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Abstract

A new class of large-sample covariance and spectral density matrix estimators is

proposed based on the notion of flat-top kernels. The new estimators are shown to be

higher-order accurate when higher-order accuracy is possible. A discussion on kernel

choice is presented as well as a supporting finite-sample simulation. The problem of

spectral estimation under a potential lack of finite fourth moments is also addressed.

The higher-order accuracy of flat-top kernel estimators typically comes at the sacrifice

of the positive semi-definite property. Nevertheless, we show how a flat-top estimator

can be modified to become positive semi-definite (even strictly positive definite) while

maintaining its higher-order accuracy. In addition, an easy (and consistent) procedure

for optimal bandwidth choice is given; this procedure estimates the optimal bandwidth

associated with each individual element of the target matrix, automatically sensing (and

adapting to) the underlying correlation structure.
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reading and suggestions of some key early references, and to Dimitrios Gatzouras for his help with the proof
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was compiled with the invaluable help of Isheeta Nargis and Arif Dowla of www.stochasticlogic.com, and

is now publicly available from: www.math.ucsd.edu/∼politis/SOFT/SfunctionsFLAT-TOPS.html.
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Higher-order accurate, positive semi-definite estimation

of large-sample covariance and spectral density matrices

1 Introduction

Many applications of multivariate time series analysis involve the nonparametric estimation

of spectral density matrices. For example, the large-sample covariance matrix of the sample

mean of a stationary sequence equals 2π times its spectral density matrix evaluated at the

origin. Pioneering work in multivariate spectral estimation was conducted by E.J. Hannan,

E. Parzen, M. Rosenblatt, D. Brillinger, and other prominent statistical researchers in the

1950s and 60s. See, e.g., the papers by Hannan (1957, 1958), Parzen (1957, 1961), Priestley

(1962), Brillinger and Rosenblatt (1967), as well as the book-length treatments in Hannan

(1970), Brillinger (1981), Priestley (1981), and Rosenblatt (1985) that contain a number of

additional references.

The subject was revived more recently in the time series econometrics literature where

typical applications—such as hypothesis tests from generalized method of moments esti-

mation (Hansen (1982)) or general dynamic models (Gallant and White (1988))—require

accurate estimation of large-sample covariance matrices that is robust to autocorrelation and

heteroskedasticity. A general theory towards heteroskedasticity and autocorrelation consis-

tent (HAC) covariance matrix estimation was put forth in influential papers by Newey and

West (1987) and Andrews (1991); see also related work of Gallant (1987), Andrews and

Monahan (1992), Hansen (1992), and Newey and West (1994).

Nevertheless, the current state-of-the-art seems to be lacking in three respects:

(a) The accuracy of the HAC covariance estimators is often suboptimal as their rate of

convergence is T 2/5 even in situations when higher-order accuracy is possible, e.g., a rate

closer to T 1/2; see Samarov (1977).

(b) The problem of optimal bandwidth choice for the HAC estimators has not been con-

clusively addressed. For example, the ‘plug-in’ procedure of Andrews (1991) will not give

consistent estimation of the optimal bandwidth unless the parametric model used to esti-

mate the ‘plug-in’ values holds true. On the other hand, cross-validation methods may give

consistent bandwidth estimates but their consistency is typically achieved at a very slow

rate; see e.g. Robinson (1991) and the references therein.

(c) The existing literature focuses on obtaining a single optimal bandwidth, common for
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estimating all elements of the target matrix; this is suboptimal as each element of the target

matrix generally comes with its own individual optimal bandwidth.

In this paper we address the above three issues. A new class of HAC covariance matrix

and spectral density matrix estimators is proposed based on the notion of a flat-top kernel

defined in Politis (2001) that is a generalization of the trapezoidal kernels of Politis and

Romano (1995). The new estimators are shown to be higher-order accurate when higher-

order accuracy is possible; a discussion on kernel choice is presented as well as a supporting

finite-sample simulation.

The higher-order accuracy of flat-top kernel estimators typically comes at the sacrifice of

the positive semi-definite property. Nevertheless, we show how a flat-top estimator can be

modified to become positive semi-definite (even strictly positive definite) while maintaining

its higher-order accuracy. In addition, it is shown that there is an easy (and consistent)

procedure for optimal bandwidth choice for flat-top kernel HAC estimators; this procedure

estimates the optimal bandwidth associated with each individual element of the target

matrix, automatically sensing (and adapting to) the underlying correlation structure.

Since estimation of the large-sample covariance matrix of a sample mean or generalized

method of moments estimator is tantamount to estimation of a spectral density matrix eval-

uated at the origin, the paper treats the more general framework of higher-order accurate,

positive semi-definite estimation of spectral density matrices.

The structure of the paper is as follows. In the next section, the flat-top estimators of

a spectral density matrix are defined, and a general theorem on their asymptotic accuracy

is given. Section 3 addresses the difficult problem of spectral estimation under a potential

lack of finite fourth moments; surprisingly, it is shown that the flat-top estimators retain—

for the most part—their higher-order accuracy. Section 4 introduces a modification of the

flat-top matrix estimators that results into an estimator that is positive semi-definite (even

positive definite—if so desired) while retaining the estimators’ higher-order accuracy.

Section 5 discusses some interesting kernels of the flat-top family, while Section 6 is

devoted to the issue of data-dependent bandwidth choice. An empirical rule for choosing

the bandwidth of a flat-top kernel is given extending the trapezoidal kernel bandwidth choice

of Politis (2003); a general asymptotic theorem shows the bandwidth choice rule works by

automatically adapting to the underlying (unknown) correlation structure even in the lack

of finite fourth moments. Section 7 presents some finite-sample simulations complementing

our asymptotic results where the high accuracy and rate of convergence of the flat-top
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estimators are manifested in practice; some simulations on the problem of hypothesis testing

are also reported. Finally, Appendix A addresses in detail the set-up of large-sample HAC

covariance matrix estimation that is of interest in econometric applications; Lemma 8.1,

in particular, is important as it allows the large-sample covariance matrix estimation to

be cast in the framework of spectral density matrix estimation. Appendix B discusses the

interesting robustness of plug-in bandwidth estimators in the presence of infinite fourth

moments. All technical proofs are placed in the Technical Appendix.

2 Spectral density matrix estimation

Consider observations V1, . . . , VT from a second-order stationary d-variate time series {Vt, t ∈
ZZ} possessing mean zero1 and autocovariance matrix sequence Γ(j) defined as

Γ(j) = EVtV
′
t+j for j ≥ 0, and Γ(j) = Γ(−j)′ for j < 0. (1)

Under typical weak dependence conditions—see e.g. Hannan (1970), Brillinger (1981),

Brockwell and Davis (1991), or Hamilton (1994)—the spectral density matrix evaluated at

point w is defined as

F (w) =
1
2π

∞∑
k=−∞

Γ(k)e−ikw (2)

where i =
√−1. The dxd matrix F (w) is positive semi-definite and Hermitian for any

w ∈ [−π, π] but note that its off-diagonal elements are, in general, complex-valued; Fjk(w)

will denote the (j, k) element of F (w). Nevertheless, F (0) has all its elements real-valued,

and it is easy to see that F (0) = Ω/(2π) where Ω is defined as

Ω = lim
T→∞

1
T

T∑
k=1

T∑
j=1

EVkV
′
j . (3)

Hence, accurate estimation of F (0) is tantamount to accurate estimation of Ω which rep-

resents the large-sample covariance matrix of the sample mean; see Remark 3.1 for details.

In what follows, we will consider the more general problem of estimation of F (w) at an

arbitrary (fixed) point w ∈ [−π, π]; since w will be fixed, the short-hand notation F will be

used to denote F (w), and Fjk will denote the (j, k) element of F .
1The case of unknown mean is discussed in Remark 3.1, and then again in Section 7 and Appendix A.
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To describe our new spectral matrix estimator, we need the notion of a ‘flat-top’ kernel.

The general family of flat-top kernels was introduced in Politis (2001). Its typical member

is λg,c(x) where

λg,c(x) =

{
1 if |x| ≤ c

g(x) else;
(4)

here c > 0 is a parameter, and g : IR → [−1, 1] is a symmetric function, continuous at all

but a finite number of points, and satisfying g(c) = 1, and
∫
IR g

2(x)dx < ∞. The kernel

λg,c(x) is ‘flat’, i.e., constant, over the region [−c, c], hence the name flat-top.

If g is such that g(x) = 0 for |x| ≥ some x0, then the kernel λg,c(x) has a hard cut-off.

The simplest representative of such a flat-top kernel has a trapezoidal shape defined as

λTR,c(x) =

⎧⎪⎨
⎪⎩

1 if |x| ≤ c
|x|−1
c−1 if c < |x| ≤ 1

0 else

(5)

with c ∈ (0, 1], i.e., the function g performs a linear interpolation between the values g(c) = 1

and g(1) = 0. The trapezoidal kernel’s favorable properties were documented in Politis and

Romano (1995). The trapezoid may be seen as a cross between the ‘truncated’ kernel

defined as κtrunc(x) = 1 if |x| ≤ 1 and κtrunc(x) = 0 else, and the well-known triangular

Bartlett kernel κB(x) = (1− |x|)+. As a matter of fact, λTR,c(x) tends to κtrunc(x) and/or

κB(x) by letting c tend to 1 or 0 respectively. Here, the notation (y)+ indicates the positive

part of y, i.e., (y)+ = max(y, 0).

Let S be a dxd matrix of bandwidth parameters with (j, k) element denoted by Sjk. As

usual, S is thought of as a function of T although this dependence will not be explicitly

denoted. The estimator of F that we will consider is F̂ with (j, k) element given by:

F̂jk =
1
2π

T∑
m=−T

λg,c(m/Sjk)Γ̂jk(m)e−imw (6)

where λg,c is some chosen member of the flat-top family, and Γ̂jk(m) is the (j, k) element

of the sample autocovariance matrix Γ̂(m) defined as

Γ̂(j) =
1
T

T−j∑
t=1

VtV
′
t+j for j ≥ 0; Γ̂(j) = Γ̂(−j)′ for j < 0, (7)

and Γ̂(j) = 0 for |j| ≥ T . Note that the dependence of F̂jk on the chosen λg,c is not

explicitly denoted.
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The favorable large-sample properties of F̂ are manifested in the following theorem.

Theorem 2.1 Assume conditions strong enough to ensure that2

V ar(F̂jk) = O(Sjk/T ) for any fixed j, k; (8)

Then, for each combination of j and k, the following are true.

(i) If
∑∞

m=−∞ |m|r|Γjk(m)| <∞ for some real number r ≥ 1, then letting Sjk proportional

to T 1/(2r+1) yields

F̂jk = Fjk +OP (T−r/(2r+1)).

(ii) If |Γjk(m)| ≤ Ce−am for some constants C, a > 0, then letting Sjk ∼ A log T , for some

appropriate constant A, yields

F̂jk = Fjk +OP (
√

log T√
T

);

as usual, the notation A ∼ B means A/B → 1.

(iii) If Γjk(m) = 0 for |m| > some q, then letting Sjk = max(	q/c
, 1), yields3

F̂jk = Fjk +OP (
1√
T

);

here 	x
 is the ‘ceiling’ function, i.e., the smallest integer larger or equal to x.

The conditions of the three parts of Theorem 2.1 are usual conditions of weak depen-

dence. For example, if Γjj(m) = 0 for |m| > some q, then the jth coordinate of Vt, say

V
(j)
t , can be thought to follow a Moving Average (MA) model of order q. Similarly, the

condition |Γjj(m)| ≤ Ce−am is satisfied if V (j)
t follows a stationary ARMA (p, q) model, i.e.,

AutoRegressive with Moving Average residuals; see e.g. Brockwell and Davis (1991). The

polynomial decay in condition (i) is a worst-case scenario; suffices to note that in order to

even define the spectral density of V (j)
t the typical condition is

∑∞
m=−∞ |Γjj(m)| <∞, i.e.,

r = 0 in condition (i).

Theorem 2.1 demonstrates the improvement in rate of convergence afforded by the use

of flat-top kernels as compared to the OP (T−2/5) error associated with traditional second-

order kernels. Most importantly, flat-top kernels are seen to attain the lower bounds for the
2There exist different sets of conditions sufficient for eq. (8). Assumption A of Andrews (1991) is such

a condition based on summability of fourth cumulants; different conditions based on moment and mixing

assumptions are also available, see e.g. Hannan (1970), Brillinger (1981), or Brockwell and Davis (1991).
3Taking the maximum of �q/c� and 1 is done to cover the possibility that q = 0.
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order of magnitude of the error of a quadratic spectral density estimator under the three

cases of Theorem 2.1; these lower bounds are due to Samarov (1977).

Note that Theorem 2.1 not only gives the rate of convergence of F̂jk to Fjk, but at the

same time it suggests the optimal values of the bandwidth parameter Sjk; here optimality

is meant with respect to optimizing the rate of convergence of F̂jk. As is apparent, the

optimal Sjk crucially depends on the rate of decay of Γjk(m) as m increases. If we had

some reason to believe that the rate of decay of Γjk(m) is the same for all j, k, then we

could let Sjk equal some common value s
T
, in which case our estimator would take the

familiar simple form

F̂simple =
1
2π

T∑
m=−T

λg,c(m/sT
)Γ̂(m)e−imw; (9)

letting w = 0, it is seen that the above is of the same exact form as the Newey-West

(1987) and Andrews (1991) estimator Ω̂ given in eq. (32). Nevertheless, there is typically

no reason to believe that the rate of decay of Γjk(m) is common for all j, k. Thus, F̂ is

generally preferable to F̂simple.

To elaborate, consider the following example. Let Vt = (V (1)
t , V

(2)
t , V

(3)
t )′ where V (1)

t

follows an MA(q1) model, V (2)
t follows an MA(q2) model independent of V (1)

t , and V
(3)
t =

V
(2)
t−L for all t. Suppose that the trapezoidal kernel λTR,1/2(x) is used, i.e., c = 1/2. Then,

Theorem 2.1 (iii) suggests the following optimal bandwidth parameters: S11 = 2q1, S22 =

2q2, S33 = 2q2, S12 = S21 = 1, S13 = S31 = 1, and S23 = S32 = 2(q2 + L).

