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Abstract

Multiple sclerosis (MS) is an autoimmune demyelinating disease characterized by complex 

genetics and multifaceted gene-environment interactions. Compared to whites, African Americans 

have a lower risk for developing MS, but African Americans with MS have a greater risk of 

disability. These differences between African Americans and whites may represent differences in 

genetic susceptibility and/or environmental factors. SNPs from 12 candidate genes have recently 

been identified and validated with MS risk in white populations. We performed a replication study 

using 918 cases and 656 unrelated controls to test whether these candidate genes are also 

associated with MS risk in African Americans. CD6, CLEC16a, EVI5, GPC5, and TYK2 contained 

SNPs that are associated with MS risk in the African American dataset. EVI5 showed the strongest 

association outside the MHC (rs10735781, OR = 1.233, 95% CI = 1.06–1.43, P value = 0.006). In 

addition, RGS1 appears to affect age of onset whereas TNFRSF1A appears to be associated with 

disease progression. None of the tested variants showed results that were statistically in-consistent 

with the effects established in whites. The results are consistent with shared disease genetic 

mechanisms among individuals of European and African ancestry.
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Introduction

Multiple sclerosis (MS, OMIM 126200) is the most common cause of non-traumatic chronic 

neurological disability in young adults.1 The incidence of MS seems to have increased 

considerably over the last century,2 but ancestry remains an important modifier of the global 

burden of MS; disease prevalence is substantially higher in populations of northern 

European decent. Other populations, including Asians, Africans, and North and South 

Amerindians, have a pronounced lower frequency of MS.3 Although African Americans 

have a higher disease risk compared to black Africans, they have a lower relative risk 

compared to northern Europeans and white Americans (relative risk of 0.64).4 On the other 

hand, African Americans with MS appear to have a greater risk of ambulatory disability and 

more often have symptoms restricted to the spinal cord and optic nerve compared to white 

patients.5–10 The differences in the clinical phenotype between African Americans and 

whites with MS may be due to the influence of genetic and/or environmental factors.

MS is a prototypic multifactorial disease with a complex genetic component. Multiple 

studies yielded convincing evidence for the presence of a major susceptibility gene or genes 

in the MHC locus on chromosome 6p21.3, but also indicated a polygenic mode of 

inheritance with each non-MHC gene contributing only a modest effect to the overall risk.11 

Spearheaded by the recent remarkable progress in high-throughput genotyping technologies, 

hypothesis-neutral genome-wide association studies (GWAS) in MS led to the identification 

of true susceptibility genes and loci of interest, including CD25 Antigen (CD25), CD58 

Antigen (CD58), C-type lectin domain family 16, member A (CLEC16a). Interleukin-2 

receptor alpha chain (IL2RA). Interleukin-7 receptor (IL7R), Glypican 5 (GPC5), Regulator 

of G protein signaling 1 (RGS1) and Tyrosine kinase 2 (TYK2).12–14 A meta-analysis of 

GWAS data identified additional susceptibility SNPs in or next to Tumor necrosis factor 

receptor superfamily member 1A (TNFRSF1A), Interferon regulatory factor 8 (IRF8) and 

CD6 antigen (CD6).15 The distribution and penetrance of these genetic variations in non-

white MS groups is unknown.

In African Americans, previous studies have demonstrated the association of MHC class II 

HLA-DRB1*15 alleles with disease susceptibility and progression.16, 17 In addition, the 

presence of HLA-DRB1*15 alleles in African American patients correlates with the 

disseminated MS phenotype compared to opticospinal MS.18 However, the HLA effect in 

disease risk may not be as strong as in whites, suggesting a more prominent role for non-

HLA genes. To better describe the MS susceptibility genetic profile in African Americans, 

the objectives of this study were to confirm in this population the previously identified 

susceptibility genes in whites affected with MS and to test whether these genes are 

associated with disease phenotypes. We tested, in 918 well characterized cases and 656 

controls, the allele frequencies of 19 SNPs in 12 MS loci.13–15, 19, 20 CD6, CLEC16a, 

Ecotropic viral integration site 5 (EVI5), GPC5, and TYK2 contained SNPs that are 

significantly associated with MS in African Americans. In addition, a preliminary analysis 

suggests that RGS1 may be associated with age of onset, whereas TNFRSF1A may affect 

disease severity.
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Results

The African American dataset used in this study is comprised of 918 cases and 656 controls. 

