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ABSTRACT OF THE THESIS

Application of Generative Adversarial Network

on Image Style Transformation and

Image Processing

by

Anshu Wang

Master of Science in Statistics

University of California, Los Angeles, 2018

Professor Ying Nian Wu, Chair

Image-to-Image translation is a collection of computer vision problems that aim to learn a

mapping between two different domains or multiple domains. Recent research in computer

vision and deep learning produced powerful tools for the task. Conditional adversarial net-

works serve as a general-purpose solution for image-to-image translation problems. Deep

Convolutional Neural Networks can learn an image representation that can be applied for

recognition, detection, and segmentation. Generative Adversarial Networks (GANs) has

gained success in image synthesis. However, traditional models that require paired training

data might not be applicable in most situations due to lack of paired data.

Here we review and compare two different models for learning unsupervised image to im-

age translation: CycleGAN and Unsupervised Image-to-Image Translation Networks (UNIT).

Both models adopt cycle consistency, which enables us to conduct unsupervised learning

without paired data. We show that both models can successfully perform image style trans-

lation. The experiments reveal that CycleGAN can generate more realistic results, and UNIT

can generate varied images and better preserve the structure of input images.
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CHAPTER 1

Introduction

nothing

Image-to-Image translation is a collection of computer vision problems. From photo edit-

ing Apps that transfer photos to stylistic images, to the emerging application of autonomous

driving where we need a segmentation network to detect roads, cars, and pedestrians, there

are more and more tasks that aim to learn a mapping between two different domains or

multiple domains.

For different purposes, the objective of Image-to-Image translation may vary. For photo

editing, we want the photo to look fancy, but at the same time realistic. To create maps from

satellite images, we emphasize the accuracy of the translated map and the correct coloring

of the map.

Recent research in computer vision and deep learning produced powerful tools for the

task. Conditional adversarial networks serve as a general-purpose solution for image-to-image

translation problems. Deep Convolutional Neural Networks can learn an image representa-

tion that can be applied for recognition, detection, and segmentation. However, traditional

models that require paired training data might not be applicable in most situations since

it is too expansive to collect paired data. Besides the powerful neural networks, we need

an appropriate approach to learn from unpaired data, in another word, how to learn the

mapping in an unsupervised setting.
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Generally, most image-to-image translation has to obey the following rules: 1) the trans-

formed images should be indistinguishable from both domains. That is to say, if you turn

a satellite image into a map, it looks like other maps. 2) The image transformation should

be invertible. Let’s say you want to turn an apple image into an orange image, and you can

satisfy the first rule by always mapping the apple image to the same orange image. We also

want the mappings to be well-behaved, that is to say, the distribution learned does not fall

into single modes.

In the thesis, we mainly discuss two approaches for learning unsupervised image to image

translation: CycleGAN and Unsupervised Image-to-Image Translation Networks (UNIT).

Both models adopt cycle consistency, which is proposed to solve the second rule mentioned

above. We can see that UNIT and CycleGAN share some similarities in the models. Cycle-

GAN generates images that are more indistinguishable while UNIT, restricted by the VAE

generators, are more picky on training sets but provides more varied results.
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CHAPTER 2

Prior Art

The task of Image-style transformation is to learn a mapping between images from two

domains. Previous work has shown the capacity of convolution Neural Network (CNN) on

handling image problems. Paper [3] extracts the texture and content representation from the

images via a deep neural network for texture and style transfer. Context Encoder [13] apply

CNNs to generate the contents of an arbitrary image region conditioned on its surroundings.

It is very surprising how CNNs perform on image classifications and how the learned deep

image representations demonstrate potential for high-level image synthesis and manipulation.

