocampus 
 When patient Henry Molaisson underwent surgery to cure his epilepsy, he inadvertently 
 became a touchstone representing one of the most striking documented connections 
 between a specific brain region and cognition (Scoville and Milner, 1957). Henry 
 Molaisson, known commonly as HM, had large portions of his temporal lobes removed 
 to treat severe epilepsy. After recovering from the surgery, he displayed a curiously 
 specific set of symptoms. He was able to interact largely normally with those around 
 him, but had no ability to form new long term memories. Shortly after learning a person’s 
 name or a new fact, he would completely forget not only the name or fact, but the fact 
 that he had ever heard it at all. Additionally, he exhibited what is known as 
 temporally-graded retrograde amnesia - the extent to which he could recall his 
 memories from before his surgery increased with how long before surgery they had 
 occurred. Thus, memories from childhood were largely intact, while memories from 
 shortly before his surgery were highly degraded. 

 While HM’s case is particularly famous, many other patients with unique 
 neurological injuries allow scientists to investigate how these injuries correlate with 
 many cognitive functions. HM himself was a part of a small cohort of patients who 
 underwent similar surgeries, and displayed similar, but not identical, cognitive effects. 
 Patients with localized damage due to medical intervention, as well as specific injuries 
 or diseases, each contribute unique insights. Years of this research has allowed 
 scientists to paint a wider picture of cognitive functions’ mappings onto brain structures. 
 The hippocampus, in particular, has been implicated in working memory (Reed and 
 Squire, 1998) and navigation (Teng and Squire, 1999). More recently, new technology 
 has allowed scientists to temporarily interfere with hippocampal function in healthy 
 adults to causally test these hypotheses, confirming the hippocampus’ critical role in 
 navigation and working memory (Goyal et al, 2018). The fact that the hippocampus - 
 one centralized and anatomically separate region of the brain - is critical to such specific 
 cognitive functions gives hope for rigorously probing how the brain handles these 
 specific cognitive functions. At the same time, the hippocampus’ location at the center of 
 the brain, with strong connections with a large number of brain regions (Amaral and 
 Witter, 1989), offers hope that progress on these questions may open doors to 
 investigating many other cognitive functions and brain regions. 

 One model in particular has proven useful in describing how the hippocampus 
 interacts with memory. Systems consolidation breaks our interactions with episodic 
 memory down into three phases. The first phase, encoding, refers to the formation of a 
 memory during experience. The next phase, consolidation, refers to the continuing 
 process of translating the newly encoded experience into long term memory. Finally, 
 recall refers to the process of accessing the stored memory and using it to guide 
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 decision making. Viewed through the perspective of this framework, HM’s symptoms 
 indicate that his surgery interfered with his ability to consolidate memories, and perhaps 
 interfered with his encoding ability as well. His inability to incorporate new information 
 into his long term memory indicates either that the information could not be encoded in 
 a way that was amenable to consolidation, or that the consolidation process itself could 
 not take place. Additionally, the temporally graded retrograde amnesia (i.e. his inability 
 to recall memories from just prior to surgery), indicates that those memories had initially 
 been encoded but had not had time to consolidate into long term memory. Memories 
 from long before surgery were already consolidated, and were thus unaffected. 

 This model, originally put forward in 1900 (Müller and Pilzecker 1900; Squire et 
 al, 2015), has been the subject of extensive research. Today we can note 
 neuroanatomical regions that contribute to the encoding and consolidation functions. 
 Memories are initially encoded in the cortex and hippocampus. Through systems 
 consolidation, the memories are transferred into the cortex, eventually being encoded in 
 synaptic changes outside of the hippocampus. A causal parallel to HM demonstrates 
 this cleanly in an animal model in Anagnostaras et al, 1999. The authors trained mice to 
 fear two different environments before performing a hippocampal lesion. One 
 association was trained 50 days before surgery and one was trained the day before. 
 The first training, far from surgery, was unaffected by the lesion. Rats with lesions and 
 sham surgeries both expressed a robust fear response. However, the learned 
 association from the day before the surgery was highly affected, with control mice again 
 showing a clear fear response, and lesioned mice showing little to no fear response. 

 1b) A cellular understanding of the hippocampus 
 With this anatomical connection established, a natural next question to ask is how the 
 neural activity in the hippocampus enables the brain region’s role in memory processes. 
 Animal models allow us to probe this question more directly using sophisticated 
 recording techniques and manipulations. In order to arrive at our answer, it is worth 
 considering the properties of hippocampal cells without consideration of memory 
 processes immediately, as a remarkable amount is known about their unique neural 
 activity. We will then return to questions of memory to explore how the cellular and 
 cognitive phenomena are connected. 

 In 2014, John O’Keefe received a joint Nobel prize for his discovery of place cells 
 in the rodent hippocampus (O'Keefe and Dostrovsky, 1971). O’Keefe found that as 
 rodents explore an environment, individual place cells will fire action potentials only in 
 specific regions. Since this discovery, a wealth of information has been gathered about 
 how these cells behave. Each place cell has a “place field” that governs its activity. 
 When the animal is in this place field, the cell will fire action potentials at a consistent 
 rate. When the animal leaves the place field, this firing stops. This firing reflects the 
 belief by the animal of where it is in the environment, rather than directly responding to 
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 specific stimuli. In experiments in which scientists manipulated environmental cues in 
 various ways, place cells tended to track where an animal believed itself to be, as 
 indicated by the animal’s choices (Moser et al, 2008). 

 Two caveats in particular illustrate the wealth of information we have not yet 
 discovered about place cells. The first is that this canonical activity is only present when 
 a rat is actively engaged in an exploratory task. When a rat is at rest, these cells no 
 longer exhibit the same pattern of activity. In fact, the bulk of this thesis is dedicated to 
 understanding this resting neural activity. The second is that observations in primates 
 do not show this activity with the same prevalence. In addition to cells that act 
 analogously to rodent place cells (Ono et al, 1991), many experiments point to activity in 
 the primate hippocampus that does not directly track physical location, but instead 
 tracks more abstract notions of location. One paper showed that primate hippocampal 
 cells tracked the animal’s location in an “abstract value space”, which the animals were 
 motivated to keep track of internally as they performed a task (Knudsen and Wallis, 
 2021). Similarly, human studies show increased activity in the hippocampus when 
 participants are asked to navigate an abstract space in their minds to complete a task 
 (Tavares et al, 2016). These findings suggest that as the primate hippocampus 
 developed, the hippocampal machinery was employed to solve more abstract problems. 
 Thus, research into how rodents use their hippocampi to navigate may illuminate a wide 
 array of cognitive processes in the human brain. 

 1c) Understanding the activity of many place cells 
 Considering place cells individually can yield insight into the hippocampus’ functions. 
 However, a much more holistic interpretation of their activity can be inferred when 
 recording the activity of many place cells simultaneously. Recording from this many 
 neurons is not trivial. In modern recording setups, hundreds of electrodes are packed 
 together on a device that can be attached to the skull of a rat. These electrodes are 
 wrapped tightly in groups of four - known as tetrodes - and then lowered slowly over the 
 course of weeks to the correct depth in the brain. Continuous voltage readings from 
 each electrode are streamed to a computer where action potentials from neurons are 
 picked up as brief spikes in voltage. This voltage spike has a characteristic shape that is 
 consistent when a single neuron fires multiple action potentials, and varies from neuron 
 to neuron. Additionally, slight differences in position between each electrode in a tetrode 
 mean that the action potential from neurons in different locations will be seen differently 
 on each of the four electrodes. Using all of this information, an experimenter can parse 
 the incoming voltage from a tetrode into firing times of many different neurons in a small 
 radius around the tetrode. Note that it is also possible signals from multiple neurons will 
 overlap and be indistinguishable. Therefore we refer to one isolated group of action 
 potentials as a unit, since each unit might correspond to multiple neurons. 
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 With this technology in hand, experimenters can probe the simultaneous activity 
 of a population of place cells. They have found that each place cell has its own unique 
 pattern of firing rates as a function of the rat’s location in an environment. These 
 patterns seem to be independent from one place cell to the next. That is, while aspects 
 of the environment can affect where a cell has a place field, the location of one cell’s 
 place field does not seem to impact that of its neighboring place cells (Leutgeb et al, 
 2005). Therefore, recording from enough place cells simultaneously ensures that the 
 entire recording environment will be covered by place fields. When this is the case, we 
 have an expected profile of activity for the population for every area in the environment. 
 By comparing recorded activity to these expected profiles, we can infer just based on 
 the population’s activity where a rat is in its environment. 

 The most common quantitative method for decoding spatial information from 
 neural activity is known as Bayesian decoding. This method is used throughout the 
 Results section unless otherwise noted. It is notable in its minimal assumptions, as 
 described in Appendix A. In brief, it takes our knowledge about how each cell’s activity 
 is dependent on the rat’s location, and allows us to infer a location based on each cell’s 
 activity. In the results, I explore the use of modifications to this method by introducing 
 Bayesian priors, as well as so-called clusterless decoding (Deng et al, 2015). Note that 
 these methods yield a probability distribution over possible locations the hippocampus 
 can represent. A coordinated set of place cells that all are representing the same 
 location will yield a punctate distribution with probability amassed around one point, 
 whereas random firing by these neurons will typically yield a widely distributed 
 probability distribution with many local maxima. 

