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Optimal Investment to Enable Evolutionary Rescue
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Abstract “Evolutionary rescue” is the potential for evolution to enable pop-
ulation persistence in a changing environment. Even with eventual rescue,
evolutionarily time lags can cause the population size to temporarily fall
below a threshold susceptible to extinction. To reduce extinction risk given
human-driven global change, conservation management can enhance popula-
tions through actions such as captive breeding. To quantify the optimal timing
of, and indicators for engaging in, investment in temporary enhancement to
enable evolutionary rescue, we construct a model of coupled demographic-
genetic dynamics given a moving optimum. We assume “decelerating change”,
as might be relevant to climate change, where the rate of environmental change
initially exceeds a rate where evolutionary rescue is possible, but eventually
slows. We analyze the optimal control path of an intervention to avoid the
population size falling below a threshold susceptible to extinction, minimiz-
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ing costs. We find that the optimal path of intervention initially increases as
the population declines, then declines and ceases when the population growth
rate becomes positive, which lags the stabilization in environmental change. In
other words, the optimal strategy involves increasing investment even in the
face of a declining population, and positive population growth could serve as a
signal to end the intervention. In addition, a greater carrying capacity relative
to the initial population size decreases the optimal intervention. Therefore,
a one-time action to increase carrying capacity, such as habitat restoration,
can reduce the amount and duration of longer-term investment in population
enhancement, even if the population is initially lower than and declining away
from the new carrying capacity.

Keywords bioeconomics · optimal control · evolutionary rescue · population
enhancement · climate change · management intervention · endangered species

1 Introduction

Global environmental change such as climate change has the potential to ex-
ceed the physiological tolerances of many organisms (Thomas et al. 2004; Ur-
ban 2015). For a population faced with environmental conditions outside its
range of tolerance, persistence might occur through either a shift in its range
or genetic adaption (Davis et al. 2005). Persistence via genetic adaptation in
response to environmental change in a population that would otherwise perish
is called “evolutionary rescue” (ER, Gomulkiewicz and Holt 1995; Carlson et
al. 2014).

To date, theory on evolutionary rescue has focused on two situations where
it can occur naturally. First, if the environmental optimum shifts suddenly,
population size initially declines and eventually increases if enough genetic
variation relative to the amount of change exists for adaptation to the new en-
vironment to occur (Gomulkiewicz and Holt 1995; Carlson et al. 2014). Such
evolutionary rescue typically involves a period of low population size dur-
ing which a population might be susceptible to factors such as demographic
stochasticity, environmental stochasticity, Allee effects, inbreeding, and genetic
drift (Lande 1998; Gilpin and Soule 1986). Second, if the environmental opti-
mum is continuously changing at a constant rate, population growth declines,
but populations with enough genetic variance relative to the rate of environ-
mental change maintain population growth (Lynch and Lande 1993; Bürger
and Lynch 1995). Therefore, populations with a given amount of genetic vari-
ation have a “critical rate” of environmental change above which ER cannot
occur and growth rates become negative (Kopp and Matuszewski 2013).

As an example of a changing environmental optimum, climate change lies
between sudden shift and gradual change. Depending on the amount of green-
house gas emissions and therefore the rate of change in the climate (e.g., mean
annual temperature), there might be a period of time where the rate of change
in the optimum is “super-critical”, exceeding the rate where evolutionary res-
cue can occur. However, as the rate of change decelerates, as eventually occurs
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for all future climate scenarios (Meinshausen et al. 2011), evolution might play
a greater role in population persistence.

Conservation management to increase the likelihood of evolutionary res-
cue and therefore population persistence under environmental change such as
climate change can take two forms: mitigation and adaptation. Mitigation to
reduce the rate or amount of change in temperature (e.g., by reducing green-
house gas emissions) can increase the ability for evolution to keep up with the
changing environment. However, for climate change, mitigation requires inter-
national cooperation (King 2004). Conservation management, however, most
often occurs at local, regional, or national scales. Further, local efforts to mit-
igate emissions do not reduce locally-felt effects of climate change. Without a
direct role in mitigating climate change, then, conservation management must
focus on “adaptation” in the anthropogenic sense, which in a conservation
context involves promoting processes that increase the likelihood of popula-
tion persistence (Stein et al. 2013). For the case of increasing the likelihood of
ER, adaptation can involve reducing local stressors (e.g., Baskett et al. 2010)
or enhancing population size to reduce the likelihood of a population falling
below a threshold size at risk of extinction (Fraser 2008).

