
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Bayesian Analysis of Errors-in-Variables Growth Curve Models

Permalink
https://escholarship.org/uc/item/66v6d88v

Author
Huang, Hung-Jen

Publication Date
2010
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66v6d88v
https://escholarship.org
http://www.cdlib.org/


UNIVERSITY OF CALIFORNIA 
RIVERSIDE

Bayesian Analysis of  Errors-in-Variables Growth Curve Models

A Dissertation submitted in partial satisfaction 

of the requirements for the degree of

Doctor of Philosophy

in 

Applied Statistics

by

Hung-Jen Huang

August 2010

Dissertation Committee

Dr. Ashis SenGupta, Co-Chairperson

Dr. Keh-Shin Lii, Co-Chairperson

Dr. Laosheng Wu



Copyright by 
Hung-Jen Huang

2010



The Dissertation of Hung-Jen Huang is approved:

                                                                                            

                                                                                            

                                                                                            

         Committee Chairperson

University of California, Riverside



Acknowledgments

I am very grateful to my dissertation committee, especially Dr. Lii and Dr. SenGupta, for 

their valuable advice and support.

iv



Dedication

To my dearest mother Mei-Chiou Huang and to my wife.

v



ABSTRACT OF THE DISSERTATION

Bayesian Analysis of  Errors-in-Variables Growth Curve Models

by

Hung-Jen Huang

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, August 2010

Dr. Ashis SenGupta, Dr. Keh-Shin Lii, Co-Chairpersons

We  propose  analyzing  our  data  with  a  model  that  exhibits  errors-in-variables 

(EIV)  in  auxiliary  information  and  which  has  an  autoregressive  covariance  structure 

using a Bayesian methodology. The incorporation of these components into a model is 

often necessary and realistic in the study of many statistical problems. However, such an 

analysis usually mandates many simplifying and restrictive assumptions, especially when 

using a traditional probabilistic approach. Much research has been accumulated in this 

area. We will show that by taking a Bayesian approach, we can effectively deal with the 

complexity of these types of models. Such an approach cannot be found in the literature. 

In fitting statistical models for the analysis of growth data, many curves and/or 

models have been proposed. We have collected an exhaustive list of the most important 

and frequently used growth curves, some of which are used in our model analysis. A 

motivating example is presented to show the applicability of our general approach. In 
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addition, auxiliary covariates, both qualitative and quantitative, can be added into our 

model as an extension.  These EIV growth curves with auxiliary covariates provide a very 

general framework for practical application. 

We give several  illustrative examples demonstrating how a Bayesian approach 

using MCMC (Metropolis Hastings in Gibbs sampler)  techniques and goodness of fit 

statistics for model selections can be utilized in our analysis. Highest Density Regions 

(HDR's) are also used to facilitate Bayesian estimation and inference in these examples. 

Multivariate growth curve models are presented and detailed to study the relationship of 

the variables in models.

In  the  final  chapter,  we present  growth curve  models  with auxiliary variables 

containing uncertain data  distributions (i.e.  mixtures  of standard components,  such as 

normal  distributions)  using  Dirichlet  Process  Priors  (DPP,  which  are  composed  of 

discrete and continuous components). We show that DPPs are appropriate in determining 

the  number  of  components  and in  estimating  the  parameters  simultaneously,  and are 

especially  useful  and  advantageous  in  the  aforementioned  multimodal  scenario  with 

respect to the goodness of fit of the model.
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Chapter 1 Introduction

1.1 Growth Curves

Growth  curves  have  been  extensively  studied  and  used  in  a  wide  range  of 

disciplines such as biology, engineering, economics, crop science, fishery research, etc. 

For  example,  within  food microbiology,  scientists  use  growth  curves  to  describe  the 

behavior  of  microorganisms  under  different  physical  and  chemical  conditions.  Using 

growth curves, they can predict microbial safety levels or the shelf life of food products, 

detect the critical parts or weak links of the production and distribution process, as well 

as optimize food distribution chains (Zwietering et al, 1990).

Growth curves arise from repeated observations on a number of individuals in an 

orderly fashion, usually over time. Growth curve models are more general than repeated 

measurements  (see  section  1.3)  in  that  the  former  models  the  functional  relationship 

between  the  responses  (or  dependent  variables)  and  the  regressors  (or  explanatory 

variables,  such  as  time,  capital,  income,  etc.)  These  functional  relationships  can  be 

approximated and represented either by linear or nonlinear curves, and the coefficients 

therein are of interest in growth curve models.

Growth curve models were first introduced by Potthoff and Roy (1964), and later 

analyzed by Khatri (1966), and Grizzle and Allen (1969) and many others. The principal 

objectives of a statistical analysis of such a growth curve model is to estimate the growth 

curve  coefficients  and to  obtain  the  variance  and covariance  matrix  of  the  estimated 
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growth curve coefficients. A helpful illustration of the analysis of a growth curve was 

made available by C. R. Rao (1959), who examined the growth of one group of rats under 

a control treatment. 

1.2 Bayesian Growth Curves

Not  much  literature  can  be  found  discussing  growth  curves  under  Bayesian 

formulation. C. R. Rao (1987) discussed a Bayesian and empirical Bayesian methods in 

the prediction of future observations in growth curve models. He described how to derive 

a Bayesian prediction probability. He also developed some growth models and studied 

their usefulness in prediction. Some of the growth curves he mentioned include the Jenss, 

Winsor,  Wright  and  Bock,  and Thissen  growth curves  (see  C.  R.  Rao,  1987).  These 

curves  are  used  to  provide  an  individuals  growth  trend  over  a  long  time  period. 

Kshirsagar and Smith (1995) gave some details about the pioneering work by Geisser 

(1970, 1980) and Lee and Geisser (1972) discussed details regarding Bayesian growth 

curves.

Barry  (1995)  used  a  Gaussian  process  growth  function  for  Bayesian  model 

analysis. Robinson and Crowder (2000) presented Bayesian methods for a growth-curve 

degradation model with repeated measures. The application of this kind of analysis is 

mainly for  the reliability of  manufactured products.  Zhang et  al.  (2007) used growth 

curve models to analyze longitudinal data under Bayesian methodology. Their statistical 

inference on posteriors is based on point estimation and credible intervals. They also 

discussed  the  application  of  latent  (unobserved)  variables  in  growth  curves,  using 
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WinBugs for their simulation. Our models are different from these previous works in that 

we use nonlinear growth curves, along with errors-in-variables, auxiliary variables and 

autocorrelations, in the models.

In  Table  1.1,  we  list  more  than  a  dozen  frequently  used  growth  curves  with 

different  parameter  characteristics,  taken  from  the  literature  (combined  mainly  from 

Berkey, 1987, Rao, 1987 and Zwietering et al, 1990). We also chose some growth curves 

(e.g.,  Gompertz  curve)  that  better  fit  organism growth  patterns  than  logistic,  linear, 

quadratic and other exponential models (see Zwietering et al, 1990) for our models and 

illustrative examples. 

1.3 Growth Curves, Repeated Measurements and 

Longitudinal Studies

 The following key points about repeated measures (Kshirsagar and Smith, 1995) 

will be useful in defining and differentiating them from growth curves:

1. Repeated measures  are  statistical  methods used for the analysis  of  a designed 

experiment where responses are observed at each repetition.

2. The fundamental goal of a repeated measures design is to study the effects of 

treatments or to detect differential treatment effects (or factors, or a combination 

of factor levels) at different times rather than estimating and predicting the effects 

of treatments at any future time. That is, whether the treatments differ as a whole 

over  the  entire  time  period  is  of  interest  to  the  investigators,  and attention  is 
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focused on tests of significance between treatments rather than the relationship 

between the effects at the times when the treatments are applied.

3. The basic premise in growth curve models is that there is a functional relationship 

(like a polynomial) between a treatment effect and its time of application and that 

this relationship may be modeled. There are usually physical interpretations of 

growth  curves  model  coefficients  and  their  estimates.  Tests  of  significance, 

associated  hypothesis  testing,  as  well  as  prediction  are  all  of  interest  to  the 

investigator.

4. The repeated measures model is a particular case of a growth curve model. An 

analogy is the analysis of variance model (stated in forms of class effects and 

interactions) to the regression model (stated in linear or polynomial functions with 

unknown coefficients but with known values of the regressor variables).  

In addition to the above, repeated measures can model both increase and decrease 

in the whole period of experiment, while growth curve models mainly deal with increases 

during the process of growth and occasionally for situations where growth may decrease, 

such as body weight loss or the shrinkage of tumors. 

Kshirsagar  and  Smith  (1995)  provide  a  good  example  in  the  study  of  an 

experiment on pupil sizes in the eyes of 30 dogs using five treatments (different drugs, 

including one control group and four other groups). Each treatment group has 6 dogs and 

their pupil sizes are observed over a period of 60 minutes (6 time points). In a repeated 

measurements model, the emphasis is to test whether the mean pupil sizes for each drug 
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are equal in contrast to five different growth curves in functional forms, where the results  

of the estimates are coefficients.

Finally,  regarding longitudinal  research  studies,  according to  Lavrakas  (2008), 

their  significance  generally  stems  from the  fact  that  the  knowledge,  skills,  attitudes, 

perceptions, and behaviors of individual subjects usually develop, grow, and change in 

essential  ways  over  a  period  of  time.  Longitudinal  studies  require  formulating 

longitudinal  research  questions  and  hypotheses,  using  longitudinal  data  collection 

methods (e.g., panel surveys) and using longitudinal data analysis methods.

Researchers  across  different  disciplines  have  used  different  terms  to  describe 

longitudinal studies that involve repeated observations and measurements of the same 

individual  subjects  (respondents)  over  time;  some of  the  terms  used  are  included  in 

repeated-measures  designs,  growth  modeling,  etc.,  so  it's  not  easy  to  draw  a  clear 

distinction  between  growth  curve  models  and  the  longitudinal  studies  as  previously 

defined. However it would be appropriate to say that the growth curve models place a 

special emphasis on the functional relationships between time and the dependent variable, 

as well as ''growth'' (or increase), whereas longitudinal studies place more emphasis on 

providing information about change.

