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Abstract 

Beliefs are a fundamental component of our daily decisions, 
and as such, beliefs about our health have a huge impact on 
our health behaviors. Poor medication adherence is a well-
documented problem and while it has been extensively 
researched, it has yet to be addressed using a Bayesian 
framework. This study aims to use a mixture model to 
understand belief updating as it affects decision making. 
Using an established experimental paradigm in categorical 
perception, we test memory and prediction in order to 
establish a model that can explain human belief updating. 
Results indicate that a mixture model provides a good 
explanation of participant behavior in this paradigm.  

Keywords: Belief Updating; Decision making; Bayesian 
Models. 

Introduction 
Our beliefs influence the way we navigate the world at all 
times. If these beliefs are misaligned with reality, our 
behaviors will be maladaptive. Some of our most important 
beliefs are those about our health; indeed, medication 
adherence, which is a significant hurdle for the public health 
community, is thought to be affected by factors associated 
with patient beliefs (Horne & Weinman, 1999). Doctors 
continuously struggle with why patients do not follow their 
medication schedules despite the negative consequences.  

According to the American Heart Association, within 
seven days of a heart attack, 24% of patients will not have 
filled their prescription. Of those who do begin their 
medication regimen, 34% will have stopped one prescribed 
medication and 12% will have stopped all three prescribed 
medications within a single month. Lastly, 60% of patients 
will be completely non-adherent to their prescribed 
medication after two years (Ho, Bryson, & Rumsfeld, 
2009). The consequences of non-adherence in this case are 
life threatening; patients who do not fill any of their 
prescriptions have an 80% higher mortality rate within 120 
days than those who do take their medication as instructed 
(Baroletti and Dell’Orfano, 2013).  

Many investigations have proposed explanations for 
patients’ failure to take their medication. Patients have cited 
forgetfulness (30%), other priorities (16%), lack of 
information, (9%) and emotional factors (7%) as reasons for 
failing to take their medication as prescribed (Ostenberg & 
Blaschke, 2005). The non-adherence of patients has been 
suggested to fit into six distinct categories:  those who (1) 

do not understand how adherence relates to their well-being; 
(2) believe the costs of the medication outweigh the 
benefits; (3) find the regimen too complex; (4) are not 
vigilant; (5) hold inaccurate beliefs about medications; and 
(6) do not perceive the medication to be effective (Marcum, 
Sevick & Handler, 2013). Yet, no clear understanding of 
these underlying components exists, and physicians have 
argued that a model is necessary in order to tackle such a 
complex problem (Vermeire, Hearnshaw, Royen, & 
Denekens, 2001). 

 While such previous research suggests that people make 
medication choices irrationally, Bayesian models of 
cognition (a.k.a. rational models) present another way to 
understand medical decision making. In light of this, we 
propose a rational model that accounts for and makes 
predictions about why people would behave in this way.  

The rational approach suggests that improving medication 
adherence is partly a problem of whether people are 
updating their beliefs about themselves optimally. If 
someone believes that they are a generally well person, they 
will have to update their beliefs in the face of evidence 
suggesting otherwise (e.g. a heart attack). After a heart 
attack, there may be necessary lifestyle changes (e.g. 
medication, exercise, and dieting), but without updating 
their beliefs, people may fail to make the necessary changes. 

Assuming that people do Bayesian inference in their head, 
Bayes’ rule gives a principled account of how people should 
update their beliefs in light of new evidence: 
!!!!!!!!!!!!!!!!!!!! ! ! ∝ ! ! ! !(!)  Eq (1) 
The posterior probability p(B|E) gives the probability of 

the belief B given the observed evidence E. This posterior 
probability is based on a combination of p(B), which is the 
prior probability (or strength) of the belief, and p(E|B), 
which is the likelihood of observing the current evidence 
given the belief. After observing the evidence E, p(B|E) 
becomes the new belief p(B) in the next iterative time step. 
This approach is useful because it characterizes the 
computational problem people face when trying to make 
sense of the world given evidence with varying degrees of 
uncertainty.  