Parts (ii), (iii)—as well as part (i) with r > 2—of Theorem 2.1 show that the rate of

convergence of F̂ is superior to the Newey-West (1987) estimator based on Bartlett’s kernel,

as well as to all second order kernel estimators considered by Andrews (1991); the Newey-

West (1987) estimator only achieves a rate of convergence of T 1/3, while the second order

kernels (including the optimal quadratic spectral window) achieve a rate of convergence of

T 2/5.

Remark 2.1 If a chosen bandwidth happens not to be small as compared to the sample

size, then the standard asymptotics—such as eq. (8)—might not provide accurate approx-

imations, and the so-called “fixed-b” asymptotics of Kiefer and Vogelsang (2002, 2005),

and higher-order expansions of Hashimzade and Vogelsang (2008) are a valuable alterna-

tive. There is no inherent discrepancy between the notion of flat-top kernels and “fixed-b”
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asymptotics.4 Indeed, the latter could—in principle—be used in connection with flat-top

kernels but it seems that the improvements will be marginal (if at all). The reason is that for

small bandwidths, the “fixed-b” asymptotics coincide with the traditional approximations,

and that flat-top kernels are characterized by small (even ultra-small) optimal bandwidths;

see e.g. the logarithmic and constant optimal bandwidths in Theorem 2.1 (ii) and (iii).

Remark 2.2 The asymptotic normality of
√
T/Sjj(F̂jj − EF̂jj) has been shown under

a variety of weak dependence and moment conditions; see e.g. Hannan (1970), Brillinger

(1981), Brockwell and Davis (1991), Rosenblatt (1984), Politis and Romano (1995), or Shao

and Wu (2007). The limiting variance of
√
T/SjjF̂jj is then given by the L2 norm of the

employed kernel (doubled when w is an integer multiple of 2π). Similarly,
√
T/Sjk(F̂jk −

EF̂jk) can be shown to have a limiting complex normal distribution; see the first three

references listed above.

3 Spectral estimation in the absence of finite fourth moments

As mentioned in the last section, eq. (8) is typically satisfied for kernel estimators such as F̂ .

Nevertheless, it has been conjectured that some financial time series might not possess finite

fourth moments; see Davis and Mikosch (2000), Hall and Yao (2003) or Politis (2004) for

a discussion. But if the series {Vt} does not possess finite fourth moments, then V ar(F̂jk)

is not well-defined. For this reason, it is convenient to also define the correlation/cross-

correlation matrix ρ(m) with (j, k) element given by ρjk(m) = Γjk(m)/
√

Γjj(0)Γkk(0), and

estimated by ρ̂jk(m) = Γ̂jk(m)/
√

Γ̂jj(0)Γ̂kk(0). We can then define the normalized spectral

density matrix evaluated at point w as

f(w) =
1
2π

∞∑
k=−∞

ρ(k)e−ikw; (10)

the short-hand notation f will again be used to denote f(w), and fjk will denote the (j, k)

element of f . The corresponding flat-top kernel estimator of f is f̂ with (j, k) element given
4The “steep-origin” kernels of Phillips, Sun, and Jin (2006) are competitors to the “fixed-b” asymptotics

but the underlying idea is the same, i.e., better approximations when the bandwidth happens to be large;

here the kernel is raised to a power instead of being re-scaled by the bandwidth parameter. Note though

that a flat-top kernel raised to a power can never become of “steep-origin” as it remains a flat-top; thus, the

implied re-scaling will be unsuccessful, and flat-top kernels can not be used in this connection.
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by:

f̂jk =
1
2π

T∑
m=−T

λg,c(m/Sjk)ρ̂jk(m)e−imw. (11)

Because ρ̂jk(m) is bounded (by unity), V ar(f̂jk) is well-defined even if {Vt} does not possess

finite fourth moments. The following alternative to eq. (8) is then suggested:

V ar(f̂jk) = O(Sjk/T ) for any fixed j, k. (12)

Eq. (12) is now typically satisfied under regularity conditions; see e.g. Robinson (1991) and

Hansen (1992) who considered the problem of spectral estimation in the absence of finite

fourth moments.

A further consequence of lack of finite fourth moments is that, although ρ̂(m) will still

be
√
T—consistent under appropriate weak dependence assumptions, Γ̂(m) is consistent but

typically at slower rate; see e.g. Theorem 7.2.2 of Brockwell and Davis (1991) or Embrechts

et al. (1997). A reasonable assumption adopted by Robinson (1991) is:

Γ̂jj(0) = Γjj(0) +OP (1/Tα), for all j, and some α ∈ (0, 1/2]. (13)

For our purposes we will require the slightly stronger condition:

E
∣∣∣Γ̂jj(0) − Γjj(0)

∣∣∣1+δ
= O(1/Tα(1+δ)) for all j, and some δ > 0 and α ∈ (0, 1/2].

(14)

The following theorem is a generalization of Theorem 2.1 to the setting where finite fourth

moments are potentially lacking.

Theorem 3.1 Fix values for j, k, and assume conditions (12), (14), and that5

S−1
jk

T−1∑
j=−T+1

|λg,c(j/Sjk)| = O(1). (15)

Also assume Γjj(0) > 0 for all j.

(i) If
∑∞

m=−∞ |m|r|Γjk(m)| <∞ for some real number r ≥ 1, then letting Sjk proportional

to Tα/(r+1) yields

f̂jk = fjk +OP (T−αr/(r+1)), (16)
5As in condition (i) of Lemma 8.1, eq. (15) is easily satisfied such as when λg,c(x) has a hard ‘cut-off’,

i.e., λg,c(x) = 0 for |x| > some x0.
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and

F̂jk = Fjk +OP (T−αr/(r+1)). (17)

(ii) If |Γjk(m)| ≤ Ce−am for some constants C, a > 0, then letting Sjk ∼ A log T , for some

appropriate constant A, yields

f̂jk = fjk +OP (
log T
Tα

) and F̂jk = Fjk +OP (
log T
Tα

). (18)

(iii) If Γjk(m) = 0 for |m| > some q, then letting Sjk = max(	q/c
, 1), yields

f̂jk = fjk +OP (
log log T
Tα

) and F̂jk = Fjk +OP (
log log T
Tα

). (19)

As a matter of fact, as apparent from the proof of part (iii), the log log T term in the above

eq. (19) could be replaced by a term that tends to infinity even slower, e.g. log log log T .

So even under the potential absence of finite fourth moments, F̂ maintains its higher-

order accuracy. Parts (ii) and (iii) of Theorem 3.1 show that the rate of convergence of F̂

comes very close to Tα which is the rate of convergence of Γ̂(0). Interestingly, under the

premises of either part (ii) or (iii) of Theorem 3.1, the optimal rates for the bandwidth Sjk

are insensitive to whether fourth moments are finite or not.

Qualitatively, the same is true for part (i). Note though that, as suggested by a referee,

the rate achieved for F̂jk in part (i)—and the suggested choice for Sjk—does not appear

to be sharp since it does not approach the corresponding optimal rate given in part (i) of

Theorem 2.1 when α→ 1/2. We conjecture, therefore, that the optimal rate of convergence

of F̂jk under part (i) might be something like OP (T−αr/(r+1/2)) perhaps times a logarithmic

factor. Nevertheless, the differerence of the above conjectured rate with the OP (T−αr/(r+1))

rate given in Theorem 3.1 is small, and becomes negligible if r is large.

Remark 3.1 Until this point it was assumed, for simplicity, that the mean of our data is

known and it is zero. We now show why this simplifying assumption can be made without

loss of generality. To make this clear, here—and for the remainder of Section 3—assume

that our observed data are the vectors X1, . . . ,XT and that their mean EXt = μ is unknown

and estimated by X̄T = T−1∑T
t=1Xt.

For t = 1, . . . , T, let Vt = Xt − μ and V̂t = Xt − X̄T , and define

ˆ̂Γ(j) =
1
T

T−j∑
t=1

V̂tV̂
′
t+j for j ≥ 0, and ˆ̂Γ(j) = ˆ̂Γ(−j)′ for j < 0,

10



letting ˆ̂Γ(j) = 0 for |j| ≥ T as usual. Similarly, define the matrix ˆ̂ρ with (j, k) element given

by ˆ̂ρjk(m) = ˆ̂Γjk(m)/
√

ˆ̂Γjj(0)
ˆ̂Γkk(0). Finally, define

ˆ̂
f jk =

1
2π

T∑
m=−T

λg,c(m/Sjk)ˆ̂ρjk(m)e−imw and ˆ̂
F jk =

1
2π

T∑
m=−T

λg,c(m/Sjk)
ˆ̂Γjk(m)e−imw.

The quantities Γ̂j, f̂ and F̂ are defined exactly as before as functions of V1, . . . , VT .

The key observation now is that V̂t = Vt +MT where MT ≡ X̄T − μ = OP (1/
√
T ) by

Chebychev’s inequality and the existence of the spectral density. Note also that

ˆ̂Γjk(m) = Γ̂jk(m) −M
(j)
T M

(k)
T +M

(j)
T

1
T

m−1∑
t=1

V
(k)
t +M

(k)
T

1
T

T∑
t=m+1

V
(j)
t .

But the terms
∑m−1

t=1 V
(k)
t and

∑T
t=m+1 V

(j)
t are both of order OP (

√
m). Since

√
m ≤ √

T ,

it follows that ˆ̂Γ(m)− Γ̂(m) = OP (1/T ) uniformly in m, and the following corollary ensues.

Corollary 3.1 Assume
∑∞

m=−∞ |Γjk(m)| <∞ and eq. (15). Then,

ˆ̂
f jk = f̂jk +OP (Sjk/T ) and ˆ̂

F jk = F̂jk +OP (Sjk/T ).

Hence, either part (i,ii or iii) of Theorem 2.1 or of Theorem 3.1 hold true as stated with
ˆ̂
f jk and ˆ̂

F jk taking the place of f̂jk and F̂jk respectively.

The moral of Corollary 3.1 is that if the mean is unknown, plugging in the sample mean as

an estimate has a negligible effect on the accuracy of spectral density estimators—provided,

of course, that the bandwidth is chosen such that Sjk = o(T ). Ng and Perron (1996) give

further discussion on the effect of an unknown mean in the spectral estimation set-up, and

also provide exact, finite-sample expressions for the bias and variance of a spectral density

estimator in the case of Gaussian noise.

Remark 3.2 Still in the case of Remark 3.1 with data X1, . . . ,XT and unknown mean

EXt = μ, it may be desirable to test the hypothesis H0 : μ = μ0. Assuming that F (0)

exists and is positive definite, the test statistic τμ0 ≡ √
T Ω̂−1/2(X̄T − μ0) may be used

where Ω̂1/2 is a square root of matrix Ω̂ = 2πF̂ (0); of course, to define this square root

and its inverse, the estimate F̂ (0) must also be positive definite. The idea of studentizing

a mean-like statistic by a nonparametric spectrum estimate can be traced back to Jowett

(1954), Hannan (1957), and Brillinger (1979); see Robinson and Velasco (1997) for a review,

and Velasco and Robinson (2001) for some recent developments.
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Note that under any of the conditions—part (i), (ii) or (iii)—of Theorem 3.1, we can

write Ω̂ = Ω + OP (1/T β) for some β ≤ 1/2. Since we are in the set-up of finite second

moments, it follows that X̄T = μ+OP (1/
√
T ), and thus—by the δ–method—we have

τμ ≡
√
T Ω̂−1/2(X̄T − μ) = ZT +OP (1/T β)

where ZT =
√
T Ω−1/2(X̄T − μ). Under conditions validating the Central Limit Theorem,

ZT will tend to a multivariate standard normal distribution, and—by Slutsky’s theorem—so

will τμ. For this reason the normal tables are used to approximate the appropriate quantile

of the null distribution of τμ0 in order to obtain the threshold of the test.

This OP (1/T β) discrepancy between τμ and ZT is undesirable, and—if possible—should

be minimized. To see why, under regularity conditions, a Berry-Esseen and/or Edgeworth

expansion argument as discussed in Lahiri (2003) yields

sup
z

|Prob{ZT ≤ z} − Φ(z)| =

⎧⎪⎪⎨
⎪⎪⎩
O(1/

√
T ) if E|X1|3 <∞

o(1/
√
T ) if EX3

1 = 0

0 if the Xts are jointly normal

(20)

where Φ(z) is the distribution of N(0, 1). In other words, the distribution of ZT will,

in general, be quite close to standard normal; the same, however, does not hold for the

distribution of τμ exactly due to the slow-converging OP (1/T β) discrepancy. Furthermore,

due to the addition of this OP (1/T β) term, the variance of any of the coordinates of τμ will,

in finite-samples, tend to be larger than the variance of the corresponding coordinate of ZT .

So, both because of the slow convergence to normality as well as the higher variance,

the standard normal tables will tend to give suboptimal approximations to the quantiles

of τμ (and of τμ0 under the null). This phenomenon is manifested even when the Xts are

independent (and Gaussian) in which case the OP (1/T β) term (with β = 1/2) is responsible

for the difference between the z–tables and the t–tables. In the time series case where

typically β < 1/2 the effects of this phenomenon are quite more pronounced, and are

summarized as:

• Size. The test threshold obtained from the z–tables will be smaller (in absolute value)

than the ideal; the implication is that the size of the test will be larger than nominal.

• Power. The power of the test is compromised because of the higher variance associ-

ated with the OP (1/T β) term.6

6Interestingly, the inaccurate choice of too small a threshold mentioned above works in the opposite
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The moral is that the OP (1/T β) discrepancy can be minimized—by maximizing β—, and

here is where the flat-top kernels may be useful. Recall that β = 1/3 for the Newey-West

(1987) estimator whereas β = 2/5 for all second order kernels considered by Andrews (1991).