1.4 Errors-in-variables in Model

 In studying experimental problems in biology (Dellaportas, 1995), in engineering 

(Jitjareonchai, 2006) and in economics (Edgerton and Jochumzen), etc., the use of errors-

in-variables (EIV) models has been shown to be necessary and realistic. 
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When  data,  which  is  contaminated  with  some  measurement  error,  is  used  to 

estimate the parameters of any mathematical model by methods such as least squares, it is 

more the rule than the exception that at least some of the contaminated data (quantities) 

can  be  treated  as  independent  variables,  contrary  to  the  basic  requirement  that 

independent variables be perfectly known. While useful results can often be obtained by 

neglecting some errors in some of the variables,  it  is  true that to some degree,  often 

unknown,  errors  of  approximation  are  still  present.  The  use  of  EIV eliminates  this 

approximation.

A large amount of statistical literature has been devoted to the classical analysis of 

EIV models. Maximum likelihood methods and least-squares solutions are widely used 

and discussed in solving different parameter estimation problems involving EIV (see for 

example, Madansky, 1959, Solari, 1969, Britt and Leucke, 1973, Fuller, 1987, Schafer, 

1987, Whittemore and Keler, 1988, Caroll, 1989, Carroll, Gail and Lubin, 1993). In our 

paper, EIV will become an integral part and a significant element of our growth curve 

models. EIV is important especially when we deal with measurement-error-contaminated 

data  and  want  to  reduce  or  eliminate  the  bias  in  growth  curve  model  parameter 

estimations.

1.5 Bayesian Approach for Complex Models 

We  quote  statements  in  Press  (2003)  regarding  the  importance  of  applying 

Bayesian approach to scientific inference as follows:
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Today, scientists schooled in the Bayesian approach to scientific inference have  
been  challenging  the  way  statistical  methodology  itself  has  been  developing.  
Many believe that a paradigm shift has been taking place in the way scientific  
inference is carried out ... The so-called objective information is summarized in  
the likelihood function. But the likelihood function is of course almost invariably  
based upon data that  has  been influenced by the subjectivity  of  the  observer.  
Moreover, in small or often in even moderate size samples its structural form is  
not  very  well  determined.  So  the  likelihood  function  will  almost  invariably  
contain substantial subjective influences and uncertainty. 

He uses  a  convincing  example  to  illustrate  his  statement  beginning  with  the 

question:

If 100 observations are collected from an experiment replicated 100 times; there  
is one observation from each replication. These data are sent to five scientists  
located in different parts of the world. All five scientists examine the same data  
set, that is the same 100 data points (all subjectivity involved in deciding what  
data to collect and in making the observations are eliminated). Should we expect  
all five of the scientists to draw the same conclusions from these data? And the  
answer to this very question is a definite ''No''. 

Wolpert (1992) also wrote: 

The idea of  scientific  objectivity has only limited value,  for the way in which  
scientific ideas are generated can be highly subjective, and scientists will defend  
their  views  vigorously...It  is,  however,  an  illusion  to  think  that  scientists  are  
unemotional in their attachment to their scientific views-- they may fail to give  
them up even in the face of evidence against them... scientific theories involve a  
continual interplay with other scientists and previously acquired knowledge... and  
an explanation which the other scientists would accept.

As  researchers  make  every  effort  to  make  their  models  more  realistic,  more 

elements have to be incorporated such that the models become increasingly complicated 

and the exact solutions often become difficult to come by. However, under a Bayesian 

paradigm,  we  have  the  computational  advantages  in  handling  complicated  models 
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without having to make many simplifying assumptions (unlike in the classical approach), 

to obtain reasonable estimates for the parameters of interest. 

A Bayesian approach was proposed by Lindley and El-Sayyad (1968) and was 

shown to yield more sensible results than the maximum likelihood method. They point 

out that parameter estimation for the usual models, even with normal errors, presents 

difficulties and the results of the maximum likelihood method in EIV problems may be 

misleading. (Only in exceptional cases where the ratio of the errors of observations in 

both  dependent  and  independent  variables  are  known  are  the  parameters  estimates 

reliable).

The Bayesian method for  EIV problems was further  developed by Reilly and 

Patino-Leal  (1981)  and later  extended  to  cases  where  the  error  covariance  matrix  is 

unknown (Keeler and Reilly, 1991). They use conventional optimization techniques to 

obtain point estimates of the parameters and to calculate approximate confidence limits. 

Dellaportas and Stephens (1995) use a Bayesian approach and Gibbs sampler technique 

to solve examples of nonlinear curve EIV problems.  Nummi (2000) proposed a Bayesian 

growth curve model in which the observed time intervals (the independent variable) are 

subject  to  measurement  errors.  Jitjareonchai  et  al  (2006)  further  pointed  out  that 

traditional techniques consist of complicated matrix manipulation and sometimes lead to 

convergence  problems.  To  counter  this,  they  propose  and  implement  Gibbs  Sampler 

techniques, managing to solve EIV problems with greater ease and obtaining results with 

an ideal degree of accuracy. 
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1.6 Multivariate Analysis

Multivariate analysis is included in our research (Chapter 7) because it enables us 

to  study  the  effect  of  several  variables  acting  simultaneously.  It  provides  a  closer 

resemblance to our own intuition, as well as a better understanding about the relationship 

among  the  variables.  When  more  variables  are  analyzed  simultaneously,  we  obtain 

greater  statistical  power as  well  as  easier  visualization  and interpretation  of  the  data 

through graphical measures (such as scatter plot or higher dimensional plots) to facilitate 

our study of the relationship among the variables. 

1.7 Dirichlet Process Prior

In our study of growth curve models with auxiliary variables, we observe that 

there are situations when auxiliary variables could come from multimodal distributions. If 

we could somehow estimate the number of components, as well as the parameters of the 

mixtures of normals, then our model could be a better fit to that specific type of data. 

Through a literature survey, we find that the model by Bhattacharya and SenGupta (2009) 

for circular data is a good reference. We use this as our base framework, extending and 

applying it to growth curve models on the basis of a similar model to get better results. 

1.8 Structure of the Dissertation

Our dissertation is structured as follows: in chapter 2 we will give the motivation 

for  using  errors-in-variables  in  our  model  and  the  disadvantages  of  getting  biased 

estimates if not incorporating them in model when data are subject to this type of errors; 
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chapter 3-5 are stepping stones to bridge our readers to the main thrust of our research in 

chapters 6-8, so in chapter 3 we will look at the Bayesian analysis of some commonly 

used growth curves, the reason for adopting them and the method to use them in our 

models;  in chapter 4 we will  address Bayesian analysis  of growth curves with AR(1) 

covariance structure and show that  it  will  produce  better  estimates  for  parameters  of 

interest; in chapter 5 we will  discuss growth curves under Bayesian formulation with 

auxiliary  information  and  AR(1)  covariance  structure  because  generally  speaking, 

auxiliary variables in model will provide additional information and the estimates will 

spontaneously be less biased; chapter 6-8 are the major contributions of our work, in 

chapter  6  we will  address  Bayesian  analysis  of  growth  curve  models  with  errors-in-

variables in auxiliary information and AR(1) covariance structure, a complex scenario (a 

combination  of  all  the  previously  mentioned  situations),  which  has  not  been  well 

addressed in literature;  in chapter 7 we will  discuss Bayesian analysis of multivariate 

growth  curve  models  to  study  the  relationships  among  the  variables;  and  finally  in 

chapter 8 we will look at the application of Dirichlet mixture of normals in growth curve 

models in which their auxiliary variables contain data from mixtures of standard normal 

distributions. We will show that by implementing our work in this chapter (along with the 

algorithm), all the parameters of interest can be adequately estimated and a best fit model 

can also be determined. We have also made a list (not exhaustive) of some of the most 

important growth curves in Table 1.1, from which our four commonly used curves are 

chosen for our subsequent analysis.
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Table 1.1: Growth Models

11

Model Number of 

parameters

Linear in 

parameters
Polynomial Quadratic Y=abX cX 2

3 Yes

Cubic Y=abXcX 2dX 3

4 Yes

Exponential Jenss Y=abX−exp cdX 
4 No

Logistics Y=a b
1exp c−dX  4 No

Gompertz Y=a⋅exp[−expb−cx ]
3 No

Winsor Y=kexp −expc−dX 
3 No

Wright Y=k [1exp abX ]−1
3 No

Richards y=a {1⋅exp[k −X ]}−1/ 

4 No

Bock , Thissen Y=∑
i=1

3

k i[1exp aibi X ]−1 9 No

Stannard y=a{1exp [−1kX 
p

]}
−p 

3 No

Reciprocal Count Y=abX c lnX 
3 Yes

Reed first order Y=abXc lnX d 1
X 4 Yes

Reed second order

Y=abX c lnX d 1
1
X
d 2

1
X

2 5 Yes



Take four commonly used growth curves ( j=1, 2, 3, 4 ) for example:

1. Jenss growth curve f w j ,=ab w j – expcd w j , a vector of parameters 

'=a b c d  , where a ,b0 , c and d∈ℝ .

2. Gompertz growth curve f w j ,=a⋅exp [−exp b−c w j] , a vector of 

parameters be '=a b c  , where a , c0  , b∈ℝ .

3. Richards growth curve f w j ,=a⋅{1b exp[c d−w j] }
−1 /b , a vector of 

parameters be '=a b c d  , where a ,b0 , c ,d∈ℝ (strictly speaking, 

b can also be negative as long as b−{exp[c d−w j ]}
−1 ).

4. Polynomial growth curve f w j ,=ab w jc w j
2d w j

3 , a vector of 

parameters be '=a b c d  , where where a , b , c and d∈ℝ .

The  various  forms  of  growth  curves  that  we  have  listed  here  are  treated  as 

expectation of the random response variable y j (i.e., E  y j= f w j , ), for which 

we  have  used  an  underlying  normal  distribution  assumption  throughout  in  our 

dissertation. 