Bayes' rule predicts a tradeoff between prior beliefs and 
observed evidence. When our prior belief is strong and we 
encounter weak evidence, our new belief will closely reflect 
the prior. Conversely, in situations with a weak prior belief 
and strong evidence, the new belief will closely reflect the 
evidence. In situations where both the evidence and prior 
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belief are strong, the new belief will lie somewhere in 
between. It is, however, unclear what constitutes either a 
strong prior belief or strong evidence in human updating of 
beliefs from real-world experiences.  

The way evidence from a negative health event is 
integrated into our belief system is also important. 
Information has been shown to decay at different rates based 
on the source (Yang, Mohan, Mehrotra & Varshney, 2002). 
Therefore, information from the body is treated differently 
than information communicated from a doctor. If a person is 
informed of a problem but cannot feel it, they may integrate 
this information differently or the information might decay 
more rapidly. Some information will not decay until new 
evidence is present, and some will decay at an exponential 
rate after it is presented. This decay function modifies a 
traditionally static belief-updating model (P(B|E)) to a time- 
dependent conditional probability such that P(B:tB|E:tE) 
(Yang et al., 2002).  

In a standard belief-updating model, the prior distribution 
for a given belief should be combined with the data from the 
environment to create a posterior distribution. Afterwards, 
the posterior distribution should become the new belief. 
However, human behavior suggests that beliefs are not 
updated as efficiently as this model would suggest; for 
example, after a negative health event, people appear to 
maintain the belief that they are healthy (i.e. there is a lag in 
updating of beliefs). Lag in updating occurs when evidence 
accumulates before an update is prompted. In order for the 
belief system to update, there must be a sufficient amount of 
evidence, which may take several trials to accumulate 
(Sanborn, Griffiths, & Navarro, 2010). Even after the belief 
is updated, people appear to slowly return to the belief that 
they are healthy, which can be considered a regression back 
to a baseline belief. This occurs when beliefs are initially 
updated after evidence, but slowly return to the initial prior. 

These factors might be explained by the inclusion of 
multiple prior distributions. Rather than just one belief that 
updates to include new evidence, there might be two or 
more: one that remains relatively static and others that 
update with new evidence. This suggests that people make 
choices based on a mixture of these two distributions.  

In the case of medical decision making, people may have 
two prior distributions: one baseline prior and one updated 
prior that integrates negative health information (e.g. a heart 
attack). This baseline prior likely integrates information 
about our wellness throughout our lives—both when we 
were sick and when we were not—which may leave us with 
a general impression that illnesses tend to come and go. 
When deciding whether to take medication, people are 
making a prediction about their future wellness, and to do 
this they must choose from which prior—their baseline prior 
or their updated prior—to sample. This choice may be based 
on the relative strength of the priors; while the new prior 
may be relevant at the moment, the baseline prior may be 
used for making predictions about their health. When 
choosing a distribution for prediction, they will likely 

choose the one with more accumulated evidence, which is 
often the baseline prior. If people sample from the baseline 
prior, they might be less likely to take their medication 
because they believe that this illness, like previous ailments, 
is likely to come and go. 

The existence of multiple distributions is further 
supported by evidence in the animal literature on 
spontaneous recovery. Spontaneous recovery occurs in rats 
when they are trained on a reward schedule for a long period 
of time, then trained on a new reward schedule, and after a 
break, regress to the initial schedule (Gleitman, 1971). If 
they are reminded of the new schedule after this recovery, 
they will switch to it much more rapidly than during initial 
training. Memory theorists have argued that rats are storing 
two separate distributions: one for reinforcement and one 
for non-reinforcement, and that these two distributions 
compete (e.g. Gleitman, 1971).   

