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ABSTRACT OF THE THESIS

The Study of Overflow Metabolism and kinetics in a model of metabolism
and gene expression of Escherichia coli

by

Chuankai Cheng

Master of Science

Universeity of California, San Diego, 2017

Professor Bernhard O. Palsson, Chair

Overflow metabolism can be explained by a pathway switch behavior in the cell based

on the tradeoffs between metabolic efficiency and proteomic efficiency(enzymatic kinet-

ics). This thesis simulates this behavior on the both small-scale and genome-scale model.

By sweeping the enzyme kinetics parameters on multiple pathways or reactions, the sim-

ulation could potentially approach the experimental results, however, would converge to

some bounds beyond. Therefore, hypotheses of some extra constraints, such as the limita-

tion of oxygen uptake ,electron transport chain, as well as the function of motility protein

are presented.

viii



Introduction
Fermentation, a process of generating less amount of energy(ATP) comparing to res-

piration, excreting acetate or(and) lactate, is a typical anaerobic behavior of organism for

bacteria and nearly all types of organisms[1]. It is easy to explain this behavior in anaerobic

condition since the absence of oxygen would cause the respiration being blocked. How-

ever, previous studies show that the fermentation process could also be taken place with

the presence of oxygen[2]. The seems-to-be wasteful occurrence of fermentation in this

circumstances is called overflow metabolism and is considered as the same phenomenon as

Warburg effect in cancer cells.

Quantitative biology is a kind of approach that quantifies biological behaviors, such as

overflow metabolism in this thesis, then build up some computation models in order to

explain the phenomenon.

Cell metabolic network is a model that could be run to simulate the cell behavior such

as cellular growth, synthesis of species as well as the excretion of metabolites, etc. This

thesis is aiming to take this approach and simulate the behavior of overflow metabolism.

In this thesis, chapter 1 is giving a detailed explanation of overflow metabolism. Chapter

2 is going to focus on how the computational models are built. Chapter 3 will show the

results of simulations. By comparing the results of simulations to the experiment data,

chapter 4 is going to discuss the differences we met in the comparison and put forward

some hypothesis of what caused the difference. Chapter 5 concludes the whole project.

1



Chapter 1: Overflow metabolism
1.1 Definition

Overflow metabolism is defined as the excretion of fermentation products such as acetate

and lactate even in the presence of oxygen. Knowing that fermentation is actually a backup

process of respiration which would be less efficient in generating energy that feeds for

growth, overflow metabolism is considered as a ”seemingly-wasteful” process.

The phenomenon of overflow metabolism exists widely ranging from bacteria(such as

Escherichia coli) to mammalian cells. It typically occurs when the cell is in high growth

rates, such as proliferating cells and cancer cells(known as Warburg effect). Figure 1 is

showing the scheme of the phenomenon.

E.Coli

-O2

+O2

Slow growth Fast growth

Glucose

Pyruvate

Lactate

Glucose

Pyruvate

Acetate/
Lactate

CO2

Glucose

Pyruvate

Acetate/
Lactate

CO2

Over�ow Metabolism

Figure 1: Scheme of the phenomenon of overflow metabolism
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1.2 Explanation

The previous study shows that the factor that is trading with energy efficiency could

be enzyme efficiency. As shown in figure 2, by uptaking the substrate, the cell can gen-

erate energy from either respiration pathway(blue) or fermentation pathway(red), where

the energy would feed the biomass synthesis(black). Fermentation pathway would be less

efficiency in generating energy(shown as the thinner yellow arrow representing ATP flux)

but required less amount of protein for the reaction to be catalyzed(shown as the smaller

protein structure as the enzyme for fermentation).

Biomass

ATP

ATP

CO2

Acetate μ

v

0 μthreshold μmax

CO2

Acetate

Substrate

Figure 2: Overflow metabolism based on pathway switch

Therefore, overflow metabolism is indeed a pathway switch behavior that when it occurs,

the respiration rate would decrease and fermentation rate would increase due to the higher

enzymatic efficiency of fermentation pathway. A toy model created by Molenaar et al[3]

simulates this behavior based on enzyme kinetics parameters(kcat and KM in Michaelis-

Menten equation[4]).

According to the experiment data gained by Basan et al[5], the increase/decrease of

fermentation/respiration pathway is actually linearly dependent on growth rate, which is

qualitatively shown as the plot in figure 2(right). For the existence of maximum cell growth,

the threshold-linear response introduced by Basan et al can be extended as the threshold-

linear-end-point response:
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vac(µ) =

{
sac · (µ− µthreshold) for µmax ≥ µ ≥ µthreshold
0 else

(1)

Where sac is the slope of the line. Basan et al also built a computation model whose

results would fit their experiment data. Instead of using enzyme kinetics parameters, they

used a new variable ε representing ”proteomic efficiency” to quantify the enzymatic effi-

ciency of a pathway. In chapter 2, Their model would be discussed more in detail.