 1d) Replay 
 With the decoding methodology in hand, we can revisit our earlier observations about 
 the activity of place cells. As should be expected, decoding the spatial information 
 represented when a rodent explores its environment, while the place cells are 
 representing the animal’s current location, yields one point of high probability that tracks 
 the animal’s location. When we look at cellular activity during rest, we do not see the 
 same reflection of the rat’s current location. However, we can see that the probability 
 distributions again become punctate during brief bursts of neural activity, and trace 
 coherent spatial trajectories throughout the environment. These trajectories are different 
 in that they no longer represent the current location of the rat, and the represented 
 location moves through the environment many times faster than a rat would move. This 
 phenomenon was initially dubbed “replay,” due to the recreation of patterns of activity 
 seen during behavior. However, more recent results have painted a much more 
 interesting picture of these events, showing that they can trace out paths that the rat 
 has never taken (Gupta 2010), or indeed even trace a path through an environment 
 before the rat visits that environment (Olafsdottir et al, 2015). Additionally, they can 
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 represent paths moving forward or backwards in time (Foster and Wilson 2006), exhibit 
 complex spatial dynamics (Pfeiffer and Foster 2015; Berners-Lee et al, 2022), and 
 modulate their content according to the particular motivations of the rat (Pfeiffer and 
 Foster, 2013; Shin et al, 2019; Olafsdottir et al, 2017). 

 Note that some papers investigating this phenomenon refer to sharp wave ripples 
 as opposed to replays. A sharp wave ripple is the phenomenon observed in the LFP 
 surrounding the hippocampal cell layer, and tends to co-occur with replay events. 
 Therefore, we can often infer replay’s role in cognition by indirectly observing its 
 occurrence via sharp wave ripples. 

 1e) Replay and consolidation 
 Now let us return to our question from above: what neural activity might underlie the 
 hippocampus’ role in memory consolidation? Replays offer an obvious candidate, being 
 related to previous experiences but occurring at separate times. Indeed, causal 
 experiments in rodents have largely established that replay events are necessary for the 
 consolidation of new information into long term memory, and correlational studies have 
 shown replay’s importance in generally processing new information. Replays have been 
 shown to increase in frequency after new knowledge about rewarding areas of an 
 environment has been discovered (Cheng and Frank, 2008; Ambrose et al, 2016). 
 Importantly, this upregulation of replays of an environment persists in rests periods after 
 the rat has been removed from that environment. Replays are also driven to occur 
 during this period by new learning, such that when a rat has new information to 
 consolidate, interfering with its ability to generate replay events will cause it to generate 
 them at a higher rate to compensate (Girardeau et al, 2014). This effect is not seen 
 when the rat has not learned new information, implicating this drive for replays in a 
 specific role in memory consolidation.  This is in  line with many correlative papers in 
 humans and rodents showing that more ripples correlate with better memory retention 
 (Wagner et al, 2004; Durpet et al, 2010). 

 A large portion of experiments in this area employ tasks with a learn-wait-test 
 paradigm, wherein knowledge about a task must be retained after a subject has been 
 removed from that task through an intervening wait period. The wait period offers a 
 period in which manipulations to the consolidation process can be easily tested. Two 
 notable recent papers of this sort include work from the Kloosterman (Michon et al, 
 2019) and Csicsvari labs (Gridchyn et al, 2020). In the former, rats were trained on a 
 radial arm choice task, in which the difficulty of the choice and size of the reward could 
 be varied. Ripple interruption during a wait period showed differential effects according 
 to task difficulty and reward size, wherein more difficult decisions with larger rewards 
 were more heavily affected. In the latter, rats were trained on a simple reward finding 
 task in two different environments. During a rest period, replays of one environment 
 were interrupted, while replays of the other environment were not. They found that 
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 behavior of the environment for which replays were interrupted indicated reduced 
 memory for the exact reward location. These papers illustrate not only a clear role for 
 replay events in memory consolidation, but the importance of the replay content itself in 
 this role. 

 One notable implementation of the learn-wait-test paradigm is the Morris Water 
 Maze (Morris et al, 1982). In this task, rats are placed in a tank of water, and have to 
 swim until they find a platform on which to stand submerged just below the surface of 
 the water. Since they cannot see the platform, they must first swim until they find the 
 platform by chance. They are then removed from the platform, and, after some 
 intervening wait period, are place back into the water in a different starting location. 
 Rats do not like to swim, and so will generally swim straight toward the place where 
 they earlier found the platform. Morris found that mice with lesioned hippocampi could 
 not perform this task, thus indicating a deficit in memory of the goal location or the 
 ability to navigate to that location. 

 Further developments on this paradigm have established that portions of 
 hippocampal activity are specifically necessary for longer term memory retention. Steele 
 and Morris (1999) found that rats with NMDA receptors blocked could perform the task 
 as well as control rats if they were placed immediately back in the environment after 
 removal. Interestingly, Silva et al (2015) saw a similar effect of NMDA blockade on 
 replay events, wherein the blockade did not interfere with the production of replays of 
 familiar environments, but did interfere with the ability of rats to integrate their current 
 environment into future replays. Thus, the specific behavioral deficit in memory 
 formation may be due to an inability to form replay events. 

 Together, these findings suggest that replay events are a critical part of memory 
 retention, and act offline to reinforce knowledge about the location of rewarding places 
 in an environment. This conception of replay is supported by many computational 
 models in which offline reactivation of experiences can help improve performance. 
 Johnson and Redish (2005) modeled the introduction of replay-like simulations into a 
 model based on the basal ganglia, and saw improvements in the speed of learning a 
 ruleset for a new task. Chersi and Pezzulo (2012) explore the hippocampal replay in 
 combination with striatal activity as a method for the brain to implement model-based 
 reinforcement learning. Schaul et al (2016) found that machine learning algorithms 
 which leverage simulations analogous to replay events in their training perform better 
 when these replay events are biased in their content, similar to what has been observed 
 in real replay events (Pfeiffer and Foster, 2013; Gillespie et al, 2021). Mattar and Daw 
 (2018) build a model in which replay events serve the purpose of spreading value 
 information about a specific location across an internal cognitive map. Their model 
 recreates some of the changes seen in the content replay events over the course of 
 learning. See also Findlay et al, 2020 for a larger review in which the connections 
 between replay and reinforcement learning is explored. 
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 Additionally, some molecular investigations of memory support a role for replay 
 events in memory consolidation. Morris established (Morris, 2006) that NMDA receptors 
 are necessary for memory encoding and retention, but not retrieval, in agreement with 
 the above work from Silva et al, and later experiments on the Morris Water Maze. 
 Norimoto (Norimoto et al, 2018), discovered that downregulation of synaptic strength 
 during sleep is dependent on NMDA receptors and replay events. These replay events 
 during sleep have been shown to be important for memory consolidation (Wagner et al, 
 2004). 

 1f) Replay and other cognitive functions 
 This body of work draws a clear connection between replay and memory consolidation, 
 but replay is likely involved in other cognitive functions as well. One such function that 
 has been widely hypothesized to involve replay is that of memory retrieval. This is 
 supported by some correlative findings showing that replays are biased to represent 
 upcoming goals in some tasks (Pfeiffer and Foster 2013; Xu et al, 2018; Olafsdottir et 
 al, 2017). Interruption of replays can actually reduce performance in an alternation task 
 from the previous session (Fernandez-Ruiz et al, 2019, supplemental figures), an effect 
 that cannot easily be explained by consolidation, since a consolidation effect would 
 likely hinder future but not current performance. 

 However, other papers using different tasks show contradictory results. These 
 experiments show variable or no predictive power of replay in predicting behavior 
 (Gillespie et al, 2021; Shin et al, 2019). In some cases, replay content can actually be 
 anti-correlated with behavior (Carey et al, 2019). While this finding could indicate replay 
 is informing the immediate decision by confirming a lack of reward, it fits more 
 parsimoniously, along with the tasks showing no predictive power, with the hypothesis 
 that replays help to maintain the topology and information about an internal cognitive 
 map. This conception of replay is supported by computational models that assign the 
 hippocampus the role of maintaining a model of the environment (Chersi and Pezzulo, 
 2012; Momennejad et al, 2017). This picture is complicated, though, by the fact that 
 replay events rapidly respond to topological changes in the environment, indicating that 
 replays are not needed to establish this topology (Widloski and Foster, 2022). 

 Finally, it is possible that replay activity is simply the product of the hippocampus’ 
 natural inclination to produce sequences of activity when highly active, and that the 
 spatial content of replay is not as relevant as the fact that cells are firing in bursts, 
 triggering changes at the molecular level that enable memory retention and other 
 cognitive functions. However, recent results suggest this is unlikely. Gridchyn et al 
 (2020) showed a memory deficit specifically for an environment for which replay events 
 were interrupted, compared to a separate environment for which replay events were not 
 interrupted. 
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 1g) Closed-loop experiments 
 As technology progresses, manipulations that interact with the brain's ongoing activity 
 provide new ways to ask previously difficult questions. Many of the papers cited above 
 relied on real-time analysis of LFP (Girardeau et al, 2009; Ego-Stengel and Wilson, 
 2010; Jadhav et al, 2012; Fernandez-Ruiz et al, 2019; Gridchyn et al, 2019; Gillespie et 
 al, 2021). For additional examples of closed-loop feedback, see Nokia et al, 2012 and 
 Knudsen and Wallis, 2020. Some work has harnessed basic content-specificity based 
 on the activity of certain place cells (Lavilléon et al, 2015, Gridchyn et al, 2019) to 
 separate activity related to certain areas. However, many open questions remain that 
 could be probed using more advanced versions of these methods. For instance, 
 questions about the possible different roles of forward and reverse replay in informing 
 behavior (Foster et al 2006; Ambrose et al, 2016; Mattar and Daw 2018) are not 
 accessible because forward and reverse replays are not accurately differentiable based 
 simply on which cells are active. While Girardeau et al (2014) showed a generalized 
 drive for increased ripples after learning, and Ambrose et al (2016) showed an increase 
 in replay for recently experienced environments, the extent to which this drive can 
 specifically motivate certain replays is an open question. For instance, it is unclear 
 whether interrupting only ripples in one part of an environment lead to compensatory 
 replays specifically in that area. Or if interrupting only forward replays would lead to a 
 specific compensation of forward replays. 