For decelerated change such as climate change, management interventions
during the initial period when change might be super-critical could preserve
the option for longer-term ER to occur. Interventions inevitably differ in
whether they have a temporary or permanent effect on population size and
growth rate. Interventions with potentially permanent effects include habitat
restoration (Bradshaw 1996) and removal of invasive predators or competitors
(Myers et al. 2000). Interventions with temporary effects, i.e., which only af-
fect the population transiently, include resource provisioning (Ruffino et al.
2014), head-starting (captive rearing of a vulnerable early life stage), and
captive breeding (Heppell et al. 1996; Griffiths and Pavajeau 2008). Climate
change threatens a variety of species that are also targets for captive breed-
ing. For example, climate change-driven changes to river flow and temperature
can negatively affect Pacific salmon (Crozier et al 2008), and hatcheries (i.e.,
hatching of eggs in captivity to release into the wild at early life stages) are
a long-standing tool to increase salmon population sizes (Naish et al 2008).
Analogously, increases in extreme temperature events threaten the persistence
of tropical corals (Bellwood et al 2004), and ”coral gardening” (i.e., nursery-
based growth of small fragments into larger corals to outplant into the wild)
can provide large-scale population supplementation for corals (Lirman and
Schopmeyer 2016). Yet, captive rearing and breeding have the potential to
involve unintended negative consequences for wild populations such as domes-
tication, the negative effects of which can accumulate over multiple genera-
tions, which leads to recommendations to limit the use and duration of such
programs (Snyder et al. 1996; Fraser 2008). In addition, the ultimate success
of captive breeding and rearing in leading to population persistence without
requiring indefinite intervention (i.e., conservation reliance sensu Scott et al.
2010), depends on addressing the factors that originally lead to population
declines (Fraser 2008).
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In addition to the potential to incur unintended consequences, interven-
tions such as captive breeding and rearing can be costly (Snyder et al. 1996)
and budgets are inevitably limited. Thus, a key management question is the
efficient allocation of resources both over time and among populations. For
example, when is it bioeconomically optimal to invest in an intervention and
for how long should a manager keep investing? Furthermore, what biological
or economic indicators can be used to make such decisions? Investing early
may help build population abundance and reduce the effects of environmental
change. Alternatively, for populations initially close to carrying capacity and
thus self-regulating, early investments may have less effect per dollar spent.
Self-regulation might also determine the efficacy of pairing an investment with
a temporary effect such as captive rearing with an action with a permanent
effect such as habitat restoration. In particular, a one-time investment to per-
manently increase carrying capacity might reduce the investment necessary
in captive rearing by decreasing the role of self-regulation, or it might have
little effect if self-regulation has little effect on population dynamics when pop-
ulations are initially declining under rapid environmental change. Economic
factors that might further influence the pattern of investment include budget
constraints and the rate of discounting. Possible indicators for optimal timing
of investment include a population growth rate, population size, or the rate of
environmental change.

Here we quantify the bioeconomically optimal investment schedule for an
evolving population undergoing decelerating environmental change. The ob-
jective of the regulator is to minimize costs (and therefore the amount of inter-
vention) given a goal of avoiding extinction. To this end, we develop a model
that couples the demographic dynamics necessary to account for extinction
risk, the genetic dynamics necessary to account for ER, and the economic
dynamics necessary to determine the optimal investment schedule. Our bio-
logical model assumes a moving optimum where the rate initially exceeds the
critical rate for ER to occur and eventually slows to that rate (Figure 1a).
Without intervention the population size will decline below a critical thresh-
old considered at risk of extinction (Figure 1b). We also assume a management
intervention that temporarily increases population growth (e.g. resource pro-
visioning, head-starting, or captive breeding) but is costly. We analyze the
pattern of intervention that minimizes costs, subject to the constraint of keep-
ing the population above a critical size, given different values for the carrying
capacity, discount rate, and annual budget.

2 Materials and Methods

Our bioeconomic model consists of a sub-model for the environment, the bi-
ological response of the population, and the economic costs of control (i.e.,
management interventions to improve population growth). Combining these
sub-models, we pose an control problem for optimally-scheduling spending on



Optimal Investment to Enable Evolutionary Rescue 5

the control while avoiding extinction. We analyze the problem numerically to
find the optimal solution.

2.1 Model

2.1.1 Changing environment

To represent environmental change, we consider an environmental optimum
θ(t) that changes in time with rate k(t). Initially, the rate of change k0 exceeds
a critical rate kc, above which evolution cannot prevent population declines
(e.g., as in Lynch and Lande 1993) but it slows to less than kc by time tsafe.
We assume the optimum changes deterministically,

θ(t) = k(t)t (1)

where

k(t) =

{

kc

(

κ0 −
κ0−κmin

tsafe−t0
t
)

for t < tsafe

κminkc for t ≥ tsafe
, (2)

and with κ0 > 1 and κmin < 1.

2.1.2 Biological dynamics

Our model follows the joint demographic-genetic dynamics of population size
N(t) and genetic distribution ψt(a) of quantitative trait a under stabilizing
selection toward the optimum θ(t). We assume the order of events in the life-
cycle is mating, density-dependence, then viability selection. Note our life-cycle
ordering corresponds to hard selection (Wallace 1975). We also assume ran-
dom mating, a closed population, and discrete generations. Finally, we assume
many genes of small effect additively contribute to the genotype such that,
by the central limit theorem, the genetic distribution ψ(a) is normal (Lande
1976). Therefore, we define the genetic distribution by its evolving mean āt
and genetic variance σ2

a(N), which depends on the census population size to
accuont for the effects of drift, ψt(a) = exp(−(a− āt)

2/(2σ2
a(N)))/

√

2πσ2
a(N).