To give our readers an idea (through visualization) about how these four curves 

would look and behave when their parameters change, we  pick the parameters c , b

and adjust them independently (they carry different significances in different curves, so 

they are not used for comparisons according to scale) in the following Figures 1.1 and 

1.2.
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Figure 1.1 Growth Curves (1)

If c is increased from 0.1 to 0.7 with increment 0.2, the y values for Jenss and 
Gompertz curve will decrease but those values in Richards and Cubic curve will increase. 
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Figure 1.2 Growth Curves (2)

If b  increased from 1 to 7 with increment 2, the y values for Gompertz curve
will decrease but those values in Gompertz, Richards and Cubic curve will increase.
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Chapter 2 Motivating Examples

2.0 Abstract

We use two illustrative examples to show the importance of incorporating errors-
in-variables in a model when variables are contaminated with errors. The first example 
we use is a linear model (with fixed and random effects) in which we can see that the 
coefficient for the random effect is actually accounting for the errors in variable. In the 
second cubic polynomial growth curve example, we see an obvious difference in terms of 
bias in the parameter estimations when variables have measurement errors but the model 
does not consider them. 

2.1 The Importance of EIV in A Model

A simple linear model example can show the importance of incorporating errors-

in-variables  (EIV)  into  a  model.  Let y i ,  be  the  degree  of  sickness

y i=ab w ic zii where  i=1,. .. , T , w i  is the amount of tablets taken, zi is 

the body temperature, b  is the coefficient of the fixed effect and c is the coefficient 

of the random effect. 

The second model is one with EIV, it has y i=ab w ic z ii where z i is the 

observed body temperature (taken with errors), x i= ziei is the true (unobserved) body 

temperature with error terms e i for i=1,. .. , T , w i is the number of tablets taken, so 

we see that w i is without error ("fixed effect") and z i is with error ("random effect"). 

An alternate way to denote a model with EIV is z i=x iei (we will  use the former 

notation to be consistent with that in the second example. There's no difference between 

these two notations under Bayesian formulation).
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By comparing these two models, we see that both have fixed and random parts, 

the  former  uses  coefficients  whereas  the  latter  uses  variables  to  account  for  the  two 

"effects". In other words, people who use linear models deal with the problem of errors 

and through the coefficient c , but EIV in model approaches the same problem using 

the variable z ,  which, in a real sense, is a more explicit,  direct and logical way of 

addressing the EIV problem.

2.2 Polynomial Growth Curve Simulation Example

While the first example is presented with appeal to intuition for understanding the 

importance of EIV in a model, this second example demonstrates convincing numerical 

evidence for the same purpose. We assume a cubic polynomial growth curve to display 

how EIV in model works:

y t= f  z t ;t , t=1 ,... , T , t~N 0, 
2 ,

where f  z t ;=01 zt2 zt
23 z t

3 and x t=zte t , e t~N 0,e
2  

assume that e i are uncorrelated, and let =0 1 2 3 , X=[ x1 , x2 , ... , xT ]' ,

Y=[ y1 , y2 , ... , yT ]' , Z=[ z1 , z 2 , ... , zT ] ' . 

We quote Moon and Gunst's (1995) example and their simulation results to show 

the importance of incorporating EIV into the model. They assumed =0 1 0 −1 , 

i.e., f  zt ;=01 z t0 z t
2−1 z t

3 and 
2=e

2=0.1 , T=100 , Z= z1 , z2,. .. , z100

chosen  from among −5, −4, ... , 5 and  errors  are  added  to X  and Y .  Then 

they ran a simulation of 100 iterations and obtained the results in the following Table 2.1.  
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From these results we can see that model considering EIV gives closer estimates to true 

parameters as well as smaller TSE values, .i.e., not including EIV in models and simply 

use least squares will generate estimates that are more biased due to the introduced EIV 

in the regressor, and this is especially noticeable in the estimates of the intercept and the 

linear coefficient.

Table 2.1 Comparison of Parameter Estimations from Two Models
Parameters Estimates Standard error TSE

No EIV (Least Squares)
0 0.04 0.84 0.72

1 -0.95 0.85 4.70

2 -0.02 0.19 0.04

3 -0.85 0.08 0.03

EIV

0 -0.01 0.10 0.01

1 1.16 0.19 0.06

2 -0.01 0.12 0.01

3 -1.02 0.04 0.00

TSE=i−i
2[∑  i

 j−i
2/99] , i=∑ i

 j /100 , bias=i−i .

2.3 Conclusion 

From the previous two sections we can conclude that it is important to include 

EIV in our growth curve models. 
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Chapter 3 Bayesian Analysis of Commonly Used 

Growth Curves

3.0 Abstract

In classical inference problems, the emphasis is often placed on getting optimal or 
analytical solutions. However, it is usually difficult to obtain such solutions, especially 
when distributions are complicated. Bayesian methodology provides a simpler way to 
obtain estimates through computation, especially when these solutions are not attainable.

In our research, four commonly used growth curves under Bayesian formulation 
are proposed. These models will serve as a foundation for further development of our 
growth curves with EIV in models under an autocorrelated covariance structure in the 
following chapters.

The purpose of this chapter (along with chapters four and five) is to show the 
readers the progressive development of our research which leads to the models and results 
in chapter six through eight (in which our major contributions and the novelty of our 
research are detailed).

3.1 Introduction

Bayesian methodology has received extensive attention and has been a very useful 

tool for estimating models in many different disciplines and applications, especially for 

complex  models.  These  include  growth curves  models,  which  are  difficult  or  almost 

impossible  to  estimate  in  the  current  MLE and MLE-based software  (Lee  & Chang, 

2000). Since Bayesian inference is not based on the asymptotic nature of the estimators 

as MLE is (Casella & Berger, 2001), Rindskopf (2006) argued that it  would be more 

plausible to analyze small sample data sets. Zhang et al. (2007) used Bayesian method in 

analyzing longitudinal data with linear growth curve models. They use both the MLE 

method and the Bayesian approach to analyze their data set and concluding that there are 

the following advantages of using the latter:
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1. The capacity for implementing Bayesian estimation procedures is acceptable in 

terms of the ease, flexibility and computation time.  (Which generally can not be 

done in MLE).

2. Progress  in  scientific  research  rests  on  accumulated  knowledge.  Bayesian 

methodology provides a natural “chain” for incorporating previous findings with 

current findings through the use of informative priors and thus informative priors 

should be used if reliable and available.

3. The results show that Bayesian methods can obtain similar (or exactly the same if 

no  data  is  missing)  parameter  estimates  to  those  from  MLE  when  using 

noninformative priors.

4. Bayesian  methods  provide  a  more  appealing  interpretation.  Bayesian  methods 

have unique strengths, such as the intuitive interpretation of the results (e.g., the 

credible Bayesian interval: ''the probability that a parameter lies in the credible 

interval given the data is at least 1001−% '' vs. the confidence interval in 

frequentist  statistics  that  ''If  the  experiment  is  repeated  many  times  and  the 

confidence interval is calculated each time, then overall 1001−% of them 

contain the true parameter'') .

5. The complexities of models make the programming and computational demands 

for  Bayesian  methods  simpler  than  those  of  the  traditional  MLE  methods 

(McArdle and Wang, 2008).
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We compare  Bayesian  and MLE estimators  using  the  following linear  growth 

model as an example,  

y t=01 z tt , t~N 0, 
2 , t=1 ,... ,T ,

where y i is the dependent variable and z i is the regressor, Y={ y1 , y2 , ... , yT } and 

Z={ z1 , z 2. .. , zT } . We assume priors for 0~N b1 , 0
2 , 1~N b0 , 1

2 , then 

there are three possible cases:

Case 1: Noninformative priors, 1
2∞ and 0

2∞ ,

In this case, Bayesian estimates are equivalent to those of MLE as both methods 

obtain their estimates by optimizing the same likelihood (posterior) function.

Case 2: Full informative priors, 1
2=0 and 0

2=0 ,

If the priors are perfectly correct, then  Bayesian estimates are better but if the 

priors are wrong, then Bayesian estimates may not be better.

Case 3: Partial informative priors, 01
2∞ , 00

2∞ ,

Bayesian estimates are better if we are judicious in choosing priors, i.e. we have 

better reliable prior information than the results of MLE estimators. Otherwise, 

Bayesian  estimates  are  not  better  if  the  prior  information  is  unreliable  or 

misleading.
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3.2 Model Formulation

Assume  a  growth  model  for  a  single  experimental  unit  of  the  form

y j= f w j , j , j=1 ,... , n , n is  the  total  number  of  observations;  is  a 

vector  of  parameters; w j is  the  independent  variable  for  the j th observation  and

 j~N 0, 2 is  independent  random error  of y j ;  here f w j , is  one  of  the 

different types of growth curves.  From this chapter and on (through chapter 7), we use 

these four most commonly used growth curves in our models as illustrative examples:

1. Jenss  growth  curve f 1w j ,1=a1b1 w j – expc1d 1 w j ,  and  a  vector  of 

parameters 1
' =a1 b1 c1 d 1 , where a1 , b10 , c1 and d 1∈ℝ .

2. Gompertz growth curve  f 2w j ,2=a2⋅exp[−expb2−c2 w j]  and a vector of 

parameters 2
' =a1 b2 c2 , where a2 , c20 , b2∈ℝ .

3. Richards growth curve f 3w j ,3=a3⋅{1b3exp [c3d 3−w j]}
−1/b3 , and a vector 

of parameters 3
' =a3 b3 c3 d 3 , where a3 , b30 , c3 , d 3∈ℝ .

4. Polynomial growth curve f 4w j ,4=a4b4 w jc4 w j
2d 4 w j

3 , and a vector of 

parameters 4
' =a4 b4 c4 d 4 , where a4 , b4 , c4 and d 4∈ℝ .

Now let these f lw j ,l   , l=1,2,3,4 be substituted into the growth model and 

denote y={y j , j=1,... , n} and w={w j , j=1,. .. , n} then  we  get  their  likelihood 

functions, respectively, as follows:
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g  y∣l , 2,w= 1
2n /2 n exp[− 1

22∑
j=1

n

{y j− f lw j ,l }
2] , (3.1)

where f lw j ,l =El
 y j , l=1,2,3, 4 .