 Progression in both hardware and software is enabling new methods. Vastly 
 more electrodes can be packed into an implantable drive (see Foster et al 2006 vs 
 Widloski and Foster, 2022, for instance) enabling a proportionally larger number of 
 place cells to be accessed simultaneously. This explosion in data volume is 
 accompanied by software that reduces the need to process this data by hand (Chung et 
 al, 2017). Finally, as we learn more about how the hippocampus encodes information, 
 we can leverage this knowledge to glean knowledge from activity that would have been 
 uninterpretable previously (Gillespie et al, 2021; Widloski and Foster 2022; Cao et al, 
 2021). 

 1h) Outline of results 
 Below, I present two sections of novel results. The first section describes a software 
 package that enables an experimenter to decode the spatial information of replay 
 events in real time and specify arbitrary feedback contingencies based on that spatial 
 information. I show that the software performs this task in a time frame that is amenable 
 to real-time interaction with replays. I then describe how we quantified its accuracy on a 
 linear track and in a two dimensional environment. Efforts to maximize this accuracy 
 without sacrificing computational latency are described in detail. 

 The following section describes an exploration of tasks which we hoped might be 
 amenable to more interesting investigation if closed-loop methodologies were applied. 
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 After some exploration, we decided to record a large amount of behavioral data from a 
 home-away task which has been shown to elicit interesting replay events that are not 
 easily described by the consolidation model, and suggest a role for replay in memory 
 recall or decision making. The task and our results are described in detail, along with 
 various methodologies to rigorously extract maximal information from our dataset. 
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 Chapter 2: CHOIR 

 2a) Algorithm Design 
 CHOIR (Crazyfast Hippocampal Online Investigation of Replay) is a software package 
 consisting of an algorithm and a basic command line interface that enables 
 experimenters to interact with replay events in real time. It analyzes incoming neural 
 data to decode its spatial content, detects replay events, and analyzes the decoded 
 content of those events. The algorithm is designed for experiments divided into three 
 phases. In the first “training” phase, neural data is recorded along with position data of a 
 freely moving rat. In the second “processing” phase, individual units are isolated from 
 the recorded neural data, and their place fields are constructed according to the 
 recorded position data. Finally, in the third “online” phase, the results of the processing 
 phase are used to cluster incoming neural data and decode its spatial information. The 
 algorithm is optimized to enable fast decoding of place cell activity, so that feedback can 
 be delivered during the replay event being analyzed. Arbitrary contingencies can be 
 specified that will determine what feedback is delivered in response to various types of 
 replay and behavior. 

 A key design consideration of this algorithm is to minimize the time between 
 when the brain expresses a replay with interesting spatial content, and when feedback 
 is delivered in reaction to that content. We quantify this more rigorously by noting that in 
 any incoming spike train, we can label one action potential as the “critical” action 
 potential if it is the first spike  for which the decoded spatial information including that 
 spike passes some decision threshold and indicates that a replay of interest is in 
 progress. There are two major contributing components to this latency (Fig 1). The first 
 is the delay between the start of a replay event, and the occurrence of the critical action 
 potential. This delay is affected by the choice of algorithm that determines when a 
 replay event is in progress. A permissive algorithm that is quick to declare a potential 
 replay event may enable a short latency, but will incur a high rate of false positives. A 
 stringent algorithm will require more data to be confident in a replay event, and 
 therefore will cause this latency to be higher. A user that intends to disrupt ongoing 
 replay activity should consider this tradeoff, as they are unlikely to achieve both high 
 specificity and low detection latency. 

 The second aspect contributing to overall detection latency is computational 
 latency. This can be divided into the time it takes to transmit the data, assign a spike to 
 a cluster, integrate the spatial information from that spike, and analyze all of the 
 recorded spikes’ spatial information to determine the appropriate feedback to deliver 
 (Fig 1). CHOIR minimizes the latency between receiving the critical action potential and 
 delivering feedback by keeping a continuously updated record of the spatial information 
 being represented, and updating this record immediately as each action potential 
 contributes additional spatial information. Thus when the critical action potential arrives, 
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 all previous spikes have already been processed and will not contribute to latency. 
 Storing and updating a mathematically correct decoded probability distribution directly - 
 that is, one that is non-negative and sums to 1 - would require multiplication of an 
 incoming spike’s place field by the current probability distribution, and subsequent 
 normalization. This includes at a minimum one multiplication, one addition, and one 
 division operation for each place bin. Instead, a proxy for this distribution is kept and 
 updated with each incoming spike. For each place cell spike, the logarithm of its place 
 field is added to the ongoing spatial information. This means each spike requires only 
 one addition per place bin per spike to update the spatial information. When a spike 
 burst is evaluated, these values can be exponentiated and normalized to recover the 
 mathematically correct probability distribution. Note also though, that there is a 
 monotonic relationship between these stored values and the corrected probability. Thus, 
 if only the maximum-probability place bin is required for evaluation, this can be done 
 directly on the stored log-probabilities, and no further processing is required. 

 Fig 1. Components of feedback latency  For a single  replay event, there is 
 some delay between the start of the event and when enough neural activity has occured 
 to classify it. The bottom row zooms in on the computation at this point, and shows the 
 order of computations that must occur after this point before feedback is delivered. 
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 2b) Latency measurements 
 CHOIR divides its computations among a number of threads (Fig 2). The 
 communication thread is in charge of receiving data from the recording software and 
 passing it to the rest of the threads in CHOIR. It also monitors the overall number of 
 spikes and updates a running average and standard deviation. The “worker” threads 
 receive incoming spikes, cluster them, and incorporate their spatial information into the 
 maintained buffer. Another thread monitors incoming video data and tracks whether the 
 rat is moving or in a zone of interest. The main thread monitors the number of spikes in 
 each decoding window. When the spike count exceeds a threshold z-score, it analyzes 
 the spatial information and determines whether to deliver feedback. Since the video 
 thread updates only rarely compared to the other threads and performs negligible 
 computations, we can consider the total computational latency to be the time it takes the 
 worker thread to integrate an incoming spike into the spatial information plus the time it 
 takes the main thread to detect a spike burst and analyze the spatial content. Since 
 these threads are not synchronized with each other, I measured these two durations 
 separately, and we can infer a total latency by summing the two values. Figure 3 shows 
 a histogram of the measured latency of these two threads over the course of a twenty 
 minute session. On average, we expect a computational latency of less than 1ms. In the 
 worst case in which both threads run at their absolute slowest, we would see a 
 computational latency of 3ms. Note any detection algorithm must look back tens of 
 milliseconds to make an accurate determination of replay content, and therefore we can 
 conclude that the computational latency is small enough for the experiments for which 
 this algorithm was designed. 
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 Fig 2. CHOIR Schematic.  Schematic of the information flow through CHOIR, 
 and the separation of tasks into threads. 

 Fig 3. Measured CHOIR latencies.  Measured CHOIR latencies for A) clustering 
 and integrating spatial information from each spike and B) normalizing the spatial 
 information probabilities and classifying the replay. 
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 2c) Accuracy measurements 
 The assumed experimental design of this algorithm presents significant challenges to 
 accurately decoding spatial information. Tiny movements of the tetrodes relative to the 
 brain can change the shape of a single units’ observed waveform. This means that a 
 decoding model built on previously recorded data will lose decoding accuracy over time. 
 While much work has gone into mitigating this problem across large swaths of 
 neuroscience, it still presents a significant challenge, and most analyses of tetrode 
 recordings never assume that two units from separate recordings can be assigned to 
 the same neurons. Even if the same neurons could be tracked perfectly across 
 recording sessions, this still would not guarantee decoding accuracy, as place cells are 
 known to “remap” between exposures to the same environment. This can be seen as a 
 simple “rate remapping” in which their place fields remain largely unchanged, but their 
 overall firing rate changes. In some cases place fields change locations entirely. In 
 particular, this is prone to happen when the shape or connectivity of the environment 
 changes, or if other aspects of the environment such as reward contingencies change. 

 We sought to measure the degree to which this instability would impact the 
 accuracy of any categorization of replay events. We used one session separated into 
 two halves to simulate a multi-session experiment. This enabled us to have a confident 
 ground truth of single units tracked over one session, while measuring the impact of 
 tetrode drift over time. The first half was used to cluster place cells and build place 
 fields, and the other half was used to analyze the accuracy of replay decoding. We label 
 the results of this test as online decoding, as it modeled the constraints inherent in our 
 real online decoding algorithm. Ground truth decoding was considered to be the 
 decoded spatial content when clustering and building place fields from the entire 
 session, which we label as offline decoding. Online decoding generally preserved much 
 of the spatial content, though in a somewhat degraded state (Fig 4a). We quantified the 
 extent to which this would impact an online decoding algorithm by simulating a task 
 wherein replays that entered a certain goal zone should be detected (Fig 4b,c). This 
 binary decision gave us a false positive, false negative, true positive, and true negative 
 rate of detection (Fig 4d). 
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 Fig 4. Replay accuracy classification in 2d.  A) One example replay event 
 decoded using each method. B) Replays identified by each method has having entered 
 the goal zone, marked with a blue circle. The blue lines show the path of the replay 
 before detected entry into the goal zone, with the path defined by the offline-decoded 
 content. Red circles show the location of the replay at the time of detection. C) Same as 
 B but for replays that were classified as not entering the goal zone. D) Classification 
 results for each decoding method. 

 The level of classification agreement was well above chance. It also gave us a 
 baseline against which we could test modifications to our decoding method. We first 
 tried continually updating the place fields as incoming spikes were clustered in the 
 online decoding phase. With this method, we could compensate for remapping by 
 incorporating more information about each neuron’s firing rate throughout the run. We 
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 then tried modifying our decoding formula to use a bayesian prior that incorporates the 
 knowledge that replays of interest trace out continuous paths through space. We first 
 identified the decoding frame with the most spiking activity, as a proxy for choosing the 
 frame for which we are most confident in the decoding result. Then we iteratively 
 decoded adjacent frames in time, but replaced the usual uniform bayesian prior with a 
 normal distribution centered at the center of mass of the adjacent decoded frame. In this 
 way we signified that we expect the replay content of adjacent frames to be near each 
 other. 