Specifically we use the stochastic house of cards approximation of mutation-
selection-drift balance for the genetic variance σa, as in Bürger and Lynch
(1995), which we specify below.

In the mating step, the number of offspring per individual is R0, and the as-
sumption of random mating means that the genetic distribution is unchanged
(Lande and Arnold 1983). In the density dependence step, we apply a satu-
rating Beverton-Holt (1957) function with parameter K determining carrying
capacity (equal to (R0−1)K), where density-dependent survival is independent
of genotype. Therefore, encapsulating both reproduction and density depen-

dence, the pre-selection growth function g(N(t)) = R0N(t)
1+N(t)/K depends solely

on the population size N(t).
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In the viability selection step, we convert genotype a to phenotype z
given random environmental contribution to the phenotype e normally dis-
tributed with mean 0 and variance σ2

e , i.e. we account for imperfect inher-
itance but not phenotypic plasticity, such that z = a + e. Therefore, the
phenotype probability distribution given a particular genotype is P (z|a) =
exp(−(z−a)2/(2σ2

e))/
√

2πσ2
e . We then apply stabilizing selection for θ(t) given

width of the fitness function (inverse of selection strength) ω2, such that fitness
W (z) = exp(−(z − θ(t))2/ω2. Applying selection to the genetic distribution
yields the genotypic distribution at time t as ψ′

t(a) =
∫

W (z)P (z|a)ψt(a)dz,
where the overall population fitness in generation t, equivalent to the propor-
tion of the population that survives viability selection, is

W̄ (t) =

∫

ψ′

t(a)da =

√

ω2

ω2 + σ2
a(N) + σ2

e

e
−

(āt−θ(t))2

2(ω2+σ2
a
(N)+σ2

e
) . (3)

Therefore, as θ(t) changes each generation, mean fitness changes as well, cas-
cading into changes in the population size and genetic distribution. For the
population size, applying fitness-dependent survival after growth yields the re-
cursion of N(t+1) = W̄ (t)g(N(t)). Using the above-described growth function
that accounts for reproduction and density dependence, the overall natural
population growth factor (excluding any intervention-based growth), calcu-
lated from N(t+ 1)/N(t), is:

λ̄(t, N) =
W̄ (t)R0

1 +N(t)/K
. (4)

For the genetic dynamics, we normalize the genetic distribution ψt+1(a) =
ψ′

t(a)/W̄ (t) to yield the new genotypic distribution with mean

āt+1 =
θ(t)σ2

a(N) + (ω2 + σ2
e)āt

ω2 + σ2
a(N) + σ2

e

. (5)

To simplify notation, we let s(N) = σ2
a(N)/(ω2 + σ2

a(N) + σ2
e) and rearrange

to arrive at the mean genotype recursion

āt+1 = āt + s(θ(t) − ā(t)). (6)

In these recursions we use the stochastic house of cards (SHC) approxima-
tion as in Bürger and Lynch (1995): first, setting the effective population size to

Ne(N) = 2R0

2R0−1N and, second, using the formula σ2
a(N) = 2VmNe(N)

1+α2Ne(N)/(ω2+σ2
e
) ,

where α2 is the genetic effect size variance of a new mutation and Vm is the
mutational variance. The SHC approximation accounts for the equilibirium
effect of changing population size on genetic variance with a fixed optimum,
constant mutational variance, effect size, and demography; using it for dy-
namic population size change as we do (consistent with Bürger and Lynch
1995) is inexact but caputres the coarse-scale effect of population size change
on genetic variance (Kopp and Matuszewski 2013).



Optimal Investment to Enable Evolutionary Rescue 7

Our model for a decelerating optimum, eq. (1), requires choosing a value
for the parameter defining a critical rate of change kc beyond which ER cannot
occur. To do so, we use an approximate model with constant environmental
change θ(t) = k̃t given k̃ constant in time. Then the model is identical to
a simplified version of Bürger and Lynch (1995) presented in Kopp and Ma-
tuszewski (2013), and the population reaches a dynamic equilibrium where the
trait lags the optimum by the value k̃(σ2

a(N) + ω2 + σ2
e)/σ

2
a(N). Using this,

Kopp and Matuszewski (2013) calculate the value of k̃ at self-replacement such
that for any k̃ > kc the population is below replacement (i.e. λ̄ < 1) and the
population will decline, as

kc(N) = σ2
a(N)

√

√

√

√

2 log
(

R0

√

s(N)
)

σ2
a(N) + ω2 + σ2

e

. (7)

Here, we still employ the SHC approximation, such that the population size
affects the critical rate kc(N), which thus should be computed for the mini-
mum population size reached during ER. For this, we use a population size,
N = Nc,g below which negative factors beyond demographic stochasticity
(e.g., mutational meltdown) may cause rapid population extinction.