Now we propose  the  following  distributions  for  the  four  growth  curve  priors 

(where Expon⋅ denotes an exponential distribution):

1. Jenss curve: 

a1~Expon  1
a1
 , b1~Expon 1

b1

 and c1

d 1~N 2 c1
d 1 ,  c

2   d c

 c d  d
2  , 

then  the  empirical  Bayes  estimate  (denoted  by  )  vector 

1= a1 , b1 , c1 , d 1 ,  c
2 ,  d

2 ,  (note that the empirical estimates for the means 

in 1 for Jenss and i , i=2,3,4 for other three curves alike can be obtained 

from nonlinear least square regression results by using MATLAB nlinfit function 

to fit nonlinear Jenss, Gompertz and Richards curves and  polyfit function to fit 

polynomial  curves.  For  details,  please refer  to  MATLAB Help  and Seber  and 

Wild, 1989. The empirical estimates for the variances and correlation coefficient 

is assumed to be some reasonably small values).  So the prior distribution is:

h 1∣1∝
1
a1
b1

1
c  d 1−2

exp{− 1
2 1−2

⋅

[c1−c1
2

 c
2 −

2  c1−c1d 1−d 1
c d


d 1− d 1

2

d
2 ]−[a1

a1


b1

b1 ]}
. (3.2)
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2. Gompertz growth curve:

a2~Expon 1
a2
 , c2~Expon  1

c2
 and b2~N  b2 , b

2 then

2=a2 , b2 , c2 , b
2 . So the prior distribution is: 

 h 2∣2∝
1
a2 c2

1
 b

exp{−1
2
b2−b2

2

b
2 −[ a2

a2


c2

c2 ]} . (3.3)

3. Richards curve: 

a3~Expon  1
a3
 , b3~Expon 1

b3

 , c3~N  c3 , c
2 and d 3~N  d 3 ,  d

2  , 

where a3  , b3 , c3  and d 3  are independent, the vector 

3= a3 , b3 , c3 , d 3 , c
2 ,  d

2  . So the prior distribution is:

h 3∣3∝
1

a3
b3

1
 c d

exp{−1
2 [ c3−c3

2

c
2 

d 3− d 3
2

 d
2 ]−[ a3

a3


b3

b3 ]} . (3.4)

4. Polynomial curve: 

a4~N  a4 ,  a
2 , b4~N  b4 ,  b

2 , c4~N  c4 ,  c
2 and d 4~N  d 4 ,  d

2  , 

where a4 , b4 , c4 and d 4 are independent, the vector 

4= a4 , b4 , c4 , d 4 , a
2 , b

2 ,  c
2 , d

2  . So the prior distribution is:

h 4∣4∝

1
a b

1
 c d

exp{−1
2 [ a3−a3

2

a
2 

b3−b3
2

b
2 

c3−c3
2

 c
2 

d 3− d 3
2

d
2 ]} . (3.5)
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For  2  we assume Jeffrey's prior and thus have density  p 2∝1 / 2 . So 

the posterior distributions for a single experimental unit i  are as follows:

1. Jenss growth curve:

11 , 2 ∣y ,w∝ 1
 n2 exp{−1

2∑j=1

n

{y j− f 1w j ,1}
2

 2 − 1
2 1−2

[ c1−c1
2

 c
2 −

2 c1−c1d 1− d 1
c  d


d1−d 1

2

d
2 ]−[ a1

a1


b1

b1 ]}
.

 Integrating out 2  we have

11 ∣y ,w ∝exp{−a1

a1


b1

b1

 1
21−2 [ c1−c1

2

 c
2 −

2 c1−c1d 1−d 1
 c d


d 1− d 1

2

 d
2 ]}[∑j=1

n

{y j− f 1w j ,1}
2]−

n
2

. (3.6)

2. Gompertz growth curve:

22 ,2 ∣y ,w ∝ 1
n2 exp{−∑j=1

n

{ y j− f 2 w j ,2}
2

2 2 −[ 1
2
b2−b2

2

 b
2 

a2

a2


c2

c2 ]} .

Integrating out 2  we have

22 ∣y ,w∝exp{−[ 1
2
b2−b2

2

b
2 

a2

a2


c2

c2 ]}[∑j=1

n

{ y j− f 2w j ,2}
2]−

n
2

. (3.7)
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3. Richards growth curve:

33 ,2 ∣y ,w∝ 1
n2 exp{−∑j=1

n

{ y j− f 3 w j ,3}
2

2 2 −

[ c3−c3
2

2  c
2 

d 3−d 3
2

2 d
2 

a3

a3


b3

b3 ]}
.

Integrating out 2 we have

33 ∣y ,w ∝

exp{−[ c3−c3
2

2 c
2 

d 3− d 3
2

2  d
2 

a3

a3


b3

b3 ]}[∑j=1

n

{ y j− f 3w j ,3}
2]−

n
2 .

(3.8)

4. Polynomial growth curve:

44 , 2 ∣y ,w∝ 1
 n2 exp{−∑j=1

n

{ y j− f 4w j ,4}
2

22

−[a4−a4
2

2 a
2 

b4−b4
2

2  b
2 

c4−c4
2

2 c
2 

d 4−d 4
2

2  d
2 ]}

.

Integrating out 2 we have

44 ∣y ,w∝exp{−[ a4−a4
2

2  a
2 

b4−b4
2

2  b
2 

c4−c4
2

2  c
2 

d 4− d 4
2

2 d
2 ]}

⋅[∑j=1

n

{ y j− f 4w j ,4}
2]−

n
2

. (3.9)

 Now we continue to describe the sampling procedure for the Metropolis Hastings 

Algorithm within the Gibbs sampler and in our growth model. The basic idea behind 

29



these algorithms is that the full conditional distributions for each parameter are obtained 

by substituting the current values of the other parameters. I.e.,  all the full conditional 

distributions can be obtained from algebraic and matrix manipulations of the posterior 

distribution in equation (3.6)-(3.9). 

Suppose we take the Gompertz growth curve as an example. First, we need to get 

the full conditionals for the parameters from (3.7) as follows:

2a2 ∣⋅∝exp{−a2

a2}[∑j=1

n

{ y j− f 2w j ,2}
2]−

n
2

, (3.10)

2b2 ∣⋅∝exp{−1
2
b2−b2

2

b
2 }[∑j=1

n

{ y j− f 2 w j ,2}
2]−

n
2

, (3.11)

2c2 ∣⋅∝exp{−c2

c2}[∑j=1

n

{y j− f 2w j ,2}
2]−

n
2

. (3.12)

Now to define the MH algorithm, let a2
old  , a2

new   denote a source density for 

a candidate  and draw a2
new  given the current value a2

old  in  the sampled sequence. 

The  density a2
old  , a2

new  is  referred  to  as  the  proposal  or  candidate  generating 

density. Then, the MH algorithm is defined by two steps: a first step in which a proposal 

value is drawn from the candidate generating density and a second step in which the 

proposal  value  is  accepted  as  the  next  iterate  in  the  Markov  chain  according  to  the 

probability: 
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 a2
old  , a2

new =min{2a2
new a2

new , a2
old 

2a2
old a2

old  , a2
new

, 1} ,  if 2a2
old  a2

old  , a2
new0

(otherwise  a2
old  , a2

new =1  ). 

If the proposal value is rejected, then the next sampled value is taken to be the 

current value. Let's follow this recursive procedure for the MH algorithm:

1. Specify an initial value a2
0  .

2. Repeat for j=1,2,. .. , M :

a) Propose a2
new ~a2

 j ,⋅ .

b) Let a2
 j1 =a2

new   if U 0,1a2
 j , a2

new otherwise a2
 j1 =a2

 j  .

3.  Return the values a2
1 , a2

2 ,... , a2
M  .

MH in Gibbs Sampling Algorithm:

We can take samples of 2 by using (3.10)-(3.12) through the following steps:

1. Set j=0  and select a set of starting parameter values 2
0  and let

2
0=a2

0  , b2
0  , c2

0 .

2. Sample a2
 j1  from  2a2

 j1 ∣⋅  (using (3.10) and MH algorithm).

3. Sample b2
 j1  from 2b2

 j1∣⋅  (using (3.11) and MH algorithm).

4. Sample c2
 j1   from 2c2

 j1∣⋅  (using (3.12) and MH algorithm).

5. Replace 2
 j with 2

 j1 .

6. Set j= j1  and repeat steps 2 through 5.
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7. Stop when j=NB , ( B  is burn-in samples to be dropped and N is 

sample size).

In  the  long run,  the N samples  taken from these  full  conditionals  will  be  a 

sample drawn approximately from the above posterior  distribution.  In addition to the 

above analysis and estimation of parameters, we also generate highest density regions for 

the estimated parameters. Then, 90% confidence limits for the best-fit growth curve can 

be fitted under this Bayesian formulation by using the 5% and 95% percentiles of y

calculated by substituting the N samples of 2 at a given w j .

3.3 Summary

We have shown the reason and the way in using growth curves under Bayesian 

analysis  in  this  chapter.  These  models  serve  as  our  foundations  and  their  further 

developments will be detailed in the following chapters.
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Chapter 4 Bayesian Analysis of Commonly Used 

Growth Curves with AR(1) Covariance Structure 

4.0 Abstract

We demonstrate  the  need of  including an  autocorrelative  relationship  into  our 
growth  curve  models.  A simulation  study  shows  that  models  lacking  this  kind  of 
relationship will be subject to a larger bias than those with autocorrelation in covariance 
structure. We apply our models to a mice cancer growth data set, comparing goodness of 
fit statistics for the four commonly used growth curves.

The purpose of this chapter is to show our readers how Bayesian analysis works 
in scenarios of some commonly used growth curves with AR(1) covariance structure so 
they may be bridged to chapter six through eight, in which our major contributions are 
detailed.

4.1 Introduction

The existence of an autocorrelation relationship and the need for incorporating an 

autocorrelation structure, such as AR(1), into growth models can become self-evident by 

highlighting the word “growth”. Take the growth curve relationship between weight and 

height  as  an  example,  and  we assume y t= f t c x tt , t=1,... , T ,  where t is 

time, f t=abt , y t is weight, x t is height. Then, although f t may draw out 

most of the relationship between the weight y t and time t , the relationship between 

height x t and weight y t is still autocorrelated.

To demonstrate the need of considering autocorrelation, we assume the following 

model:

y i= f wi ;i , i=1 ,... , m , i=i−1i , i~N 0,
2 , where
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f  zi ;=01 zi2 z i
23 zi

3 , i is random error with autocorrelation coefficient

 and m is the number of observations; also let =0 1 2 3 ,

Y=[ y1 , y2 , ... , ym] ' , W=[w1 ,w2 ,... ,wm] ' . 