Recently, Generative Adversarial Networks (GANs) have achieved impressive results on

realistic image generation and representation learning. Instead of defining a loss function

like CNNs, GANs use a discriminator to automatically learn the loss for outputting images

that can not be told from the training images. Since GANs learn the loss that adapts the

data, they are more flexible than traditional models and can be applied to a broader range

of problems. Some recent research in the stability and convergence of GANs [4][1] make

GANs more applicable. Conditional GANs (CGANs) can be viewed as GANs that learn a

conditional generative model. Most of image-to-image translation models are built on CGAN

since we can condition on the input image to generate an output image.

One successful work is pix2pix [6], which led to a lot of applications, such as image

super-resolution [9] and image coloring. Later, Cycle-GAN proposes cycle-consistency loss

so that we don’t need paired data for training. The idea of cycle-consistency is not new. In

3



natural language processing, we can use ”back translation” to verify and improve machine

translation or to augment the existing data in different languages. Cycle consistency loss

has been leveraged in Cycle-GAN, Disco-GAN, Dual-GAN. Most models use l1 loss for cycle

consistency loss because l2 loss tends to give a blurry result.

Paper [12] models each domain using a VAE-GAN and connects both networks by a

weight sharing constraint, which enforces a shared latent space. Say we want to generate a

female face to a male face: what we already know is that all faces are alike: everyone has two

eyes, one nose, and one mouth. We can use two variational auto-encoders to generate male

face and female face. But what if we want to change a male face into a female face while

making the female face look like the original one? The paper postulates a shared latent

space assumption to combine two VAEs learned from two domains and again, add cycle

consistency loss to regularize the ill-posed unsupervised image-to-image translation problem

further.
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CHAPTER 3

Generative Adversarial Network

3.1 Introduction

Generative models and discriminative models are the two main approaches in learning. Gen-

erative models aim to learn the distribution of the data, while discriminative models intend

to model the distribution of data conditioning on the observed data. Generative models are

generally more flexible since they can not only be used to calculate conditional distributions

for classification tasks, but they can also generate new data from the learned distribution

for data augmentation.

Training generative models also enables inference of the latent space. A variational auto-

encoder (VAE) forces the network to learn a mapping from an independent Gaussian space to

the target distribution, say a set of images. Another type of generative model is Generative

Adversarial Network (GAN). VAE learns by minimizing the loss between original data and

compressed data, while GAN learns it in an adversarial way: A generative network is trained

to fool the discriminator while the discriminator learns to tell the fake data generated by the

generator.
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3.2 Generative Adversarial Network

A Generative Adversarial Network consists of a generator network and a discriminator net-

work. We want the generator to generate data that resembles the training data. It is not

easy to measure how much a generated image resembles the training set. However, we can

train a discriminator to tell what’s the probability that the generated image belongs to the

training set class.

Figure 3.1: Illustration of Generative Adversarial Network

We denote the discriminator to estimate the probability of a given sample coming from

the real dataset as D, and the generator to synthesize samples given a noise input z as G.

The generator G aims at generating ”real” data that can pass the discriminator, while the

discriminator tries to tell the fake data from the real data. Mathematically, our goal can be

expressed as below:

min
G

max
D

L(D,G) = Ex∼pr(x)logD(x) + Ez∼p(z)log(1−D(G(z)))

= Ex∼pr(x)logD(x) + Ex∼pg(x)log(1−D(x))

where pr(x) is the distribution of the real data and pg(x) is the distribution of the data

synthesized by the generator.

From the objective function, we can tell that the training of GAN is not easy. A recent

paper [16] discussed the problem with GANs gradient-descent-based training procedure. The
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training process of GAN can be viewed as finding a Nash equilibrium, and there might exists

multiple equilibria. A most popular way is to update the gradient of the generator and

discriminator alternatively. There is no guarantee a convergence would be reached by doing

so. Also the training might take a long time before it actually converges. There have been

emerging studies on convergence and stability of GAN.