In the current study, we investigate how the strength and 
duration of evidence influences belief updating, and explore 
possible factors affecting optimal belief updating and future 
prediction, including lag and regression to baseline beliefs. 
We model this data within a simple rational model that 
assumes that memory and prediction are integrated with 
beliefs about the underlying environment. To this end, we 
have constructed an experimental paradigm to simulate real 
world belief updating. The paradigm is based on previous 
research on categorical perception (Huttenlocher, Hedges, 
and Duncan, 1991) in which the authors found a regression 
to the mean effect in recall, as predicted by Bayes rule. This 
effect suggests a trade-off between memory and 
environmental evidence. 

Experiment 
It is not ideal to manipulate people’s beliefs about their 
health in the real world; therefore, in this experiment we 
used an artificial paradigm that manipulates the same 
components. The experiment tested the model’s predictions 
of how variation in prior beliefs should influence stimulus 
estimation. In this task, participants were asked to record the 
location of a dot in a circle and reconstruct that location 
from memory. Dots were presented inside a circle one at a 
time in clusters at different locations around the circle, and 
participants were asked to remember where they saw each 
dot. The task was chosen because it has been demonstrated 
that participants are able to learn the underlying distribution 
of dots, thereby making it an effective tool for studying 
belief updating (Huttenlocher et al., 1991). Our task extends 
the Huttenlocher paradigm by including prediction in 
addition to recall. These prediction trials were meant to 
assess participants’ beliefs about the future. We predicted a 
regression to the mean effect similar to that of Huttenlocher 
et al. (1991) and a prediction bias such that predictions 
further in the future will be biased further away from the 
current cluster mean and toward the overall distribution. 
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Method 
Participants were recruited from Rutgers University, New 
Brunswick. There were eight participants in this study and 
they were compensated with $10 for their participation, 
which lasted approximately 30 minutes. 

Procedure In this experiment, participants were asked to 
record the location of a dot presented in a circle (see Figure 
1) and reconstruct that location from memory. Participants 
were given a cover story in order to keep the task engaging; 
they were told that the circle was a garden and the dots were 
moles. In order to save their garden, they had to “catch” the 
moles by clicking on the locations where they saw them. 

Baseline was established over a training period by 
presenting sequences of dots near the center of the circle. 
Belief updating was measured by presenting a single dot or 
sequence of dots either close to or far from baseline. Three 
manipulations on dot location and distribution were used to 
assess updating in this task: variance, location (consisting of 
a distance and angle measure), and number of trials. The 
distances and angle measures were informed by 
Huttenlocher et al. (1991). There were 24 angle measures 
including the axes, and the measures consisted of the same 
relative angles in each quadrant. Four different distances 
measuring out from the center of the circle to the 
circumference were chosen, and represented in each 
quadrant. Dots were presented in blocks (3, 6, 9, or 12 
presentations in a cluster), sampled from a multinomial 
normal distribution with a mean of a given radius and one of 
three variances (0.01, 0.04, and 0.06 in a unit circle) chosen 
respectively to represent weak, average, and strong 
evidences.  All presentations at baseline were at the smallest 
variance in order to strengthen baseline evidence. Each of 
the relative angles had a different distance, variance, and 
number of trials. The trial order was randomized, starting 
with 20 dots presented at baseline.  

Each dot was viewed for one second followed by a 
combined visual mask and distractor task designed to 
remove the dot from participants’ visual field and introduce 
uncertainty in the memory process. This mask consisted of a 
grid of black and white squares; after this mask was 

removed, an “X” appeared on the screen and participants 
were asked to report the color of the square (black or white) 
previously in that location. Data from the distractor task was 
recorded but not analyzed. After the completion of the 
distractor task, participants were asked to reconstruct the 
location of the dot from memory by clicking a spot in the 
circle. 

After every three trials, participants were asked to make a 
prediction about a future dot location. Prediction trials 
alternated between prediction for the next trial and 
prediction for five trials from now. Each block (defined as a 
cluster of trials at one mean) was followed by a prediction 
for the expected dot location 10 trials from the current trial. 
This resulted in a total of 280 trials: 80 prediction trials and 
200 recall trials.  