We  run  a  simulation  of 1000 iterations  using =1 1 1 1 , 
2=1 and

W=[0.1, 0.2, ... ,1 ] to compare whether there are significant differences between the 

least square and Bayesian estimates of the coefficients. 

From the results shown in Table 4.1, we see that for a smaller variance in the 

random error ( 
2 = 1, signal to noise ratio is between (2, 5)), the errors in estimates of 

the  coefficients  can  be  as  high  as  almost  40%  for 2 when  the  autocorrelation 

coefficient is increased to =0.7 . If variance is increased to 
2 = 3, then the bias in 

estimates could go as high as 100% for both 1 and 2 . Therefore this shows us that, 

it's necessary and important to take the effect of autocorrelation into consideration for our 

models.

Table 4.2 shows the results of the estimates using the least square method (without 

considering  ) and Bayesian estimates (  included in model) in different scenarios 

( 
2 and  combinations). We see that in both scenarios (including both 0 and

=0 cases), Bayesian estimates appear to be more consistent in terms of  1) smaller 

standard  deviations,  2)  less  biased  estimates  for  the  coefficients  and  3)  reasonable 

estimates for autocorrelation coefficients embedded in simulated data. 
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Table 4.1 Least Square Estimates in Different Autocorrelation Scenarios 


2  0 std 1 std 2 std

1.0

0.0 1.022 1.210 0.926 4.970 1.054 4.342

0.4 1.044 1.449 0.836 6.150 1.131 5.421

0.7 0.991 1.547 1.368 7.006 0.606 6.257

3.0 0.7 1.166 3.563 -0.079 16.367 2.115 14.590

*Signal to noise ratio for 
2=1.0 is within (min=1 , max=5), and is (min=0.7, max=2) 

for 
2=3.0 .

Table 4.2 Least Squares (LS) vs. Bayesian (BAY) Estimates in 
Different Autocorrelation Scenarios 

Method 
2  0 std 1 std 2 std  std

BAY 100.0 0.0 0.987 1.070 0.976 0.154 0.960 0.090 0.001 0.005

LS 100.0 0.0 0.961 1.172 1.262 4.908 0.768 1.172 - -

BAY 10.0 0.4 1.009 0.031 0.994 0.031 0.994 0.052 0.335 0.005

LS 10.0 0.4 1.042 1.449 0.672 6.114 1.343 1.449 - -

*Signal to noise ratio for 
2=10.0 is within (min=1 , max=3), and is (min=0.1, 

max=0.3) for 
2=100.0 . Using least square estimates as priors in Bayesian analysis. 

4.2 Growth Curve Models with AR(1) Covariance Structure

We adopt the same notations as in previous chapters and assume a growth model 

for a single experimental unit of the form y j= f w j , j , j=1 ,... , n , n is the 

total  number  of  observations;  is  a  vector  of  parameters; w j is  the  independent 

variable  for  the j th observation  and  j~N 0, 2 is  independent  random error  of
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y j . Here f w j , can be one of the different types of growth curves. We assume 

that the covariance for the j th and k th observation is =2 , where

 = [ 1 
 1

⋯ n−1

⋯ n−2

⋮ ⋮
n−1 n−2

⋱ ⋮
⋯ 1 ]

n×n

and  is the autocorrelation coefficient. 

Let f l w j , l  , l=1, 2, 3, 4 be the four different types of growth curves.  In this 

chapter, we use four most commonly used growth curves in our model:

1. Jenss growth curve f 1w j ,1=a1b1 w j – expc1d 1 w j , a vector of 

parameters 1
' =a1 b1 c1 d 1 , where a1 , b10 , c1 and d 1∈ℝ .

2. Gompertz growth curve f 2w j ,2=a2⋅exp[−expb2−c2 w j]  and a vector of 

parameters 2
' =a1 b2 c2  , where a2 , c20 , b2∈ℝ .

3. Richards growth curve f 3w j ,3=a3⋅{1b3exp [c3d 3−w j]}
−1/b3 , and a vector 

of parameters 3
' =a3 b3 c3 d 3 , where a3 , b30 , c3 , d 3∈ℝ .

4. Polynomial growth curve f 4w j ,4=a4b4 w jc4 w j
2d 4 w j

3 , and a vector of 

parameters 4
' =a4 b4 c4 d 4 , where a4 , b4 , c4 and d 4∈ℝ .

Similar  to  previous  chapter,  we  will  let  these  f l w j ,l , l=1, 2, 3, 4 be 

substituted  into  the  growth  model  and  denote y={y j , j=1,... , n} ,

w={w j , j=1,. .. , n} and Al=[ y− f l w ,l] ' n×1n×n
−1 [ y− f lw ,l ]n×1 .  Then  we 

get their likelihood functions, respectively, as follows:
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g  y∣l , 2 , ,w= 1
2n/2 n∣∣

exp{− 1
22 Al} , (4.1)

where f lw j ,l =El
 y j for l=1, 2, 3, 4 .

Now we propose the following distributions for the four growth curve priors (

Expon⋅ denotes an exponential distribution):

1. Jenss curve: 

a1~Expon  1
a1
 , b1~Expon 1

b1

 and c1

d 1~N 2 c1

d 1 , 1 , where c1

and d 1 follow a bivariate normal distribution with Bayes estimate (denoted by

 ),  mean vector  c1
d 1 ,  and variance covariance matrix is 1 .  Then the 

empirical  vector 1= a1 , b1 , c1 , d 1 , 1 (note  that  the  empirical  estimates  for 

the means in 1 for Jenss and i , i=2,3,4 for other three curves alike can be 

obtained from nonlinear least square regression results by using MATLAB nlinfit 

function to fit nonlinear Jenss, Gompertz and Richards curves and polyfit function 

to fit polynomial curves. For details, please refer to MATLAB Help and Seber and 

Wild, 1989. The estimates for variances and covariances in i are assumed to 

be some reasonably small values). So the prior distribution is:

h 1∣1∝
1
b1

1
∣ 1∣

1 /2 exp{−1
2 a1−a1

c1−c1

d 1− d 1


'

1
−1a1−a1

c1−c1

d 1−d 1
−b1

b1} . (4.2)
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2. Gompertz growth curve:

a2~Expon 1
a2
 , c2~Expon  1

c2
 , b2~N  b2 , b

2 then the vector 

2=a2 , b2 , c2 , b
2 . So the prior distribution is: 

 h 2∣2∝
1
a2 c2

1
 b

exp{−1
2
b2−b2

2

b
2 −[ a2

a2


c2

c2 ]} . (4.3)

3. Richards curve: 

a3~Expon  1
a3
 , b3~Expon 1

b3

 , c3

d 3~N 2 c3
d 3, 3 , where c3 and

d 3 are bivariate normally distributed with mean vector  c3
d 3 , and variance 

covariance matrix 3 . The vector 3= a3 , b3 , c3 , d 3 , 3 . So the prior 

distribution is:

h 3∣3∝
1

a3
b3

1
∣ 3∣

1 /2 exp{−1
2  c3−c3

d 3−d 3
'
3
−1 c3−c3

d 3− d 3−[ a3

a3


b3

b3 ]} . (4.4)

4. Polynomial curve: 

a4

b4

c4

d 4
~N 4 a4

b4

c4
d 4
 , 4 , where a4 ,b4 , c4 , d 4 ' are multivariate normally 

distributed with mean vector  a4 , b4 , c4 , d 4 ' , variance and covariance matrix is

4 . The vector 4= a4 , b4 , c4 , d 4 , 4 . So the prior distribution is:
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h 4∣4∝
1

∣ 4∣
1 /2 exp{−1

2 a4−a4

b4−b4

c4−c4

d 4− d 4


'

4
−1 a4−a4

b4−b4

c4−c4

d 4− d 4
} . (4.5)

We assume Jeffrey's prior for 2 and thus have density p 2∝ 1
2 . But for

the  prior  for  ,  we  assume  that ∗=1
2

~Beta   ,  ,  where  and  are 

some known constant for the beta prior distribution. After transformation we get the prior 

distribution for  , p ∝1 −11− −1 .

So the posterior distributions for a single experimental unit i are as follows:

1. Jenss growth curve:

11 , 2 ,1 ∣y ,w∝
11 −11−1

−1

n2∣∣

exp{− 1
22 A1−

1
2 a1−a1

c1−c1

d 1−d 1


'

1
−1a1−a1

c1−c1

d 1− d 1
−b1

b1} .

Integrating out 2 we have

11 ,1∣y ,w∝
11 −1 1−1

−1

∣∣

exp{−[ 1
2 a1−a1

c1−c1

d 1−d 1


'

1
−1a1−a1

c1−c1

d 1− d 1
b1

b1 ]}⋅A1

−n
2

. (4.6)
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2. Gompertz growth curve:

22 ,2 ,2 ∣y ,w∝
21 −11−2

−1

n2∣∣
⋅

exp{− 1
2 2 A2−[ 1

2
b2−b2

2

b
2 

a2

a2


c2

c2 ]}
.

Integrating out 2 we have

22 ,2 ,2 ∣y ,w∝
21 −11−2

−1

∣∣
⋅

exp{−[ 1
2
b2−b2

2

 b
2 

a2

a2


c2

c2 ]}A2

−n
2

. (4.7)

3. Richards growth curve:

33 , 2 ,3∣y ,w ∝
31 −11−3

−1

n2∣∣

exp{− 1
22 A3−

1
2 c3−c3

d 3−d 3
'
3
−1 c3−c3

d 3− d 3−[ a3

a3


b3

b3 ]}
.

Integrating out 2 we have

33 ,3 ∣y ,w∝
31 −11−3

−1

∣∣

exp{−1
2  c3−c3

d 3− d 3
'
3
−1 c3−c3

d 3−d 3−[ a3

a3


b3

b3 ]}A3

− n
2

. (4.8)

4. Polynomial growth curve:

44 , 2 ,4 ∣y ,w ∝
41 −11−4

−1

 n2∣∣

exp{− 1
22 A4−

1
2 a4−a4

b4−b4

c4−c4

d 4− d 4


'

4
−1 a4−a4

b4−b4

c4−c4

d 4−d 4
} .