By contrast, under any of the conditions of Theorem 2.1, the flat-top kernels will achieve a

higher value for β which—in parts (ii) and (iii) of the theorem—becomes practically equal

to 1/2. It turns out from the lower bounds of Samarov (1977) that the β achieved by the

flat-top kernels is actually optimal under the three conditions of Theorem 2.1. Although

there is no literature on the optimal rates for spectral estimators in a setting where finite

fourth moments are lacking, we conjecture that the rate of convergence achieved by the flat-

top kernels under conditions (ii) or (iii) of Theorem 3.1 is optimal, whereas—as previously

mentioned—the rate under condition (i) is very close to optimal.

As discussed in the Introduction, the flat-top kernels are not positive semi-definite,

and hence their use for studentization purposes has been limited to date since there is no

guarantee that Ω̂−1/2 is well-defined. It should be stressed, however, that if the estimand

F (0) is positive definite, then F̂ (0) will be positive definite with probability that quickly

tends to one; see also Note 4 of Andrews (1992), and Remark 4.1 in what follows. The

above discussion is corroborated by our finite-sample simulations of Section 7; in particular,

in models where the spectral density matrix was well-conditioned (e.g. Models I and III of

Section 7.1), the proportion of occurances of non-positive semi-definite estimated matrices

was found to be very small for a sample size of T = 100, and it was practically zero (of

order 1/10,000) for T = 500.

In any case, when an absolute safeguard against non-positive definiteness is needed,

i.e., when a practitioner needs the positive definiteness to hold with probability exactly

one, a simple modification of F̂ is readily available. In particular, it is shown in the next

section how a positive semi-definite (or even definite) estimated spectral density matrix can

be obtained without compromising the high rate of convergence associated with flat-top

kernels. This type of fast-converging albeit positive definite spectral (or HAC covariance)

matrix can find immediate application in set-ups like the studentized bootstrap; see Lahiri

(2003), or Inoue and Shintani (2006).

direction and may have a partially off-setting effect.
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4 Positive semi-definite spectral estimation

Flat-top kernels are infinite-order kernels, and therefore they are capable of achieving higher-

order accuracy when that is possible. For example, it is apparent that, under the MA(q)–

type condition of Theorem 2.1 (iii),
√
T–consistent estimation of Fjk is possible since Fjk is

a function of only finitely many (q) parameters. The flat-top estimator F̂jk indeed attains√
T–consistency in that case, and the flatness of the kernel over the interval [−c, c] is crucial

for this attainment.

The only disadvantage of flat-top kernels is that they are not positive semi-definite, i.e.,

the matrix F̂ is not almost surely positive semi-definite for all w. Nevertheless, the fast

rate of convergence of F̂ to a positive semi-definite matrix indicates that the incidents of a

non-positive semi-definite F̂ may be rare; this fact was documented in the simulations of

Andrews (1991) with respect to the truncated kernel that technically belongs to the flat-top

family.7

However, the positive semi-definiteness is an important property especially in the case

of w = 0 when the object is estimation of a covariance matrix; see e.g. the testing example

of Remark 3.2 where, in particular, positive definiteness is required. It is likely for this

reason that the focus in the recent literature starting with Newey-West (1987) has been on

positive semi-definite estimators. Nonetheless, we now show how the flat-top estimator F̂

can be easily modified to render a positive semi-definite estimator.

Recall that a Hermitian matrix has all real eigenvalues, and can be diagonalized by

a unitary transformation. Thus, consider the unitary decompositions of the Hermitian

matrices F and F̂ , namely:

F = UΛU∗ and F̂ = Û Λ̂Û∗ (21)

where U, Û are unitary (complex-valued) matrices, i.e., they satisfy U−1 = U∗ and Û−1 = Û∗

where ∗ denotes the conjugate transpose; the columns of U and Û are the orthonormal

eigenvectors of F and F̂ respectively, and Λ = diag(λ1, . . . , λd), Λ̂ = diag(λ̂1, . . . , λ̂d) are
7Note, however, that the discontinuity of the truncated kernel gives its corresponding spectral window very

pronounced ‘sidelobes’, and hence high variance (because of large l2–norm) and unfavorable finite-sample

behavior that have been widely reported; see Figure 1 in Politis and Romano (1995) for a comparative graph

of the sidelobes. Because of its discontinuity, the truncated kernel is arguably the worst representative of

the flat-top family; more details on kernel choice are given in Section 5.

14



diagonal matrices containing the respective eigenvalues.

Noting that the entries of Λ are all nonnegative suggests the following fix to the possible

negativity of F̂ . Let Λ̂+ = diag(λ̂+
1 , . . . , λ̂

+
d ) where λ̂+

j = max(λ̂j, 0), i.e., the entries of

Λ̂+ are given by the positive part of the entries of Λ̂, and define the positive semi-definite

estimator

F̂+ = Û Λ̂+Û∗. (22)

The following theorem shows that, in addition to being positive semi-definite, F̂+ inherits

the higher-order accuracy of F̂ . Therefore, F̂+ is our proposed higher-order accurate,

positive semi-definite estimator.

Theorem 4.1 Let RT be a sequence such that RT → ∞ as T → ∞. If F̂ = F +OP (1/RT ),

then F̂+ = F +OP (1/RT ) as well.8

To take it one step further, it may be the case that the estimand F is not only positive

semi-definite but strictly positive definite. Alternatively, it can be of interest to consider

the inverse of an estimated F as in the case of the studentized statistic9 of Remark 3.2.

For such applications, it may be desirable to have a strictly positive definite estimator of

F that maintains the high accuracy of the flat-top estimators. For this reason, let εT > 0

be some chosen sequence, and define Λ̂ε = diag(λ̂ε
1, . . . , λ̂

ε
d) where λ̂ε

j = max(λ̂j , εT ). Also

define the strictly positive definite estimator

F̂ ε = Û Λ̂εÛ∗. (23)

The following corollary to Theorem 4.1 shows that F̂ ε also inherits the higher-order accuracy

of F̂ if εT is chosen right. Thus, F̂ ε is a higher-order accurate, strictly positive definite

estimator.

Corollary 4.1 Let RT be a sequence such that RT → ∞ as T → ∞, and let the strictly

positive sequence εT be o(1/RT ). If F̂ = F +OP (1/RT ), then F̂ ε = F +OP (1/RT ) as well.

8The notation A = OP (1/RT ) for some matrix A means that each element of A is OP (1/RT ).
9Note, however, that it may be possible to conduct a hypothesis test even with an estimated covariance

matrix that is just positive semi-definite; see the discussion in Section 7.2.
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Note that for spectral estimation problems we always have 1/
√
T = O(1/RT ). So any choice

of εT > 0 satisfying εT = o(1/
√
T ) will satisfy the requirements of Corollary 4.1. However,

in order to avoid the introduction of unnecessary finite-sample bias it is recommended to

take εT > 0 quite smaller than 1/
√
T . But then again εT should not be too small in order

not to risk the matrix F̂ ε being ill-conditioned which leads to computational difficulties;

letting εT = 1/T a with 1 ≤ a ≤ 2 seems like a reasonable practical compromise.10

Remark 4.1 Some concluding remarks are in order here. Since Theorems 2.1 and 3.1 show

that the flat-top estimator F̂ is consistent at a very fast rate, we expect it to be close to its

target value F and share its properties (positive definitess, etc.). This is indeed true, and

supported by the finite-sample simulations of Section 7.

To elaborate, if the eigenvalues of the estimand F are not close to zero, then with high

probability the eigenvalues of F̂ will be positive as well and there is no need for F̂+ or even

F̂ ε. As a matter of fact, from eq. (50) it follows that the probability F̂ is not positive

definite—when F is—is of order O(S̃/T ) where S̃ = maxj,k Sjk. Hence, in the set-up of the

ARMA-type condition of part (ii) of Theorem 2.1, the probability that F̂ will be positive

definite is of order 1 −O(log T/T ).

On the other hand, if an eigenvalue of F is zero (or close to zero), then the small bias of

F̂ demands that the corresponding eigenvalue of F̂ has a distribution that is centered right

around zero which, as a consequence, generates many negative values (as many as 50%); see

Figure 3 (b) for an illustration. However, this is not to be seen as a hindrance; rather, it is

very informative, giving strong evidence that the target eigenvalue is close to zero, and that

consequently adopting F̂+ or F̂ ε is appropriate, resulting in a highly-accurate estimator.

Consider for example the one-dimensional case (d = 1), and note that the asymptotic

normality of kernel estimators discussed in Remark 2.2 implies that the desire for positivity

clashes with the desire for unbiasedness; this is especially apparent either in small/medium-

size samples, or in large samples with a target value near zero. In other words, restricting

our attention to just non-negative estimators is tantamount to limiting ourselves to working

with severely biased estimators; see e.g. Figure 3 (a).
10The estimator F̂ ε as defined above is not scale equivariant since εT is not; see Remark 6.1 for a discussion.

A way to remedy this deficiency is to work with the normalized spectral density matrix f instead. I.e.,

if ξ̂j is the jth eigenvalue of f̂ , define f̂ε as having eigenvalues ξ̂ε
j = max(ξ̂j , εT ) for j = 1, 2, ... and

the same eigenvectors as f̂ ; finally, obtain F̂ ε from f̂ε by multiplying with the appropriate (estimated)

variance/covariance element-by-element.
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The thesis of this paper is to not impose the non-negativity restriction at the outset;

rather, to work with the most accurate (less biased) estimators, and fix the possible non-

positivities at the end. Because of the high accuracy of the proposed estimators, non-

positivities will be observed in practice effectively only when the target value is zero (or

close to zero) in which case an estimated value of zero (or positive but close to zero) is right

on target. The finite-sample simulations of Section 7 corroborate this claim.

5 Flat-top kernel choice

The favorable asymptotic rates of Theorems 2.1 and 3.1 are achievable by any member of the

flat-top family. Nevertheless, finite-sample properties will be dependent upon kernel choice.

For example, as mentioned in the previous section, the truncated kernel κtrunc(x) is one of

the worse representatives of the flat-top family because of the pronounced ‘sidelobes’ of the

Dirichlet kernel which is its corresponding spectral window—see e.g. Figure 2 of Politis and

Romano (1995). Since half of those sidelobes are on the negative side, they unnecessarily

inflate the L2–norm of the spectral window under the constraint that the latter integrates

to one; as implied by Remark 2.2, a large L2–norm results in a large variance.11

In order to reduce the size of a spectral window’s sidelobes, the flat-top kernel must be

chosen as smooth as possible. The poor finite-sample performance of the truncated kernel

is actually due to the discontinuity of the function κtrunc(x) at points ±1. The trapezoidal

kernel λTR,c(x) is continuous everywhere, and is thus much better performing than the

truncated. Even better finite-sample behavior is expected if the ‘corners’ of the trapezoid

λTR,c(x) are smoothed out. For example, McMurry and Politis (2004) constructed a member

of the flat-top family that is infinitely differentiable; it is defined as

λID,b,c(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if |x| ≤ c

exp
(−b exp(−b/(|x| − c)2)/(|x| − 1)2

)
if c < |x| < 1

0 if |x| ≥ 1

(24)

where c ∈ (0, 1], and b > 0 is a shape parameter.

Nevertheless, the already good performance of the trapezoidal kernel indicates that one

might not have to use an infinitely differentiable kernel to gather appreciable finite-sample
11The variance is still of order O(Sjk/T ) as eq. (8) demands, but the proportionality constant in the term

O(Sjk/T ) is large for the Dirichlet kernel.
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benefits. For example, we can create a flat-top kernel by adding a piecewise cubic tail,

similar to that of Parzen’s (1961) kernel, to the [−c, c] flat-top region. The resulting flat-

top kernel would be defined as:

λPR,c(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if 0 ≤ x ≤ c

1 − 6(x− c)2 + 6|x− c|3 if c ≤ x ≤ c+ 1/2

2(1 − |x− c|)3 if c+ 1/2 < x < c+ 1

0 if x ≥ c+ 1

λPR,c(−x) if x < 0.

(25)

The original Parzen kernel κPR(x) is seen to be equal to λPR,0(x). Similarly, we can create

a flat-top kernel by a modification of Priestley’s (1962) ‘quadratic spectral kernel’:

κQS(x) =
25

12π2x2

(
sin(6πx/5)

6πx/5
− cos(6πx/5)

)

that has been found optimal12 among positive semi-definite second order kernels; see e.g.

Priestley (1962) or Epanechnikov (1969). The modification would amount to defining:

λQS,b,c(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 ≤ x ≤ c
3

b2(x−c)2

(
sin(b(x−c))

b(x−c) − cos(b(x− c))
)

if x > c

λQS,b,c(−x) if x < 0,

(26)

so that λQS,b,c(x) has the required [−c, c] flat-top region, but inherits the tails of κQS(x).

Note that κQS(x) tends to zero for large x but does not vanish after a cut-off point. The

parameter b > 0 in λQS,b,c(x) is again a shape parameter scaling the magnitude of the tail.

Since c ‘scales’ together with b, we can let c = 1 in connection with λQS,b,c(x), so that b is

the only remaining shape parameter.

Having chosen the shape of the function g, the remaining parameters c and/or b have to

be chosen as well. For the trapezoidal kernel λTR,c(x), the recommendation of Politis and

Romano (1995) is to take c in the neighborhood of 1/2; the rationale is that the extreme

values c→ 0 and c→ 1 are both to be avoided, corresponding to the aforementioned poorly

performing kernels, the Bartlett and truncated kernel respectively.
12Priestley’s kernel κQS(x) leads to the so-called Epanechnikov spectral window of quadratic form, i.e.,

KQS(w) = (1−w2)+ that satisfies a number of optimality criteria among positive semi-definite second order

kernels; see Andrews (1991).
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For the infinitely differentiable kernel λID,b,c(x) there is an interplay between the two

parameters b and c; for example, even with c close to 0, there is a range of values of b that

will make λID,b,c(x) look very much like the trapezoidal λTR,1/2(x) with ultra-smoothed

corners. Similarly, to implement the kernels λPR,c(x) and/or λQS,b,1(x), the parameters c

and b must be chosen respectively.