 Finally, we sought to capture an intuition that replays not only are continuous, but 
 tend to have some momentum in one direction. Thus we used a similar technique but 
 incorporated a prior that assumes a consistent speed and direction of motion. We again 
 started with the frame with the most spiking activity and a uniform prior. We then 
 decoded adjacent frames with a prior that reflected a normal distribution over the 
 distance from the adjacent frame’s center of mass. Then for all other frames, we 
 iteratively decoded using a prior that had the same radial gaussian multiplied by a factor 
 incorporating the angle from the adjacent frames’ direction of motion. The exact 
 formulas are expanded in Appendix A. Overall, we saw that updating the place fields 
 had a minimal effect on accuracy, whereas incorporating either prior reduced both the 
 false positive and false negative rates to a similar degree. Some concern should be 
 taken to ensure that the process of jumping to the frame with the highest spike rate 
 does not invalidate these results in the context of online decoding, in which decoding 
 must happen during the spiking activity in question. Note though that with the 
 computational efficiency noted above, if a wave of spiking activity occurs which 
 establishes a new frame with highest spiking rate, decoding could begin anew for all 
 previous decoding frames using the iterative gaussian method without incurring a large 
 cost on latency. 

 Another unique application of this software we predict is the distinction between 
 forward and reverse replays. We thus sought to find the best algorithm with which we 
 could classify these two types of replays. Again, we hoped to determine this in the 
 context of online decoding, in which clustering must be done automatically based on 
 previously established clusters, and decoding must be done using previously 
 established place fields. Furthermore, a classification must be made during the replay 
 event itself, and thus could not be based on, for instance, the start and end points of a 
 replay. To determine the best decision criteria, existing data was analyzed and forward 
 and reverse replays were extracted using normal best practices for offline analysis. 
 Then, various combinations of clustering, event detection, and classification algorithms 
 were assessed based on their agreement level with the offline analysis. A list of all 
 methods tested can be found in appendix B. Among all combinations, using BIRCH and 
 agglomerative clustering, thresholding based on both ripple power and decoded 
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 content, and classifying based on a simple sum of posteriors was found to be the most 
 similar to offline classification. 
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 Chapter 3. Ripples and Behavior 

 We sought to explore the range of hypotheses that could be tested using closed loop 
 stimulation. We aimed to find a task which seemed likely to involve replay events in 
 decision making, and thus may lead to an observable behavior difference when the 
 subjects were subjected to replay manipulations. We embarked on an exploration of 
 tasks. At the end of this exploration, we observed trends of behavioral differences when 
 ripples were interrupted in the home-away task. This task also displays interesting 
 correlations between replay content and navigation, making it potentially interesting 
 fodder for future content-specific interruption experiments. Data is presented from six 
 rats: Martin, B13, B14, B16, B17, and B18. Data for the initial task explorations was 
 recorded from Martin. All statistical tests were performed using a custom built plotting 
 and statistics library, described at the end of this chapter. All statistical shuffles 
 presented used 5000 shuffles, unless otherwise noted. 

 3a) Ripple interruption 
 Recording replay requires a large number of simultaneously recorded neurons. To more 
 quickly explore which tasks may be dependent on replay, we chose to use sharp wave 
 ripples as a proxy for replay activity. Ripples are the LFP signature that coincides with 
 replay events, and only require one high quality signal near the cell layer of the 
 hippocampus to detect, in contrast to the dozens of tetrodes that must be precisely in 
 the cell layer to decode replay. Since the two events co-occur, a ripple-interruption 
 experiment that shows that ripples are necessary for a certain task is suggestive that 
 replay events are necessary for that task. Furthermore, behavioral differences that 
 occur when interference of hippocampal activity is timed to sharp wave ripples implies 
 that the content of replay events informs the observed behavior. 

 We designed a system which enabled online detection of sharp wave ripples, 
 and delivery of a brief electrical pulse to interrupt ripples. We used Spikegadgets 
 hardware embedded in custom-built micro-drives, and Spikegadgets software to record 
 neural signals from the vicinity of dorsal CA1 and video footage from overhead 
 cameras. The Spikegadgets recording software, Trodes, includes an API that enables 
 users to write their own code that receives a stream of the incoming neural and video 
 data. We used this API to stream LFP data, which was then filtered to extract the power 
 between 150-250Hz. To filter out electrical artifacts, which typically appeared as a burst 
 of power across many frequencies and all tetrodes, we subtracted the filtered power 
 from a baseline tetrode which was left far away from the hippocampal cell layer. The 
 ripple power was then z-scored, and any reading above a set threshold was considered 
 to be a ripple. Upon ripple detection, our software sent a serial message to an arduino, 
 which then sent a brief TTL pulse to a stimulus isolator. This stimulus isolator generated 
 a 200µs pulse between 40-60µA, which was sent to a bipolar stimulating electrode 
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 implanted in the rat’s ventral hippocampal commissure. To minimize electrical 
 interference, all cables were shielded with aluminum foil, which was connected to the 
 ground of the acquisition system. 

 Given that our goal was to draw a connection between ripples and behavior, 
 recording from more animals more easily became more important than recording from 
 many cells in one animal. We redesigned the recording drive to be lighter and easier to 
 build, with only eight tetrodes (Fig 5), as opposed to the usual 40 or 64. This “ripple 
 drive” also includes one concentric bipolar stimulating electrode targeted to the ventral 
 hippocampal commissure. All of the tetrodes and the stimulating electrode could be 
 independently moved vertically. After implanting, the tetrodes were adjusted until ripples 
 could be found, and at least one clear hippocampal cell was present. We then could use 
 this cell to calibrate the stimulating electrode. We adjusted the strength of the 
 stimulation and height of the stimulating electrode until a stimulating pulse had a clear 
 silencing effect on the recorded hippocampal unit. We measured this by recording for 
 20-30 minutes in the sleep box while stimulation was timed to interrupt ripples, followed 
 by a break with no stimulation for at least 30 minutes, followed by 20-30 minutes of 
 stimulation that was also timed to the detection of ripples, but delayed by 200ms. 
 Functional stimulation showed an immediate reduction in spiking in the interruption 
 condition relative to the delayed condition, and a reduction 200ms later in the delayed 
 condition (Fig 5). Note that no calibration data was collected for Martin in the delayed 
 condition, but he displays a clear immediate reduction in spiking upon stimulation. This, 
 in combination with his behavioral results on the W-maze being in line with published 
 ripple-interruption results (described below), offers clear evidence that interruption was 
 working as intended in this subject. 
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 Fig 5. Ripple Interruption.  A) Rendering of ripple drive design. B) Image of 
 ripple drive including tetrodes, stimulating electrode, and the supporting electronics. C) 
 PSTHs showing effective interruption of place cell activity in response to delivered 
 stimulation in each rat. 

 3b) Initial task exploration 
 Our initial inclination was to take tasks which have been shown to be 
 hippocampus-dependent and test whether they depended on replay activity. We thus 
 chose two tasks to replicate. The first task is the Morris Water Maze. In this task, rats or 
 mice are placed in a pool and must find a hidden platform on which to stand before they 
 are removed. Multiple trials are then repeated from different starting locations, and since 
 rats dislike the water environment, they will typically go directly to the hidden platform 
 from the previous trial in order to escape. Rats with hippocampal lesions show an 
 inability to navigate to the platform from the previous trial. 

 We adapted this protocol to be amenable to electrical recordings by motivating 
 the rats to find reward in a dry environment instead of escaping a wet environment. This 
 environment is the same described below for the home-away task, and consists of a 6ft 
 by 6ft arena with 36 reward wells spread evenly throughout in a square grid. In each 
 block, one well was filled, and the rat was placed in a corner and would then search for 
 this random well. Three more trials were performed in which the same reward well was 
 filled, analogous to the escape platform being made available in the same place in the 
 water maze each trial (Fig 6a). The starting corner for each trial was chosen 
 pseudo-randomly, so that a different corner was used each trial. Similar to the results 
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 from the Morris Water Maze, we observed that our test subject consistently performed 
 better on trials 2-4 than on trial 1, indicating a memory of the reward location from trial 1 
 (Fig 6b). Contrary to our hypothesis, interrupting ripples did not impair the rat’s ability to 
 complete this task. Trial 2 latencies were not significantly different between interruption 
 sessions and control sessions (Fig 6c). 

 Since our dataset is limited in size, we cannot reliably test for subtle behavioral 
 effects with small effect sizes. However, one interesting trend was observed during a 
 “pseudo-probe” period, which we defined to be the exploratory period of the first trial of 
 a block before the reward had been found. If the previous set of trials was a control 
 block, then the rat tended to spend more time at that block’s reward location than if it 
 had been an interruption block. Probe trials are often interpreted as an expression of the 
 strength of a memory or level of confidence. This trend, then, would imply that ripple 
 interruption reduces the confidence of the animal in the location of the reward, and 
 therefore leads to less perseveration around that location at the start of the following 
 block (Fig 6d). Any further interpretation should warrant gathering more data to confirm 
 or deny these preliminary findings. We did not gather any more data on this task; 
 however, these results align interestingly with our results from the home-away task, 
 described in the section below. 
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 Fig 6. Dry Morris Water Maze.  A) Schematic of the  dry morris water maze with 
 example behavior from one block of four trials, and the first block of the following trial, 
 which we also refer to as the pseudo-probe. B) Latency and normalized path length 
 separated by trial and condition in the dry morris water maze. Error bars show the 
 standard error of the mean. P-values shown for t-test of trial 2 data, n=44. C) Latency 
 and normalized path length savings, defined as the difference from the trial 1 value from 
 that block of four trials. P-values shown for t-test of trial 2 data, n=44. D) Percentage of 
 time near the previous block’s rewarded well, separated by the condition of the previous 
 and current block. Horizontal lines represent quartiles with one outlier marked as a 
 diamond. 2-way ANOVA, p=0.039, n=29. 