2.1.3 The control: improving population growth in situ

We consider a control that temporarily modifies the population growth rate
in situ, resulting in changes in population dynamics and costs to the manager.
If the control increases the population by a factor v(t) ≥ 1 at each time
t simultaneous with natural production R0 then we replace the population
size N(t) with N(t)v(t) in eq. (4), and the population dynamics with the
intervention are

N(t+ 1) = N(t)v(t)λ̄(t, v(t)N(t)). (8)

The mean trait dynamics (eq. (6)) are unchanged.
We assume that interventions incur costs c(v(t)) that scale quadratically

with the proportional increase in the growth rate. We also consider a yearly
budget constraint.

2.2 Statement and analysis of the control problem

The control problem is to minimize costs c(v(t)) while avoiding population
sizes below a critically low level, Nc,s, assuming the growth rate eq. (4) de-
termines the biological dynamics, values of the control within the feasible set
v(t) ∈ Ω, and with discount rate ∆ across the time horizon T ,

minΩ
∑

t

c(v(t))

(

1

1 +∆

)t

∀t ≤ T (9a)

subject to N(t) ≥ Nc,s, v(t) ≥ 1, (9b)
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where the dynamics of population N(t) are defined in eq. (8).
To analyze the discrete-time optimal control problem eq. (9a) we spec-

ify concrete functional forms for the costs and add constraints based on the
population dynamics. For a control v(t) we assume a simple cost function
c(v(t)) = log v(t)2, which results in a cost of 0 when v(t) = 1 and quadratic
costs for log-scale intervention u(t) = log v(t). The objective at each time (ne-
glecting discounting) is then u(t)2. We also let x(t) = logN(t), and denote the
log-scale initial population size as xinit = logN(0), which enters the problem
as an equality constraint at time 0. We denote the log-scale critical population
size as xc = logNc,s, which enters the problem as an inequality constraint at
each time. In log scale, the recursion for population growth from eq. (8) is
x(t + 1) = u(t) + x(t) + log λ̄(t, exp(x(t) + u(t))), these dynamics enter the
problem as an equality constraint at each time. Finally, we assume a budget
constraint with a constant budget b within each year, which imposes another
inequality constraint at each time. Accounting for all of this, the constrained
control problem is

min
u(t)

T−1
∑

t=0

u(t)2
(

1

1 +∆

)t

subject to (10a)

x(t+ 1)− x(t) = u(t) + log λ̄ (t, exp(u(t) + x(t))) t = 0, 1, . . . T
(10b)

x(0) = xinit (10c)

0 ≤ u(t) t = 0, 1, . . . T − 1 (10d)

u(t)2 ≤ b t = 0, 1, . . . T − 1 (10e)

x(t) ≥ xc t = 0, 1, . . . T. (10f)

2.2.1 Parameter choices and assumptions

To model a situation where the population is initially declining but could
eventually recover (albeit having experience populations too low to persist),
we assume tsafe, the time at which the rate of environmental change k(t) in
eq. (2) transitions from being greater than to being equal to the rate at which
ER is possible, kc(Nc,g), occurs within the time horizon, i.e., tsafe ≤ T .

We chose the biological parameters to start in a space where, without inter-
vention, the population initially declines to a low population size susceptible
to stochasticity but not to deterministic extinction, as that is the parameter
space where our central questions on the effects of intervention on ER are
relevant. We also assume that the population initially is experiencing a sus-
tainable rate of environmental change. See Table 1 for all default parameter
values used. In addition to analyzing the optimal path of investment in inter-
vention for these default values, we compare the optimal path under varying
density-dependence K = 10, 000, K = 15, 000, or K = 20, 000 to explore the
effect of population regulation, and a discount rate of ∆ = 0 or 0.025 and a
budget of b = 0.01 or 0.02 to explore the effects of economic factors. In all
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cases, the initial genetic mean is the initial optimal phenotype a0 = θ(0) = 0
and the initial population size is set equal to the equilibrium population size
with K = 10, 000 accounting for variance load N(0) = W̄ (0)(R0 − 1)K under
the assumption that the environment is already changing at a rate κmin (this
results in N(0) ≈ 3600).

Table 1 Parameters and default values.