Baseline clinical characteristics of this dataset are listed in Table 1. The female to male ratio 

in cases was 3.7:1 and 2.4:1 in controls. The gender ratios are significantly different (χ2, P = 

0.0002). Gender, therefore, is fit into the model for all subsequent analyses, thus minimizing 

the effect of this difference. The average age of onset of MS was 32.4 years and the mean 

age at time of analysis was 44 years for cases and 43 years for controls (t test, P = 0.081). 

The majority of the cases (85%) had either relapsing remitting or secondary progressive MS. 

We genotyped all individuals for the presence of DRB1*1501 or *1503, since these alleles 

are associated with MS in African Americans.16, 17 DRB1*1501 and *1503 are in Hardy-

Weinberg equilibrium (Pearson’s χ2 test, P =0.26).

We used logistic regression analysis to test 19 SNPs in 12 genes, previously identified in 

MS datasets of northern European ancestry, for association with MS in African Americans 

(Table 2). The average genotyping failure rate was 0.43% for all SNPs tested. None of the 

SNPs deviated from Hardy-Weinberg equilibrium (p > 10−2) in controls. Seven of the SNPs 

in five genes were significantly associated with MS in the African American dataset: CD6 

rs11230563 (P= 0.012, OR= 1.203, 95% CI= 1.042–1.388), CLEC16a rs12708716 (P= 

0.029, OR= 1.173, 95% CI= 1.016–1.357), CLEC16a rs6498169 (P= 0.028, OR= 1.142, 

95% CI= 0.923–1.416), EVI5 rs10735781 (P= 0.006, OR= 1.233, 95% CI= 1.063–1.431), 

EVI5 rs6680578 (P= 0.025, OR= 1.185, 95% CI= 1.021–1.375), GPC5 rs553717 (P= 0.007, 

OR= 1.281, 95% CI= 1.025–1.602), and TYK2 rs34536443 (P=0.045, OR= 2.037). Due to 

the low minor allele frequency (0.01) of rs34536443, the results of this association may be 

inaccurate and warrant further testing. All P values are uncorrected, but we considered the 

present study as a replication of previously validated findings. Sex was not found to 

significantly interact with any of the SNPs tested. However, DRB1 status was found to 

possibly interact with EVI5 (rs10735781, P= 0.0493) and CD226 antigen (CD226) 

(rs763361, P= 0.0041) (Table 3). The minor alleles are susceptible for both SNPs in the 

DRB1 non-carriers group. A recent GWAS study performed using cases from Australia and 

New Zealand also identified the EVI5-DRB1 interaction.21

Although most of the tested SNPs failed to show significant association in this dataset, those 

that were significant had slightly larger odds ratios when compared to previous studies in 

whites (Table 2 and Figure S1). However, none of the tested SNPs showed significant 

differences in a Cochrane heterogeneity Q test, signifying no difference in the association 

between African Americans and whites. Global association between MS and each SNP 

across the 2 populations, are also shown in Table 2.