Another common problem with GAN is mode collapse. Mode collapse is when the gener-

ator generates a limited diversity of samples, no matter what input z is given. The cause for

mode collapse is that in our objective, we only ask the generator to fool the discriminator,

but we don’t address diversity in data. The paper [15] points out that we can apply inception

score to identify mode collapse. [10] proposes Markovian Generative Adversarial Net- works

(MGANs), a method for training generative neural networks for efficient texture synthesis.
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CHAPTER 4

Unpaired Image Style Transformation using

Cycle-GAN

Paper [19] proposed Cycle-GAN for image to image transformation without using paired

data. [6] (pix2pix) applies conditional Adversarial Networks for image to image style trans-

formation. They penalize on the L1 distance between the generated image by the conditional

GAN and the real image. For this model, paired data is needed for training and it’s not easy

to get paired data. The Cycle-GAN is built based on pix2pix [6] framework. Cycle-GAN

solved this problem by introducing a Cycle Consistency Loss: the transformation between

two sets of images should be reversible.

4.1 Model Definition

Suppose we are to learning the mappings between two sets of images {xi} ∈ X and {yi} ∈ Y .

And we denote two mappings as F : X → Y and G : Y → X. We denote the discriminators

for adversarial network as DX and DY , which respectively tells X from G(Y ) and Y from

F (X). We have two requirements on the transformed image: First, G(Y ) should generate

images that resemble those in X and F (X) should generate images that resemble those in

Y ; Secondly, the transformed image should still preserve some features of the original one.
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Figure 4.1: The model contains two mappings: G: X → Y and F: Y → X, and two

adversarial discriminators DY and DX .

The full objective can be expressed as

L(G,F,DX , DY ) = LGAN(G,DX , X, Y ) + LGAN(F,DY , X, Y ) + λLcyc(G,F )

where Lcyc(G,F ) is the cycle consistency loss. The goal is to solve G,F,DX , DY such

that

G∗, F ∗ = arg min
G,F

max
DX ,DY

L(G,F,DX , DY )

The adversarial loss LGAN is the same as the loss in pix2pix:

LGAN(G,DX , X, Y ) = Ex[logDX(X)] + Ey[1− logDX(G(Y ))]

LGAN(F,DY , X, Y ) = Ey[logDY (Y )] + Ex[1− logDY (F (X))]

The training process of Cycle-GAN is similar to that of a regular GAN. We start with

training the discriminator first, then freeze discriminator and train Generator for each iter-

ation. Note that instead of understanding Cycle-GAN as two GANs, we can also view it as

two auto-encoders. We are learning an ”encoder” F · G and another ”encoder” G · F . The

cycle-consistency loss enforces that G(F (X)) ≈ X and F (G(Y )) ≈ Y .
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One advantage of introducing cycle-consistency loss is that it prevents mode collapse.

The network has to generate image not only looks like a specific set of images but also

preserves the feature of the original image.

4.2 Other Models inspired by cycle-consistency

By introducing cycle-consistency, a lot of problems that originally can only be trained on

paired data are free of that constraint. Disco-GAN [7], Dual-GAN [18], Star-GAN [2] can also

be applied to unpaired image-to-image style translation with slightly different applications.

DualGAN[18]: Dual-GAN adopts the same network architecture as pix2pix, which is a

symmetric U-Net as the generator. DualGAN also use WGAN instead of GAN for training.

Figure 4.2: Network architecture and data flow chart of DualGAN for image-to-image trans-

lation

DiscoGAN[7] :The main difference between DiscoGAN and CycleGAN is the penalty

on cycle-consistency. Unlike other methods, Disco-GAN penalizes on the l2. Usually, l1 loss

works better than l2 in that it generates images with higher resolution and l1 loss penalize

harder on the cycle inconsistency. One interesting example of Disco-GAN is that they create

a corresponding pair of shoes based on the input handbag image.
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Figure 4.3: Network architecture of DiscoGAN for cross domain image translation

Star-GAN[2]: A star-GAN can be viewed as a particular type of Cycle-GAN that

transform an image from one domain to multiple domains. Say we have four different domains

of images, we need to train 4×(4−1) = 12 different models if we use CycleGAN. The natural

idea is to train a model that only translates images from one domain to all other domains.