Results 
Recall 
Figure 2, panel a, shows the mean radial bias (recalled 
minus studied dot location) as a function of the five radius 
locations. The dashed black line shows the regression of 
radial bias on study radius averaged across time steps in a 
cluster. As expected, participant responses regressed 
towards the mean radius such that dots studied at smaller 
distances from the circle center were overestimated while 
dots studied at the larger distances from the circle center 
were underestimated. This replicates the findings of 
Huttenlocher et al. (1991).  

Figure 2, panel a, also shows the mean bias for each of 
four time steps within a cluster—at trial 1, 3, 6, and 9. This 
suggests that bias is reduced as the strength of evidence in a 
cluster increases; that is, after only one trial in a given 
cluster there was a greater regression to the overall mean, 
whereas after nine trials in a cluster there was significantly 
less regression to the overall mean location and accuracy 
was closer to the true mean of the current cluster. This 
suggests that participants were learning the underlying 
distribution of the dot cluster. Initial regression towards the 
overall mean also appeared to be less for cluster locations 
below the overall mean. This might be a result of the initial 
baseline training. In addition, regression lines were fit to 
recall performance at each of the time steps (see Table 1). 
 

 

Table 1. Recall bias as a function of study radius and 
trial number within a dot cluster 

 

 One 
Trial 

Three 
Trials 

Six 
Trials 

Nine 
Trials 

Slope -.15 -.11 -.076 -.054 
Intercept .07 .06 .04 .03 

Figure 1: This circle illustrates the stimuli presented to 
participants. The dots represent two clusters, with the 
centermost cluster illustrating baseline training. Axes 
were not visible during the study.  
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Figure 2: Panel a shows recall bias as a function of study 
radius and trial number within a dot cluster (either trial 1, 3, 
6, or 9). Panel b shows prediction bias relative to the mean 
of the current dot cluster as a function of cluster length and 
prediction trial. Panel c shows prediction bias relative to the 
mean of the current cluster as a function of study radius and 
prediction type. 

 

Prediction  
Figure 2, panel b, shows prediction bias relative to the mean 
of the current cluster as a function of cluster length and 
prediction type. For predictions of the dot location on the 
next trial, participants showed little bias and predicted the 
future dot location to be close to the mean of the current 
cluster with some initial underestimation. Predictions for 
locations five trials in the future also fell close to the current 
cluster mean, but with some initial overestimation. 
Predictions for locations ten trials in the future are the most 
interesting because they give some indication that subjects 
might hold multiple beliefs about the stimulus 
environment—one for the current cluster and one for the 
overall dot distribution. After studying a twelve-dot cluster, 
participants appeared to make predictions away from the 

mean of the current cluster; specifically, they predicted the 
future dot location to be closer to the circle center, with a 
systematic 10% underestimation. This suggests that 
predictions for the next dot location were drawn from the 
belief about the current state of the environment as 
quantified by the mean location of the current cluster. For 
predictions of dot locations further in the future, participants 
no longer appeared to use their belief about the current dot 
environment; rather, they appeared to be using a different 
belief based on the overall stimulus distribution and biased 
to the circle center. This suggests that the baseline 
manipulation influenced the direction of bias in the overall 
distribution.  

Figure 2, panel c, shows prediction bias relative to the 
mean of the current cluster as a function of study radius and 
prediction type. Again, prediction for the next trial showed 
less overall bias, prediction for 5 trials from now showed 
incrementally more bias, and prediction for 10 trials from 
now showed a strong regression to the mean of the overall 
stimulus distribution. Predictions while studying dot 
locations at a .7 and .9 radius resulted in a greater regression 
effect, with predictions at .9 showing a systematic 25% 
underestimation relative to the current cluster mean. 