Because the major MS susceptibility gene HLA-DRB1 was previously shown to affect some 

important aspects of the phenotype, we next tested the above 19 SNPs for association with 

age of onset and multiple sclerosis severity scale (MSSS) using linear regression analysis 

with relevant covariates placed in the model (Table 4). As expected, DRB1*1501/*1503 

were significantly associated with age of onset (P = 7.496 × 10−7).18 Individuals with 0 

copies of the DRB1 risk allele had a mean age of onset of 33.3 years. One copy of the DRB1 

risk allele reduced the mean age of onset by 2.7 years and two copies of the DRB1 risk allele 

Johnson et al. Page 3

Genes Immun. Author manuscript; available in PMC 2010 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



reduced the mean age of onset by 6.02 years. RGS1 may also influence the age of onset (P = 

0.006). Individuals with two copies of the rs2760524 minor allele had a reduced mean age of 

onset of 23.0 years from 32.1 years. TNFRSF1A appears to modify MSSS metrics (P = 

0.014). One copy of the TNFRSF1A minor allele reduced the mean MSSS by 0.86. With the 

exception of the HLA, none of these modifier associations survive statistical correction for 

multiple comparisons. Given the low prior odds that these SNPs are associated with MS 

phenotypes and the failure of these SNPs to survive correction for multiple comparisons, we 

consider this data to be preliminary and further testing will be necessary to confirm the 

association of RGS1 and TNFRSF1A to age of onset and MSSS, respectively.

Discussion

Previous studies have determined an association between HLA and MS in African 

Americans, albeit not as strong as in whites,16, 17 suggesting common immunological 

mechanisms underlying the diseases across ethnic backgrounds. In the present study, we 

report the first evidence of genetic association between non-HLA genes and MS risk in this 

population. CD6, CLEC16a, EVI5, GPC5, and TYK2 convincingly replicated in the African 

American dataset. On the other hand, CD226, CD58, IL7R, IL2R, IRF8, RGS1, TNFRSF1A 

failed to show evidence of association. Two primary explanations exist for this difference: 

first the study may have been underpowered to detect these associations, and second it is 

possible the different linkage disequilibrium patterns across populations may render the 

selected SNPs less effective in tagging putative causative variants in African Americans. It 

is also conceivable that some of the genes that influence MS in whites do not do so in 

African Americans.

With a sample size of 1574 African Americans, one would expect only some of the 

genetically relevant loci to show statistically significant evidence of association, even if an 

association exists. Also for a majority of the markers, the minor allele frequencies were 

lower in this African American dataset compared to previous studies in whites. Therefore, 

this study may have indeed been underpowered to detect associations for some of the SNPs. 

For example, the minor allele frequencies for SNPs such as rs12044852 (CD58, MAF 0.07), 

rs2104286 (IL2Ra, MAF 0.07), rs17445836 (IRF8, MAF 0.05), rs2760524 (RGS1, MAF 

0.06), rs1800693 (TNFRSF1A, MAF 0.08), and rs34536443 (TYK2, MAF 0.01) are lower 

than in whites (all MAFs are greater than 0.1 in CEU, www.HapMap.org). To illustrate this 

effect, power was plotted as a function of minor allele frequency (Supplementary Figure 2). 

For the SNPs, rs12720222 (TYK2), rs17445836 (IRF8), rs1800693 (TNFRSF1a), rs2816316 

(RGS1), rs17424933 (CD6), rs34536443 (TYK2) and rs12044852 (CD58) the power to 

detect a true association in this dataset was low.

However, for SNPs rs2760524 (RGS1), rs2104286 (IL2Ra), rs6897932 (IL7Ra), rs763361 

(CD226) and rs9533762 (GPC5) there appears to have been sufficient statistical power but 

an association was not identified. In addition, the linkage disequilibrium data in HapMap 

(www.HapMap.org) suggests that SNPs used to detect association may be less powerful in 

African Americans, and even if the association of a gene with MS is the same in African 

Americans and whites, significantly larger datasets may be needed. It should be noted, 

however, that very large datasets, currently only available for high-risk white populations, 
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may be necessary to categorically exclude or replicate MS susceptibility markers.13 Based 

on US Census figures and the relative risk of MS, the current dataset represents an estimated 

5% sample of African Americans with MS. It is plausible nevertheless, that differences in 

genetic susceptibility SNPs between whites and African Americans may represent true 

differences in disease heritability and that these SNPs do not influence MS risk in African 

Americans.