The problem of identifying the optimal shape of a flat-top kernel is still open, and more

work is needed in that respect. In the meantime, motivated by the good performance of

the trapezoidal kernel λTR,1/2(x), the following rule-of-thumb may be suggested: choose

the parameter(s) of a flat-top kernel such that the resulting shape is similar to λTR,1/2(x)

with smoothed corners. For example, letting c = 0.05 and b = 1/4 has this desired effect in

connection with λID,b,c(x), i.e., λID,0.25,0.05(x) ‘looks’ like a smoothed version of λTR,1/2(x).

To get λPR,c(x) and λQS,b,1(x) to yield a similar balance between the flat-top region and the

tail, the values c = 0.75 and b = 4 may be used respectively. Plots of the flat-top kernels

λTR,1/2(x), λID,0.25,0.05(x), λPR,0.75(x) and λQS,4,1(x) are shown in Figure 1.

6 Adaptive bandwidth choice

In this section, assume that a member of the flat-top family, say λg,c, has been identified to

be used for F̂+ and F̂ . Besides the favorable asymptotic properties and speed of convergence

associated with flat-top kernels as demonstrated in Theorems 2.1 and 3.1, a further reason

for using a flat-top lag-window is that choosing its bandwidth in practice is intuitive and

doable by a simple inspection of the correlogram/cross-correlogram, i.e., a plot of ρ̂jk(m)

vs. m where ρ̂jk(m) = Γ̂jk(m)/
√

Γ̂jj(0)Γ̂kk(0) for all j, k.

The proposed bandwidth choice rule is motivated by case (iii) of Theorems 2.1 and

3.1 and boils down to looking for a point, say q̂, after which the correlogram appears

negligible, i.e., ρ̂jk(m) � 0 for |m| > q̂ (but ρ̂jk(q̂) 
= 0). Of course, ρ̂jk(m) � 0 is taken

to mean that ρ̂jk(m) is not significantly different from zero, i.e., an implied hypothesis

test. After identifying q̂, the recommendation is to just take Ŝjk = max(	q̂/c
, 1) as part

(iii) of Theorems 2.1 and 3.1 suggests. Although it may be overoptimistic to expect that

our data will follow a finite-order MA(q) model, the validity of this simple rule in general

situations is due to the fact that an MA(q) model—with high enough q—can always serve

as an approximation at least as far as the spectral density is concerned; see e.g. Brockwell

and Davis (1991).
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Figure 1: (a) Plot of λTR,1/2(x) vs. x > 0; (b) Plot of λID,0.25,0.05(x) vs. x > 0; (c) Plot of

λPR,0.75(x) vs. x > 0; (d) Plot of λQS,4,1(x) vs. x > 0.
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The intuitive interpretation of the above bandwidth choice rule is an effort to extend

the ‘flat-top’ region of λg,c over the whole of the region where ρ̂jk(m) is thought to be

significant so as not to downweigh it and introduce bias. Nevertheless, the ‘flat-top’ region

of λg,c can be greater than [−c, c] depending on the choice of function g. Even if g(x)

is strictly decreasing for x > c, its rate of decrease near c may be slow enough so that

λg,c(x) � 1 for x in an interval much greater than [−c, c]; see, for example, Figure 1 (b)

regarding the infinitely differentiable λIS,b,c(s) with b = 1/4 and c = 0.05. Thus, we are

led to define the ‘effective’ flat-top region of λg,c as the interval [−cef , cef ] where cef is the

largest number such that λg,c(x) ≥ 1− ε for all x in [−cef , cef ]; here ε is some small chosen

number, e.g. ε = 0.01.

Now we can rigorously define the empirical bandwidth choice rule. Note that in the case

j 
= k, ρjk(m) is the cross-correlation sequence which is not symmetric in m; rather than

looking at both positive and negative m, we choose to look at both ρjk(m) and ρkj(m) for

only positive m which is equivalent.

EMPIRICAL RULE OF CHOOSING Sjk FOR FLAT-TOP KERNEL λg,c.

Case j = k: Let q̂ be the smallest nonnegative integer such that |ρ̂jk(q̂+m)| < C0

√
log10 T/T ,

for m = 0, 1, . . . ,KT , where C0 > 0 is a fixed constant, and KT is a positive, nondecreasing

integer-valued function of T such that KT = o(log T ). Then, let Ŝjk = max(	q̂/cef 
, 1).
Case j 
= k: Let q̂jk be the smallest nonnegative integer such that |ρ̂jk(q̂jk + m)| <
C0

√
log10 T/T , for m = 0, 1, . . . ,KT , where C0 > 0 is a fixed constant, and KT is a

positive, nondecreasing integer-valued function of T such that KT = o(log T ). Similarly,

let q̂kj be the smallest nonnegative integer such that |ρ̂kj(q̂kj + m)| < C0

√
log10 T/T , for

m = 0, 1, . . . ,KT . Then, let q̂ = max(q̂jk, q̂kj), and Ŝjk = Ŝkj = max(	q̂/cef 
, 1).

In the univariate case (i.e., d = 1 or j = k in the above), the bandwidth choice rule

was empirically suggested by Politis and Romano (1995) for the trapezoidal kernel; it was

then rigorously studied in Politis (2003) but still only for the trapezoidal kernel. Note

that the constant C0 and the form of KT are the practitioner’s choice. Politis (2003)

makes the concrete recommendations C0 � 2 and KT = max(5,
√

log10 T ) that have the

interpretation of yielding (approximate) 95% simultaneous confidence intervals for ρjk(q̂+m)

with m = 1, . . . ,KT by Bonferroni’s inequality.

These approximate confidence intervals are based on a null hypothesis that the series is
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i.i.d. in which case the large-sample variance of ρjk(m) is 1/T for any m. Nevertheless, in

nonlinear/non-normal time series, uncorrelatedness is a weaker assumption than indepen-

dence. So, a more conservative approach would be to use a resampling and/or subsampling

approach—cf. Lahiri (2003) or Politis, Romano and Wolf (1999)—in order to estimate these

variances and adjust C0 appropriately. For example, if the standard deviation of
√
Tρjk(m)

for some m among the lags under consideration is estimated by ν, then let C0 � 2ν and

KT = max(5,
√

log10 T ) as before.

In any case, the practitioner should always be vigilant in a case where altering the value

of C0 slightly leads to radically different values of q̂. In such a case, the rule-of-thumb is

to use the smaller of the two potential estimates q̂ in the sense that flat-top kernels work

best with small bandwidth parameters; see Politis and White (2004) for an example of this

phenomenon.

Remark 6.1 As pointed out by a referee, a disadvantage of element-by-element bandwidth

choice methods is that they yield spectral estimators that are not equivariant. When Q is

a full-rank matrix and the data is transformed from Vt to QVt, an equivariant estimator

is transformed from F̂ to QF̂Q′. Nevertheless, the above empirical rule for choosing the

bandwidths is, at least, equivariant with respect to scaling, i.e., when the matrix Q is

diagonal.

The performance of our empirical bandwidth choice rule is quantified in the following

theorem. The case j = k of the theorem was first given in Politis (2003) for the trapezoidal

flat-top kernel; a similar theorem is also given in Berg and Politis (2008). It is important to

note that the theorem is valid even under the settting of Section 3, i.e., under a potential

lack of finite fourth moments.

Theorem 6.1 Fix j, k, and assume conditions strong enough to ensure that13 for all fi-

nite N ,

max
m=1,...,N

|ρ̂jk(n +m) − ρjk(n+m)| = OP (1/
√
T ) (27)

13There exist different sets of conditions sufficient for eq. (27); see Brockwell and Davis (1991) or Romano

and Thombs (1996). As a matter of fact, under further regularity conditions, the process
√

T (ρ̂jk(·)−ρjk(·))
is asymptotically Gaussian with autocovariance tending to zero; consequently, eq. (28) would follow from

the theory of extremes of dependent sequences—see e.g. Leadbetter et al. (1983) or Ch. 5 of Hannan and

Deistler (1988).
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uniformly in n, and

max
m=0,1,...,T−1

|ρ̂jk(m) − ρjk(m)| = OP (

√
log T
T

). (28)

Also assume that the sequence ρjk(m) does not have more than KT − 1 consecutive zeros14

in its first m0 lags (i.e., for m = 0, 1, . . . ,m0).

(i) Assume that for m > m0 we have ρjk(m) = C1m
−p1 or ρjk(m) = C1m

−p1 cos(a1m+θ1),

and ρkj(m) = C2m
−p2 or ρkj(m) = C2m

−p2 cos(a2m+θ2), for some positive integers p1, p2,

and some constants satisfying Cv > 0, av ≥ π
KT

, and θv ∈ [0, 2π] for v = 1, 2. Then,

Ŝjk
P∼ A1T

1/(2p)

(log T )1/(2p)
where p = max(p1, p2)

for some positive constant A1; the notation A
P∼ B means A/B P−→ 1.

(ii) Assume that for m > m0 we have ρjk(m) = C1ξ
m
1 or ρjk(m) = C1ξ

m
1 cos(a1m + θ1),

and ρkj(m) = C2ξ
m
2 or ρkj(m) = C2ξ

m
2 cos(a2m+ θ2), where the constants satisfy Cv > 0,

|ξv| < 1, av ≥ π
KT
, and θv ∈ [0, 2π] for v = 1, 2. Then Ŝjk

P∼ A2 log T where A2 =

−1/max(log |ξ1|, log |ξ2|).
(iii) If |ρjk(m)| + |ρkj(m)| = 0 for m > some nonnegative integer q (with q < m0 +KT ),

but |ρjk(q)| + |ρkj(q)| 
= 0, then Ŝjk = max(	q/cef 
, 1) + oP (1).

Comparing the empirical rule Ŝjk to the theoretically optimal values of Sjk given in Theo-

rem 2.1 we see that Ŝjk manages to capture exactly the theoretically optimal rate in cases

(ii) and (iii) of Theorem 6.1. In case (i) of Theorem 6.1, Ŝjk increases essentially as a

power of T since the 2p-th root of the logarithm changes in an ultra-slow way with T ; note

that the empirically found exponent 1/(2p) is slightly smaller than the theoretically optimal

bandwidth given in part (i) of Theorem 2.1 but the difference is small, and becomes even

smaller for large p.

Thus, Ŝjk is seen to adapt to the underlying rate of decay of the correlation and cross-

correlation functions, automatically switching between the polynomial, logarithmic, and

constant rates that are optimal respectively in the three cases of Theorem 2.1. In that

sense, the literature on adaptive nonparametric estimation such as Lepski (1990, 1991,

1992) may be quite relevant. In particular, note that our empirical bandwidth choice rule
14Because of this assumption, it is advisable to take KT be an increasing function of T , albeit at the very

slow rate suggested by the recommendation KT = max(5,
√

log10 T ).
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has the qualitative flavor of wavelet ‘thresholding’ of Donoho and Johnstone (1995) albeit

remaining in the context of linear estimators.

Remark 6.2 As already made clear, the proposed empirical bandwidth choice rule only

attempts (and, to a large extend, succeeds) to capture the correct rates under the three

autocovariance conditions of Theorems 2.1 or 3.1; it does not necessarily give the opti-

mal constants associated with these rates. To elaborate, the usual plug-in methods—such

as Andrews’s (1991)—focus on estimating (and plugging-in) the constants in the leading

terms of bias and variance of F̂ with a subsequent MSE minimization to get the estimated

bandwidth. However, these methods can not adapt to an arbitrary degree of smoothness of

the underlying function; their saving point is that the leading term for the bias is dictated

by the order of the kernel. By contrast, there is no such limitation in the flat-top setting

since the order is infinite; the implication is that (a) the order of magnitude of the bias

is not dictated by the kernel but by the underlying smoothness which must, therefore, be

identified, and (b) the leading term of the bias is elusive except for an upper bound. For

both of these reasons, the focus of the empirical bandwidth choice rule is the (implicit)

identification of which of the three autocovariance conditions holds for the data at hand,

and not the estimation of optimal constants.

Focusing on the autocorrelation—as the empirical rule does—has an additional, very

important by-product: Theorem 6.1 is valid as stated even under a potential lack of finite

fourth moments. Notably, the aforementioned plug-in methods fail in such a case since the

variance of F̂ is infinite. So, even without finite fourth moments, Ŝjk adapts to the underly-

ing rate of decay of the correlation and cross-correlation functions, automatically switching

between the polynomial, logarithmic, and constant rates that are optimal respectively in

the three cases of Theorem 3.1 as well.15

7 Some finite-sample simulations

We now present some finite-sample simulations to complement our asymptotic results. The

simulations are not meant to be exhaustive; rather, their goal is to illustrate the main issues

discussed in the paper. Throughout Section 7, all simulations were done in the realistic
15Under the caveat that in the case (i) of Theorem 3.1 the optimal polynomial rate for Sjk is not known;

see the discussion after Theorem 3.1.

24



setting of an unknown mean, and the data were centered by the sample mean to estimate

the covariances. However, in this section, the simple notation F̂ was used to denote our

estimated matrices, rather than the more cumbersome ˆ̂
F notation used in Remark 3.1.

The bandwidths of the ‘traditional’ kernels κB (Bartlett), κPR (Parzen), and κQS (opti-

mal 2nd order kernel) were estimated using equations (6.2) and (6.4) of Andrews (1991), i.e.,

the notion of estimating the bandwidth constants by fitting an AR(1) model. By contrast,

the bandwidths of all flat-top kernels were estimated using our empirical rule of Section 6.

For the truncated kernel κtrunc both bandwidth choices, i.e., the Andrews bandwidth—see

footnote 5 in Andrews (1991, p. 834)—and our empirical rule, were used and are denoted

by Truncated-A and Truncated-E respectively.

7.1 Estimating F (0)

We now focus on estimating F (w) with w = 0 for bivariate series (d = 2) generated by

three simple models. For the simulation, B = 999 bivariate time series stretches, each of

length T , were generated; the first two models were:

MODEL I: V (1)
t = 0.75V (1)

t−1 + Z
(1)
t , and V

(2)
t = 2(Z(2)

t + Z
(2)
t−1) where V (k)

t denotes the kth

coordinate series of the bivariate series {Vt}.