Parameter Default Value Description
R0 1.5 Number of offspring per individual
K 15,000 Carrying capacity
ω2 50 Selectional variance (inverse of selection strength)
α2 0.05 Genetic effect size variance of a new mutation
Vm 0.001 Mutational variance
σ2
e 0.5 Environmental contribution to phenotypic variance

tsafe 20 Time at which the rate of environmental change slows to a value where ER
can occur

κ0 2.5 Maximum rate of change (multiplied by kc(Nc,g))
κmin 0.95 Minimum range of change (multiplied by kc(Nc,g))
Nc,g 500 Population size used for calculating critical rate of change kc
Nc,s 1,000 Critical population size for extinction risk due to stochastic factors
∆ 0.025 Discount rate
b 0.01 Annual budget

2.2.2 Model analysis

We numerically analyzed the system (10) with augmented Lagrangian min-
imization (Birgin and Mart́ınez 2008) as implemented in the NLOPT library
(Johnson 2016). This requires restating the problem as a constrained discrete-
time optimal control problem (see, e.g., Chow 1997), with eq. (10)a as the ob-
jective to minimize, eqs. (10)b and (10)c as equality constraints and eqs. (10)d,
(10)e, and (10)f as inequality constraints. See the supplementary methods (On-
line Resource 1) for code. For all parameter combinations, we set the initial
control and population to a path found using a zero discount rate and a large
number of iterations. For global optimization algorithms such as the one we
employ, convergence is difficult to assess in general. For a convergence crite-
rion, we considered a path optimal if the solver consistently converged upon
it with an increasing number of iterations; see Appendix A.

3 Results

Given our choice of parameter space and assumption that the rate of envi-
ronmental change starts greater than, and eventually shows to, a value where
ER is possible (Figure 1a), without intervention population growth is initially
negative and population size falls below a critically population vulnerable to
extinction (Figure 1b). Eventually, as environmental change slows, population
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population growth will become positive (Figure 1b), with a U-shaped demo-
graphic trajectory analogous to ER models with sudden environmental shifts
(Gomulkiewicz and Holt 1995; Carlson et al. 2014).

3.1 Optimal investment trajectory and indicators

The optimal trajectory for investment in intervention initially increases quickly,
with investment peaking at or before the time when the population size reaches
the minimum acceptable population size (Figure 2). Notably, investment in-
creases even as the population is declining under the management intervention
(Figure 2c). Thus, in this case, declining population under a management in-
tervention does not imply that the strategy is non-optimal.

Optimal investment then begins to slow in the year that the population
growth rate, including effects of intervention (gray line in Figure 2c), transi-
tions from population decline to stable. Investment reaches a very low level
once population growth rate would be positive without the effects of interven-
tion (Figure 2c); this occurs with some delay after the rate of change decreases
to the critical rate kc. Once that occurs, at time tsafe, the rate of environmen-
tal change is still positive, but at a rate slow enough for evolutionary rescue
to occur if it were constant; however, intervention is still needed after tsafe
to reduce lag between the population mean trait and the optimal trait to a
sustainable magnitude.

3.2 Factors that influence the optimal trajectory of investment

A carrying capacity further from the initial population size favors lower in-
vestment overall and shifts investment later in time (Figure 3). Compared to
carrying capacity, the economic factors of discounting and budget constraints
had weaker effects on the amount of investment in intervention (Figure 3-
4). Greater discounting favors investing later in time (Figure 4) and weakens
the need to ramp investment down to zero after positive population growth
is achieved (with zero discounting investment goes to practically zero at this
point; see Appendix, Figure 4).

4 Discussion

We find that, with decelerating change, short-term investment in enhancing
population growth can reduce extinction risk to allow for a combination of evo-
lution and global-scale mitigation (resulting in deceleration of the optimum)
to lead to long-term persistence. This occurs because at the time investment
is stopped, the rate of change is within the population’s tolerance limits (see,
e.g., Bürger and Lynch 1995). Optimal investment trajectories to conserving
populations in the face of global stressors may initially mean doubling down
on what appears to be a failing strategy due to ongoing population decline



Optimal Investment to Enable Evolutionary Rescue 11

(Figure 2a,b). Mumby et al. (2017) provide a similar example where a declin-
ing system state is not a signal of improper management. In their analysis of
coral reef management under climate change, they point out if managers and
the public consider the unmanaged (or non-optimally managed) counterfactual
scenario then this can alter perceptions of management utility. Such analyses
are necessary to evaluate the effectivness of management and distinguish be-
tween those strategies that are actually failing and those which are optimial
but still result in declines; our results demonstrate that such exercises may be
needed to avoid a crisis of motivation when managing populations that are
capable of evolutionary rescue.

In contrast to the trend or status of population size, under optimal man-
agement the trend in population growth rate (including management’s effect
on population growth) reliably increases, at first becoming less negative and
eventually leveling out to stable then increasing to persistence (positive popu-
lation growth; Figure 2c). This indicates that trend in growth rate may provide
a reliable signal of management efficacy as compared to the trend in popula-
tion size. These same observations imply that timing of assessment matters:
assessing the effect of an intervention prematurely may lead managers to dis-
miss what would be a successful strategy in the long run.