StarGAN’s name comes from the Star-like shape of the network.

11



Figure 4.4: Difference between traditional cross-domain models and StarGAN: a) cross-do-

main models train a pair of model for every pair of image domains b) StarGAN is capable

of learning mappings among multiple do- mains using a single generator.

Co-GAN[11] Co-GAN learns two GAN generators for each domain with tied weights on

the first few layers for shared latent representation.

Figure 4.5: Network structure of CoGAN
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CHAPTER 5

UNIT: Image-to-Image Translation Networks based on

VAE-GAN

5.1 Variational Auto-encoders (VAEs)

Variational Autoencoders (VAEs) [8], like what the name indicates, is a generative model

that automatically encode the input data. a variational autoencoder consists of an encoder,

a decoder, and a loss function. The encoder is a neural network that takes in the data and

outputs a hidden representation z that is usually of a much smaller dimension. The decoder

is another neural network whose input is some random vector z. The decoder reconstructs

the data using the input vector.

Figure 5.1: Example of a Variational Autoencoder
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In probability terms, the encoder network serves as an inference network that parametrizes

the approximate posterior of the latent variables z. The inference network outputs parame-

ters to the distribution Qφ(z|x). Similarly, a decoder network outputs parameters to the like-

lihood distribution pθ(x|z). A VAE learns to approximate the intractable posterior pθ(z|x)

with Qφ(z|x) by optimizing the variational lower bound:

L(θ, φ, x) = −DKL[Qφ(z|x)|pθ(z|x)] + EQφ(z|x)[logpθ(x|z)]

However, we can not conduct traditional back-propagation on the latent variable z to

minimize the object. In this chapter, we first go through Evidence lower bound(ELBO),

which is important in forming the objective of Variational Autoencoder, then an important

trick that allows us to perform variational inference via stochastic backpropagation.

5.1.1 Evidence Lower Bound

In the variational family of algorithms, inference is to cast as an optimization problem using

variational calculus. Suppose we are given an intractable posterior probability distribution

Pθ(Z | X), variational techniques will try to solve an optimization problem over a family of

tractable distributions Qφ(Z | X)

Assume we choose Qφ(Z | X), say Gaussian family, then we want to adjust the pa-

rameters φ such that some measure of divergence between Qφ(Z | X) and Pθ(Z | X) is

minimized. Mean-field variational Bayes employs the reverse Kullback-Leibler divergence as

such divergence metric between two distributions.

Kullback-Leibler divergence is defined as

DKL(Q‖P ) =

∫
q(z | x) log

q(z | x)

p(z | x)
dx

where Q and P denote two probability distributions. This measure of divergence allows us

to formulate variational inference as optimization problem.

14



Let Qφ ∈ F denote a distribution in family F with variational parameters φ and Pθ a

target distribution with fixed θ. Then

Qφ = argmin
φ

DKL(Qφ‖Pθ).

We substitute the definition of the conditional distribution and distribute

DKL(Qφ‖Pθ) =

∫
qφ(z | x) log

qφ(z | x)

pθ(z | x)
dz

=

∫
qφ(z | x) log

qφ(z | x)pθ(x)

pθ(z, x)
dz

=

∫
qφ(z | x)

(
log

qφ(z | x)

pθ(z, x)
+ log pθ(x)

)
dz

=

∫
qφ(z | x) log

qφ(z | x)

pθ(z, x)
dz

+ log pθ(x)

∫
qφ(z | x)dz

=

∫
qφ(z | x) log

qφ(z | x)

pθ(z, x)
dz + log pθ(x).

Qφ = argmin
φ

DKL(Qφ‖Pθ)

= argmin
φ

∫
qφ(z | x) log

qφ(z | x)

pθ(z, x)
dz

= argmin
φ

EQ [log qφ(z | x)− log pθ(x | z)− log pθ(z)]

= argmax
φ

EQ [− log qφ(z | x) + log pθ(x | z) + log pθ(z)]

= argmax
φ

EQ
[
log

pθ(z)

qφ(z | x)
+ log pθ(x | z)

]
= argmax

φ
L(φ).