Integrating out 2 we have
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44 ,4 ∣y ,w∝
41 −11−4

−1

∣∣
exp{−1

2 a4−a4

b4−b4

c4−c4

d 4−d 4


'

4
−1a4−a4

b4−b4

c4−c4

d 4− d 4
}A4

−
n
2

. (4.9)

 Using the MH algorithm and taking the Gompertz growth curve for an example, 

we first need to get the full conditionals for the parameters from (4.7) as follows:

2a2 ∣⋅∝exp{−a2

a2}A2

−
n
2 , (4.10)

2b2 ∣⋅∝exp{−1
2
b2−b2

2

b
2 }A2

−n
2 , (4.11)

2c2 ∣⋅∝exp{−c2

c2}A2

−
n
2 , (4.12)

22 ∣⋅∝
21 −11−2

−1

∣∣ A2

− n
2 . (4.13)

We  follow  the  same  Metropolis-Hastings  in  Gibbs  Sampling  Algorithm  as 

mentioned  in  the  previous  chapter,  taking samples  of 2 and 2 by  using  (4.10)-

(4.13) through the following steps:

1. Set j=0  and select a set of starting parameter values for 2
0  and 

2
0=a2

0  , b2
0  , c2

0 .

2. Sample a2
 j1  from  2a2

 j1 ∣⋅  (using (4.10) and MH algorithm).

3. Sample b2
 j1  from 2b2

 j1∣⋅  (using (4.11) and MH algorithm).

4. Sample c2
 j1   from 2c2

 j1∣⋅  (using (4.12) and MH algorithm).
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5. Sample 2
 j1  from 22

 j1∣⋅  (using (4.13) and MH algorithm).

6. Replace 2
 j  with 2

 j1 and 2
 j with 2

 j1  .

7. Set j= j1  and repeat steps 2 through 6.

8. Stop when j=NB , ( B is the number of burn-in samples to be dropped 

and N is sample size).

In  the  long run,  the N samples  taken from these  full  conditionals  will  be  a 

sample drawn approximately from the above posterior distribution.  In addition to this 

analysis and estimation of parameters, we can also generate highest density regions for 

the estimated parameters. The 90% confidence limits for the best-fit growth curve can be 

obtained by using the 5% and 95% percentiles of y (calculated by substituting the N

samples of 2 at a given w j ).

4.3 Example: Cancer Growth in Mice

We use data (Koziol et al, 1981) collected from an experiment conducted at the 

Cancer Center of the University of California at San Diego to study the growth curve for 

colon  cancer  in  a  group  of  five  mice.  In  this  experiment,  each  of  a  homogeneous 

population of 30 mice was injected with 1000 CT26 (mouse colon carcinoma) tumor 

cells; five days later the population was randomly divided into three groups.  We selected 

data from five mice (to simplify the analysis, the other mice that had at least one missing 

data were not included) from the group A (of 10 mice) that received only the injections of 
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tissue  culture  medium around  the  growing  tumor  to  illustrate  the  application  of  our 

growth curve models. 

The data set is listed in Table 4.3. We take the log of tumor size for the analysis, 

using the least square estimates as the empirical Bayes estimates for the priors of the four 

different models, and then conducted Bayesian analysis using the above mentioned MH 

algorithm within Gibbs sampling. The results of parameter estimates are given in Tables 

4.4 to 4.5.

Based on the results shown in Table 4.5 and Figure 4.1, we could determine which 

curve to choose by looking at goodness of fit statistics (such as adjusted R2 ) and credible 

intervals (the narrowest among all four models). Note that all the parameter estimates 

include estimates for autocorrelation coefficients which calibrate the other  parameters 

estimates (leading to smaller biases) in the Bayesian sampling process as they adjust for 

the autocorrelating effects.  Although the degree of the effects of autocorrelation cannot 

be  actually  or  correctly  measured  (as  illustrated  in  the  simulation  example  in  the 

beginning of this chapter), their influence on our parameter estimations actually follows 

the same principle.

4.4 Summary

In summary, we provide the Bayesian analysis of four commonly used growth 

curves  with  autocorrelation  in  these  models.  The  simulation  and  real  data  example 

display the importance as well as the practical application for this kind of model. 
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Table 4.3 Colon Cancer Tumor Size (Growth) in A Group of Mice 

Table 4.4 Bayesian Parameter Estimates from Different Models

Table 4.5 BIC Values for Different Growth Curves 

45

Parameters Jenss Curve Gompertz Curve Richards Curve Cubic Curve
a 115.705 8.847 8.471 1.659
b 2.067 0.448 1.605 0.565
c 4.736 0.143 0.205 -0.012
d 0.013 - 6.134 0.000

0.116 0.123 0.082 0.116

Growth Curves BIC Values
Jenss Growth Curve 0.4282 0.990
Gompertz Growth Curve 0.2693 0.989
Richards Growth Curve 0.4839 0.979
Cubic Polynomal Growth Curve 0.4277 0.989

Adjusted R2

Days Tumor Size
7 151.9
11 618.9
12 762.3
13 1107.3
14 1418.1
15 1627.1
17 1965.8
18 2999.1
19 3306.6
20 3146.9
21 3501.5



Figure 4.1  90% Credible Intervals for the Four Different Curves
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Chapter 5 Bayesian Analysis of Commonly Used 

Growth Curves with Auxiliary Information and 

AR(1) Covariance Structure 

5.0 Abstract

Generally,  auxiliary  variables  may  provide  additional  information  for  the 
dependent variables and one can fit a better model by incorporating auxiliary variables. 
We exhibit the need and importance of considering auxiliary variables in growth curve 
models with simulation examples. 

The purpose of this chapter is to show our readers how Bayesian analysis can be 
applied to situations where growth curves have both auxiliary information and AR(1) 
covariance structure with a view to lead them to chapter six through eight, where the 
novelty of our research is detailed.

5.1 Introduction and Motivation

In addition to AR(1) correlation structure in models as shown in previous chapter, 

we will demonstrate the utility of including auxiliary variables if they are available and 

into our growth curve model in this chapter by assuming the following,

y i= f wi ;q  z i ,i , i=1 ,... ,m , i=i−1i , i~N 0,
2 ,

where f w i ;=01 wi2 w i
23 wi

3 in  which =0 1 2 3 , i is  the 

error  term for the ith observation and  is  the correlation coefficient.  Let  the m  

points of observation for the variable time be W=[w1 , w2 , ... , wm ] ' and the auxiliary 

variable vector be Z=[ z1 , z2 , ... , zm ] ' .  We assume a linear function for the auxiliary 
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variable,  i.e., q  zi ,= z i ,  where  is  the coefficient,  to study the effect of the 

auxiliary variable z i on the model.

We ran a simulation of 3000 iterations according to different scenarios, comparing 

whether there are significant differences in the estimates (using least square estimates) of 

the coefficients or not. Please refer to Table 5.1 and 5.2 for details of the simulation.

From the results  shown in Table  5.1 and 5.2,  we observed the  influences  the 

auxiliary variables  (assuming  linear  functions)  exerted  on  the  models.  Basically,  this 

simulation shows the need of including auxiliary variables in the model (in addition to the 

adverse effect of not considering autocorrelation in the model, which was already detailed 

in previous chapter). 

When  auxiliary  variable(s)  are  present,  then  ignoring  them  will  decrease  the 

goodness of fit  of the model  with respect  to the simulated (or real)  data  (and this  is 

dependent  on  the  magnitude  of  the  auxiliary  variables).  We  also  noticed  that  the 

biasedness of the estimates of the parameters from a model without considering auxiliary 

variable(s) is not insignificant and it will be even more when the variances of the error 

terms become larger. Therefore we see the importance of including auxiliary variable(s) 

in models from these simulation results.
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Table 5.1 Auxiliary Variable vs. No Auxiliary Variable (1)
Aux.  Adj. R2 SSE 0 std 1 std 2  std 3 std  std

No 0.0 0.9990 20.94 0.510 0.267 -2.337 0.300 2.652 0.100 0.830 0.010

Yes 0.0 0.9997 2.84 1.034 0.268 1.077 0.323 1.006 0.103 1.002 0.010 1.002 0.020

No 0.4 0.9986 26.94 0.299 0.246 -2.249 0.283 2.873 0.091 0.788 0.009

Yes 0.4 0.9997 2.61 1.006 0.246 1.092 0.275 1.002 0.092 1.003 0.009 1.004 0.012

Note:
1. 

2 =1, Z=[ z1 , z 2 , ... , z6] ' are  random  samples  from N 0,1 with  3000 
iterations using data simulated from a given parameter vector =1 1 1 1 ,
=1 and W=[w1 , w2 ,... , w6] '=[1, 1.1 , ... , 1.5] ' .

2. The column label ''Aux.'' denotes the results without (No) or with (Yes) auxiliary 
variable(s) in a model. The results show that the parameter estimates for models 
without  auxiliary  variables  are  biased  and  those  for  models  with  auxiliary 
variable(s) are better (unbiased).  

Table 5.2 Auxiliary Variable vs. No Auxiliary Variable (2)
Aux.  Adj. R2 SSE 0 std 1 std 2  std 3 std  std

No 0.0 0.9958 74.09 -1.763 0.827 7.973 0.899 -1.634 0.289 1.232 0.027

Yes 0.0 0.9966 29.93 1.152 0.830 1.194 0.923 1.042 0.305 1.006 0.029 1.004 0.033

No 0.4 0.9960 70.88 -7.985 0.712 13.570 0.889 -1.838 0.277 1.143 0.026

Yes 0.4 0.9994 24.76 1.080 0.788 1.184 0.908 1.045 0.286 1.004 0.026 1.002 0.025

Note: 
This scenario is similar to that in Table 5.1 only with 

2 =9 and that
Z=[ z1 , z 2 , ... , z6] ' are random samples from N 0,9 . So we observed 

similar results except that the standard deviations and SSE are a little bit larger 
than those in previous scenario because their variances in error terms are larger.