Overall, the optimal investment trajectory of initially increasing, then, as
population growth stabilizes, decreasing, to stop when population growth is
positive, is surprisingly robust to a wide array of economic assumptions and
parameters, both qualitatively and quantitatively (Figure 3). Note that this
unimodal investment trajectory is analogous to that in Lampert and Hastings
(2014), focused on the optimal investment schedule for restoration to accelerate
the recovery of a degraded system in a stable environment (without evolution).
Much like the cessation of investment when evolutionary rescue can occur
naturally in our model, the optimal investment trajectory in Lampert and
Hastings (2014) ceases after at an “economic restoration threshold”, before
full recovery has occurred. Both Lampert and Hastings (2014) and our study
are examples of a phenomenon that is likely more general in conservation
decisionmaking: optimal managment involves investing to a point when natural
processes can complete recovery.

Carrying capacities closer to the initial population size led to earlier and
greater investment in population enhancement (Figure 3), which indicates a
significant role of density-dependent suppression of population growth even for
declining populations. This result reflects the fact that per-capita reproduc-
tion decreases as the population approaches the carrying capacity, and again
points to population growth serving as a more useful indicator than popula-
tion size: while a population size near carrying capacity might, based on intu-
ition, be considered to be not yet in need of support, the faster initial decline
(due to stronger density dependence in combination with rapid environmental
change) means that it actually requires greater initial intervention. In addi-
tion, this result indicates that a separate investment to permanently enhance
carrying capacity, such as through restoration, can significantly reduce the in-
vestment necessary in short-term population enhancement, such as through
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captive rearing or breeding. A key next step in this analysis would be to
analyze the optimal investment across actions with long-term and short-term
effects; note that, unless the action with long-term effects enhances population
growth rather than carrying capacity, investment in short-term population en-
hancement will always be necessary under our model assumptions given rapid
environmental change leading to initial population declines.

4.1 Applications

Our model provides a generic representation of cases of systems where climate
change might threaten near-term persistence and interventions to increase pop-
ulation size during such a period are feasible. Examples include climate change-
driven changes to rivers treatening Pacific salmon Pacific salmon (Crozier et
al 2008) whose populations can be supplemented via hatcheries (Naish et al
2008), and climate threats to the persistence of tropical corals (Bellwood et al
2004) whose populations can be supplemented via ”coral gardening” (Lirman
and Schopmeyer 2016).

Direct application of our model to one of these cases would require empir-
ical knowledge of both genetic potential and the change in the environmental
optimum, as well as other biological parameters. Although such estimates of
genetic parameters are often available (see, e.g., Carlson et al 2014) estimates
of environmental optima are rare, but critical for predicting evolutionary re-
sponses to environmental change (Chevin et al 2010; Chevin et al 2017). Our
analysis demonstrates how such predictions might be used by managers; the
next step is to develop parameter estimates and models for specific settings.
Such case-specific models would need to address not only biological param-
eters but policy choices, for example the quasi-extinction threshold, Nc,s. In
fact, even the use of a threshold is a choice. For some cases, an alternative
model where a explicit value is placed on existence of the population my be
preferable.

4.2 Assumptions and analytical choices

As with any model, our model makes a number of simplifying assumptions for
tractability. For example, we use a generic form of population enhancement
that temporarily increases growth rate, which we associate with actions such
as resource supplementation, head-starting, or captive breeding. As noted in
the Introduction, such actions might incur unintended consequences such as
domestication and reduced fitness, which we ignore with our assumption that
the genetic dynamics (dynamics of āt) are independent of the intervention.
For example, reductions in wild fitness occurs rapidly in Pacific salmon reared
in hatcheries (Araki et al. 2008; reductions can occur within one generation,
Christie et al. 2012). Incorporating such unintended fitness consequences of
captive rearing would likely delay the evolutionary response in our model and
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therefore might increase the duration of intervention necessary given our con-
straint of maintaining a population size above a critical threshold, depending
on how much an increase in program duration intensifies domestication se-
lection. Quantitative genetic models indicate that one potential approach to
reducing such unintended fitness consequences is to consistently target a com-
bination of captive-reared and wild-reared individuals in the captive environ-
ment (Ford 2002; as opposed to captive-reared only, Baskett and Waples 2013).
Alternatively, careful management of breeding’s effects on genetic variance in
trait and fitness might prove an accelerator for evolution and be purposely
used (as in “adaptive provenancing” sensu Weeks et al. 2011; or “assisted evo-
lution” sensu Oppen et al. 2015), where the balance between domestication
and assisted evolution effects would determine the efficacy of this approach.

One major omission from our modeled scenario is phenotypic plasticity.
When phenotypes plastically respond to environmental change, this can facili-
tate adaptation to a changing environment (Chevin et al. 2010) and thus evo-
lutionary rescue; the relationship between the environmental cue that affects
phenotype and the environment of selection, however, is critical for determin-
ing whether plasticity increases the chances of evolutionary rescue (Ashander
et al. 2016). However accounting for plasticity may be important in under-
standing the effects of climate change, as much of the response in traits ob-
served to date owes to plasticity (Merilä and Hendry 2014). This may be
especially true for species with complex life cycles involving many transitions
between environments (e.g., Pacific salmon, Crozier et al. 2008).