 The second preliminary task we explored was the W-maze. In this task, rats are 
 placed on a maze with one central arm and two side arms. Each of the three arms has a 
 reward port at its end. The rat must learn an alternation rule to receive reward (Fig 7a). 
 Previous studies (Jadhav et al, 2012, Fernandez-Ruis et al, 2019) have shown that 
 interrupting ripples impairs performance at this task. Specifically, performance on the 
 outbound choice, in which rats have to remember which side they visited previously and 
 go to the opposite side, was reduced when ripples were interrupted throughout the 
 session. Fernandez-Ruis et al (2019) measured this by performing two sessions each 
 day, one of which was a control session, and subtracting each day’s control session 
 performance from its ripple-interruption session performance. We followed the same 
 protocol. Our implementation showed an effect of interrupting ripples that visually 
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 matched up with these previous results, showing a trend that is in line with their 
 observed effects (Fig 7b). At this point, we were focused on qualitative results, and did 
 not attempt to statistically quantify the extent to which our results aligned with the 
 reported data. We ultimately decided not to record more animals on this task for a 
 number of reasons, noted in the discussion section. Nonetheless, this is a useful 
 confirmation that our interruption protocol appears to reproduce reported effects of 
 ripple interruption on behavior. 
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 Fig 7. W-maze  .  A) Schematic of correct performance  on the W-maze. Outbound 
 choices involve starting in the center arm and choosing either the right or left arm. B) 
 Figure modified from Fernandez-Ruis, et al, 2019, to compare our observed data with 
 their presented data on the same task. 

 3c) Home-away task 
 We chose to focus on recording data from a home-away task, in which rats have been 
 shown to exhibit interesting replay content (Pfeiffer and Foster, 2013). This task takes 
 place in a square environment measuring six feet across. At the center of each square 
 foot, a reward well is embedded into the environment floor. These reward wells can be 
 filled and drained remotely and silently by an experimenter. Before the task begins, the 
 experimenter chooses one well to be the home well for that session, and a series of 
 other wells to be away wells. When the rat is first placed in the environment, they must 
 search for and find the home well to receive reward. Then the experimenter fills the first 
 away well, and the rat must find that well. Whenever the rat finds reward at an away 
 well, they then must return to the home well to receive reward again, at which another 
 randomly chosen away well is filled. The task proceeds in this way, alternating between 
 foraging for a random away well and returning to the consistent home well, until either 
 twenty minutes have passed or a preset number of wells have been found. Away wells 
 are never repeated, so at the end of this task the rat has received reward multiple times 
 at a single home well and once at each of the away wells. Each session, a new home 
 well and series of away wells is chosen. The task structure is illustrated in Fig 8a. 
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 Fig 8. Home-away task.  A) Schematic of the home-away task. B) Schematic of 
 task timeline. C) The full path of the rat during one example session. D) The full path of 
 the rat on the immediately following probe. E) The full path of the rat on the 
 pseudoprobe, which is the task phase of the following session until the first home well is 
 found. 

 After recording data from one rat on this task, we made two modifications for 
 other rats. The first is that we restricted the home well to be one of the 16 wells that 
 were not along the wall on the environment. This is because we wanted a clear 
 behavioral indication that the rats learned the location of the home well. Typically, they 
 would spend a lot of time circling the exterior of the maze. If the home well was along 
 the exterior, it would be difficult to establish when they chose to approach the home well 
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 and when they had simply stumbled on it. The other modification was to fill two away 
 wells at a time during away trials. Whenever one away well was found, the other was 
 drained, and then refilled in addition to a new away well on the following away trial. In 
 this way, the random foraging part of the task was made easier, while still preserving the 
 overall structure of the task. For our first rat, this was used as the last step of training 
 before moving to the task with only one away well filled at once. However, the fact that 
 this made the task easier seemed to lead to more consistent behavior, as rats would 
 typically stop searching if they could not find an away well on one particular trial after a 
 few minutes. Therefore we kept this task structure for recording for the other five rats. If 
 the rat did not find all of the away wells, then there could be a confounding factor here 
 where rats were more likely to find away wells in places that they looked more often. 
 However, in the majority of sessions the rats found all of the away wells, and therefore 
 the most important aspects of the task structure, that each away well was rewarded 
 exactly once and that the location of away wells was randomly distributed, were 
 preserved. 

 The condition of each session was assigned pseudorandomly to avoid any 
 confounding incidental correlations between the condition of consecutive sessions or 
 the time of day of each session. Two sessions were run each day, with condition 
 assignments determined four days at a time. The first of the four days consisted of one 
 control and one interruption session. The order was chosen at random. The following 
 day was the same but the order was the opposite of the first day. The third day was 
 either two control or two interruption sessions, determined at random. And the fourth 
 day was the inverse of the third day. 

 Before recording, rats are well trained on the task. Therefore the learned 
 information each session is restricted to the locations of the reward wells. Rats found all 
 of the wells on most sessions (Fig 9a). Their understanding of the task structure, and 
 learning of the home location each session, can be confirmed by looking at how quickly 
 they completed each home trial compared to away trials. Each rat consistently 
 decreased its latency to the home well over trials, indicating a memory being formed for 
 that location (Fig 9b). The same pattern is not observed in away trials, as is expected 
 for random foraging. Note that for all rats except Martin, the latencies to away wells is 
 typically lower on the first few trials. This is the expected result of the modifications 
 noted above, including restricting the home well to be away from the border and filling 
 two away wells each away trial. The more important observation for our interpretation of 
 these results is the pattern of latencies over time, which shows clear learning of the 
 home well without a similar pattern for away wells. 

 Our primary question we wanted to ask was whether ripples were necessary for 
 good performance at this task. The replay phenomena noted earlier in this task led us to 
 hypothesize that replays were used to recall the location of the home, help the rat 
 navigate to that location, or both. We looked for evidence of this by comparing the 
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 home-trial latencies in control and interruption sessions. No consistent difference was 
 observed between conditions, tested by shuffling the condition label of each session 
 and comparing the mean values for each trial (Fig 9c). We also quantified performance 
 on each trial with the normalized path length, which is the total distance traveled by a rat 
 during a trial divided by the straight-line distance between its starting and ending 
 location. Again we saw a clear difference between home and away trials, but no 
 difference between the home trials of the different conditions (Fig 9d,e). 

 Earlier this year, a group found that rats can complete this task without any 
 hippocampal activity (Duszkievicz et al, 2023). This is in line with our results. They did, 
 however, see a small effect of their lesion on the home trials in early learning. 
 Specifically, in the first three returns to the home well, they found that rats without 
 hippocampal activity had longer path lengths on their home trials. We did not see this 
 effect in our data when measured either by path length, normalized path length, or 
 latency (Fig 9f-h). Results are displayed for individual rats, and an across rat shuffle, as 
 described in the statistics section 3f, is displayed to the right. Briefly, each rat’s data was 
 shuffled by randomly reassigning condition labels to each data point. One across-rat 
 statistic was then generated by taking the mean of the summary statistic for each rat, 
 where the summary statistic is the difference between the means of the two conditions, 
 weighted by the number of datapoints collected for that rat. The true value is shown as 
 a red line above the shuffled distribution with 5000 shuffles. 
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 Fig 9. Home-away task behavior.  A) For each rat, the number of wells found 
 (red) and total duration (blue) in each session, plotted chronologically. B) Latency of 
 each home trial (red) and away trial (blue). C) Latency of each home trial in interruption 
 sessions (orange) and control sessions (cyan). D) Normalized path length of each home 
 trial (red) and away trial (blue). E) Normalized path length of each home trial in 
 interruption sessions (orange) and control sessions (cyan). F) Average path length of 
 home trials 2, 3, and 4. Left: data for each rat. Each dot represents one session, while 
 violin plots show overall distribution of the dots. Inset histograms show distribution of the 
 difference of means between interruption and control sessions, generated by shuffling 
 the category of each session. Actual difference of means in data is shown as a red 
 vertical line. RIght: An “across” rat shuffle was performed as described in the statistic 
 library section. A red line showing the value for the data is shown with the histogram of 
 shuffled values. G) Same as F, but for normalized path length. H) Same as F, but for 
 latency. 

 3d) Probe trial 
 To more deeply probe the effect we may be having on the rats’ memory, we included a 
 probe after completion of the task. In this probe, the rats are placed back into the same 
 environment in which they performed the task, and are allowed to explore with either no 
 reward given, or sparse reward delivered after some exploration time as described 
 below (Fig 8b). Probes are employed in the water maze experiment, and many other 
 spatial memory tasks (i.e. Gridchyn et al, 2020), for a number of reasons. In the task 
 itself, it is difficult to gauge the confidence of the animal’s knowledge of the home 
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 location. Once the rat approaches and finds reward at the home well, we cannot gather 
 more data from that trial. In the exploration phase of a probe trial we gain greater insight 
 into the level of confidence because they may either spend longer near the home well 
 expecting reward, or revisit that location more often, either of which indicates a degree 
 of confidence in their memory. One other important difference between behavior during 
 the probe and during the task is that stimulation is delivered only during the task portion 
 of a session. Thus, behavior differences during the probe due to ripple interruption must 
 reflect a lasting effect of the earlier stimulation. Finally, one widely studied navigational 
 strategy by which rats could complete this task without use of their hippocampus is path 
 integration. This strategy involves the rat tracking its total movement away from the 
 home well, and then simply reversing that total movement to return to the home well. 
 Removing them from the environment interferes with this process, and should bias the 
 animals to use other methods of navigation that may be more hippocampus-dependent. 