5.2 Model Formulation

We adopt the same notations as in previous chapter and assume a growth model 

for a  single experimental unit  of the form y j= f w j ,q z j , j , j=1 , ... , n ,
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n is  the  total  number  of  observations;  is  a  vector  of  parameters; w j is  the 

independent variable for the j th observation; q , with a vector of coefficients  , 

denotes  the  function  of  a  vector  of  auxiliary  variable z={z j , j=1 ,... , n} ;

 j~N 0, 2 is independent random error of y j . Here f w j , can be one of 

the different types of growth curves.  We assume that the covariance for the j th and

k th observation is =2 , where

 = [ 1 
 1

⋯ n−1

⋯ n−2

⋮ ⋮
n−1 n−2

⋱ ⋮
⋯ 1 ]

n×n

,  is the autocorrelation coefficient. 

Let f l w j , l  , l=1,2,3, 4 be four  different  types  of growth curves.  Recall 

four commonly used growth curves from previous chapters:

1. Jenss growth curve f 1w j ,1=a1b1 w j – expc1d 1 w j , a vector of 

parameters 1
' =a1 b1 c1 d 1 , where a1 , b10 , c1 and d 1∈ℝ .

2. Gompertz growth curve f 2w j ,2=a2⋅exp[−expb2−c2 w j]  and a vector of 

parameters 2
' =a1 b2 c2  , where a2 , c20 , b2∈ℝ .

3. Richards growth curve f 3w j ,3=a3⋅{1b3exp [c3d 3−w j]}
−1/b3 , and a vector 

of parameters 3
' =a3 b3 c3 d 3 , where a3 , b30 , c3 , d 3∈ℝ .

4. Polynomial growth curve f 4w j ,4=a4b4 w jc4 w j
2d 4 w j

3 , and a vector of 

parameters 4
' =a4 b4 c4 d 4 , where a4 , b4 , c4 and d 4∈ℝ .
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Similar  to  previous  chapter,  we  will  let  this  f l w j ,l , l=1,2,3,4 be 

substituted  into  the  growth  model  and  denote y={y j , j=1,... , n} ,

w={w j , j=1,. .. , n} , z={z j , j=1,. .. , n } and

Al=[ y− f l w ,l – q z ,l ] ' 1×nn×n
−1 [ y− f lw ,l– q  z ,l]n×1 for l=1,2,3,4 . 

Then we get their likelihood functions, respectively, as follows:

g  y∣l ,l , 2 , ,w , z = 1
2n /2n∣∣

exp{− 1
2 2 Al} . (5.1)

Now we propose  the  following  distributions  for  the  four  growth  curve  priors 

(note that empirical Bayes estimate vectors i , i=1 ,... ,4 in the following four curves 

can be obtained from nonlinear least square regression results by using MATLAB nlinfit 

function to fit nonlinear Jenss, Gompertz and Richards curves and polyfit function to fit 

polynomial  curves.  For  details,  please  refer  to  MATLAB Help  and  Seber  and Wild, 

1989):

1. Jenss curve with auxiliary variable:

a1~Expon  1
a1
 , b1~Expon 1

b1

  c1

d 1

1
~N 3 c1

d1
1
 , 1 where

c1 , d 1 ,1' are multivariate normally distributed with mean vector 

 c1 , d 1 , 1' , and variance covariance matrix is 1 . The vector

1= a1 , b1 , c1 , d 1 , 1 , 1 . So the prior distribution can be written as follows:
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h 1∣1∝
1
a1

1
b1

1
∣ 1∣

1/2 exp{−1
2  c1−c1

d 1−d 1

1− 1


'

1
−1 c1−c1

d 1− d 1

1− 1
−a1

a1
−

b1

b1} . (5.2)

2. Gompertz growth curve with auxiliary variable:

a2~Expon 1
a2
 , c2~Expon  1

c2
 , b2~N  b2 , b

2 , 2~N  2 ,  then

2=a2 , b2 , c2 , 2 , b
2 , 

2  . So the prior distribution is: 

 h 2∣2∝
1
a2 c2

1
 b 

exp{−1
2 [ b2−b2

2

b
2 

2− 2
2


2 ]−[ a2

a2


c2

c2 ]} . (5.3)

3. Richards curve with auxiliary variable: 

a3~Expon  1
a3
 , b3~Expon 1

b3

 ,  c3

d 3
3
~N 3 c3

d 3
3
 , 3 , where

c3 , d 3 ,3 ' are multivariate normally distributed with mean vector 

 c3 , d 3 , 3 ' , and variance covariance matrix 3 . The vector 

3= a3 , b3 , c3 , d 3 , 3 , 3 . So the prior distribution is:

h 3∣3∝
1

a3
b3

1
∣ 3∣

1 /2 exp{−1
2 c3−c3

d 3−d 3

3− 3


'

3
−1 c3−c3

d 3− d 3

3− 3
−[ a3

a3


b3

b3 ]} . (5.4)
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4. Polynomial curve with auxiliary variable:


a4

b4

c4

d 4

4

~N 5 a4
b4

c4
d 4
4

 , 4 , where a4 ,b4 , c4 , d 4 ,4 ' are multivariate normally 

distributed with mean vector  a4 , b4 , c4 , d 4 , 4' , variance and covariance 

matrix is 4 . The vector 4= a4 , b4 , c4 , d 4 , 4 , 4 . So the prior 

distribution is:

h 4∣4∝
1

∣ 4∣
1 /2 exp{−1

2 
a4−a4

b4−b4

c4−c4

d 4− d 4

4− 4


'

4
−1

a4−a4

b4−b4

c4−c4

d 4− d 4

4− 4

} . (5.5)

We assume Jeffrey's prior for 2 and thus have density p 2∝ 1
 2 . But for

the  prior  for  ,  we  assume  that ∗=1
2

~Beta   ,  ,  where  and  are 

some known constant for the beta prior distribution. After transformation we get the prior 

distribution  for  , p ∝1 −11−
−1 .  We  further  assume  that 

q= z j , j=1 ,... , n  and prior for ~N 0, 
2   (where 

2 is a known constant).

So the posterior distributions are as follows:
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1. Jenss growth curve (with auxiliary variable):

11 , 2 ,1 ,1 ∣y ,w , z ∝
11 −11−1

−1

 n2∣∣

exp{− 1
22 A1−

1
2 c1−c1

d1−d 1

1− 1


'

1
−1 c1−c1

d 1− d 1

1− 1
− a1

a1
−

b1

b1} .

Integrating out 2 we have

11 ,1 ,1 ∣y ,w , z ∝
11 −11−1

−1

∣∣

exp{−a1

a1


b1

b1


1
2 c1−c1

d 1− d 1

1− 1


'

1
−1 c1−c1

d 1− d 1

1− 1
}⋅A1

−n
2

. (5.6)

2. Gompertz growth curve (with auxiliary variable):

22 ,2 ,2 ,2 ∣y ,w , z ∝
21−11−2

−1

n2∣∣

exp{− A2

22−
1
2 [ 2− 2

2


2 

b2−b2
2

 b
2 ]−[ a2

a2


c2

c2 ]}
.

Integrating out 2 we have

22 ,2 ,2 ∣y ,w , z ∝
21 −11−2

−1

∣∣

exp{−1
2 [ 2− 2

2


2 

b2−b2
2

 b
2 ]−[ a2

a2


c2

c2 ]}⋅A2

−n
2

. (5.7)
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3. Richards growth curve (with auxiliary variable):

33 ,2 ,3 ,3 ∣y ,w , z ∝
31−11−3

−1

 n2∣∣
exp{− 1

22 A3

−
1
2  c3−c3

d 3− d 3

3− 3


'

3
−1 c3−c3

d 3− d 3

3− 3
−[ a3

a3


b3

b3 ]} .

Integrating out 2 we have

33 ,3 ,3 ∣y ,w , z ∝
31 −11−3

−1

∣∣

exp{−1
2 c3−c3

d 3−d 3

3− 3


'

3
−1 c3−c3

d 3− d 3

3− 3
−[ a3

a3


b3

b3 ]}⋅A3

− n
2

.

(5.8)

4. Polynomial growth curve (with auxiliary variable):

44 , 2 ,4 ,4 ∣y ,w , z ∝
41−11−4

−1

 n2∣∣

exp{− A4

22−
1
2 

a4−a4

b4−b4

c4−c4

d 4− d 4

4− 4


'

4
−1

a4−a4

b4−b4

c4−c4

d 4−d 4

4− 4

} .

Integrating out 2 we have
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4 4 ,4 ,4∣y ,w , z ∝
41 −11−4

−1

∣∣

exp{−1
2

a4−a4

b4−b4

c4−c4

d 4−d 4

4− 4


'

4
−1

a4−a4

b4−b4

c4−c4

d 4−d 4

4− 4

}A4

−
n
2

. (5.9)

 Using  a  similar  MH  algorithm  and  taking  the  Gompertz  growth  curve  for 

example,  we first  need  to  get  the  full  conditionals  for  the  parameters  from (5.7)  as 

follows:

2a2 ∣⋅∝exp{−a2

a2}A2

−
n
2 , (5.10)

2b2 ∣⋅∝exp{−1
2
b2−b2

2

b
2 }A2

−n
2 , (5.11)

2c2 ∣⋅∝exp{−c2

c2}A2

−
n
2 , (5.12)

22 ∣⋅∝
21 −11−2

−1

∣∣ A2

− n
2 , (5.13)

22 ∣⋅∝exp{−1
2
2− 2

2


2 }A2

− n
2 . (5.14)

We follow the  same  Metropolis-Hastings  Algorithm as  mentioned  in  previous 

chapter  in  taking samples  of 2 , 2 and 2 by  using  (5.10)-(5.14)  through  the 

following steps:

56



1. Set j=0  and select a set of starting parameter values for 2
0  and 

2
0=a2

0  , b2
0  , c2

0 .

2. Sample a2
 j1  from  2a2

 j1 ∣⋅  (using (5.10) and  MH algorithm).

3. Sample b2
 j1  from 2b2

 j1∣⋅  (using (5.11) and MH algorithm).

4. Sample c2
 j1   from 2c2

 j1∣⋅  (using (5.12) and MH algorithm).

5. Sample 2
 j1  from 22

 j1∣⋅  (using (5.13) and MH algorithm).

6. Sample 2
 j1  from 22

 j1∣⋅ (using (5.14) and MH algorithm).

7. Replace 2
 j with 2

 j1 , 2
 j with 2

 j1 and 2
 j with 2

 j1 .