Of the genes associated with MS risk in African Americans, EVI5 displayed the most 

significant association outside the MHC. The association of EVI5 with MS was first detected 

in a GWAS performed using 12,360 non-Hispanic whites from the US and the UK, (SNPs 

rs10735781; OR=1.14, p = 3.35 × 10−4 and rs6680578; OR= 1.11, p =5.00 × 10−4).13 The 

association was confirmed through the analysis of 240 case-control individuals from a 

genetically isolated Dutch population (rs10735781; OR= 2.01, p = 0.01, and rs6680578 OR= 

1.9, p = 0.01) and in a larger dataset comprised of 2825 individuals from multi-case 

Canadian families (rs10735781; OR= 1.15, p = 0.03; and rs6680578; OR= 1.15, p = 0.04).20 

EVI5 is an oncogene implicated in T cell lymphomas, is a common site of retroviral 

integration22, and facilitates cell septation during mitosis.23 EVI5 has been shown to 

physically bind the small GTPase binding protein RAB11 in cell culture.24, 25 RAB11 is 

required for the endocytic recycling of cell surface molecules26 including transferrin,27 

IgA,28 and CXCR2 chemokine receptors,29 and has also been implicated in the regulation 

of cytokinesis,30, 31 neurite extension,32 and the formation of the immune synapse.33 

EVI5 competes with RAB effector proteins to bind with RAB11, which suggests a role for 

EVI5 regulation of downstream RAB11 pathways.25 In CD4+ T cells, Uncoordinated 119 

(UNC119) activates RAB11 to transport Lymphocyte cell-specific protein-tyrosine kinase 

(LCK) to the plasma membrane.33 Upon binding of the antigen-MHC complex from the 

antigen presenting cell, LCK initiates signaling from the T cell receptor leading to T cell 

activation.34, 35 Allelic differences in EVI5 may contribute to altered function of RAB11 

and altered formation of the immunological synapse, thus contributing to MS susceptibility. 

This hypothesis may explain the underlying genetic interaction between EVI5 and DRB1. 

Further studies will be needed to determine the functional effect of EVI5 allelic variants on 

RAB11 and the immune synapse.

CD6, CLEC16a, and GPC5 are also associated with MS risk in African Americans. CD6 is a 

T cell surface protein involved in the activation of T cells.36 Allelic variants at rs11230563 

may result in altered activation of T cells, thereby affecting an individual’s susceptibility to 

MS. CLEC16a has been associated with disease susceptibility in white MS patients13, 15, 

21, 37, 38 as well as other autoimmune diseases.38–40 Although the function of CLEC16a 

is unknown, CLEC16a is expressed on B cells, dendritic cells, and natural killer cells.41 

GPC5, a member of the glypican family, is a cell surface molecule and is a type of heparan 

sulfate proteoglycan.42 These molecules are implicated in axon guidance and growth, and 

synapse formation.43, 44 Interestingly, heparan sulfate proteoglycans have been identified 

in active MS brain lesions where they may contribute to the sequestering of 

proinflammatory cytokines.45 GPC5 is expressed in neurons46 and is known to interact 

with chemokines, extracellular matrix proteins, and growth factors.47 Allelic variants of 

GPC5 may affect neuronal repair and contribute to differences in MS susceptibility.
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The RGS1 SNP, rs2760524, did not show evidence of association with MS risk in African 