 We first quantified the extent to which the rats’ behavior reflected their memory of 
 the home well over other locations of the environment. The rats displayed a clear 
 preference for revisiting the home well, measured both as the number of visits and the 
 total time spent near that well (Fig 10a,b). These quantities were compared to the same 
 quantities measured for other away wells which were not on the border to establish a 
 baseline. Five of the six rats displayed a highly significant preference for the home well 
 over away wells, and this difference remained highly significant when tested across all 
 rats. 

 Note that Martin, B13, and B14 experienced a probe trial with no reward. 
 However, we noted that the rats tended to not explore on many probe trials (Fig 10c), 
 presumably having learned the task structure and that probe trials were unrewarded. 
 Therefore when we recorded data from B16, B17, and B18, we instituted a pseudo 
 random reward schedule. Once during each probe, the home well from that session’s 
 task phase would be filled according to the following pseudo random schedule. Among 
 a group of four days, the four control sessions would be assigned a fill time of one, two, 
 three, and four minutes in a random order. The same was done for the interruption 
 sessions. When that time was reached, the home well would be filled. 

 We hypothesized that interrupting ripples would interfere with the formation of the 
 memory of the home well location, and would lead to reduced preference for the home 
 well during the following probe. We considered the same measures of total time and 
 number of entries to the home well, this time separated by the interruption condition in 
 the preceding task phase. We found that the data trended in the hypothesized direction, 
 but we did not observe a significant difference at a threshold of 0.05 (Fig 10d,e). 

 Note that most of Martin’s control sessions, and B18’s later control sessions were 
 performed with no stimulation, instead of delayed stimulation. This was due to technical 
 difficulties that arose during recording. As we did not see a difference between these 
 no-stimulation sessions and delayed-stimulation sessions, we included them all as 
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 control data points. The same results with these sessions excluded are shown in 
 Appendix C. 
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 Fig 10. Home-away probe behavior.  A) Number of visits within 6 inches of the 
 home and away wells during the probe. For a detailed description, see figure 9F. B) 
 Total time within six inches of the home and away wells during the probe. C) Cumulative 
 number of reward wells in the center of the environment checked during the probe. D) 
 Number of visits to the home well during the probe E) Total time near home well during 
 the probe 

 3e) Data Mining and testing for behavioral differences 
 The measures introduced above offer a coarse way to quantify patterns in behavior that 
 we hypothesized might differ between sessions with and without ripple interruption. As 
 we gathered and analyzed the data, we began to make more granular hypotheses 
 about potential behavioral differences. The rigor of testing these predictions begins to 
 come into question though as we run into possible issues of overfitting to our data and 
 running multiple comparisons. Therefore, we chose to employ a test-validation strategy 
 in which we chose a subset of the collected data to explore and search for possible 
 patterns, which we could then test rigorously on the rest of the data. 

 We chose to use B17’s data to data mine for possible differences between 
 conditions, as he had a decent number of trials from both control and interruptions 
 sessions, and displayed consistent exploration during probes. A complete accounting of 
 all of the methods for quantifying behavioral differences can be found in Appendix D, 
 and their implementations can be found in the Datamining.py file in the associated 
 codebase. We ran each of these measures with the specified range of parameters, 
 controls, and statistical comparisons. 100 shuffles were performed for each test, 
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 enabling a rough idea of significance without incurring an overwhelming computational 
 time. We then manually observed the resulting p values, in order to separate measures 
 that were significant across a range of parameters, indicating a clear difference, from 
 measures that were not robust to parameter changes, indicating likely spurious 
 significance. Interestingly, no robust differentiators were observed in task behavior. The 
 previously observed differences on probe behavior were correctly identified. 

 We also observed interesting differences relating the interruption condition of a 
 session to the initial behavior in the following session. We found a strong trend for rats 
 to revisit the previous home well more times when that previous session was a control 
 session (Fig 11a). Furthermore, rats tended to revisit the previous home well more often 
 in this same period if they were currently in an interruption session (Fig 11b). The 
 implications of these observations are noted in the discussion section. 
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 Fig 11. Home-away pseudo-probe behavior.  A) Number of visits to the home 
 well during the pseudo-probe, divided by the session’s condition. B) Number of visits to 
 the home well during the pseudo-probe, divided by the condition during the 
 pseudo-probe. 

 3f) Plotting and statistics library 
 Developing the pipeline to data mine B17’s data inherently incentivized me to write 
 flexible plotting and statistics code that could be widely applied to various quantitative 
 measures. I therefore separated the code handling the plotting and statistics into its own 
 package which may be of wider use when others are performing similar comparisons of 
 quantitative measures across groups. The logic behind the statistics is described briefly 
 below. A full illustrative set of examples is also available at 
 https://github.com/fosterlabberkeley/BillCroughanThesis  . 

 The shuffling library is organized to test for a range of relationships among 
 different categories of data. The tests are specified using four different types of effects. 
 A main effect of a category refers to the difference between the mean value of 
 datapoints within that category compared to the mean value of datapoints outside of 
 that category. Note in the case that there are only two categories, this is equivalent to 
 comparing the means of the two groups directly. The other three effect types are defined 
 recursively: within, across, and interaction effects. Any length of recursion is possible, 
 and the final effect type is always a main effect, as that is the only non-recursive effect 
 considered. The recursive effects considered are within-group effects, in which only 
 data from the specified group is considered; across-group effects, in which the observed 

https://github.com/fosterlabberkeley/BillCroughanThesis
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 effects of the recursive effects are calculated within each group and then summed; and 
 interaction effects, in which the difference between the recursively defined effect is 
 compared within the specified group compared to outside of the specified group. 
 Illustrated examples of these effects are shown in figure 12, and exact formulas are 
 given in Appendix E. 

 The statistics are designed to integrate easily with the plotting functions of the 
 library. Whenever a user creates a plot, they may choose to attach any categorical or 
 continuous data to that plot to be analyzed. For instance, when creating the plot for 
 each animal in figure 11, I attached the y values of each point, and their corresponding 
 category in either the control or interruption group. They may also specify a single 
 shuffle that should be immediately run and represented visually on the plot itself. In 
 figure 11, I specified that the session conditions should be shuffled. Before saving the 
 figure, the library will run this shuffle and indicate the results as a p-value, effect 
 direction, and histogram of shuffled differences of means. After making any number of 
 plots the user can choose to run a series of statistical tests on the data that was saved. 
 This can include any combination of recursive effects. The examples shown in Fig 12 
 were automatically calculated in this way. Note that the recursive effects displayed are 
 chosen to illustrate the patterns in the data and are not a comprehensive illustration of 
 every effect that could be tested. 
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 Fig 12. Example Statistical Analyses  .  A) Example with one categorical variable 
 with two values, and different means based on that categorical value. B) Example with 
 two categories each with two values, and an interaction effect between the two 
 categories. C) Example with two categories each with two values, and a separate effect 
 of each category. D) Example with two categories each with two values, and a different 
 effect of category 2 based on category 1. E) An example with one categorical variable 
 with four values, where one category has a different mean than the rest. 
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 Chapter 4: Discussion 
 4a) CHOIR 
 Above, I describe a software package capable of decoding replay events and classifying 
 them in real time. Closed-loop techniques have been used increasingly in the past 
 decade to investigate the function and mechanism of replay (Zapata et al, 2022). This 
 technique offers the ability to perform causal experiments, in many cases yielding much 
 more useful data than correlational studies. These techniques are still in development, 
 and many questions cannot be investigated using currently published methods. In 
 particular, current closed loop methods can only effectively test hypotheses that involve 
 all sharp wave ripples, or simple content distinctions that can be inferred from small 
 groups of neural activity. Given that replays represent coherent trajectories through 
 space, incorporating information about this trajectory into feedback mechanisms would 
 allow us to probe their function and mechanism more deeply. For instance, replays can 
 use largely overlapping groups of place cells to represent multiple directions of 
 movement over the same area of an environment. These representations can also 
 represent that movement proceeding forward or backward in time; these types of 
 replays, forward and reverse, have been hypothesized to serve complimentary cognitive 
 functions (Ambrose et al, 2016). However, they cannot reliably be differentiated by 
 simple detection of which cells are active, and instead necessitate a full spatial 
 decoding analysis to differentiate. CHOIR represents an important addition to the 
 toolbox of neuroscientists hoping to investigate such phenomena. 

 Some limitations of our methods should be noted. In particular, our method for 
 measuring the effect of online constraints on decoding uses two halves of a session, 
 which are closer in time than would be the case in a similar experiment that employs 
 CHOIR. This likely underestimates the effect of tetrode drift, which would increase with 
 the delay between the two sessions. It may also underestimate the effectiveness of our 
 method for updating place fields during the second session, as this was designed to 
 combat place field remapping, which is not typically observed between two halves of a 
 single session in a familiar environment. This could be improved in the future by using a 
 dataset in which a rat is removed from its environment for a period of time before being 
 placed back, while activity is recorded throughout both sessions and the intervening rest 
 session. This would allow for tracking the same neurons between the two sessions, 
 while also introducing a longer delay and the opportunity for remapping to play a bigger 
 role. Another possibly more informative test scenario would be to run the same analysis 
 in a session where some environmental or reward contingency changes. For instance, a 
 modification of the home-away task in which the home well is changed halfway through 
 the task. This may trigger some level of place cell remapping and illuminate the effect of 
 this remapping on decoding accuracy. 
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 Developing this software illustrates a more general lesson related to building 
 tools for experiments: thinking through the complete application of the tool is often more 
 important than optimizing the initial design. While initial results look promising for 
 CHOIR, much emphasis during development was placed on the latency, and 
 measurements of accuracy were not as immediately addressed. Once the benefit of 
 modifications to improve classification accuracy was realized, these were incorporated, 
 but the development process would have been faster had these been explored and 
 incorporated from the beginning. 