Chapter 2: Single cell metabolic and gene
expression model

Cell metabolic model is a computation approach that mimics how species in a cell would

be involved in the biochemical process, which will typically be presented in a network

format[6].

The cell metabolic network would usually treat the species as nodes in a network, while

the reactions as edges connecting the nodes with the reaction rate as the weight. For the

conservation of mass, the total flux amount that flows into a node should be equal to the

total flux that flows out. Considering each reaction is catalyzed by the enzyme, which is a

product of gene expression. By balancing the fluxes, genotype and phenotype of the cell

would be connected. Therefore, this thesis is using the cell metabolic and gene expression

model to figure out the phenotype of overflow metabolism. As introduced in chapter 1,

overflow metabolism is caused by a tradeoff between metabolic efficiency and enzymatic

efficiency, the gene expression(protein) synthesis must be added into the network.

When the scale of the model is small, the phenotype of the cell can be expressed by

exact equations through derivation, like in Basan et al. , an exact formula expressing the

acetate vs. growth relation is presented. While for more general cases, especially when

the model is in genome scale, where the complexity of the metabolic network is high, flux

balance analysis would be used to solve the phenotype.

Flux balance analysis[7] is basically a linear optimization approach that maximizes the

objective function subject to the vector of the fluxes is the null space of the stoichiometric

matrix and other additional constraints.

Figure 3 shows the two approaches to solve a metabolic network. The derivation in

Basan et al. would take a specific growth rate as an input, and derive the acetate-growth

relation. While for a more general case using flux balance analysis, we take a set of con-

straints and the cell metabolic network interpreted as a stoichiometric matrix as the input,

then optimize the objective function(which is maximizing the growth rate). Then scatters

5
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the relation between growth and acetate excretion.

In this thesis, the behavior of (E.coli) would be studied in two different scales of metabolic

model. Small scale, in which the model is simple and has a huge degree of freedom, mainly

simulates the bulk behavior of the cell and can easily fit the experiment data, however, the

values we get from the model might be some results of over-fitting and therefore the sig-

nificance might be obscure. While for the genome-scale model, detail behavior such as the

flux of each reaction of the cell can be simulated, but having a limited degree of freedom

causing the potential difficulty of fitting the experiment data.

S

Biomass

ATP

ATP

CO2

Acetate

Substrate

vres

vbms

vfer

v1 v2

v3

v4

Metabolic network Reactions:

Substratevres 1 CO2 + 4 ATP

vbms Substrate + 3ATP Biomass

vfer

v1

v2

v3

v4

...

...

...

...

Basan’s derivation

v3=f(μ)

Given growth rate μ 

{equations 
for flux balance
& Other constraints 

v1=vfer+vres+vbms

μ=f(vbms)growth definition

Substrate 1 Acetate + 2 ATP

v4=vres

...
Flux balance analysis
Given a set of constraints:
 {

0<v1<20

0<vres<f(v2 , μ)

...

Linear constraint

Nonlinear constraint

μ=f(vbms)growth defined 
as objective function

Find     max μ  st.  Constraints and Sv=0

v3=f(μ)

v=(v1,vfer,vres,vbms,v2,v3,v4)

Substrate
CO2

Acetate
ATP

Biomass

v1  vfer  vres  vbms ... ... ...
1

1

1

1
2 4 -3

-1 -1

... ... ...

Figure 3: Comparison between the derivation in Basan et al. and optimization upon flux balance analysis

2.1 Unicellular growth and cell components dilution

The growth rate means the number of replicated cell per unit of time on a single cell.

When the cell gets replicated, it needs to dilute the same amount of cell components as

itself.

vdilution,C = µ [C] , C ∈ cell components (2)
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In equation (2), vdilution,C is the dilution rate of the corresponding cell component,

which represents the rate that the component appearing in the new grown cell. µ is the

growth rate, which is the the rate that the cell gets replicated. [C] is the concentration of

the components in the original cell.

In computational prospect, the growth rate µ usually has the unit of h−1, while the unit

for reaction rate is in mmol gDW−1 h−1, and for concentration it is mmol gDW−1. As

mmol gDW−1 h−1 = h−1 ×mmol gDW−1, showing that equation (2) holds in units.
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2.2 The coupling constraint: proteome efficiency/enzyme ki-
netics

For the overflow metabolism is caused by a tradeoff between energy efficiency and

proteome efficiency, knowing that energy efficiency can be quantified as the stoichiometric

coefficient of the amount of energy created per substrate, however, the way of quantify-

ing proteome efficiency would not be shown as a constant stoichiometric coefficient, we,

therefore, need extra constraints as the proteome efficiency to model the tradeoff behavior.

This thesis focuses on two kinds of method to provide coupling constraint based on

proteome efficiency. Basan et al. introduced proteome efficiency based on proteome allo-

cation, considering a kind of protein as a fraction of the entire proteome. O’brian et al.[8]

derived the coupling constraint based on enzyme kinetics parameters taking account of the

dilution rate of the enzyme(figure 4 and eq.6).