 
Discussion 

The results suggest that people incrementally update their 
beliefs and that this incremental updating may be based on 
multiple prior distributions—one about the overall 
distribution, and one about the local cluster. As time 
progresses, it seems participants assign progressively more 
weight to the evidence from the local cluster. This evidence 
motivates our use of a Bayesian framework, which should 
give an accurate representation of the data.  

In terms of health beliefs, these findings suggest that 
when deciding whether or not to take medication, people 
might be sampling from one of two distributions: a 
distribution with the recent evidence (e.g. a negative health 
event), and the overall distribution (e.g. their wellness over 
their lifetime). For predictions in the near future, they may 
believe they will still be sick, but for long-term predictions 
they may not believe that they will still have the ailment.  

 This reliance on the overall distribution for future 
predictions may be based on the strength of their beliefs. If 
their baseline prior is stronger (i.e. has accumulated more 
evidence), it makes sense that people would sample from it 
when trying to predict their future health. If the prior based 
on the more recent evidence were to become stronger than 
the baseline prior, it is possible that the former would 
replace the latter and be used for future predictions. Based 
on these findings, we model the relationship between the 
environment, recall, and prediction using a rational model. 
Furthermore, because it appears that participants are using 
multiple prior distributions, we utilize a mixture model to 
simulate this relationship. 
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Modeling  
The strength of rational models is that they can be used to 
characterize the computational problems people face when 
trying to make sense of the world given the sparse and noisy 
input from the senses. For example, an observer in our 
experimental task is faced with recalling features θ of a 
stimulus presented at study (i.e. locations of dots). Based on 
our experimental design we will assume that these features 
are Gaussian distributed, θ ~ N (µ, τ), where µ and τ are the 
prior mean and precision of the dot locations. When a 
specific dot location θ is studied, we assume this leads to 
noisy representations y in episodic memory, where y ~ N (θ, 
ψ). That is, the memory representation is centered on the 
original studied dot location and is stored with some noise 
ψ, where ψ expresses the resemblance of the stored 
representation to the studied location. The goal of the 
observer on a test trial is to recall the studied dot location θ 
as best as possible using noisy samples y retrieved from 
memory. Extending Equation 1 to the memory task, the 
inference problem for the observer is p (θ| y, ψ, µ, τ). The 
posterior probability p (θ| y, ψ, µ, τ) describes how likely dot 
locations θ are given the noisy memory contents y and prior 
beliefs about the dot locations. We assume that the observer 
has a prior belief that corresponds to the observed stimulus 
distribution in the experiment (i.e., the environmental 
statistics). Furthermore, experimental results suggest that 
observers hold multiple beliefs about the environment: one 
for the local cluster, and one for the overall stimulus 
distribution. This can be modeled with a mixture model 
where the mean and precision (µ, τ) of beliefs are a 
combination of overall and cluster specific beliefs,!! =
!!! + (1 − !)!!, and ! = !!! + (1 − !)!!, where (µc, τc) 
represents the belief associated with cluster ! and (µo, τo) 
represents the overall belief about the stimulus distribution 
(Hemmer & Steyvers, 2009). The variable z weights the 
contribution of the cluster belief relative to the overall 

belief. This weighting is determined by !~!"#$%&'((!!!), 
where χi is a constant that represents the familiarity of a 
cluster. In this way, familiar clusters lead to a belief that is 
more dependent on the cluster rather than the overall 
distribution. This implements the intuitive notion that for 
unfamiliar clusters it is unlikely that the cluster belief is 
reliable and inference instead reverts to a higher-level belief 
based on the overall stimulus distribution.  