Note, if the terms pθ(z), pθ(x | z) and qφ(z | x) are tractable, then L(φ) is comutationally

tractable. We can further rewite L(φ) into it’s commonly used form

15



L(φ) = EQ
[
log

pθ(z)

qφ(z | x)
+ log pθ(x | z)

]
= EQ

[
log

pθ(z)

qφ(z | x)

]
+ EQ [log pθ(x | z)]

= EQ [log pθ(x | z)]− EQ
[
log

qφ(z | x)

pθ(z)

]
= EQ [log pθ(x | z)]−DKL (qφ(z | x)‖pθ(z)) .

In the literature, L(φ) is referred to as variational lower bound.

log pθ(x)− L(φ) = DKL(Qφ‖Pθ)

which by non-negativity of DKL(Qφ‖Pθ) yields

log pθ(x) ≤ L(φ)

5.1.2 Black-Box Variational Inference

Recall that in the Variational Inference we aim to maximize the ELBO

L(φ, θ) = EQ [log pθ(x | z)]−DKL (qφ(z | x)‖pθ(z)) ≥ log pθ(x)

over the space of all qφ. The ELBO satisfies

log pθ(x) = DKL(qφ(z | x)‖pθ(z | x)) + L(φ, θ)

In order to optimize over qφ(z | x) we maximize the ELBO over φ by gradient descent.

Therefore, qφ(z | x) must be differentiable with respect to φ. In contrast to traditional

Variational Inference, we perform gradient descent jointly over both φ and θ. This will have

two effects: (1) Optimization over φ will ensure that the ELBO stays close to log p(x), (2)

Optimization over θ will increase the lower bound and thus log p(x).
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To perform black-box variational inference, we need to compute the gradient on the

ELBO

∇θ,φEQ [log pθ(x, z)− log qφ(z)] .

In most cases we cannot express the expectation with respect to qφ in closed form. Instead,

we may draw Monte-Carlo samples from qφ to estimate the gradient by Ergodicity Theorem.

For the gradient with respect to pθ we change the order of gradient and expectation and

estimate by Monte-Carlo

EQ [∇θ log pθ(x, z)]
MC
≈ 1

N

N∑
i=1

∇θ log pθ(x, zi)

5.1.3 Reparameterization Trick

As we have seen earlier, maximizing the ELBO requires a good estimate of the gradient.[17]

provides a low-variance gradient estimator based on the so-called reparametrization trick.

Assume we can express qφ(z | x) as a two-step generative process: (1) Sample noise ε ∼ p(ε)

from a simple distribution e.g. N (0, I), (2) apply a deterministic transformation gφ(ε, x)

that shapes the random noise into an arbitrary distribution z = gφ(ε, x).

As an example, we can apply this formulation to Gaussian random variables:

z ∼ qµ,σ(z) = N (µ, σ),

z = gµ,σ(ε) = µ+ ε� σ

where � denotes the Hadamard product.

Then we may change the order of expectation and gradient in (??) by applying this

reformulation. More generally, for any f it holds
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∇φEz∼qφ(z|x) [f(x, z)] = ∇φEε∼p(ε) [f(x, gφ(z, ε))]

= Eε∼p(ε) [∇φf(x, gφ(z, ε))]

MC
≈ 1

N

N∑
i=1

∇φf(x, gφ(z, ε)).

Finally, we may use Monte-Carlo integration to estimate the expectation of the gradient

with low variance [14].