S P
E
vr

E
vsyn,E vdil,E

O’brien et al, 2013:

Basan et al, 2015:
ΦE

Φothers

Figure 4: Enzymatic/proteomic efficiency

Basan et al. defined the proteome efficiency with the symbol ε as the coefficient to

the corresponding reaction rate multiply with the fraction φ of the enzyme upon the entire

proteome.
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vr = ε · φE (3)

Assuming that the amount of the entire proteome is linearly dependent on the growth

rate µ with the coefficient γ. For a particular enzyme E, its dilution rate vdil,E has to be at

least as much as the enzyme that required to use, thus:

φE,reaction ≤
vdil,E
γµ

(4)

Michaellis-Menten equation:

vreaction =
kcat[E][S]

KM + [S]
(5)

IfKM = 0, the concentration of substrate [S] can be canceled out. Considering the actual

case KM > 0, there would be a parameter keff related to kcat(which could be equivalent

but might not) that:

vreaction ≤ keff,E · [E] = keff,E ·
vdil,E
µ

(6)

keff,E = εE/γ (7)

2.3 Small scale model with alternative pathway

Basan et al. built up a small scale with the proteome allocation constraints and solve

the growth-acetate relation via derivation. While the model created by Basan et al. is in

genome-scale and is solved via growth optimization. As we have shown that the param-

eters providing coupling constraints(keff vs. ε) are related, how to reconstruct the model

defined by Basan et al. in a flux balance analysis format using the enzyme kinetics(eq.6)

as the proteome constraint? Finding the connection between those two approaches would

be helpful to understand the genome-scale model better.

Thus, a small scale metabolic and gene expression model(small scale ME model, ab-

breviated as ”SSME”) is built based on the settings from Basan et al (figure 5.). After the

substrate(carbon from glucose, g6p, lactose, mannitol or other carbon sources)is uptaken,

it would contribute to 3 pathways, respiration(shown as “res”), fermentation(“fer”) and
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biomass synthesis pathway(“bms”). The respiration would generate energy(ATP) to feed

the synthesis of biomass, and at the mean time, excrete CO2. The fermentation would also

generate energy, which is not as much as the respiration pathway, and excrete acetate. The

biomass pathway, as its name, would syntheis biomass, which is an multiplication of the

growth rate µ with the coefficient β.

According to Basan et al, the coupling constraint on each reaction(pathway) is based on

proteome allocation, or to be more acadjust, biomass allocation, which can be explained in

three steps:

• The entire biomass(βµ) which simply represents the entire cell, can be separated into

proteome with the coefficient α and other biomass(with the coefficient 1 − αsuch as

lipids).

• The proteome can be separated into the proteins serving on the respiration, fermen-

tation and biomass pathways with the coefficient φmax, as well as the proteome for

other pathways.

• The proteome for respiration(φr), fermentation(φf ) and biomass(1−φr−φf ) pathways

are divided, serving as the enzymes that catalyze each pathway.

Biomass

ATP

ATP

CO2

Acetate

Substrate

Others
(Lipids,etc.)

Proteome

Others

res, fer, bms 
pathways

fer

res

bms

res

fer

bms

Figure 5: Small scale model with alternative pathways
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In Basan et al.’s settings, fluxes through respiration and fermentation pathway are cor-

respondingly notated as JE,r and JE,f . The total energy that is created through these two

path way must meet the energy demand for growth in the rate of µ

JE,f + JE,r = JE(µ) = σµ (8)

The flux of uptaking substrate(carbon source) is annotated as JC,in, while the fluxes that

consuming substrate through respiration and fermentation pathways are in terms of JC,f

and JC,r.

By uptaken through flux JC,in consumed through fluxes JC,f and JC,r, the rest of the

carbon substrate would be contributed to the biomass flux, meeting the biomass demand

for growth.

JC,bms(µ) = JC,in − JC,f − JC,r = βµ (9)

Adopting the settings from O’brien et al., the growth energy flux and biomass carbon

flux could be considered as the demand reaction that their reaction rates are:

{
vdemand,energy = JE(µ) = σµ

vdemand,biomass = JC,bms(µ) = βµ
(10)

While for the substrate uptake rate bound(annotated as SURB), it is considered to be

equivalent to the maximum value of the carbon input flux: JC,in ≤ SURB.

For the respiration and fermentation reactions, the rates would be normalized equaling

to the carbon flux of the two pathways.

While according the settings from Basan et al., the amount of energy that is created

through either respiration or fermentation pathway is linearly related to the carbon flux

with the coefficient er and ef .

{
vr = JC,r = JE,r/er

vf = JC,f = JE,f/ef
(11)
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Assuming that the proteome possesses a fixed portion α(0 ≤ α ≤ 1) of the biomass

content.