 4b) Ripples and Behavior 
 Our work connecting sharp wave ripples to behavior offers new insights into how ripples 
 may contribute to cognition. Published work to date has focused largely on replay’s role 
 in consolidation (Gridchyn et al, 2020; Michon et al, 2019; Girardeau et al, 2009; 
 Ego-Stengel and Wilson, 2010), or has specifically revealed an effect during task 
 learning, such as in the W-maze (Jadhav et al, 2012; Fernandez-Ruis et al, 2019). Our 
 results presented above implicate replay in separate memory processes, while also 
 demonstrating this effect in a well-trained task. Although we saw promising preliminary 
 results on the W-maze task, we ultimately decided to use a different task for a number 
 of reasons. As noted above, this effect is seen during task learning. Practically, this 
 limits the amount of data that can be gathered from one subject. One of our intentions in 
 this ripple investigation was to lay the groundwork for a follow up investigation that 
 interacts replay content using CHOIR. Given the amount of time and effort that goes 
 into recording from enough neurons in a single animal to effectively decode replay, we 
 wanted to focus on tasks for which an arbitrary number of sessions could be 
 administered. Effects seen only during learning also complicate the interpretation of 
 these results, because the memory being encoded, consolidated, and recalled cannot 
 be as cleanly isolated when the subject is also learning about the task itself. 
 Additionally, the information associated with a replay through 2d space can be 
 conjectured to relate specifically to information around the places it represents. 
 However, the possible uses for replays in linearized environments with discrete choices 
 is more complicated. For instance, if replays are hypothesized to be part of a simulation 
 function in which a certain future path is tested to evaluate its outcome, a replay through 
 a 2d environment would reveal information about the specific areas it visited. However, 
 in a binary choice task, a replay down the unrewarding arm could be just as informative 
 as a replay down the rewarding arm. 

 Our observed trend of reduced memory expression during the probe suggests a 
 role for replay in encoding. Interruption is only present during the task itself, not the 
 probe, meaning that this effect cannot be due to any impact on recall. The fact that our 
 probe takes place immediately following the task without an extended rest period 
 suggests that consolidation does not play a large role in this memory expression. Our 



 46 

 effect seen on pseudo-probe behavior similarly suggests an effect of interruption on 
 encoding. These delays between sessions ranged from four hours to overnight. This is 
 well within the range of time in which the hippocampus is known to consolidate 
 memories with ripples. Therefore, the persistent effect seen during the pseudo-probe 
 indicates that the memory was not as well formed at the start of this rest period, and 
 therefore could not be recalled later after a complete opportunity for consolidation. 

 Finally, the effect on the pseudo-probe of ripple interruption during that session 
 itself implicates replay in memory recall, since these interruptions occur well after any 
 encoding and consolidation, and impact ongoing behavior at the time of decision 
 making. Interestingly, the memory of the previous home well is higher on interruption 
 pseudo-probes, whereas one might have hypothesized the opposite effect. One might 
 explain this by noting that our ripple interruption cannot be considered to prevent or stop 
 all ripples. Instead, stimulating the commissure during a ripple prevents replays from 
 reaching their endpoint while also adding in random neural signaling which may be 
 interpreted as aberrant information in downstream circuits. Different models of replay 
 may suggest different outcomes in this scenario when the content of replay is modified. 
 For instance, consider a model of replay as facilitating memory recall by allowing the rat 
 to simulate the result of taking various paths through the environment. If the rat is 
 relying on replay to predict the outcome of taking a path, the aberrant signaling 
 associated with interruption may be interpreted as information about the end point of the 
 replay. Viewed through this lens, normal replay of a previous session’s home well may 
 actually help the rat to understand the context of that memory and learn not to continue 
 to check that older well, whereas partial or modified replay of the previous home well 
 may hinder this process. 

 Although our hypothesis of replays being important for encoding during the task 
 would fit with the results seen by Duszkievicz (Duszkievicz et al, 2023), we did not see 
 the same effect in our data. Given the small size of this effect, it is possible we would 
 see this same effect if we gathered data from more rats; here we present data from 6 
 rats compared to their 15. However, we have nearly as many sessions since we 
 recorded from more sessions per rat on average. Another possible explanation is that 
 their lesions encompassed more hippocampal activity than just replays, and another 
 aspect of hippocampus activity, such as place cell activity during movement, underlies 
 this difference. Finally, this could reflect the fact that our replay interruptions could not 
 be comprehensive, because we had to detect sufficient ripple activity before delivering 
 stimulation. This means that some replay activity must have been unaffected. Their 
 lesions stopped hippocampal activity uniformly, and so would have had a more 
 complete effect on shutting down ripples entirely. Thus, it is possible that replays are 
 specifically necessary for this task, but the amount of ripples that were allowed to occur 
 in our detection-interruption setup was enough to enable full performance at the task. 
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 Of course, memory consolidation is only one framework through which to view 
 replay. Much of the work in the W-maze has instead considered the role of ripples in the 
 context of working memory, arguing that they are necessary for the maintenance of the 
 short-term working memory allowing the rat to remember where it came from and 
 integrate that into its next choice. Viewed from this perspective, the effect we observe 
 during the probe could be interpreted as an inability to maintain such a working memory. 
 However, our results on the pseudo-probe cannot be explained this way, and fit much 
 more naturally into the memory consolidation framework. 

 Two changes to the experimental protocol could be instrumental in expanding on 
 our experiments. The first would be to switch to using silicone probes over tetrodes. Cell 
 yield is less of a concern than maximizing behavioral data from each animal and 
 ensuring sufficient amount of animals. The time and effort spent adjusting tetrode depth 
 does not contribute to these findings, whereas having immediate access to the 
 hippocampal layer and a small number of cells that using a silicon probe would enable 
 the same experiments to take place. The second modification would be to add a more 
 controlled section of exploration time at the start of a trial where the pseudo-probe 
 currently is. One such option would be to delay the first home well reward delivery by 
 one minute. This would give a consistent amount of time for the rat to explore before the 
 next session begins, and would enable a more rigorous comparison of behavior 
 between sessions, and between the immediate probes and the pseudo probes at the 
 start of the next session. 

 Common pitfalls of large analysis screens should be considered when 
 interpreting our results from data mining B17’s behavioral data, and the results from the 
 algorithm optimization search for replay direction classification. For B17, care was taken 
 not to interpret these statistical results directly. We did not consider the p-values 
 resulting from these statistical tests to be true indications of statistical significance, but 
 instead used them as a proxy for what may be significant when tested on the large 
 dataset. Furthermore, instead of testing some number of these comparisons directly, we 
 first looked at patterns in the measurements, used those to arrive at specific 
 hypotheses, reformulated the measurements with these hypotheses in mind, and then 
 ran those tests. In this way we essentially recreated the pattern of having preliminary 
 data and testing that on new subjects, but were able to complete this process with only 
 existing data. A similar concern can be expressed for the direction classification 
 algorithm sweep. Note that in this sweep, we were not looking for a particular level of 
 significance, but instead trying to maximize an objective function of classification 
 accuracy, and therefore we would not fall prey to multiple comparison fallacies. Care 
 should still be taken to avoid overfitting to our data. In this case, we tested relatively few 
 measures, so can have reasonable confidence that these findings will generalize to 
 other datasets. Further confirmation of these results should be done before immediately 
 applying them in a closed-loop experiment. 
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 Appendix A: Bayesian decoding 
 Assumptions: 

 -  Neurons’ firing follows a poisson distribution, with a mean rate dependent only on 
 the rat’s location. 

 -  Each neuron’s firing rate given the rat’s location is independent of all other 
 neuron’s firing rates 

 Definitions: 

 Standard bayesian decoding with uniform prior 

 Gaussian continuity prior based on nearby time frames 



 59 

 Movement prior based on velocity between nearby time frames 
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 Appendix B: CHOIR replay direction classification 
 Three components of CHOIR were varied in order to test the accuracy of replay 
 classification: clustering, detection, and decision criteria. Replays were classified as 
 either forward or reverse, and compared against a ground truth established using offline 
 clustering and detection. The offline detection algorithm with which ground truth was 
 established detected replay candidates as peaks in ripple power, and then classified 
 them using weighted correlation. Weighted correlation measures the extent to which 
 place bins with high probability move across the environment smoothly over time, as 
 described in Wu and Foster, 2014. Values range from -1 to 1, with negative values 
 indicating movement in one direction, and positive values the other. 

 Clustering: 
 -  Winclust: A graph-based algorithm developed by David Foster in Matt Wilson’s 

 lab. The algorithm considers each action potential in 4d-space, where each 
 dimension is the amplitude of a separate tetrode channel at the time of the peak 
 of the waveform. Iteratively larger distance thresholds are considered. At each 
 threshold, a graph is constructed where each node is an action potential and an 
 edge exists between two nodes if they are closer than the considered distance 
 threshold. Connected components are found, and if they exceed a minimum 
 number of nodes, they are considered to be a cluster. As the distance threshold 
 expands, new action potentials are assigned to an existing cluster if they are 
 connected to only that cluster. In this way, groups of action potentials that are 
 closer to each other than to surrounding spikes are identified. 

 -  BIRCH and agglomerative clustering: This method harnesses existing algorithms 
 in series. First, principal components of the action potential waveforms are 
 extracted. Then, BIRCH is run on these principal components to assign a 
 hierarchical clustering to the action potentials. Finally, agglomerative clustering 
 combines these clusters up to a set temperature threshold. 

 Note also that since running this analysis, Mountainsort has established itself as an 
 efficient and powerful method for automatically clustering large amounts of action 
 potentials, and should be considered for future applications of this software. 

 Event Detection: 
 -  Ripple power threshold: This is the simplest method, wherein replays are 

 considered as soon as the z-score of the power in the ripple band (150-250 Hz) 
 of the LFP signal exceeds a set threshold of 3. 