Americans, but our preliminary analysis suggests an effect on age of onset that warrants 

follow-up in large northern-European datasets. RGS1 is involved in the trafficking of B cells 

into and out of lymph nodes.48 B cell-mediated antigen presentations and antibody 

responses appear to be necessary for the full development of demyelination, both in humans 

and in experimentally induced disease. B cells from RGS1 knockout mice have increased 

homing to lymph nodes, increased adhesion to lymph nodes, and faster movement within 

lymph nodes compared to wild-type B cells.48 In humans with MS, polymorphisms in RGS1 

may conceivably lead to changes in B cell mobility, leading to altered recruitment of B cells 

to the central nervous system, thereby affecting the initiation of MS. Recent studies 

associated polymorphisms in RGS1 to Celiac disease and type I diabetes, further supporting 

a key role for RGS1 in the initiation and development of autoimmunity.49–51

The association of TNFRSF1A-rs1800693 with MS was recently identified through a GWAS 

meta-analysis.15 The present data suggests that TNFRSF1A, one of the major receptors for 

TNF-α, which is involved in apoptosis, inflammation, and under certain conditions 

immunosuppression,52, 53 may also affect disease progression. Polymorphisms in 

TNFRSF1A may cause altered signaling of TNF-α in the CNS, leading to increased 

activation of T cells, demyelination and inflammation, thereby affecting the severity of MS.

54–57

In conclusion, in a large African American dataset we have tested a selected number of 

polymorphisms in candidate genes recently shown to be associated with MS in white 

populations. SNPs in CD6, CLEC16a, EVI5, GPC5, and TYK2 replicated the association 

with MS risk in African Americans. This is the first observation of an effect by non-HLA 

genes in a non-white MS group. The data is consistent with a commonality in disease 

mechanisms among individuals of European and African ancestry, and suggest the 

prominent role of environmental factors in explaining the paucity of MS in Africa.

Materials, subjects and methods

Study participants

The data set studied consisted of 1574 African American individuals, including 918 MS 

cases, and 656 unrelated control individuals. All study participants are self-reported African 

Americans, but European ancestry was documented in 985 of the individuals based on the 

genotyping of 186 SNPs highly informative for African versus European ancestry as 

previously described (mean European ancestry = 21%).58 All MS subjects met established 

diagnostic criteria.59 MS phenotypes were characterized by systematic chart review as 

described.7 Ascertainment protocols and clinical and demographic characteristics were 

summarized elsewhere.7, 17 Eight individuals with Aquaporin-4 seropositivity were 

excluded from this study as they have met new diagnostic criteria for neuromyelitis optica.

60 Informed consent was obtained from all study participants prior to participation in the 

study.
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Genotyping

Genotyping of SNPs was performed using validated TaqMan® SNP genotyping assays 

(Applied Biosystems Inc., Foster City, CA) for all SNPs except rs9523762, which was 

performed using a custom TaqMan® SNP genotyping assay (Applied Biosystems Inc., 

Foster City, CA). Each PCR reaction contained 10ng DNA, 1x; TaqMan® Genotyping 

Master Mix (Applied Biosystems Inc., Foster City, CA), and 1xSNP assay (Applied 

Biosystems Inc., Foster City, CA). Amplification was performed in an ABI 9700 

GeneAmp® PCR system (Applied Biosystems Inc., Foster City, CA). The PCR program 

consisted of 95°C for 10min, followed by 50 cycles of 95°C for 15s and 62°C for 1min. The 

plates were then read on an ABI prism 7900HT Sequence Detection System using SDS 2.0 

software (Applied Biosystems Inc., Foster City, CA). For DRB1, a PCR locus-specific 

amplification was used as previously described.16 The average genotyping failure rate was 

0.43% for all SNPs tested.

Statistical analysis

Summary statistics in table 1 were performed using R v2.8.1 (www.r-project.org). All SNP 

genotypes were tested for deviation from Hardy-Weinberg equilibrium in cases and controls 

using SNP Stats (http://bioinfo.iconcologia.net/index.php?module=Snpstats).61 To 

determine SNP associations with MS risk, logistic regression was performed using SAS v.