{
vdemand,proteome = α · vdemand,biomass(µ) = α · βµ
vdemand,otherbiomass = (1− α) · βµ

(12)

While the entire proteome would be divided into growth dependent proteome (µDPro)

possessing the maximum portion φmax(0 ≤ phimax ≤ 1) and growth independent pro-

teome (µIPro):

{
vdemand,µDPro = φmax · vdemand,proteome = φmax · α · βµ
vdemand,µIPro = (1− φmax) · α · βµ

(13)

The growth dependent proteome is divided into three parts correspondingly contribute to

catalyze respiration, fermentation and biomass pathways.

φf + φr + φBM = 1 (14)

Where the proteome part for the biomass would be divided into two parts, a fixed portion

annotated by φ0 and a portion whose amount is linearly related to the growth by coefficient

b.

φBM = φ0 + bµ (15)

Therefore, the entire proteome demand could be allocated as:

vdemand,proteome

= vdemand,µDPro + vdemand,µIPro

= (φf + φr + φ0 + bµ) · φmax · α · βµ+ (1− φmax) · α · βµ
(16)

Thus for the part with the fixed portion φ0 in the growth dependent proteome, the dilution

rate would be:

vdemand,proteome0 = φ0 · φmax · α · βµ (17)

With the same case, for the dilution of the growth independent proteome:

vdemand,proteome0 = (1− φmax) · α · βµ (18)
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Accoring to Basan et al.’s settings, the portion of the proteome catalyzing respira-

tion/fermentation pathway is linearly related to the energy flux.

{
φr =

JE,r

εr
= er·vr

εr

φf =
JE,f

εf
=

ef ·vf
εf

(19)

The amount of components that are demanded for growth should be less than or the

same as how much they are diluted into the new grown cell(same as how equation (4) was

derived).

vdemand,E ≤ vdilution,E , (E ∈ catalytic components) (20)

Consequently, for the dilution rate of the proteome catalyzing respiration pathway:

vdilution,proteomer

≥ vdemand,proteome · φmax · φr

= α · βµ · φmax ·
er · vr
εr

(21)

Which could be derived into:

vr ≤
εr

er · α · β · φmax
· vdilution,proteomer

µ

= keff,r ×
vdilution,proteomer

µ

(22)

For the fermentation pathway it meets the same case:

vf ≤
εf

ef · α · β · φmax
·
vdilution,proteomef

µ

= keff,f ×
vdilution,proteomef

µ

(23)

And last, for the biomass pathway:

vdilution,proteomebms

≥ vdemand,proteome · φmax · (bµ)
(24)

vdemand,proteome ≤
1

φmax · b
· vdilution,proteomebms

µ

= keff,proteomebms
× vdilution,proteomebms

µ

(25)
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The same as Basan et al.’s model, this model with the metabolic and expression for-

mat is able to predict the cases of carbon limitation(changing the SUR) and translation

limitation(changing the value of keff,proteomebms
).

In order to make an equivalent effect as the prediction of energy dissipation(amount

annotated as w), we could change rate of the energy demand reaction into:

vdemand,energy = σµ+ w (26)

Basan et al. was also able to predict the proteome limitation, by adding a useless protein

LacZ, taking the portion of φZ , compressing the portion of growth dependent proteome

from φmax to φmax − φZ .The way it works in the metabolic and expression format is to

keep the keff values remain unchanged, while adding a new dilution reaction for LacZ:

vdemand,LacZ

= vdemand,proteome · φZ
= α · βµ · φZ

(27)

While the rate of the demand reaction for the portion φ0 of the growth dependent

proteome becomes:

vdemand,proteome0 = φ0 · (φmax − φZ) (28)

As a result, eq. 22,23 and 25 are right in the format of the enzyme kinetics con-

straints(eq.6), which are the same as how the genome-scale model in O’brien et al. is

formed.

Building up the SSME model could help us connect the settings of different computa-

tional model with each other, as well as understand the bulk behavior of the cell. Consider-

ing the respiration, fermentation and biomass reactions are actually abstract reactions that

are not how the cell exactly works, we need to dig into the genome-scale model to under-

stand more detail behavior. However, the results of the simulation on the SSME model is a

good guide to lead us to understand how the genome-scale model works.

Therefore, in the next section, the genome-scale metabolic and macromolecular expres-

sion model, will be introduced.
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2.4 Genome-scale models of metabolism and macromolecular
expression

The genome-scale model is basically an expansion of the toy model introduced in

the previous section, where the gene-reaction rule is specified, where the complexity is

therefore dramatically increased. As the introduction of the proteome constraint provided

by enzyme kinetics in the previous session, each enzyme encoding one or multiple reac-

tions would be having a keff value. Besides the scale and the detail, another significant

different between the genome-scale ME model and the SSME model is that the synthe-

sis(transcription and translation) of proteome will be specified, so as the demand of DNA.