MODEL II: V (1)
t = Z

(1)
t − Z

(1)
t−1, and V (2)

t = Wt + V
(1)
t+7 where Wt = −0.75Wt−1 + Z

(2)
t .

In all the above, the error series {Z(1)
t } and {Z(2)

t } are i.i.d. standard normal and indepen-

dent to each other.

Model I involves two coordinates independent to each other, an AR(1) and a MA(1),

both exhibiting positive dependence. The independence of the two coordinates implies that

F12(w) = 0 for all w which in turn implies that the optimal value of S12 for the flat-top

kernels is as small as possible, i.e, one; the other target values are F11(0) = 8/π = F22(0).

Table 1a shows the empirically found MSEs of different estimators relative to (i.e.,

divided by) the MSE of the optimal second order estimator with kernel κQS ; the data

followed Model I with T = 100. It is apparent that in the case of F11 all traditional kernels

(Bartlett, Parzen and the optimal κQS) do quite well and outperform the recommended

flat-top kernels of Figure 1. However, this seems to be due to the fact that we are using an

AR(1) formula for the bandwidths of traditional kernels and an AR(1) model happens to
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be correct in this case. That the bandwidth is the most prominent issue here is manifested

by comparing the truncated kernel with AR(1) bandwidth (Truncated-A) to the one with

bandwidth estimated by our empirical rule (Truncated-E). In fact, Truncated-A seems to

be the overall best estimator of the AR(1) spectrum F11 with strong positive dependence

present; this is consistent with the findings in Table II of Andrews (1991).

The situation is reversed in the estimation of F12 and F22. Here, the problematic use of

the same bandwidth for all coordinates of the target matrix F is apparent as Truncated-E,

having coordinate-specific estimated bandwidth, outperforms Truncated-A. In fact, the best

estimator of F12 and F22 appers to be the positive semi-definite estimator F̂+ corresponding

to the truncated kernel with bandwidth matrix estimated by our empirical rule (Truncated-

E).

This may not seem surprising since had we known that an MA(1) model holds for F22,

we would estimate F22 by a model-based estimator that would be tantamount to a truncated

estimator in this case. However, note that the MA(1) information is not used here; rather,

our empirical rule is able to sense and automatically adapt to this MA(1) structure, and

this is a major success with a sample size as small as 100.

Figure 2 (a) shows a histogram of our empirical rule Ŝ11 for use with the trapezoidal

kernel λTR,1/2 as computed over the 999 Monte Carlo iterations. The mean of the histogram

is about 9 which is right about what we would use had we known that the underlying model

is an AR(1). It is the variability in this histogram that inflates the variances of our flat-top

estimators with estimated bandwidths.

A histogram of the corresponding Ŝ22 is not very informative as the overwhelming ma-

jority (93%) of the computed Ŝ22 were found to equal 2 which corresponds to an MA(1)

structure. Figure 2 (b) shows a plot of Ŝ22 as computed over the Monte Carlo iterations

that more clearly shows the bandwidth estimation procedure in action.

Note that the entries of Table 1a corresponding to the matrix F̂+ are nearly identical

to those of F̂ indicating an extremely low proportion of F̂ matrices that were not positive

semi-definite even for T = 100. The reason for this is twofold: (i) the target values (of those

eigenvalues) are relatively large, i.e., not close to zero, and (ii) the bandwidths chosen were

appropriate resulting in accurate estimators.
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Figure 2: (a) Histogram of Ŝ11; (b) Plot of Ŝ22 over the Monte Carlo iterations; Model I

with T=100.
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F̂11 F̂12 F̂22 F̂+
11 F̂+

12 F̂+
22

κB (Bartlett) 1.09 0.62 0.76 n/a n/a n/a

κPR (Parzen) 1.03 1.06 1.05 n/a n/a n/a

κtrunc (Truncated-A) 0.99 0.83 0.95 n/a n/a n/a

κtrunc (Truncated-E) 1.19 0.42 0.43 1.19 0.42 0.43

λTR,1/2 (Trapezoid) 1.22 0.54 0.50 1.22 0.53 0.50

λPR,3/4 (Flat-top Parzen) 1.21 0.64 0.65 1.21 0.64 0.65

λQS,4,1 (Flat-top Quadratic) 1.23 0.58 0.53 1.22 0.57 0.53

λID,1/4,0.05 (Flat-top Inf. Diff.) 1.19 0.69 0.66 1.19 0.68 0.66

Table 1a. Entries represent the empirical MSEs of different estimators relative to (i.e.,

divided by) the MSE of the optimal second order estimator with kernel κQS ; Model I with

T = 100. [Minimum MSE is indicated by boldface.]

F̂11 or F̂+
11 F̂12 or F̂+

12 F̂22 or F̂+
22

κB (Bartlett) 1.24 0.79 0.85

κPR (Parzen) 1.02 1.11 1.08

κtrunc (Truncated-A) 0.96 0.84 0.94

κtrunc (Truncated-E) 1.13 0.25 0.24

λTR,1/2 (Trapezoid) 1.14 0.33 0.27

λPR,3/4 (Flat-top Parzen) 1.14 0.33 0.27

λQS,4,1 (Flat-top Quadratic) 1.16 0.36 0.29

λID,1/4,0.05 (Flat-top Inf. Diff.) 1.19 0.48 0.37

Table 1b. Entries represent the empirical MSEs of different estimators relative to the MSE

of the optimal second order estimator with kernel κQS; Model I with T = 500.

Table 1b is the same as Table 1a with the sample size increased to 500, and the results

are qualitatively similar. Notable is the dramatic reduction of all flat-top MSEs of F12 and

F22 going from Table 1a to Table 1b. Interestingly, in Table 1b the MSEs of the flat-top

F̂+ were found identical (to 8 decimal points) to those of F̂ indicating that there were

absolutely no occurences of estimators with negative eigenvalues with the increased sample

size; this empirical finding gives credence to the discussion at the end of Section 4.
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In order to really see the effect/improvement of F̂+ vs. F̂ , we need to consider a model

where the target eigenvalues happen to be close to zero. Model II is characterized by

negative (i.e., alternating) dependence which has as its consequence small values for the

spectral density at the origin. As a matter of fact, F11(0) is identically zero whereas F22(0)

equals 0.052. Coordinate V (1)
t follows an MA(1) model, and V

(2)
t follows an ARMA(1,2)

model that is—by construction—dependent to coordinate V (1)
t as their cross-correlation is

significant at lags around 7. For this reason F12(w) is not identically zero, and the optimal

values for S12 are not trivial as in Model I; note, however, that F12(0) = 0 which is not

surprising in view of F11(0) = 0 and the Cauchy-Schwarz inequality.

Figure 3 (a) shows histograms of the distribution of the Bartlett estimator of F11 in the

case of Model II with T=250; Figure 3 (b) is the same but concerning the trapezoidal λTR,1/2

estimator. As expected, the positivity of the Bartlett estimator results into significant

bias when the target value is zero. By contrast, the trapezoidal shows minimal bias albeit

somewhat larger variance. But even the variance discrepancy is corrected after the positive-

part of the trapezoidal estimator is taken strongly suggesting that the flat-top F̂+ is a

superior estimator. A similar phenomenon occurs with a target value near zero as in the

estimation of F22 that equals 0.052; see Figure 4.

Table 2a shows the empirically found Mean Squared Errors (MSE) of different estimators

relative to the MSE of the kernel κQS with data from Model II with T = 100. The first

striking feature of Table 2a is that, despite its optimality among second order kernels,

kernel κQS is vastly outperformed by the traditional positive kernels: Bartlett and Parzen.

Those in turn are outperformed by any of our four recommended flat-top kernels in their

positive semi-definite variation F̂+. The (non-recommended) truncated kernel performs

rather erratically regardless of bandwidth choice.

As mentioned above, Model II presents a bit of a challenge in estimating S12 by our

empirical rule and this difficulty is manifested in the results of Table 2a. The reason for

this is that whereas F11(w) equals a constant plus a cosine of period 2π, F12(w) involves a

cosine of period 2π/7, i.e., it is very ‘wiggly’. Still, the best flat-top performers, the flat-top

Parzen and the infinitely differentiable, manage to achieve a MSE that is about a half of

that of the reference kernel κQS . The situation is dramatically improved if the sample size

is increased to 500 as Table 2b shows.

Looking at our four flat-top kernels, λTR,1/2, λPR,3/4, λQS,4,1, and λID,1/4,0.05, the im-

provement offered by the increased sample size of Table 2b is very apparent, and this is in
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Figure 3: (a) Bartlett estimator of F11; (b) Trapezoidal estimator of F11; Model II with

T=250.
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Figure 4: (a) Bartlett estimator of F22; (b) Trapezoidal estimator of F22; Model II with

T=250.
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good part due to the bandwidths being chosen by our empirical rule which adapts to the

underlying correlation structure. Of course, to realize/maximize those gains, one has to

employ the F̂+ estimators. As conjectured in Section 5, the infinitely differentiable flat-top

kernel λID,1/4,0.05 is best overall but with the flat-top Parzen coming in as a (very) close

second. Both have impressively low MSEs of the order of 10% as compared to the optimal

second order kernel κQS .

F̂11 F̂12 F̂22 F̂+
11 F̂+

12 F̂+
22

κB (Bartlett) 0.35 0.64 0.61 n/a n/a n/a

κPR (Parzen) 0.81 0.65 0.85 n/a n/a n/a

κtrunc (Truncated-A) 0.36 10.5 9.35 n/a n/a n/a

κtrunc (Truncated-E) 0.41 19.5 5.10 0.38 5.81 2.25

λTR,1/2 (Trapezoid) 0.32 3.06 1.85 0.21 1.18 0.32

λPR,3/4 (Flat-top Parzen) 0.10 0.96 0.29 0.07 0.61 0.17

λQS,4,1 (Flat-top Quadratic) 0.25 2.37 1.41 0.16 1.00 0.24

λID,1/4,0.05 (Flat-top Inf. Diff.) 0.09 1.00 0.28 0.06 0.65 0.16

Table 2a. Entries represent the empirical MSEs of different estimators relative to the MSE

of the optimal second order estimator with kernel κQS; Model II with T = 100.

F̂11 F̂12 F̂22 F̂+
11 F̂+

12 F̂+
22

κB (Bartlett) 0.37 0.09 0.74 n/a n/a n/a

κPR (Parzen) 0.86 0.31 0.95 n/a n/a n/a

κtrunc (Truncated-A) 0.24 10.7 30.9 n/a n/a n/a

κtrunc (Truncated-E) 0.28 9.30 5.59 0.18 4.25 3.42

λTR,1/2 (Trapezoid) 0.23 0.20 0.33 0.12 0.16 0.30

λPR,3/4 (Flat-top Parzen) 0.08 0.15 0.12 0.05 0.13 0.12

λQS,4,1 (Flat-top Quadratic) 0.18 0.14 0.15 0.09 0.12 0.13

λID,1/4,0.05 (Flat-top Inf. Diff.) 0.07 0.10 0.11 0.04 0.09 0.11

Table 2b. Entries represent the empirical MSEs of different estimators relative to the MSE

of the optimal second order estimator with kernel κQS; Model II with T = 500.

32



Note that the notorious truncated kernel gives poor results in Table 2b (Model II)

even with the adaptive bandwidth choice, i.e., the Truncated-E version,16 whereas it was

the best performer in Table 1 (Model I). It is mixed/incoherent results such as these that

turned practitioners away from the truncated kernel early on and made people apprehensive

regarding infinite-order kernels in general. However, it is the thesis of this paper that those

poor results are not associated with the infinite order per se but rather with the lack of

smoothness of the truncated kernel.

By contrast, all four of our recommended flat-top kernels of Figure 1 beat the traditional

kernels in almost all instances of spectral and cross-spectral estimators considered; the single

exception is the AR(1) case F11 in Model I, the reason being that in that case the traditional

estimators enjoy the benefit of an ultra-accurate, model-based, optimal bandwidth choice

from a model that happens to be correct. Given the same benefit, flat-top kernels would

do similarly well as the example of Truncated-A in Tables 1a and 1b clearly shows.

Finally, to investigate the performance of the flat-top kernels—and the associated band-

width choice rule—in a set-up with infinite fourth moments, the following model was con-

sidered:

MODEL III: V
(1)
t = V

(1)
t−1 − 0.55V (1)

t−2 + Zt/
√
V ar(Z1) where Zt = σtW

(1)
t with σ2

t =

17 · 10−7 + 0.04Z2
t−1 + 0.95σ2

t−1, and V (2)
t =

∑∞
j=0 ψjW

(2)
t−j where ψj = (j + 1)−p with p = 3.

The error series {W (1)
t } is i.i.d. with a Student’s t4 distribution, and independent of {W (2)

t }
that is i.i.d. with a t3 distribution; the two t distributions were normalized to variance one.

In other words, V (1)
t is an AR(2) model whose innovations Zt follow a GARCH(1,1) model.

The values of the AR(2) parameters were inspired by an example of Phillips, Sun, and Jin

(2006) to give an interesting spectral shape; in particular, F11(w) achieves its maximum at

w = ±π/4 while F11(0) = 0.526. The values for the GARCH parameters were chosen to

roughly reflect the values obtained by fitting a GARCH(1,1) model to daily returns of the

S&P500 index for the 12-year period 1979—1991.

As apparent, V (2)
t is a linear process with strong dependence (and heavy-tailed errors)

chosen to illustrate the polynomial rate of part (i) of Theorem 3.1. To elaborate, with
16The poor performance of the truncated kernel in an MA(1) case with negative dependence was pointed

out by West (1997) who instead proposed a model-based covariance estimator; note that this poor perfor-

mance is clearly not shared by our recommended flat-top kernels as evidenced by Tables 2a and 2b.
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coefficients ψj = (j + 1)−p, the implication is that Γ22(m) = O(m−2p+1); hence, we need

p > 1 for F22 to be well-defined. The chosen value of p = 3 for the simulation yields

F22(0) = (2π)−1[
∑∞

j=0 ψj ]2 ≈ 0.23, and a corresponding polynomial decay of Γ22(m) that

falls under the premises of part (i) of Theorem 3.1 with a value of r that is slightly less

than 4. Finally, note that for practical reasons in the simulation, the infinite sum in the

definition of V (2)
t was approximated by the sum of the first 50 terms.