5.2 Problem Definition

Let’s say the two domains are X and Y. We assume that images from two domains follow

a joint distribution of PX,Y (x, y). Since we don’t have paired images, what we observe is

just the marginal distribution of each domain, namely PX(x) and PY (y). The shared latent

space assumption suggests that there exist a z such that we can use z to recover a image in

both domains. We define the mapping from z to x and y as GX and GY , that is,

x = GX(z), y = GY (z)

We can also infer the latent space z from x and y via some encoders EX and EY ,

z = EX(x), z = EY (y)

Recall that our goal is to translate image x from domain X to domain Y . Given an image

x, we can first encode x using the encoder EX and then decode the latent vector using GY ,

FX→Y (x) = GY (EX(x))

FY→X(y) = GX(EY (y))

We can also define cycle-consistency over FX→Y and FY→X ,

x = FY→X(FX→Y (x)) = GX(EY (GY (EX(x)))) = GX(EY (y)) = x

18



y = FX→Y (FY→X(y)) = GY (EX(GX(EY (y)))) = GY (EX(x)) = y

We can see from above that the shared-latent space assumption implies the cycle-consistency

assumption. The shared-latent space assumption is stronger than cycle-consistency.

5.3 Shared weight VAE-GAN for Image-to-Image translation

The framework of the model, as illustrated in the last chapter, is based on variational auto-

encoders(VAEs) and generative adversarial networks (GANs). It consists of two encoder

networks, two generator networks and

Figure 5.2: Illustration of the VAE-GAN model that share latent space

As illustrated in the figure above, if we ignore the shared latent space (the gray block),

then it is exactly two variational auto-encoders. The loss can be decomposed into six parts:

V AEX , V AEY ,GANX , GANY and two cycle consistency loss.
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min
EX ,EY ,GX ,GY

max
DX ,DY

LV AEX (EX , GX) + LV AEY (EY , GY ) + LGANX (EX , GX , DX)

+ LGANY (EY , GY , DY ) + LCC1(EX , GX , EY , GY )

+ LCC2(EX , GX , EY , GY )

Although the shared latent space assumption already implies cycle consistency, we still add

the cycle consistency loss to further regularize the ill-posed unsupervised image-to-image

translation problem. The cycle consistency loss is calculated using a VAE-like objective

function

LCC1(EX , GX , EY , GY ) = KL(qx(z1|x)|pz(z)) +KL(qy(z2|xx→y)|pz(z))

+ λEz∼qy(z2|xx→y)logpG1(x|z2)

The first two KL divergence terms penalize on qx(z1|x) deviating from the prior distribu-

tion while the third term guarantees that the transformation from X → Y → X resembles

the identity mapping.
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CHAPTER 6

Experiments and Results

In this section, we conducted experiments of image-to-image translation using two models

discussed in the previous two chapters. Both models took a long time to train.

6.1 Datasets

We apply the models to cartoonize real people. The anime images we use is a subset of

Danbooru2017 dataset, which is a large-scale crowdsourced and tagged anime illustration

dataset. This dataset is a collection of images uploaded by users who are part of a highly

active community tagged by different keywords. The training set consist of 3,528 anime

images randomly sampled from Danbooru2017.
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Figure 6.1: Examples of images in Danbooru2017 dataset

Another dataset we use is MS-Celeb-1M[5], a large scale real world face image dataset to

public. Again, we randomly sampled 5,866 images from this dataset as training data.

Figure 6.2: Examples of images in MS-Celeb-1M dataset
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6.2 Implementation

6.2.1 Implementation of CycleGAN

The input images are all resized to 256× 256 before training. The generator network starts

with two convolution layers with strides two. Then the network is followed by 9 residual

blocks, and two fractionally-strided convolutions with stride 1
2
. The discriminator consists

of three CONV-RELU layers which classify whether the image belongs to a certain domain

or not.

6.2.2 Implementation of UNIT

For the network architecture of UNIT, the encoders consisted of 3 convolutional layers and 4

basic residual blocks. The final layer of two encoders is shared. The generators consisted of 4

basic residual blocks and 3 transposed convolutional layers. The first layer of the generator

is shared. The discriminators comprised six convolutional layers. For all the networks,

LeakyReLU is used for nonlinearity.