In this way, the genome-scale model could potentially simulate the detail behavior of the

cell.Table 1 shows the comparison of the two small scale models and the genome-scale ME

model.

The keff values using in the model are determined by a multi-omics framework put

forward by Ebrahim, et al.[9]. The model that is used in this research is an upgraded

version of O’brien et al’s genome-scale ME model, created by Lloyd et al.[10], and is

called ”iLE1678-ME”. For the complexity of the model, binary search is used for solving

the optimal growth rate[11].

Table 1: Comparison between the Small scale model(both Basan et al. and ME) and genome-scale ME model

Small Scale Genome Scale(iLE1678-ME)
Basan et al. SSME model

Growth vbms

β (eq.10) vbms

β & µ plug-in µ plug-in equations (eq.6)
Growth vs. proteome Indicated linear Linear (eq.16) Not specified
Proteome constraint Allocation (eq.19) Turnover rate keff keff (eq.6)
Protein synthesis Not specified Not specified Specified, krna, kribo, etc
Energy demand vdmd,eng = σµ (eq.26) vdmd,eng = σµ GAM & NGAM
Results Exact formula Growth optimization Growth Optimization

By taking account of the biochemistry process in the cell, the three pathways defined in

the small scale model, respiration, fermentation and biomass synthesis, can be mapped on

the genome scale as:
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• Respiration pathway is a process that the cell uptaking oxygen which is completed by

the cytochrome oxidase, then generates energy from the TCA cycle.

• Fermentation pathway is relatively straight forward, which is the process that acetyl-

CoA turning into acetate.

• Biomass synthesis pathway is a bit obscure. Since every process in the cell can be

considered as for the sake of growth. Considering that proteome is a really important

portion of the biomass, the process of protein synthesis(transcription and translation)

would be an interesting part to dig into.

Furthermore, as energy is an important component of the whole model, the ATP synthe-

sis reaction would also be important to be studied.



Chapter 3: Results of simulation
Before any simulation, it is important to figure out how to validate the results. For

cell metabolic model, as we are trying to simulate the overflow metabolism, it would be

essential to measure both cellular growth and acetate excretion.

Basan et al. provided rich experiment data, which mainly measures the fluxes using the

E.coli k-12 wild-type strain NCM3722 and its variations. Knowing that iLE1678-ME is

modeling another k-12 wild-type strain MG1655, however, it is similar to NCM3722[13].

Thus, the experiment data can still be a reference for the validation of the results of the

iLE1678-ME simulation.

Basan et al. measures using the unit of mM/OD600nm/hr. Knowing that OD600nm

is equal to 0.44 gDW/L in the E.Coli k-12 MG1655 strain[13], based on this relation, the

experiment data presented with the flux unit mM/gDW/hr and the threshold-linear-end-

point fit is shown in figure 6.
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Figure 6: Experiment data from Basan et al.

As shown in figure 6, two sets of data are generated in different cell culture, biore-

actor(red solid line) and batch culture(blue dash line). While as a result, there are two

different linear-threshold-end-point fits for them. As Basan et al. is mainly using the result

17
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generated from the bioreactor as their standard case, and this thesis is aiming to find the

connection between Basan et al.’s model and the genome-scale iLE1678-ME model, the

same standard is chosen.

3.1 Small Scale Model

Basan et al. derived the acetate-growth relation vEX act(µ) as a threshold-linear re-

sponse(in the form as eq. 1), shown as the red dots in figure 7(right), and the CO2-growth

relation as a negative slope line ending when it meets y = 0 shown as the blue dots in figure

7(right).In the SSME model, by using the same set of parameter values which fits the ex-

periment data in Basan et al., the exact same vEX act(µ) can be simulated, shown as the red

solid line in figure 7 right. The CO2-growth relation, however, would be slightly different

according to the simulation of SSME model, which is a piece-wise function where a region

with positive slope and the other with a negative slope. The negative slope region is totally

the same as Basan et al.. Considering that when the cell is in relatively low growth, res-

piration is required to generate the energy for biomass and would increase with the rising

growth rate, the result of SSME simulation fits this behavior better.
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Figure 7: Comparison of the results from small ME model and from Basan et al.

The left figure of figure 7 shows the relation between growth and substrate uptake rate

bound, with different proteome allocation coefficient α (eq.12). As a result, α does not
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affect the results, which might be the reason why Basan et al. did not mention this coeffi-

cient in the derivation. The growth vs. substrate uptake rate bound is a piecewise function

with 3 regions: steep slope region, gradual slope region, and flat region. The steep slope

region, which is having a high substrate-growth yield, mainly correspond to respiration

functioning. The gradual slope region mainly corresponds to the pathway switching to

lower substrate-growth yield. The flat part mainly mean the metabolism is saturated and

the growth has reached its maximum that providing more nutrients will contribute nothing.