Our modeled intervention to increase short-term population growth as-
sumes immediate effect. In reality, many interventions, such as habitat restora-
tion or removal of stressors like invasive species, might have delayed effects and
require intervention over multiple years for a permanent effect to occur (My-
ers et al. 2000; Borja et al. 2010). In a discrete-time formulation such as ours,
delays like this would likely result in greater investment earlier in time. These
and other subtleties warrant investigation in future work on the interaction
between microevolution and restoration, a topic of increasing import given
climate change (Rice and Emery 2003).

In our analysis, we rely on a threshold population size Nc,s to indicate
extinction risk to factors such as demographic stochasticity, environmental
stochasticity, Allee effects, inbreeding, and genetic drift. Although this ap-
proach is common, and may seem conservative (Gomulkiewicz and Holt 1995),
it may mislead. Explicit analyses of demographic and genetic stochasticity can
more effectively describe how extinction risk varies with factors such as genetic
variance and indicate that minimum population size might better predict ex-
tinction risk than time below a threshold (Boulding and Hay 2001). However,
for applications it is more common to set management goals in terms of popu-
lation size as compared to actual extinction risk (Flather et al. 2011). In part,
this may be because population size is easier to quantify than risk.

For our population dynamics, we further assume a saturating, Beverton-
Holt (1957) form of density-dependent regulation, which ignores the potential
for overcompensation (i.e., a decline, rather than saturation, at large popula-
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tion sizes, as in Ricker density dependence). Strong overcompensation would
likely delay the optimal initial investment until after some population decline
has occurred, such that enhanced population growth would not increase the
population size beyond the overcompensatory level where large-scale declines
would then occur. Analogously, an initial action to permanently increase car-
rying capacity and therefore weaken density dependence might have even a
stronger effect under overcompensatory density dependence. However, we ex-
amined only a single life-cycle ordering (reproduction, density-dependence,
viability selection), which corresponds to hard selection (Wallace 1975). Via-
bility selection occurring before, rather than after, density dependence would
likely reduce the role of increasing carrying capacity in decreasing the amount
of investment necessary. Further, we examined only non-overlapping genera-
tions without age structure. The response of such populations is an intersting
topic for future work, as it is unclear whether they would respond more or less
rapidly than the case of non-overlapping generations studied here. On the one
hand, overlapping generations with age structure can increase the maintenance
of genetic variation (Ellner and Hairston 1994), and greater genetic variation
can mean greater adaptive capacity and therefore more rapid evolutionary
response. On the other hand, generation time is longer in such populations,
resulting in slower evolutionary response.

We relied on standard assumptions for quantitative genetic models, which
include a large number of loci contributing additively to a trait with a normal
distribution (Lande 1976; Lande 1982). Such assumptions typically have mi-
nor effects on the predicted evolutionary trajectory (Turelli and Barton 1994).
We did account for the effect of population size on genetic variance, where
we used the stochastic house-of-cards (SHC) approximation as in Bürger and
Lynch (1995). This captures the effect of how small population sizes will lower
genetic variance, thus reducing the capacity for evolutionary rescue (Lynch and
Lande 1993; Bürger and Lynch 1995; Gomulkiewicz and Holt 1995; Carlson
et al. 2014) and therefore likely increase the amount and duration of invest-
ment necessary. Although, as Kopp and Matuszewski (2013) point out, the
SHC approximation does not account for the effect of directional selection on
increasing genetic variance, both this effect and the mutation-selection-drift
balance modeled by the SHC occur only after some transient period; the SHC
approximation likely captures the correct overall average effect of declining
population size: reducing genetic variance.

Our major economic assumption is that cost of the intervention is quadratic
in the amount of intervention. In reality, there might be decreasing costs, i.e.,
returns to scale, for supplementation programs. However, for planning initial
investments in a program for a small and declining population, the context we
focus on here, such returns may never be achieved.
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4.3 Evolutionary rescue modeling frameworks

As noted in the introduction, our model of a decelerating optimum is an in-
termediate between the typical evolutionary rescue models of either a sudden
environmental shift (Gomulkiewicz and Holt 1995; Carlson et al. 2014) or an
ongoing moving optimum (Lynch and Lande 1993; Bürger and Lynch 1995).
Because we assume that the rate of environmental change is initially greater
than the critical rate of change for evolutionary rescue to occur, without (and
even with) intervention, we find a U-shaped population trajectory of initially
decreasing, then increasing, population size (Figure 1b), commonly associated
with models that have sudden environmental shifts. As compared to other
moving-optimum models, which typically use criteria for rescue that are con-
servative and imply that, when evolutionary rescue occurs, population size
never declines (Kopp and Matuszewski 2013), we present a more realistic rep-
resentation of environmental change such as climate change (albeit one that
does not yet include effects on climate variability), while still constructing a
generic model as compared to system-specific models of evolutionary response
to local-scale climate trajectories (e.g., Baskett et al. 2009, 2010; Sinervo et al.
2010; Reed et al. 2011). Therefore, the decelerating optimum model illustrates
a general approach to exploring the interaction between mitigation (manage-
ment to reduce the rate of change) and adaptation (management to enhance
the capacity for local systems to respond to change) in promoting evolutionary
rescue and population persistence under climate change.
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with uniform random initial conditions, and run for 2,500 iterations (Figure 4). To assess
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B Code and graphics