Standard Bayesian techniques (Gelman, Carlin, Stern & 
Rubin, 2003) can be used to calculate the mean of the 
posterior distribution:   

                   ! = !" + (1 − !)!     Eq (2) 

where w=(1/σ0
2)/[(1/σ0

2)+(n/σm
2)] and n is the number of 

samples taken from episodic memory. In this way, recall can 
be modeled as a weighted linear combination of beliefs and 
memory content, where the strength of the prior belief and 
episodic memory trades off as described in the introduction. 
Here, the rational analysis is applied to the experiment 
without directly estimating any parameters. Instead, it is 
assumed that the observer has a belief that corresponds to a 
mixture of the local and overall environmental statistics. On 
the first time-step, the observer is assumed to have a belief 
about the mean stimulus location that is biased towards the 
overall distribution, but by the 9th time step to have a belief 
that is identical to the local cluster’s environmental 
distribution (only time steps 1, 3, 6 and 9 are simulated 
here). Therefore, χ (i.e., familiarity with the local cluster) 
was set to 0.6, 0.7, 0.8, and 1 for each of the four successive 
times in a cluster modeled here to simulate an increasing 
level of familiarity with the cluster environment. The mean 
of the overall distribution !! was set to 0.5 for all radius 
locations, except radius 0, where !! was set to 0.35 to 
reflect the baseline training. The precision for the overall 
distribution !! was set to the exact precision in the total set 
of observed data, except for radius 0 which was always 
observed at the smallest variance manipulation. The means 

 
Figure 3: The graphs above show recall bias as a function of study radius at one, three, six, and nine time-steps, with the 
top row showing participant performance and the bottom row showing model predictions.  
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for the local clusters !! was set to the true radius locations, 
and the precision !! was set to the mean precision for 
clusters at each radius. Finally, the memory noise ψ was set 
to 0.11.  

The goal of this analysis is to compare the predictions of 
the rational model and the empirical data at a qualitative 
level. As seen in Figure 3, the model produces results that 
are qualitatively consistent with the responses given by 
human observers. It appears as though participants 
incrementally change their beliefs with an increasing 
number of time-steps within a cluster. Results show that 
memory estimation errors can be explained by the use of 
beliefs about the environment, since smaller radius distances 
from the circle center were later recalled to be further away 
and larger radius distances were later recalled to be closer. 
Furthermore, beliefs change as a function of increasing 
familiarity with the underlying local environment. 

The observer in our task was also asked to make 
predictions about future stimulus locations. The posterior 
predictive distribution of future dot locations p(θfuture| θ) is 
determined by averaging the predictive probability across all 
possible values of beliefs weighted by the strength of the 
belief. The mean of the posterior predictive distribution can 
then be shown to be equal to the prior mean, with the 
variance drawn from both the variance of the observed 
stimulus and the uncertainty in the current belief. Therefore, 
prediction for a future stimulus is centered on the mean of 
the current belief. Yet, as demonstrated in the experimental 
results, this only holds for short-term predictions; for long-
term predictions, people appear to use a mixture of the 
current belief about the cluster and the overall belief, similar 
to that of recall. It is now trivial to extend the rational model 
to assume long-term predictions to be a mixture of belief, 
but that will be outside of the scope of the current paper. 

General Discussion 
A rational model that makes predictions about belief 
updating based on different types of evidence has important 
applications for public policy, and could help tailor 
treatment strategies for patients encountering new illnesses 
like cardiovascular disease. By understanding which 
methods of updating beliefs are the most effective, doctors 
might learn how to help patients integrate their illnesses into 
their belief system. The results indicate that people hold 
multiple beliefs that simultaneously effect decision making: 
one about their current environment and one about the 
overall environment. 

The results above provide preliminary support for the 
existence of multiple distributions in belief updating. It was 
found that bias decreased as time steps in a cluster 
increased, and that a mixture model provided a good 
explanation of this pattern. The inclusion of multiple prior 
distributions was further supported by results from the 
prediction trials. For predictions for one trial in the future, 
participants appeared to sample from the current cluster 
mean, while for predictions for ten trials in the future they 

appeared to sample from the overall distribution. This 
provides support for the initial hypothesis that people 
sample from multiple prior distributions when making 
future predictions. While this experimental paradigm was 
successful in simulating a real world belief-updating 
scenario, in order to further our understanding of how 
people make choices about their health this investigation 
should be expanded into more realistic environments.  
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