The keff of the respiration pathway would provide an effect on the threshold while not

changing the max growth(figure 8). As the model shows the intuition that the max growth

is when the pathway has entirely switched with only fermentation, the respiration pathway

would not be involved here. The slope, therefore, would change as the threshold changes,

which rises as the keff increases.
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Figure 8: Acetate lines on multiple keff s of respiration pathway(left), Dependence of Sac, µthreshold and
µmax on keff of respiration(right)

On the contrary, the keff of the fermentation pathway would not affect the threshold but

change the max growth rate(figure 9). And the slope would drop as the keff increases.
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Figure 9: Acetate lines on multiple keff s of fermentation pathway(left), Dependence of Sac, µthreshold and
µmax on keff of fermentation(right)

The keff of biomass pathway would affect both the threshold and max growth. As a

result, both the threshold and max growth would rise when increasing the keff , while the

threshold would drop. The rationale of this effect can be that as the protein synthesis is part

of the biomass, enzymes catalyzing respiration and fermentation are both more efficient to

be synthesized, which potentially increases both their capacity.
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3.2 Original genome-Scale model and its adjustment

By simulating the original iLE1678-ME model with free glucose uptake, which means

the growth rate would be optimized to its maximum, there’s only little acetate excretion,

0.66mM/gDW/hr. To make things worse, by checking the metabolic pathway map(figure

11.), acetate is actually not synthesized by the fermentation pathway. Phosphotransacety-

lase and acetate kinase are not carrying any fluxes. Thus, some proper adjustment to the

model in order to generate the pathway switch behavior is necessary.
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Figure 11: The problem of original genome-scale ME model: no fermentation

The reason of not having fermentation in high growth rate can be a result from µthreshold ≤

µmax. In this case, we need to figure out a way to keep µmax unchanged while decreasing

µthreshold. The simulation of the small scale ME model (SSME) tells us that we can achieve

this goal by decreasing the keff in respiration pathway, or in another word, figure out the

correct keff values. Basan et al. provided a method to quantify their proteome efficiency

ε. Considering the linear relation between ε and keff shown in eq.7. Even though the value

of γ is unknown, as far as it is a constant and we are planning to scale the keff , replacing
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keff with ε can be an initial guess of the adjustment.

Basan et al. measured the protein abundance of the gene expressions encoding the

reactions in 5 different pathways(glycolysis, lactose degradation, TCA cycle, oxidative

phosphorylation and acetate synthesis)in 4 different growth rates. While each reaction is

separated into portions of respiration, fermentation, and biomass based on the stoichiome-

try in Neidhardt et al.[14]. Afterward, Basan et al. summed up all the protein abundance

corresponding to respiration and fermentation pathways, then calculate εr, εf by getting

the slope of the linear fit. The process of how Basan et al. mapping their 3-pathway model

into the genome-scale is shown in figure 12, where only glycolysis, acetate synthesis, and

TCA cycle are shown.
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Figure 12: The approach of how the model in Basan et al. is mapped in Genome-Scale

On the vision from the 3-pathway model, since every reaction in genome-scale can

potentially involve in multiple pathways, manipulating keff on a wrong reaction could

change the proteome efficiency of both respiration and fermentation at the same time. Thus,

as our goal is to change the keff of only respiration pathway, we need to manipulate the

keff of the reactions which only involve in or mostly involve in respiration. TCA cycle

is the only pathway that meets this requirement. The other pathway, for example, even

though oxidative phosphorylation is the one that consumes oxygen, which seems to be

closely related to respiration, as it is essential for generating energy, which is the key factor

for growth, it would potentially involve hugely in biomass synthesis.

Table 2 shows how the ε is calculated from 4 different ATP fluxes, which corresponding

to 4 different growth rates. The value of ε is the slope of the linear fit of the 4 protein
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fraction percentages upon 4 ATP fluxes.

Table 2: Adjustment of keff values in TCA cycle

Reaction Ori. keff Gene-Reaction rule Prot. % on different ATP fluxes Slope (ε)37.22 30.22 21.46 15.22

ACONTa 1598.02 acnA or acnB 0.92 0.84 0.66 0.57 59.8
ACONTb 1603.47 acnA or acnB 0.92 0.84 0.66 0.57 59.8
AKGDH 3000.00 sucA&sucB 1.34 1.36 1.2 1.07 66.34
CS 493.21 gltA 0.88 0.8 0.61 0.48 52.89
FUM 354.28 fumB or fumC or fumA 0.24 0.21 0.17 0.13 201.05
ICDHyr 3000.00 icd 1.55 1.55 1.31 1.39 65.38
MDH 95.90 mdh 0.45 0.45 0.41 0.39 307.74
SUCDi 75.44 sdhA&sdhB&sdhC&sdhD 0.49 0.45 0.42 0.35 158.90
SUCOAS 346.56 sucC&sucD 0.88 0.84 0.66 0.52 56.60
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Figure 13: Adjustment of keff in TCA cycle from the genome-scale model

After getting the ε values of each reaction in the TCA cycle, the update of the keff is

simply replacing them with ε values. As shown in figure 13, the original keff (blue dots)

are replaced by ε(red dots).