9.1.3 (SAS Institute, Inc., Cary, NC) with sex and DRB1 status as covariates in the 

regression model. Positive DRB1 status was defined as at least one copy of either the 

DRB1*1501 or *1503 allele. Two statistical models were tested for each SNP and 

DRB1*1501/*1503. The genotypic model tested the dominant/recessive/additive allele 

model and the trend model tested additive allelic effects for each SNP. The model that best 

fit the data is reported. Since this is a replication study, uncorrected P values are reported. 

SNP interactions with gender and DRB1 status were tested using SNP Stats (http://

bioinfo.iconcologia.net/index.php?module=Snpstats).61 The Cochrane Heterogeneity Q test 

was performed using the rmeta package in R. The Q test measures the existence of 

differences between the individual study effects and the pooled effect across studies. The 

global odds ratio was calculated under a fixed effect model using the inverse variance 

weighting method.

Genotype-phenotype correlations were tested for age of onset and MSSS. Linear regression 

was performed using SAS v.9.1.3 (SAS Institute, Inc., Cary, NC). For age of onset, the data 

followed a normal distribution and was not transformed. For all SNPs tested, gender and 

DRB1 status were covariates in the linear regression model. For DRB1, only gender was fit 

into the model. For MSSS, the data was transformed using the “normal score 

transformation” (yi=φ−1(ri−3/8)/(n+1/4)) to yield a normally distributed dependent variable 

for regression analysis.62 Gender, age of onset, and treatment status (Y/N/unknown) were 

fit into the linear regression model for all SNPs and DRB1. Uncorrected P values are 

reported.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Table 1

Clinical characteristics of study participants.

Cases Controls

Number 918 656

Sex

    Female, n 724 463

    Male, n 196 193

  Female:Male Ratio, P=0.0002 3.7:1 2.4:1

Age (years)

  Age of onset of disease (n=867)

    Mean 32.4

    Range 7 – 69

  Age at time of analysis (n=831) (n=635)

    Mean, P=0.081 44 43

    Range 14 – 75 18 – 82

Disease course (n=918)

  Relapsing remitting 542 (59.0%)

  Secondary progressive 239 (26.0%)

  Primary progressive 69 (7.5%)

  Progressive relapsing 20 (2.2%)

  Clinically isolated syndrome 20 (2.2%)

  No information available 28(3.1%)

EDSS (n=870)

  <3 318 (36.6%)

  3 to <6 219 (25.2%)

  6–6.5 222 (25.5%)

  ≥7 110 (12.6%)

MSSS (n=846)

  Average 5.24

  Range 0.01 – 9.90

DRB1 status, n (n=918) (n=656)

  1 copy of *1501 and/or*1503 allele 320 (34.9%) 185 (28.2%)

  2 copies of *1501 and/or*1503 allele 40(4.4%) 17 (2.6%)

  No copies of *1501 and/or*1503 allele 558(60.8%) 454(69.2%)

EDSS, expanded disability status scale; MSSS, multiple sclerosis severity scale. DRB1 alleles are in Hardy-Weinberg equilibrium (Pearson’s χ2 

test, P = 0.26).
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Table 3

DRB1*15 stratified odds ratios for interacting loci.

EVI5-DRB1 interaction (P=0.0493) CD226-DRB1 interaction (P=0.0041)

DRB1 non-carriers DRB1 carriers DRB1 non-carriers DRB1 carriers

G/G 1.00 0.90 (0.65–1.24) T/T 1.00 0.68 (0.50–0.94)

G/C 1.31 (1.00–1.72) 0.84 (0.61–1.16) T/C 1.33 (0.87–2.04) 0.83 (0.61–1.14)

C/C 1.96 (1.33–2.88) 0.75 (0.43–1.29) C/C 1.33 (0.87–2.04) 0.32 (0.17–0.60)

EVI5 (rs10735781) and CD226 (rs763361) show a statistical interaction with DRB1 status. The odds ratios are given for each genotype. 95% 
confidence intervals are shown in parentheses. DRB1 non-carriers have no copies of DRB1*1501 and *1503. DRB1 carriers have at least one copy 
of the *1501 or *1503 allele.
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