We performed all numerical analyses in R using the nloptr package to perform optimization
and dplyr to manage numeric outputs; we provide R code and metadata for optimal paths
in Online Resource 1; the optimal path used for initial conditions is provided in Online
Resource 2 and the optimal paths for all parameter combinations are provided in Online
Resource 3. We produced all graphics using R packages ggplot2 and cowplot.
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Fig. 1 Under “decelerating environmental change” (a), the optimum trait value (solid line)
initially increases rapidly, then slows to the critical rate where evolutionary rescue can occur
at time tsafe (vertical dash-dot line). The population mean trait (dashed line) initially lags
from the optimum but after tsafe closes the gap. Without intervention to supplement or
improve population growth (b), the population will fall below critically low size susceptible
to extinction (gray line) for an extended period, but it does eventually increase. Meanwhile,
the genetic variance decreases with decreasing population size (c) according to the stochastic
house-of-cards approximation.
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Fig. 2 Details of the (a) optimal investment path, (b) population size, and (c) population
growth rate (log λ̄) under the default parameter values (Table 1) with varying K. The strat-
egy that minimizes costs to intervention while avoiding a population size below a threshold
vulnerable to extinction (horizontal dotted line in B) results in an initial increase in invest-
ment, which peaks then decreases (a) in the same year that the growth rate including the
intervention (gray line) transitions from negative to zero (stable; C); note that without the
intervention population growth rate would still be negative (black line in C). Investment
ramps down after the time tsafe (vertical dash-dot line) when the rate of environmental
change equals the critical rate where evolutionary rescue can occur, i.e. population growth
can become positive without intervention (Figure 1).



Optimal Investment to Enable Evolutionary Rescue 21

b: 0.01 b: 0.02

0 25 50 75 100 0 25 50 75 100

1000

10000

Time

P
op

ul
at

io
n 

si
ze

a

K
10000
15000

Discount rate
0
0.025

b: 0.01 b: 0.02

0 25 50 75 100 0 25 50 75 100

0.00

0.05

0.10

Time

C
on

tr
ol

 (
lo

g)

b

Fig. 3 Optimal control with varying carrying capacity (varying greyscale) and discount
rate (varying linetype) for two yearly budgets. (a) Population sizes under the optimal path
of investment in intervention, which includes the constraint of not allowing the population
to fall below a size considered vulnerable to extinction (horizontal dotted line). (b) Optimal
investment trajectory relative to the budget constraint (horizontal line), where investment
ends when population growth is positive, lagged after the rate of change decreasing to the
critical rate where evolutionary rescue can occur at tsafe (vertical dash-dot line). Discount
rates have little effect relative to that of carrying capacity. A carrying capacity closer to
the initial population size (which corresponds to K = 10, 000) leads to initially-steeper
population declines and earlier peak investment. The larger budget (b = 0.02 per year)
never constrains the solution. All solutions assume decelerating environmental change as
in Figure 1a where the rate of environmental change decreases to the critical rate where
evolutionary rescue can occur at tsafe (vertical dash-dot line).
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Fig. 4 Optimal control with varying discount rate (varying linetype) including zero dis-
count. The zero-discount path was used to initialize the runs with positive discount. (a)
Population sizes under the optimal path of investment in intervention, which includes the
constraint of not allowing the population to fall below a size considered vulnerable to ex-
tinction (horizontal dotted line). (b) Optimal investment trajectory relative to the budget
constraint (horizontal line). All solutions assume decelerating environmental change as in
Figure 1a where the rate of environmental change decreases to the critical rate where evo-
lutionary rescue can occur at tsafe (vertical dash-dot line).
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Fig. 5 Optimal paths for increasing run times (lighter greys) to show convergence of control
paths for different budgets (columns) and discount rates (subpanel rows) at three carrying
capacities corresponding to (a) K = 10, 000, (b) K = 15, 000. There are three runs shown
in each panel: 1000, 2000, and 2500 iterations. In most cases the two longest runs resulted
in the same path.
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Fig. 6 Optimal paths for increasing run times (lighter greys) to show convergence of
population trajectories for different budgets (columns) and discount rates (subpanel rows)
at three carrying capacities corresponding to (a) K = 10, 000, (b) K = 15, 000. There are
three runs shown in each panel: 1000, 2000, and 2500 iterations. In most cases the two
longest runs resulted in the same path.
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