The simulation with the new keff values results in the appearance of fermentation in

maximum growth rate(figure 14).
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Figure 14: After keff adjustments, fermentation appears

Moreover, if we run the full simulation by varying the glucose uptake rate bound and

plot the fermentation/respiration-growth relation(figure 15), we can tell that after the keff

adjustments, pathway switch behavior appears, which is the same mechanism as the expla-

nation of overflow metabolism.
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Figure 15: Comparison of the simulation results of pre and post-adjustment, as well as the keff s in TCA
cycle are 95% off

In fact, besides the adjustment process introduced above, another simple method to

recreate the pathway switch behavior is to scale down the keff of the entire TCA cycle(dot

lines in figure 15). However, the result curation process validates the result of the derivation

of the connection between the model created by Basan et al. and SSME. In addition,

the post-adjustment result actually fits a set of experiment data provided by Basan et al.

well(figure 21 in chapter 4.1). Therefore, the post-adjustment keffs would be considered

as the standard case for the keff variation analysis.
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3.3 Parameter sweep on adjusted genome-scale model

According to the stoichiometry in Neidhardt et al. used by Basan et al., the TCA cycle

can be separated into two steps. The first step(figure 16 left), ending with 2-Oxoglutarate,

a precursor of glutamate, is mainly a respiration process but having a biomass portion. The

glutamate is essential to growth, which is a component of the biomass, shown in the re-

construction of genome-scale E.coli model iAF1260[15]. The second step(figure 16 right),

end with Oxaloacetate, is pure respiration process.

As a result(figure 16 left), for the first step of TCA cycle, the behavior of varying the

keff is similar to a combination of varying the keffs of both respiration and fermentation.

As there are both rising and dropping trends(appearing in different regions) of the slope,

corresponding to the behavior in biomass and respiration. In addition, varying the keff

would affect both µthreshold and µmax, which is seemingly the same behavior as the biomass

pathway.
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Figure 16: Dependence of Sac, µthreshold and µmax on keff of TCA cycle, the parameters that fit the
experiment data in figure 6 is shown as the dash horizontal lines

The second step of TCA cycle(figure 16 right) behaves exactly the same as how the

respiration pathway works, that µmax is stable while µthreshold would be varying with the
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variation of keffs. The slope would increase with the keff increases, which is the same as

the respiration pathway. However, due to the complexity of the genome-scale model, when

the keff shrinks to a really small value, the effect of the variation converges.

The process of acetate kinase(figure 17), which is an important step of Acetyl-CoA

turning into acetate, is obviously a fermentation process. Therefore, as the result, it is not

surprising that vary in the keff of acetate kinase would have the exact same effect as for

how the fermentation pathway behaves. The only problem is similar to the second step of

TCA cycle, for which the effect converges.
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Figure 17: Dependence of Sac, µthreshold and µmax on keff of reaction ACKr,the parameters that fit the
experiment data in figure 6 is shown as the dash horizontal lines

Oxidative phosphorylation(i.e ATP synthase and cytochrome oxidase, as shown in figure

18), as it uptakes oxygen, is obviously a respiration process. However, as it is crucial for

generating energy, which is a key demand for growth, it is significantly involved in biomass

pathway too.

As shown in figure 18, the result of varying the keff values of ATP synthase or cy-

tochrome oxidase can be interpreted as an effect on both biomass pathway and respiration

pathway. Both µmax and µthrehold are increasing with the rise of keff , which is the same as
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biomass pathway. The slope behaves the same as respiration pathway that keeps increasing

when the keff increases.
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Figure 18: Dependence of Sac, µthreshold and µmax on keff of ATP synthase(left) and cytochrome oxi-
dase(right),the parameters that fit the experiment data in figure 6 is shown as the dash horizontal lines

Some other parameters are tested where results are shown in figure 19. The translation

efficiency noted as mrr in iLE1678-ME, as expectation, provide the same effect as the keff

of biomass pathway, as the biomass pathway would also take charge of protein synthe-

sis. The global keff , which is simply scaling up or down the enzyme kinetics of all the

metabolic reactions regardless of the protein synthesis, provide the capability to translate

the acetate line.

As what is shown in the result, varying keff of a single pathway could either converge

beyond the linear fit of the experiment data(dash horizontal lines in the plots from figure

16 to figure 19) or affecting the µmax, µthreshold and the slope at the same time.