F̂11 F̂12 F̂22 F̂+
11 F̂+

12 F̂+
22

κB (Bartlett) 1.11 0.73 0.89 n/a n/a n/a

κPR (Parzen) 1.03 1.03 1.00 n/a n/a n/a

κtrunc (Truncated-A) 1.48 1.17 1.00 n/a n/a n/a

κtrunc (Truncated-E) 1.81 0.54 0.86 1.80 0.54 0.86

λTR,1/2 (Trapezoid) 1.79 0.62 0.87 1.79 0.59 0.87

λPR,3/4 (Flat-top Parzen) 2.23 0.80 0.94 2.23 0.78 0.94

λQS,4,1 (Flat-top Quadratic) 1.85 0.63 0.87 1.84 0.61 0.87

λID,1/4,0.05 (Flat-top Inf. Diff.) 2.26 0.80 0.95 2.25 0.79 0.94

Table 3a. Entries represent the empirical MSEs of different estimators relative to the MSE

of the optimal second order estimator with kernel κQS; Model III with T = 100.

F̂11 or F̂+
11 F̂12 or F̂+

12 F̂22 or F̂+
22

κB (Bartlett) 1.05 0.86 0.92

κPR (Parzen) 0.99 1.05 1.00

κtrunc (Truncated-A) 0.49 1.05 0.98

κtrunc (Truncated-E) 0.87 0.36 0.82

λTR,1/2 (Trapezoid) 0.87 0.39 0.82

λPR,3/4 (Flat-top Parzen) 0.87 0.54 0.88

λQS,4,1 (Flat-top Quadratic) 0.92 0.42 0.83

λID,1/4,0.05 (Flat-top Inf. Diff.) 0.97 0.56 0.88

Table 3b. Entries represent the empirical MSEs of different estimators relative to the MSE

of the optimal second order estimator with kernel κQS; Model III with T = 500.
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Tables 3a and 3b present the empirically found relative MSEs from a simulation focusing

on Model III. Although the MSE of F̂jk is not well-defined in the absence of finite fourth

moments, the relative MSE (i.e., ratio of two MSEs obtained by different kernels) is well-

defined as it is tantamount to the relative MSE of the two normalized spectral densities

(i.e., the ratio of the MSEs of two different estimators of f̂jk). Also note that the occurences

of a non-positive semi-definite flat-top estimated matrix under Model III were of the order

of 1% when T = 100, but dropping to 0.01 of 1% when T = 500 lending support to the

discussion of Remark 4.1.

Focusing on F11, a first observation is that the flat-top kernels that use the empirical

bandwidth choice rule perform roughly comparably to each other; they are uniformly worse

than the finite-order kernels in the T = 100 case but become uniformly better when the

sample size increases to 500. Interestingly, the case of F11 with T = 100 is the only instance

in the simulations of this paper where the optimal second order kernel κQS actually performs

optimally!

However, the big news here is the remarkable performance of Truncated-A that is by far

the best performer when T = 500. Comparing this to Truncated-E, the implication is that

the Andrews (1991, footnote 5) heuristically motivated plug-in bandwidth for the truncated

kernel perfoms very well in this case, and really makes the difference. To delve into this

phenomenon, note that the plug-in bandwidth has a mean of 5.7 and standard deviation of

0.4 over the simulation. By contrast, the empirical bandwidth choice rule of Section 6 has

a mean of 6.0 and standard deviation of about 3.7. Thus, it seems that the heavy tails of

V
(1)
t give our empirical rule a “run for its money” in severely inflating its variability; in fact,

the histogram (not shown) of bandwidths chosen by the empirical rule looks heavy-tailed

itself.

While it is intuitive that a slight model mis-specification, e.g. using an AR(1) bandwidth

on an AR(2) model, may be preferable to feigning total ignorance as our empirical rule

does, it is remarkable that a plug-in bandwidth would fare well in the context of heavy tails

where the MSE of F̂ is not well-defined. This unexpected good performance of the plug-in

bandwidth under a lack of finite fourth moments deserves further discussion that is taken

up in Appendix B.

Moving on to the polynomial autocovariance decay case of F22, the Bartlett kernel seems

to fare quite well here; in fact, it is the best in the T = 100 case. This is hardly surprising

since in the case of a slow decay of the autocovariance (and associated lack of high-order
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smoothness of the spectral density) the gain from using higher order kernels is expected to

be small. What is surprising, though, is that with T as small as 500 the flat-top family is

the hands-down winner with the truncated and trapezoid sharing first place.

As mentioned before, the polynomial decay is a worst case scenario in terms of show-

casing the benefits of using higher-order kernels. Thus, the success of flat-top kernels in

Table 3b can partly be attributed to a success of the empirical bandwidth choice rule in

this case; this is made manifest by comparing the performance of Truncated-A to that

of Truncated-E in Tables 3a and 3b. It appears that the empirical rule automatically

captures the appropriate polynomial rate, and gives the resulting improvement in estimation

accuracy.

Finally, the results on estimating F12 are another success story for the flat-top kernels

and the associated empirical bandwidth choice rule. In this case, Γ12(m) = 0 for all m since

the two coordinates of Vt are independent. The adaptive bandwidth choice rule correctly

identifies this cross-covariance structure that fits under the premises of part (iii) of Theorem

3.1 with q = 0; hence it is not surprising that the truncated kernel is the best here and that

the gains over the best second order kernel are dramatic.

Comparing the performance of Truncated-A to that Truncated-E, it is apparent that the

Andrews (1991) plug-in bandwidth choice underperfoms here. In view of the good perfor-

mance of this plug-in bandwidth in estimating F11 and its poor performance in estimating

F22, the poor performance for F12 is an elucidation of the fact that—as discussed in the

Introduction—the search for a single, optimal bandwidth for the whole matrix is a compro-

mise. Each element of the target matrix is associated with its own optimal bandwidth, and

the gains of using that coordinate-specific bandwidth can be appreciable.

With regards to comparing different coordinate-specific bandwidth rules, note that the

Andrews (1991) plug-in bandwidth for the truncated kernel essentially amounts to limiting

its rate of convergence to that of a second order kernel, and using a rough approximation

to the bias constant cλ,w of eq. (33) in Appendix B. Thus, in a heavy-tailed context, the

practitioner must make a choice between two evils: Andrews’ imposed limitation on the rate

of convergence, and the high variance of the empirical bandwidth rule of Section 6. Our

simulation suggests that the former may be preferable in a heavy-tailed setting provided,

of course, that the AR approximation to the bias/variance constants is reasonable. If an

AR(p) model is used for that approximation, it is necessary that the underlying true spectral

density can be reasonably approximated by that of an AR model with order given by the
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chosen p. This is the case with the first coordinate of Model III, but it is clearly not the

case for the second coordinate. All in all, our empirical bandwidth choice rule of Section 6

seems to be a good, totally automatic and generally applicable bandwidth selection tool.

In conclusion, the asymptotic results of Sections 2—6 on the optimal performance of flat-

top kernels have been largely substantiated by the finite-sample simulation of the present

section. It is of particular importance that the high accuracy of flat-top kernels (after the

proposed positive semi-definite transformation) seems to kick in even in sample sizes as

small as T = 100 making them a valuable tool for practical use. Finally, note that flat-top

kernels have recently been shown to be applicable and well–performing in the estimation of

polyspectra such as the bispectrum; see Berg and Politis (2008) for more details.

7.2 Application to hypothesis testing

We now re-visit the testing set-up of Remark 3.2. To fix ideas, suppose we wish to test

the null hypothesis H0 : a′μ = 0 against the alternative H1 : a′μ > 0 at level α = 0.05;

here EXt = μ = [μ(1), μ(2)]′, and a is some 2-dimensional vector of interest. For example,

a′ = [1, 0] is tantamount to a test for μ(1), whereas a′ = [1, 1] yields a test for μ(1) + μ(2).

Assuming Ω = 2πF (0) is positive definite, under usual regularity conditions the Central

Limit Theorem (CLT):
√
T
a′(X̄T − μ)√

a′Ωa
L=⇒ N(0, 1) (29)

holds. Therefore, our large-sample, 0.05 level test would reject H0 whenever

a′X̄T > 1.645
√
a′Ω̂a/T (30)

where Ω̂ = 2πF̂ (0) or 2πF̂+(0) when the latter is required. Interestingly, note that the

strictly positive definite estimator F̂ ε of eq. (23) is not required in order to carry out this

test since it is not a problem to have the RHS of (30) equal zero; this is good in the sense

that the practitioner is not required to choose a value for εT .

Tables 4-6 give the empirical rejection percentages of the above test obtained by simu-

lation using different kernels to estimate F (0). Models I, II and III were considered with a

sample size of T = 250, and number of replications B = 999 as before. The cases [1,0], [0,1],

and [1,1] were considered for a′; the last case was chosen so that the estimated cross-spectral

density plays a role as well. For simplicity, μ was chosen such that μ(1) = μ(2) using five

different values for the latter.
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The entries of Table 4 indicate that under Model I all kernels perform in a roughly

comparable way in achieving good power while having a size close to the nominal; in general,

the kernels that appear more powerful are the ones whose actual size overshoots the nominal

the most, thus making a direct comparison difficult. If one focuses on attaining the nominal

size as closely as possible, the clear winner is the infinitely differentiable flat-top kernel

λID,1/4,.05 while the worst is the Bartlett kernel κB advocated by Newey and West (1987).

a′ = [1, 0] [0, 1] [1, 1]

μ(j) = 0 .05 .10 .15 .20 0 .05 .10 .15 .20 0 .05 .10 .15 .20

κQS 8.1 11.4 15.0 20.5 26.9 5.1 8.4 11.3 15.7 20.3 5.5 9.6 16.9 25.2 36.8

κB 9.0 13.0 17.0 22.8 28.4 5.3 8.3 11.5 16.3 20.8 6.2 10.8 17.9 26.8 39.0

κPR 8.1 11.1 15.1 20.6 26.7 5.2 8.4 11.7 15.8 20.6 5.8 10.2 16.7 25.3 36.7

κtrunc−A 8.1 11.2 15.6 20.7 26.3 5.1 7.9 11.5 15.6 20.5 5.6 9.4 16.4 25.3 36.6

κtrunc−E 8.2 11.3 14.9 19.9 26.3 4.5 6.4 9.8 14.5 19.4 5.1 9.1 15.3 24.2 35.5

λTR,1/2 7.7 9.8 14.4 18.6 24.4 4.5 6.4 9.8 14.5 19.5 5.0 9.0 14.6 23.0 34.2

λPR,3/4 7.4 9.8 14.4 18.3 24.1 4.5 6.8 10.2 14.7 19.6 4.9 9.2 14.5 23.2 35.0

λQS,4,1 7.5 9.8 14.4 18.1 24.1 4.5 6.4 9.8 14.6 19.5 4.8 9.1 14.5 22.8 33.9

λID,1/4,.05 7.0 9.4 13.4 18.0 23.9 4.6 6.8 10.2 14.6 19.6 5.0 9.2 14.6 22.9 33.7

Table 4. Entries represent the empirical rejection percentages of the one-sided, 0.05 level

test of the null hypothesis H0 : a′μ = 0 using different kernels; Model I with T = 250.

The abysmal size performance of all kernels manifested by the entries of Table 5 in

the case a′ = [1, 0] under Model II is not a fluke. Since F11(0) = 0, the CLT (29) does

not hold, and consequently our test based on (30) is not an appropriate α–level test. To

intuitively explain this phenomenon, recall that, since F11(0) = 0, the flat-top kernels will

yield a negative F̂11(0) with appreciable frequency (that actually tends to 50% as T → ∞);

in these cases, F̂+
11(0) = 0, and the test with critical region given by (30) would reject H0

whenever X̄T > 0. Thus, it is expected here that the size of the test based on flat-top

kernels would tend to 1/2 as T → ∞. By contrast, the size of the test based on finite-order

kernels would tend to zero as T → ∞, and this convergence seems to manifest itself even

with a sample size of T = 250.

The ill-conditioned case a′ = [1, 0] in Model II was included in order to illustrate the

failure of test (30) when the CLT (29) fails, since practitioners use this test as a default.
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Another reason for inclusion of this case is to compare it with the case a′ = [0, 1] where

the spectral density is not zero but very close to zero, and the similar case a′ = [1, 1]. In

the latter two cases, the test is well-defined, and—as Table 5 shows—the flat-top kernels

have a definite edge overall. In contrast to the finite-order kernels, the flat-top kernels seem

to have the accuracy/sensitivity to distinguish a spectral density that is exactly zero from

one that is just close to zero. The flat-top λID,1/4,.05 is again the clear winner with λPR,3/4

coming in a close second; these two kernels not only manage to get the size approximately

correct, they are extremely powerful as well. Not surprisingly, λID,1/4,.05 and λPR,3/4 gave

the best performing estimators of F undel Model II.

a′ = [1, 0] [0, 1] [1, 1]

μ(j) = 0 .02 .04 .06 .08 0 .02 .04 .06 .08 0 .02 .04 .06 .08

κQS 0.0 0.0 0.2 58.9 99.7 0.8 3.4 9.9 20.8 41.9 0.2 3.0 19.6 60.0 91.3

κB 0.0 0.0 20.5 97.6 100 1.2 4.5 12.5 24.8 46.9 0.9 7.4 33.3 74.2 97.1

κPR 0.0 0.0 0.6 72.0 99.8 0.8 3.4 10.0 21.3 42.0 0.2 4.6 24.5 66.3 94.2

κtrunc−A 21.8 50.9 73.4 94.6 99.8 43.2 64.4 82.7 93.7 98.7 27.4 63.5 91.1 99.4 100

κtrunc−E 12.9 47.2 74.3 93.3 99.9 19.9 31.6 42.4 51.7 59.4 12.6 32.0 53.6 75.5 93.3

λTR,1/2 18.5 59.3 79.5 96.4 100 13.3 24.6 39.0 58.0 73.8 9.3 32.9 67.9 92.1 99.3

λPR,3/4 14.3 60.7 91.7 99.8 100 6.2 14.6 29.3 51.7 71.6 5.8 25.9 67.5 92.4 99.8

λQS,4,1 17.3 60.3 82.2 97.9 100 10.4 19.0 32.7 54.6 72.8 7.4 27.7 66.2 92.6 99.6

λID,1/4,.05 15.7 61.4 93.5 100 100 5.5 13.4 27.3 50.3 68.3 5.1 23.9 64.3 92.4 99.6

Table 5. Entries represent the empirical rejection percentages of the one-sided, 0.05 level

test of H0 : a′μ = 0; Model II with T = 250.