6.3 Results

The first two images are image translation using CycleGAN. The photo images on the lower

part are the original images, and CycleGAN generates the upper ones. We can see that

CycleGAN well preserves the structure feature of the original images. There is almost no

difference in the coloring and the texture. It seems that CycleGAN can identify where eyes

are and turn them into cartoonish eyes.
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Figure 6.3: Examples of photo to anime results by Cycle-GAN: lower: testing images from

MS-Celeb-1M; upper: anime images generated by CycleGAN

Figure 6.4: Examples of photo to anime results by Cycle-GAN: lower: testing images from

MS-Celeb-1M; upper: anime images generated by CycleGAN

Despite the amazing results above, CycleGAN does not always perform perfectly. The

figure below is an example of failure. Due to lack of side faces in the training set, the

CycleGAN turned a side face to hair by mistake.
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Figure 6.5: CycleGAN turned a side face to hair by mistake

The results below are results generated by UNIT. Note that unlike CycleGAN, UNIT

outputs indeterministic results. Below are three different sets of results generated. For each

set of them, the sampled latent space is the same. We can see from the results that, within

the same group, UNIT tends to generate images with similar coloring style and face features.
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Figure 6.6: Examples of photo to anime results by UNIT: upper: Original image from

MS-Celeb-1M; middle: Reconstructed Face Image via VAE; lower: transformed anime images

based on UNIT
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Figure 6.7: Examples of photo to anime results by UNIT: upper: Original image from

MS-Celeb-1M; middle: Reconstructed Face Image via VAE; lower: transformed anime images

based on UNIT
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Figure 6.8: Examples of photo to anime results by UNIT: upper: Original image from

MS-Celeb-1M; middle: Reconstructed Face Image via VAE; lower: transformed anime images

based on UNIT

28



Figure 6.9: Examples of anime to photo results by UNIT: upper: Original image from dan-

booru2017; middle: Reconstructed Anime Image via VAE; lower: transformed face images

based on UNIT
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Figure 6.10: Examples of anime to photo results by UNIT: upper: Original image from dan-

booru2017; middle: Reconstructed Anime Image via VAE; lower: transformed face images

based on UNIT
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Figure 6.11: Examples of anime to photo results by UNIT: upper: Original image from dan-

booru2017; middle: Reconstructed Anime Image via VAE; lower: transformed face images

based on UNIT

We evaluate the empirical result depicted in Figure 6.9 to Figure 6.11. As a result of

VAE, UNIT can fill in different facial features, and the generated image coloring vary from

sample to sample. We can conclude that the shared latent space learned by two VAEs well

encodes the face features. Similar to CycleGAN, UNIT preserves the structure of the original

image during image to image translation.

Compared to CycleGAN, UNIT can better identify face and hair. But the translated

image is less satisfactory. One disadvantage of using cycle consistency is that it is hard to

change the shape of the image (due to l1 loss). Another limitation of CycleGAN is that it

only learns one-to-one mappings.
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CHAPTER 7

Conclusion and Future work

We compared two models for image-to-image translation using CycleGAN and UNIT. The

experiments showed that both models could translate an image from one domain to another

without any paired images in two domains. However, one limitation of CycleGAN is that:

The mapping is deterministic based on the input image. For the UNIT model, the model is

restricted due to the Gaussian latent space assumption, which is a possible reason for some

abnormal translated images. Both models are hard to train because of the saddle point

searching problem.

The cycle consistency idea provides a powerful tool for unpaired image-to-image transla-

tion. But the transformation is only limited to color, texture and slight changes in shape.

We plan to address these issues in the future work. Say we can apply more sophisticated

GAN structure, say WGAN[1]; We can also add stochastic input for one-to-many mapping

when applying CycleGAN; Cycle consistency is an example of preserving information during

translation, we can also research on another kind of consistency and loss functions which

can generalize to more general problems.
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