By trying to make a combination of the keff variation, the result is shown in figure 20,

where the slope as dropped significantly comparing to the standard case but still had some

distance to fit the experiment data.
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Figure 19: Dependence of Sac, µthreshold and µmax on ribosome efficiency(left) and global keff s(right),the
parameters that fit the experiment data in figure 6 is shown as the dash horizontal lines
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Figure 20: 50% ATP synthase keff , 5% TCA1 keff , 0.5% TCA2 keff , 0.25% CYT oxidase keff , 200%
ACkr keff , 180% global keff



Chapter 4: Discussion
The result of varying keffs of different pathways can be approached to fit the experiment

data but would converge to some bounds beyond. Thus, some extra constraint would need

to be added to the genome-scale model. Three potential constraints are introduced in this

chapter.

4.1 The function of motility protein

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00
Growth Rate µ (1/hr)

0

1

2

3

4

5

6

7

8

Re
ac

tio
n 

Ra
te

 v r
(m
M
/g
D
W
/h
r)

ME simulation
NQ1388
NQ1539

Figure 21: Good fit for the simulation on the strains which are not able to synthesize motility protein

Basan et al. provided the data(figure 21) with two special strains: NQ1388 and NQ1539,

where their gene encoding for flagella assembly(flhD for NQ1388, and fliA for NQ1539)

are knocked out, which means they are incapable of synthesizing motility protein. The ex-

periment data can be fit by a linear-threshold response with a steep slope and high µthreshold.

The explanation of the steeper slope response is that as the cells are cultivated in well-

stirred culture, motility protein is useless. Knocking out the gene for flagella assembly

would create more free proteome portion for respiration, thus the µthreshold gets delayed.

The flagella synthesis pathway is not included in iLE1678-ME. Moreover, the simu-

lation result of the standard case(post keff adjustment introduced in chapter 3.2) fits the

experiment data of those two strains well, which validates the process of keff adjustment
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and shows the necessity for adding the flagella assembly pathway to fit the NCM3722 and

NQ381 data.

4.2 keff varied by growth rate
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Figure 22: Matching the experiment data on multiple keff s of cytochrome oxidase

As introduced in figure 12 (chapter 3.2), when fitting the experiment data, Basan et al.

treated each particular metabolic reaction as a combination of respiration, fermentation and

biomass pathway with the coefficient from stoichiometry. This indicates that if every single

metabolic reaction has a pathway switch behavior, which means the change of keff when

changing the growth rate, the experiment data is guaranteed to get a good fit.

Therefore, a hypothesis that instead of a constant value keff , the enzyme kinetics of

a single metabolic reaction is a function of the growth keff (µ).Figure 22 shows how the

variation of keff for cytochrome oxidase varying with growth rate can fit the experiment

data. Figure 23 shows a sigmoid fit of the keff samples where the fitting function is

keff (µ) =
398

−70(µ−0.935)
+ 2.
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Figure 23: A Sigmoid function fit of growth dependence on cytochrome oxidase keff s, as a fitting function
keff (µ)

4.3 Limited oxygen uptake

When simulating iLE1678-ME, there is no bound for oxygen uptake. However, in an

actual case of cell culturing, limitation of oxygen uptake might actually exist. Figure 24

shows a case of running the simulation of the adjusted iLE1678-ME model with a limitation

of oxygen uptake(magenta line). As a result, it has a better fit on the experiment data, but

loose linearity. There’s a drop of acetate excretion rate when reaching the max growth

where another pathway switch appears: pyruvate starts to synthesize lactate.
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Figure 24: Simulation with oxygen uptake rate upper bound limited to 14 mM/gDW/h



Chapter 5: Conclusions
Overflow metabolism is a pathway switch behavior caused by the tradeoff of energy

efficiency and proteome efficiency. The energy efficiency is quantified as the stoichiometric

coefficient of the metabolic pathway, while proteome efficiency is quantified as enzyme

kinetics based on gene expression. Thus, overflow metabolism cannot be replicated by the

traditional metabolic model[15] without taking account of the enzyme kinetics. As a model

combining cell metabolic network and gene expressions, the metabolic and gene expression

model(ME model)[10] can potentially model overflow metabolism and in reverse, overflow

metabolism can be a good test case to validate the model.

Basan et al.measured the behavior of overflow metabolism and fit it as a linear-threshold

response. Besides, a small scale metabolic and proteome allocation model is created to

fit the experiment data. This thesis derived the proteome allocation part of the model

into the format of genome-scale ME model (O’brien et al.), named as small scale ME

model(SSME).As a result, 3 models in 2 different scales and 2 different formats are pre-

sented.

The model created by Basan et al. is having a good fit on the experiment data and in

a small scale, the latest ME model iLE1678-ME(Lloyd) simulates the detailed metabolic

flux but need adjustment on the parameters to fit the experiment data. The SSME model,

using the same metabolic pathway defined by Basan et al. and able to replicate the exact

same results, while using the ME format, would be helpful to be as the reference guide to

the adjustment and manipulation of the parameters.

As a result, it turns out to be hard to fit the standard experiment data using the genome-

scale ME model and therefore, 3 hypotheses are presented, which could be interesting

topics for future study.
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