Finally, the entries of Table 6 indicate that all kernels perform comparably to each

other in the cases where a′ = [0,1] or [1,1] in Model III. In the case a′ =[1,0] the finite-order

kernels have an edge in capturing the correct size; the flat-top kernels have an edge in power

but this comes hand-in-hand with a size larger than nominal, and thus the comparison is

difficult.

All in all, these limited finite-sample simulations on testing are encouraging as it seems

that using a highly–accurate spectral density estimator, i.e., an estimator with optimal rate

of convergence, results in reasonably good performance of the test.

However, it should be noted that the problem of testing involves different objectives

(namely size and power), and, in principle, there is no reason to expect that the ker-
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nel/bandwidth combination that is optimal for estimating the large-sample covariance ma-

trix Ω will also be optimal for testing. Sun, Phillips, and Jin (2008) make this point

eloquently, and devise a criterion to be optimized that is a weighted combination of type I

and II errors, thus taking into account size and power at the same time; see also Gao and

Gijbels (2008), and Sun and Phillips (2008) for related discussions.

a′ = [1, 0] [0, 1] [1, 1]

μ(j) = 0 .02 .04 .06 .08 0 .02 .04 .06 .08 0 .02 .04 .06 .08

κQS 5.5 8.3 12.8 18.1 23.6 5.5 9.7 13.8 23.2 32.8 5.7 10.8 17.7 28.2 42.2

κB 4.6 8.0 11.5 16.6 21.9 5.6 9.7 14.8 23.3 33.1 5.4 10.2 16.8 27.3 41.9

κPR 5.6 8.6 13.0 17.7 23.7 5.7 9.8 14.6 23.3 33.2 5.7 10.9 18.0 28.3 42.5

κtrunc−A 7.6 11.5 15.8 22.2 28.2 5.4 9.2 13.6 21.8 33.0 6.2 11.9 19.8 30.5 46.2

κtrunc−E 6.9 10.7 14.5 21.3 28.4 5.8 9.8 15.5 23.2 33.1 5.6 11.6 19.6 30.9 44.3

λTR,1/2 8.0 11.1 15.6 20.7 28.4 5.8 9.8 15.5 23.2 33.2 5.9 12.1 20.9 32.0 45.9

λPR,3/4 8.0 11.2 16.0 21.0 28.5 5.4 9.0 13.8 22.6 33.1 5.7 12.2 20.2 31.0 45.4

λQS,4,1 8.0 11.7 15.3 20.5 28.1 5.7 9.9 15.2 23.1 33.4 5.9 12.2 20.2 31.9 45.1

λID,1/4,.05 7.3 10.6 14.6 19.2 27.0 5.4 8.9 13.8 22.5 33.2 5.9 11.9 19.5 29.8 43.9

Table 6. Entries represent the empirical rejection percentages of the one-sided, 0.05 level

test of H0 : a′μ = 0; Model III with T = 250.

8 Appendix A: Large-sample covariance matrix estimation

Consider the general framework of Andrews (1991) or Hansen (1992) in which the problem

at hand is estimation of the large-sample covariance matrix Ω of the sample mean of a

second-order stationary (and weakly dependent) sequence of mean zero random vectors

Vt = Vt(θ), t = 1, . . . , T , where Vt takes values in IRd, i.e., Ω as defined in eq. (3).

Here θ is an unknown parameter assumed to have a
√
T–consistent estimator θ̂, yielding

the estimated sequence V̂t = Vt(θ̂). As an immediate example, consider the case of unknown

mean discussed in Remark 3.1. As before, we can define the autocovariance estimators

ˆ̂Γ(j) =
1
T

T−j∑
t=1

V̂tV̂
′
t+j for j ≥ 0, and ˆ̂Γ(j) = ˆ̂Γ(−j)′ for j < 0.

As usual, we set ˆ̂Γ(j) = 0 for |j| ≥ T .
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The typical heteroskedasticity and autocorrelation consistent (HAC) kernel estimator

of Ω has the form
ˆ̂Ω =

T∑
j=−T

κ(j/s
T
)ˆ̂Γ(j),

where the kernel κ(·) and the bandwidth parameter sT ∈ [1, T ] satisfy some standard

conditions. A typical condition on κ is:

{κ : IR → [−1, 1], κ is symmetric, continuous at 0 and for all but a finite number of points,

and satisfying κ(0) = 1 and
∫
IR
κ2(x)dx <∞}. (31)

The kernel κ(·) is called a ‘spectral window generator’ by Andrews (1991) as it cor-

responds to the function K(w) = 1
2π

∑∞
j=−∞ κ(j)e−ijw that is useful for smoothing the

periodogram; here i =
√−1. In statistics, κ(·) is typically called a ‘lag–window’. With the

exception of the ‘truncated’ window κtrunc(x), the kernels considered by Andrews (1991)

and Newey and West (1987) are positive semi-definite, i.e., their respective spectral window

K(w) is a nonnegative function.

We now consider the idealized estimator

Ω̂ =
T∑

j=−T

κ(j/s
T
)Γ̂(j), (32)

that is computed as if the sequence Vt, t = 1, . . . , T were directly observable; the definition

of Γ̂(m) for the above is found in eq. (7).

As in the simple example of unknown mean discussed in Remark 3.1, the estimators Ω̂

and ˆ̂Ω are asymptotically equivalent under general conditions such as Assumptions A, B

and C of Andrews (1991) or Condition (V2) of Hansen (1992); see e.g. Theorem 1(b) of

Andrews (1991). Intuitively, this is due to the slower rate of convergence of both Ω̂ and ˆ̂Ω

as compared to the
√
T–consistency of θ̂ and Vt(θ̂).

In order to be able to use results such as Theorem 2.1 (ii) and (iii) in the setting of

large-sample HAC covariance matrix estimation, we now give a slight generalization of

Theorem 1(b) of Andrews (1991) to cover a possible choice of the bandwidth parameter s
T

that does not necessarily tend to infinity (or it does at a slow, logarithmic rate).

Lemma 8.1 Assume Assumptions A, B and C of Andrews (1991) hold true, and that κ

satisfies eq. (31). Further assume that, as T → ∞, we have s
T
/T → 0 and that:
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(i) s−1
T

∑T−1
j=−T+1 |κ(j/sT )| = O(1);

(ii) Bias(Ω̂) = O(
√
s

T
/T ); and

(iii) s
T
→ ∞ or EVt

∂
∂θVt−j = 0 for all j.

Then, ˆ̂Ω = Ω +OP (
√
s

T
/T ), Ω̂ = Ω +OP (

√
s

T
/T ), and Ω̂ − ˆ̂Ω = oP (

√
s

T
/T ).

Condition (i) of Lemma 8.1 is immediately satisfied if the kernel κ ‘cuts-off’, e.g., if κ(x) = 0

for |x| > some x0. Condition (ii) of Lemma 8.1 can be viewed as a restriction (a lower bound)

on the rate of growth of s
T
.

Note that the flat-top family of kernels (4) satisfies eq. (31). So, let Ω̂λ be the estimator

Ω̂ that uses a flat-top kernel λ instead of κ, and let ˆ̂Ωλ denote its corresponding HAC

estimator. In view of Lemma 8.1, the HAC flat-top estimator ˆ̂Ωλ inherits the large-sample

properties of Ω̂λ derived in the main body of the paper.

9 Appendix B: Robustness of plug-in bandwidth estimators

In Section 7, the surprisingly good performance of the plug-in bandwidth estimators under a

lack of finite fourth moments was observed and deserves further study. To simplify the expo-

sition, we now focus on the one dimensional case of d = 1, i.e., bandwidth choice for estimat-

ing the spectral density F (w) of the real-valued time series {Vt} based on data V1, . . . , VT .

Thus, let F̂ (w) = 1
2π

∑T
m=−T κ(m/ST )Γ̂(m)e−imw where Γ̂(m) was defined in (7).

Under regularity conditions—including a finite fourth moment for Vt—we have:

V ar(F̂ (w)) ∼ Cκ,wF
2(w)

ST

T
, and Bias(F̂ (w)) ∼ cκ,wF

(r′)(w)S−r′
T (33)

where r′ is the minimum of r appearing in part (i) of Theorem 3.1 and the order of the

kernel κ, i.e., one for Bartlett’s kernel, two for the usual semi-positive definite kernels, and

infinity for the flat-top kernels; see e.g. Rosenblatt (1985). In the above, the quantities

Cκ,w and cκ,w depend on w and on the shape of the kernel κ but not on F ; hence, they are

known to the practitioner.

Nevertheless, F is unknown; so let F̄ (w), F̄ (r′)(w) be preliminary—but consistent—

estimators of F (w), F (r′)(w) respectively. Typical choices for F̄ (w) include a nonparametric

kernel estimator such as these discussed in this paper, or the spectral density of a fitted

AR(p) model as discussed by Andrews (1991). Often, F̄ (r′)(·) is obtained by differentiating
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r′ times the function F̄ (·); the consistency of such an estimate based on differentiation is

easy to show—see e.g. Politis (2003).

Eq. (33) with F̄ (w), F̄ (r′)(w) plugged-in in place of F (w), F (r′)(w) implies a large-sample

estimator for the MSE of F̂ (w) given by

MSE(F̂ (w)) ∼ Cκ,wF̄
2(w)

ST

T
+ [cκ,wF̄

(r′)(w)S−r′
T ]2. (34)

Finally, the ‘plug-in’ bandwidth estimator17 S̄T is the minimizer of the above MSE expres-

sion. Simple algebra shows that

S̄T =

(
2r′c2κ,w

Cκ,w
T

)1/(2r′+1)(
F̄ (r′)(w)
F̄ (w)

)2/(2r′+1)

(35)

Note that the plug-in bandwidth estimator S̄T depends on F only through the ratio

F̄ (r′)(w)/F̄ (w); this observation has the important implication that S̄T is scale-invariant,

i.e., S̄T remains unchanged if the data V1, . . . , VT are all multiplied by the same constant.

Consequently, one may conjecture that S̄T is not adversely affected by possible heavy tails

of Vt. To a large extend, this seems to be true; to see this, recall the definition of the

normalized spectral density f(w) which, in the d = 1 case, reduces to f(w) = F (w)/Γ(0)

that is estimated by f̄(w) = F̄ (w)/Γ̂(0) with f (r′)(w) estimated by f̄ (r′)(w) = F̄ (r′)(w)/Γ̂(0).

By the cancellation of Γ̂(0) from the ratio F̄ (r′)(w)/F̄ (w), eq. (35) implies

S̄T =

(
2r′c2κ,w

Cκ,w
T

)1/(2r′+1)(
f̄ (r′)(w)
f̄(w)

)2/(2r′+1)

(36)

from which it is apparent that S̄T is well-defined even in the heavy-tailed case, and the

following corollary is immediate.

Corollary 9.1 Assume EV 2
t < ∞, Γ̂(0) P−→ Γ(0) > 0, and that

∑∞
m=−∞ |m|r|Γ(m)| < ∞.

Also assume f(w) > 0, and let f̄(w), f̄ (r′)(w) be consistent estimators of f(w), f (r′)(w)

respectively where r′ is the minimum of r and the order of the kernel κ. Then, as T → ∞,

T−1/(2r′+1)S̄T
P−→
(

2r′c2κ,w

Cκ,w

)1/(2r′+1)(
f (r′)(w)
f(w)

)2/(2r′+1)

. (37)

17The estimated bandwidth S̄T depends on w but this dependence will not be explicitly denoted.
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Note that if the finite fourth moment assumption breaks down, S̄T as given by (35) or (36)

is not the minimizer of MSE(F̂ (w)) since the latter is not well-defined.18 Nevertheless,

the implication of Corollary 9.1 is that S̄T grows at the exact rate T 1/(2r′+1) even under

a potential absence of finite fourth moments, i.e., under the context of Theorem 3.1. This

property gives S̄T a certain robustness for validity. In particular, S̄T remains a reasonable

bandwidth choice even in the heavy tailed set-up since it is well-defined and achieves the

desired rate.

The potential disadvantages of the plug-in method, however, have to do with the

(in)accuracy of the ‘pilot’ estimator F̄ (w) that is plugged in eq. (34). If a nonparametric

kernel estimate is employed as a pilot, then a bandwidth choice for the pilot is needed; a

poor bandwidth choice for the pilot has serious repercussions on the accuracy of (34) as an

estimator of the MSE and, consequently, of S̄T as an estimator of the optimal bandwidth.

To by-pass this difficulty, Andrews (1991) advocated using the spectral density of a

fitted AR(p) model as the pilot. This method seems to work well in practice provided that

the underlying true spectral density can be well approximated by that of an AR model with

order given by the chosen p; the choise of p, however, is a difficult problem reminiscent

of the bandwidth choice problem; an information criterion such as the AIC may be useful

in that respect but the practitioner should be aware that the AIC’s objective is not the

optimization of spectral density estimation per se—see Choi (1992) for more details.

In addition, the application of S̄T in estimating the bandwidth of a flat-top kernel

encounters two difficulties: (a) r is unknown, and therefore r′ is also unknown;19 (b) the

exact computation of the bias constant cλ,w is elusive. Of the two problems, the first one

is the most serious—and most difficult—, since it dictates the optimal rate of growth of

ST . Problem (b) has to to do with the proportionality constant in ST that becomes of

interest only if the rate of growth of ST has been identified. For this reason, the empirical

bandwidth choice rule of Section 6 focuses on problem (a), i.e., identifying the optimal rate

of growth.