 -  Ripple power and weighted correlation threshold: In this method, a replay is 
 considered at the point its ripple power exceeds a z-score of 3, and the absolute 
 value of the weighted correlation exceeds a set threshold. 
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 -  Ripple power and decoding content threshold: In this method, a replay is 
 considered at the point the ripple power exceeds a z-score of 3, and a majority of 
 the decoded spatial content lies in the center of the environment, indicating a 
 replay - which typically runs from one end to the other - is roughly halfway across 
 the environment. 

 Decision Criteria: 
 -  Local start, posterior sum: This method assumes that the replay event begins at 

 the current location of the rat, which is the case a majority but not all of the time. 
 It then determines whether a replay is forward or reverse by determining whether 
 the map leading to the rat’s current location or away from that location has more 
 total decoded posterior. 

 -  Weighted correlation, posterior sum: This method considered the map that has 
 more total decoded posterior, but then decides which direction the replay is 
 proceeding along that map by looking at the sign of the weighted correlation of 
 that map’s posterior distribution. 

 -  Simple posterior sum: Replays are assumed to start at one end of the linear 
 environment. Each map is divided into the two halves of the environment, and 
 the posterior in that half is summed and added to the opposite half of the 
 environment on the opposite map. In this way, any posterior that would indicate 
 forward replay is totalled, and compared to the total posterior that would indicate 
 reverse replay. The directionality is then decided based on which total is greater. 
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 Appendix C: Results with delayed-stimulation controls only 
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 A-H:  Fig 9A-H with only delay-stimulation control  sessions included 
 I,J:  Fig 10A,B 
 K,L:  Fig 10D,E 
 M,N:  Fig 11A,B 
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 Appendix D:  Behavioral Quantification Methods 
 Each of the measures listed below was computed as described over every combination 
 of parameters listed. Each measure is labeled as a session, trial, or location measure 
 according to how it was computed. 

 Session measures, such as total task duration, yielded one number per session. Values 
 were compared across session conditions (interruption sessions vs. control sessions). 
 Correlation was also tested for within each condition and across all sessions between 
 this measure and the ripple rate during the task, ripple rate during the probe, stimulation 
 rate during the task, total number of ripples during the task, total number of ripples 
 during the probe, and total number of stimulations during the task. 

 Trial measures yielded one number per trial. Values were compared across session 
 condition, within home vs away trials across session conditions, and the difference 
 between home and away trials was compared across conditions. 

 Location measures were computed for every location in the environment, at a resolution 
 of 2.3”2.3”, and then the value at each well was sampled from this map after convolving 
 with a cone-shaped filter to apply smoothing. Values were found at the home well of 
 each session and compared to values at away wells from that session, symmetrically 
 located wells from that session, the same well at the following session, the same well in 
 all later sessions, and the same well in all other sessions. Comparisons were performed 
 across session conditions comparing home well and control location values directly, 
 difference between home and control locations, as well as correlating values across and 
 within conditions with the ripple rate during the task, ripple rate during the probe, 
 stimulation rate during the task, total number of ripples during the task, total number of 
 ripples during the probe, and total number of stimulations during the task. 

 Where behavior period is listed as a parameter with no values specified, the following 
 behavior periods were considered: 

 1.  Full task 
 2.  Task only during exploration 
 3.  Task only during movement 
 4.  Task only during movement and exploration 
 5.  Task only during home trials 
 6.  Task only during away trials 
 7.  Task only during trials 2-7 
 8.  Task only during home trials 2-4 
 9.  Task only during away trials 2-3 
 10.  Task only during trials 10-15 
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 11.  Task only during home trials 6-8 
 12.  Task only during away trials 6-8 
 13.  Task during the first home trial 
 14.  Task during the second home trial 
 15.  Task during the second away trial 
 16.  Periods 5-15 above with the first and last three seconds of each trial removed 
 17.  Full probe 
 18.  The first minute of the probe 
 19.  The first two minutes of the probe 
 20.  The probe until the home well was filled, or the full probe for probes in which the 

 well was not filled 
 21.  Probe only during movement 
 22.  Probe only while the rat was away from the wall 
 23.  Probe only during movement and while the rat was away  from the wall 
 24.  21-23 but restricted to the time before the well was filled, or the full probe for 

 probes in which the well was not filled 

 Off-wall excursions are defined as time periods in which the rat was at least one foot 
 from the nearest wall. 

 Exploration bouts are defined as time periods in which the rat moved faster than 8 cm/s, 
 where such time periods separated by less than one second were combined. Bouts 
 defined in this way in which the rat visited fewer than 4 wells were removed from 
 analysis. 

 Path optimality is defined as the total distance traveled in a given interval divided by the 
 straight-line distance between the start and endpoints of that path. 

 Gravity is defined as the fraction of entries into a larger radius around a location that the 
 rat visited a given smaller radius around that location. A gravity of 0 thus indicates the 
 rat passed through the larger radius without ever entering the smaller radius, while a 
 gravity of 1 means that every time the rat passed through the larger radius, it also 
 passed through the smaller radius. 

 Curvature was adapted from Dvorkin et al, 2010. It is defined here as the angle between 
 the entry and exit direction to and from a given location, at a radius of 8cm. 

 To calculate the spotlight measure, each recorded frame of behavior was analyzed and 
 a value was added to a running total for each location according to the location and 
 heading direction of the animal. As a default, the dot product between the heading 
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 direction and the direction from the rat to the location was added at each time step. In 
 binary mode, this dot product was passed through a binary thresholding function at 
 each time step. A distance weight was specified which weighted the value added at 
 each location exponentially by the distance between the location and the rat. Negative 
 weights led to further distances being weighted more highly, while positive weights led 
 to closer distances being weighted more highly. 
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 Measure  Parameters 

 Session Measures 

 Total task duration 

 Number of wells visited per exploration 
 bout 

 Behavior period: full probe, full task 
 Count repeats to each well: T/F 
 Count off-wall wells only: T/F 

 Number of wells visited per path away 
 from the wall 

 Behavior period: full probe, full task 
 Count repeats to each well: T/F 

 Average exploration bout duration  Behavior period: full probe, full task 

 Average exploration bout path length  Behavior period: full probe, full task 

 Average off-wall excursion duration  Behavior period: full probe, full task 

 Average off-wall excursion path length  Behavior period: full probe, full task 

 Trial Measures 

 Average trial duration  Behavior periods: all trials, trials 2-4, 2-6, 
 1-2, 1-8 

 Trial path optimality  Behavior periods: all trials, trials 2-4, 2-6, 
 1-2, 1-8 

 Trial path length  Behavior periods: all trials, trials 2-4, 2-6, 
 1-2, 1-8 

 Number of wells visited  Behavior periods: all trials, trials 2-4, 2-6, 
 1-2, 1-8 
 Count returns to wells: T/F 
 Only considered off-wall wells 

 Location Measures 

 Total time at position  Behavior period 
 Convolution radius: 0, 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1, 1.5 ft. 

 Number of visits to position  Behavior period 
 Convolution radius: 0, 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
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 1, 1.5 ft. 

 Average dwell time at position  Behavior period 
 Convolution radius: 0, 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1, 1.5 ft. 

 Average curvature at position  Behavior period 
 Convolution radius: 0, 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1, 1.5 ft. 

 Path optimality to position  Behavior period 
 Convolution radius: 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1 ft. 
 Value given to non-visted locations: NaN, 
 8.5 ft, max of visited values, mean of 
 visited values 

 Path length to position  Behavior period 
 Convolution radius: 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1 ft. 
 Value given to non-visted locations: NaN, 
 8.5 ft, max of visited values, mean of 
 visited values 

 Path length within off-wall excursion  Behavior period 
 Convolution radius: 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1 ft. 
 Value given to non-visted locations: NaN, 
 8.5 ft, max of visited values, mean of 
 visited values 
 Which excursions to consider: first, last, 
 first where location was visited, last where 
 location was visited, mean value of all 
 excursions, mean value of all excursions 
 in which location was visited 

 Path optimality within off-wall excursion  Behavior period 
 Convolution radius: 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1 ft. 
 Value given to non-visted locations: NaN, 
 8.5 ft, max of visited values, mean of 
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 visited values 
 Which excursions to consider: first, last, 
 first where location was visited, last where 
 location was visited, mean value of all 
 excursions, mean value of all excursions 
 in which location was visited 

 Latency to location  Behavior period 
 Convolution radius: 0, 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1, 1.5 ft. 
 Value given to non-visited locations: NaN, 
 maximum of visited values, mean of 
 visited values, maximum possible 
 duration for the given behavior period, 
 double the maximum possible duration for 
 the given behavior period 

 Fraction of excursions visited  Behavior period 
 Convolution radius: 0, 0.5, 1 ft. 
 Radius considered at position: 0.25, 0.5, 
 1, 1.5 ft. 

 Spotlight measure  Behavior period 
 Radius considered at position: 0.25, 0.5, 
 1, 1.5 ft. 
 Normalize by time in behavior period: T/F 
 Only sum positive values: T/F 
 Distance weight: -1, -0.5, 0, 0.5, 1 

 Gravity at location  Behavior period 
 Convolution radius: 0, 0.5 ft 
 Larger pass radius: 0.5, 1, 1.5 ft. 
 Smaller pass radius (as fraction of larger 
 radius): 0.2, 0.4 
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 Appendix E: Statistical comparison definitions 
 For each effect, a value V is determined based on the datapoints Y, and is compared to 
 the values computed after shuffling the categorical labels, C. Some effects are also 
 defined with respect to another effect, W, or a categorical label, l. 
 Main effect: 
 Difference of expected values, separated into sets for which the categorical label does 
 or does not equal the given label l. 

 Within effect: 
 The effect W, restricted to data for which the categorical label equals l. 

 Across effect: 
 The summed effect W calculated within each categorical label l. The sum is weighted by 
 the number of datapoints with each label. 

 Interaction effect: 
 The effect W within a categorical label l, minus the the effect excluding datapoints in l. 