Finally, note that the plug-in rule heuristically recommended by Andrews (1991, foot-

note 5) for the truncated kernel—which is a member of the flat-top family—essentially
18In general, S̄T is the minimizer of the RHS of (34) which is an approximation to MSE(F̂ (w)) only when

EV 4
t < ∞.

19Recall that for finite-order kernels, r′ is typically equal to the order of the kernel since more often than

not it is smaller than the (unknown) degree of smoothness r.
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amounts to limiting its rate of convergence to that of a second order kernel, and using a

rough approximation to the bias constant cλ,w.

10 Technical Appendix

Proof of Theorem 2.1. In view of eq. (8), the proof amounts to showing that

Bias(F̂jk) =

⎧⎪⎨
⎪⎩
O(1/Sr

jk) in part (i)

O(e−acSjk) +O(1/T ) in part (ii)

O(1/T ) in part (iii).

(38)

To show the above, note that EΓ̂jk(m) = (1 − |m|
T )Γjk(m). Thus, we have

Bias(F̂jk) ≡ EF̂jk − Fjk = A1 +A2 +A3

where

A1 =
1
2π

T−1∑
m=−T+1

(
λg,c(

m

Sjk
) − 1

)
Γjk(m)e−imw

A2 = − 1
2πT

T−1∑
m=−T+1

|m|λg,c(
m

Sjk
)Γjk(m)e−imw

A3 = − 1
2π

∑
|m|≥T

Γjk(m)e−imw.

But |A3| ≤ 1
2π

∑
|m|≥T |Γjk(m)| ≤ 1

2πT

∑
|m|≥T |m||Γjk(m)| = o(1/T ), since under any of

the three conditions (i), (ii) or (iii) we have
∑

m |m||Γjk(m)| <∞.

Similarly, |A2| = O(1/T ), using the fact that |λg,c( m
Sjk

)| ≤ 1.

Now note that A1 = a1 + a2, where

a1 =
1
2π

∑
|m|≤cSjk

(
λg,c(

m

Sjk
) − 1

)
Γjk(m)e−imw

a2 =
1
2π

∑
cSjk<|m|≤T

(
λg,c(

m

Sjk
) − 1

)
Γjk(m)e−imw

First observe that a1 = 0, because λg,c( m
Sjk

) = 1 for |m| ≤ cSjk. Now

|a2| ≤ 1
π

∑
cSjk<m≤T

|λg,c(
m

Sjk
) − 1||Γjk(m)| ≤ 1

π

∑
cSjk<m≤T

2|Γjk(m)| (39)

45



But under the condition of part (i), we have:

|a2| ≤ 1
π

∑
cSjk<m≤T

2
mr

crSr
jk

|Γjk(m)| i.e. Bias(F̂jk) = O(1/Sr
jk) +O(1/T ) = O(1/Sr

jk).

Under the condition of part (ii), eq. (39) gives

|a2| ≤ 2C
π

∑
cSjk<m≤T

e−am,

i.e., Bias(F̂jk) = O(e−acSjk) +O(1/T ) = O(1/T ).

Finally, under the condition of part (iii), we have a2 = 0, i.e., Bias(F̂jk) = O(1/T ), and

the theorem is proven. �

For the proof of Theorem 3.1, we will need the following auxiliary lemma.

Lemma 10.1 Eq. (14), together with the assumption Γjj(0) > 0 for all j, implies that

E

∣∣∣∣
√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
∣∣∣∣1+δ

= O(1/Tα(1+δ)) for all j, k. (40)

Proof of Lemma 10.1. Let Δ = 1 + δ, and note that:

E

∣∣∣∣
√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
∣∣∣∣Δ =

= E

∣∣∣∣
√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γ̂kk(0) +
√

Γjj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
∣∣∣∣Δ

= E

∣∣∣∣
√

Γ̂kk(0)(
√

Γ̂jj(0) −
√

Γjj(0)) +
√

Γjj(0)(
√

Γ̂kk(0) −
√

Γkk(0))
∣∣∣∣Δ ≤ c1A1 + c2A2

where c1, c2 are some positive constants. In the above, the simple inequality (a + b)Δ ≤
2Δ max(a, b)Δ ≤ 2Δ(aΔ + bΔ) for a, b ≥ 0 is used, and

A1 = E
√

Γ̂kk(0)Δ |
√

Γ̂jj(0) −
√

Γjj(0)|Δ and A2 =
√

Γjj(0)Δ E|
√

Γ̂kk(0) −
√

Γkk(0)|Δ.

But
(√

Γ̂kk(0) −
√

Γkk(0)
)Δ (√

Γ̂kk(0) +
√

Γkk(0)
)Δ

=
(
Γ̂kk(0) − Γkk(0)

)Δ
, hence

E|
√

Γ̂kk(0)−
√

Γkk(0)|Δ = E
|Γ̂kk(0) − Γkk(0)|Δ(√
Γ̂kk(0) +

√
Γkk(0)

)Δ
≤ E

|Γ̂kk(0) − Γkk(0)|Δ√
Γkk(0)Δ

= O(1/TαΔ)

(41)
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by eq. (14). Therefore, A2 = O(1/TαΔ).

Note that inequality (41) holds for all k; hence, it follows that

A1 = O(E|
√

Γ̂jj(0) −
√

Γjj(0)|Δ|
√

Γ̂kk(0) −
√

Γkk(0)|Δ) +O(1/TαΔ).

Finally, observe that the function h(x) =
√

1 − x− (1−√
x) is nonnegative for all x ∈ [0, 1].

Therefore, for any a ≥ b > 0, we have:
√
a−√

b = |√a−√
b| ≤ √

a− b =
√|a− b|.

Using the above, it follows that

E|
√

Γ̂jj(0)−
√

Γjj(0)|Δ|
√

Γ̂kk(0)−
√

Γkk(0)|Δ ≤ E
√
|Γ̂jj(0) − Γjj(0)|Δ

√
|Γ̂kk(0) − Γkk(0)|Δ

≤
√
E|Γ̂jj(0) − Γjj(0)|ΔE|Γ̂kk(0) − Γkk(0)|Δ = O(1/TαΔ),

the second inequality being the Cauchy-Schwarz, and the last claim due to eq. (14). Hence,

A1 = O(1/TαΔ) as well, and the lemma is proven.�.

Proof of Theorem 3.1. Let

WT = F̂jk −
√

Γjj(0)Γkk(0)f̂jk =
(√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
)
f̂jk.

Focusing on integrability of WT , note that

E|WT |Δ ≤ max |f̂jk|ΔE
∣∣∣∣
√

Γ̂jj(0)Γ̂kk(0) −
√

Γjj(0)Γkk(0)
∣∣∣∣Δ .

But

|f̂jk| ≤ 1
2π

T∑
m=−T

|λg,c(m/Sjk)||ρ̂jk(m)||e−imw | ≤ 1
2π

T∑
m=−T

|λg,c(m/Sjk)| = O(Sjk) (42)

by assumption (15). Hence, max |f̂jk|Δ = O(SΔ
jk). Therefore, by eq. (40) we have:

E|WT |Δ = O(SΔ
jk/T

αΔ). (43)

Eq. (43) implies that WT = OP (Sjk/T
α), and hence T α

Sjk
WT = OP (1) and T α

SjkεT
WT = oP (1)

where εT is any positive sequence that tends to infinity as T → ∞. Eq. (43) then also implies

that E|WT |Δ = O(SΔ
jkε

Δ
T /T

αΔ). Hence the sequence T α

SjkεT
WT is uniformly integrable, and

we have

E
Tα

SjkεT
WT = o(1) i.e., EWT = o(SjkεT /T

α),
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and therefore

EF̂jk =
√

Γjj(0)Γkk(0)Ef̂jk + o(SjkεT /T
α).

However, Fjk =
√

Γjj(0)Γkk(0)fjk; hence,

Bias(F̂jk) =
√

Γjj(0)Γkk(0) Bias(f̂jk) + o(SjkεT /T
α). (44)

But under any of the conditions of parts (i), (ii), or (iii) we have Bias(F̂jk) → 0 as T → ∞
from the results of Theorem 2.1. Furthermore, under any of the conditions of parts (i), (ii),

or (iii), we have Sjk/T
α = O(T−η) for some η > 0. Therefore, letting εT = log T , it follows

that Bias(f̂jk) → 0 as T → ∞. This fact, coupled with eq. (12), implies f̂jk = fjk + oP (1).

Now (13) follows by eq. (14) using Jensen’s and Markov’s inequality. By the fact that

f̂jk = OP (1) and (13) it follows that

F̂jk =
√

Γ̂jj(0)Γ̂kk(0)f̂jk =
√

Γjj(0)Γkk(0)f̂jk +OP (1/Tα). (45)

and thus WT = OP (1/Tα).

Proof of (i) and (ii). By the above, TαWT = OP (1). Since Sjk → ∞, it follows that
T α

Sjk
WT = oP (1). But then eq. (43) implies that the sequence T α

Sjk
WT is uniformly integrable;

hence

E
Tα

Sjk
WT = o(1) i.e., EWT = o(Sjk/T

α),

and therefore

EF̂jk =
√

Γjj(0)Γkk(0)Ef̂jk + o(Sjk/T
α).

However, Fjk =
√

Γjj(0)Γkk(0)fjk; hence,

Bias(F̂jk) =
√

Γjj(0)Γkk(0) Bias(f̂jk) + o(Sjk/T
α). (46)

But from part (i) of Theorem 2.1 we have: Bias(F̂jk) = O(1/Sr
jk); it follows that

Bias(f̂jk) = O(1/Sr
jk) + o(Sjk/T

α). (47)

Recall that V ar(f̂jk) = O(Sjk/T ) by eq. (12). Note that the second term in Bias(f̂jk) is of

bigger order than the standard deviation of f̂jk since α ≤ 1/2 ≤ (r + 1)/(2r + 1).

Hence, minimization of the order of magnitude of the Mean Squared Error of f̂jk gives

the stated optimal choice for the bandwidth Sjk in part (i) of Theorem 3.1, and the resulting
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rate of convergence of f̂jk as given in eq. (16). Finally, note that the OP (1/Tα) term in

eq. (45) is negligible compared to the accuracy of f̂jk as given in (16). Thus, eq. (45)

together with (16) implies (17), and part (i) is proven.

To prove part (ii), recall that from part (ii) of Theorem 2.1 we have Bias(F̂jk) = O(1/T ).

Plugging the optimal bandwidth Sjk = A log T in eq. (46) we obtain:

Bias(f̂jk) = O(1/T ) + o(log T/Tα) = O(log T/Tα). (48)

Recall that V ar(f̂jk) = O(log T/T ) by eq. (12). Hence, minimization of the order of

magnitude of the Mean Squared Error of f̂jk gives the stated rate of convergence of f̂jk. By

eq. (45), F̂jk has the same rate of convergence as f̂jk, and part (ii) is proven.

Proof of (iii). Note that T α

εT
WT = oP (1) where εT is any positive sequence that tends to

infinity as T → ∞; for example, we could take εT = log log T . Also note that Sjk is constant

under the premises of part (iii). Thus, eq. (43) implies E|TαWT |Δ = O(1), and thus the

sequence T α

εT
WT is uniformly integrable. Hence

E
Tα

εT
WT = o(1) i.e., EWT = o(εT /Tα),

and therefore

EF̂jk =
√

Γjj(0)Γkk(0)Ef̂jk + o(εT /Tα).

However, Fjk =
√

Γjj(0)Γkk(0)fjk; hence,

Bias(F̂jk) =
√

Γjj(0)Γkk(0) Bias(f̂jk) + o(εT /Tα).

But from part (iii) of Theorem 2.1 we have: Bias(F̂jk) = O(1/T ); it follows that

Bias(f̂jk) = O(1/T ) + o(εT /Tα) = O(εT /Tα). (49)

Recalling that V ar(f̂jk) = O(1/T ) by eq. (12), gives the stated rate of convergence for

f̂jk which—by eq. (45)—is the same as that of F̂jk, and part (iii) of the theorem is proven.�

Proof of Theorem 4.1. The condition F̂ = F +OP (1/RT ) implies

Λ̂ = Λ +OP (1/RT ), and hence λ̂j = λj +OP (1/RT ) for all j; (50)
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see e.g. Theorems 3.2 and 4.2 (and the discussion afterwards) of Eaton and Tyler (1991).

But, viewed as an estimator of the nonnegative λj , λ̂+
j is a better (or, at least, not worse)

estimator than λ̂j in the sense that |λ̂+
j − λj | ≤ |λ̂j − λj | always. Hence, it follows that

λ̂+
j = λj +OP (1/RT ) for all j, and hence Λ̂+ = Λ +OP (1/RT ). (51)

Using eq. (50) and (51) we have the following:

F +OP (1/RT ) = F̂ = Û Λ̂Û∗ = Û (Λ +OP (1/RT )) Û∗

= Û
(
Λ+ +OP (1/RT )

)
Û∗ = F̂+ +OP (1/RT ),

the latter since Û = U + oP (1) = OP (1); solving for F̂+ in the above, the theorem is

proven.�

Proof of Theorem 6.1. The proof is analogous to the proof of Theorem 2.3 of Politis

(2003) and is omitted.�

Proof of Lemma 8.1. The case s
T
→ ∞ is covered in Theorem 1 of Andrews (1991);

thus, we now assume EVt
∂
∂θVt−j = 0 for all j.

A careful reading of the proof of Theorem 1(b) of Andrews (1991) indicates that the proof

first hinges on showing that (Ts
T
)−1/2∑T−1

j=−T+1 κ(|j|/sT
) → 0; but this follows immediately

from our condition (i).

Now noting that T−1∑T
t=j+1 Vt

P−→ 0 from a Weak Law of Large Numbers under As-

sumption A, we further need to show that T−1∑T
t=j+1 Vt

∂
∂θVt−j

P−→ 0. But this follows

from a Weak Law of Large Numbers for the cross-correlation of the series Vt to the series
∂
∂θVt−j under Assumption C and our assumption EVt

∂
∂θVt−j = 0.�
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