8. Set j= j1  and repeat steps 2 through 7.

9. Stop when j=NB , ( B  is burn-in samples to be dropped and N is 

sample size).

In  the  long run,  the N samples  taken from these  full  conditionals  will  be  a 

sample drawn approximately from the above posterior  distribution.  In addition to  the 

analysis and estimation of parameters, we can also generate highest density regions for 

the estimated parameters. The 90% confidence limits for the best-fit growth curve can be 

obtained by using the 5% and 95% percentiles of y (calculated by substituting the N

samples of 2 at given w ).
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5.3 An Illustrative Example

We use a data set with m=8 (time points) and the same assumptions as in Table 5.1 (

=0.4 ) to illustrate how our model can be used to find a best fit model. They are 

plotted as the dashed line (with small circles) at each time point as in Figure 5.1.

Table 5.3 displays the results of Bayesian estimates of the parameters according to 

the model presented in this chapter. Firstly, the comparison of the adjusted R2 values (and 

the corresponding  sum of squares of errors SSE as well)  between ''with'' and ''without'' 

auxiliary variables shows that the inclusion of an auxiliary variable into the model is 

reasonable, necessary and justifiable. Thus, ignoring or excluding auxiliary variables may 

result in models that are not reliable. 

Secondly, the three major criteria we look at in determining which curve (model) 

is the best fit are 1) goodness of fit statistics 2) BIC and 3) credible intervals (90%). It is 

obvious that the Cubic curve model is better than the other models in terms of having the 

largest  adjusted  R2(=1),  the  smallest  SSE  (=40.190)  and  the  narrowest  confidence 

intervals  (almost  overlapping and hard  to  identify from Figure  5.1).  Gompertz  curve 

model also fit the data quite well (R2  is almost equal 1) because it uses fewer parameters 

(and that's also why its BIC values is the smallest among the four models) but it's credible 

interval is wider as time progresses.
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Table 5.3

* Note: because the two parameters ( c and d , marked by *) of the Jenss curve can 
not be very well estimated in this specific data set, its goodness of fit statistics is 
poorer than those of the other three curves.

5.4 Summary

Auxiliary variables have been shown to be a crucial component in a growth curve 

model as ignoring its effects will results in a model with lower goodness of fit scores and 

biased estimates for the parameters. Also, based on some criteria, such as goodness of fit 

statistics (including credible intervals) we can fit a commonly used growth curve for our 

model to better describe the data with different combinations of parameters.
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Different Growth Curves with Auxiliary Variable AR(1) in Model

Parameters Richards Cubic

a 174.912 3367.326 3527.398 7.804

b 79.445 2.050 0.008 7.475

c * 0.185 0.177 3.499

d *  - 11.358 0.775

1.901 1.035 1.040 1.055

0.379 0.376 0.380 0.377

Goodness of Fit Statistics
BIC 13.247 4.592 4.801 6.150

0.764 0.999 0.987 1.000
0.714 0.984 0.978 0.973

SSE(Auxiliary) * 154.780 1590.650 40.190
SSE(No Auxiliary) * 4770.860 3608.580 4557.560

Jenss Gompertz

Adj. R2 (Auxiliary) 

Adj. R2 (No Auxiliary) 







Figure 5.1  Credible Intervals for the Four Different Curves
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Chapter 6 Bayesian Analysis of 

Growth Curve Models with Errors-in-variables in 

Auxiliary Information and AR(1) Covariance Structure 

6.0 Abstract

We propose to analyze our data  using models incorporating errors-in-variables 
(EIV)  in  auxiliary  information  and  with  autoregressive  covariance  structure  through 
Bayesian methodology. The incorporation of these components in our growth model is 
necessary  and  realistic  in  the  study  of  many  statistical  problems.  The  approach  of 
classical frequentist analysis usually mandates many simplifying assumptions to reduce 
the complexity of the problems, or else analytic solutions will be impossible. In contrast, 
a Bayesian approach, with its computational advantages, can be effective in dealing with 
the  complexity  of  these  types  of  models.  Though  much  research  (especially  using 
traditional approach) has been clustered in this area, models similar to the ones proposed 
here have been non-existent in literature.

6.1 Motivation

In this  section,  we demonstrate  the need for  combining and including EIV in 

auxiliary variables with AR(1) autocorrelation structure in our growth curve model. 

Let the simulation model which includes EIV, auxiliary variables and AR(1) be as 

follows:

y i= f wi ;q  z i ,i , i=1 ,... ,m , i=i−1i , i~N 0,
2 ,

x i= ziei , ei~iid N 0, e
2 , 

where f w i ;=01 wi2 w i
23 wi

3 , =0 1 2 3 , i is the  error term 

for the ith observation and  is the correlation coefficient, Y=[ y1 , y2 ,... , ym ] ' . Let
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 the m points  of  observation  for  the  variable  time  be W=[w1 ,w2 , ... ,wm ] ' and

Z=[ z1 , z2 , ... , zm ] ' . We assume the linear function for q to be q  zi ,= z i . We 

then run simulations  of 3000 iterations according to different scenarios,  and compare 

whether  or  not  there  are  significant  differences  in  the  estimates  (using  least  square 

estimation) of the coefficients. 

From the  results  shown in  Table  6.1-6.2,  we  observed  the  influences  EIV in 

auxiliary variable exerted on the models. Basically, these simulation results show that 

including  EIV in  auxiliary  variables  with  AR(1)  in  the  model  will  have  advantages 

(mainly in terms of goodness of fit statistics) over models without them. 

In Table 6.2, a scenario in which the simulation data are contaminated by EIV in 

its auxiliary variable, we see the advantages of incorporating EIV and auxiliary variable 

in model. We could say that in terms of goodness of fit statistics, a model with EIV in  

auxiliary variables is better than one with auxiliary variables only (no EIV), and the latter 

is better than a model without EIV and auxiliary variables. In addition, if  increases, 

then most of the standard deviations increase accordingly.  

In summary, our simulation results support the incorporation of EIV and auxiliary 

variables in models when data are contaminated by EIV in auxiliary variables.
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 Table 6.1 Auxiliary Variable vs. No Auxiliary Variable
Type Adj. R2 SSE 0 std 1 std 2  std 3 std  std

=0

No Aux. 0.9966 6.61 0.098 0.305 3.423 0.803 0.404 0.571 1.085 0.118

Aux. Only 0.9989 1.89 0.998 0.319 1.089 0.833 1.027 0.576 1.007 0.118 1.008 0.098

EIV in Aux. 0.9989 1.89 0.998 0.319 1.089 0.833 1.027 0.576 1.007 0.118 1.008 0.098

=0.6

No Aux. 0.9935 12.06 -0.885 0.397 7.795 1.132 -3.339 0.853 1.884 0.174

Aux. Only 0.9983 2.78 1.001 0.400 1.024 1.193 1.097 0.880 0.998 0.181 1.003 0.056

EIV in Aux. 0.9983 2.78 1.001 0.400 1.024 1.193 1.097 0.880 0.998 0.181 1.003 0.056

Note:
1. 

2 =1, e
2 =0, Z=[ z1 , z2 , ... , z15] ' are  random  samples  from N 1, 1 with 

3000 iterations using data simulated from a given parameter vector =1 1 1 1 ,
=1 and W=[w1 , w2 , ... ,w15 ] '=[0.2, 0.4 , ... , 3.0 ] ' . 

2. Since e
2 =0 (which means no EIV in auxiliary variables) so the estimates for the rows 

in aux. only and EIV in aux. are identical.

Table 6.2 EIV in Auxiliary Variable vs. Auxiliary Variable and No Auxiliary Variable
Type Adj. R2 SSE 0 std 1 std 2  std 3 std  std

=0.1

No Aux. 0.9998 18.10 0.743 0.030 3.515 0.356 0.121 0.130 1.088 0.014

Aux. Only 1.0000 1.84 1.012 0.262 1.025 0.376 1.009 0.135 1.000 0.014 1.000 0.052

EIV in Aux. 1.0000 1.81 1.015 0.262 1.003 0.377 1.017 0.135 1.000 0.014 1.009 0.052

=0.6

No Aux. 0.9999 13.56 2.017 0.361 3.119 0.525 0.113 0.196 1.089 0.021

Aux. Only 1.0000 3.08 1.035 0.363 1.033 0.578 1.014 0.222 1.001 0.023 1.000 0.077

EIV in Aux. 1.0000 3.05 1.023 0.363 1.008 0.578 1.025 0.222 1.000 0.023 1.011 0.078

Note:
1. 

2 =1, e
2 =0.01, Z=[ z1 , z2 , ... , z20 ] ' are random samples from N 1, 1 with 

3000 iterations using data simulated from a given parameter vector =1 1 1 1 ,
=1 and W=[w1 ,w2 , ... ,w20 ] '=[0.3, 0.6 , ... , 6 ] ' .  

2. We observed that  as  increases,  most  of  the  standard  deviations  also  increase.  In 
addition, in terms of goodness of fit statistics (adj. R2 and SSE), EIV in aux. outperforms 
the other two options (smallest SSE and almost unbiased estimates as well). These results 
are supportive of incorporating both EIV and auxiliary information in models.
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6.2 Introduction

In  fitting  statistical  models  for  the  analysis  of  growth  data,  there  are  many 

different  types  of  curves  proposed  in  the  literature.  In  our  research,  we select  some 

important and frequently used growth curves and use them in our model analysis.  In 

addition,  we  consider  auxiliary  covariates  with  AR(1)  structure  in  our  model. 

Furthermore, the EIV generalization for auxiliary variables of growth curves with AR(1) 

structural models renders a general framework for the practical application of growth. A 

real-life  illustrative  example  is  presented  to  demonstrate  how  a  Bayesian  approach 

through MCMC and a Bayesian Information Criterion (BIC) for model selections can be 

utilized in the analysis of our models. 

Growth  curves  have  been  extensively  studied  and  used  in  a  wide  range  of 

disciplines such as biology, engineering, economics, crop science, fishery research, etc. 

For  example,  within  food microbiology,  scientists  use  growth  curves  to  describe  the 

behavior  of  microorganisms  under  different  physical  and  chemical  conditions.  Using 

growth curves, they can predict microbial safety levels or shelf life of food products, 

detect the critical parts or weak links of the production and distribution process, as well 

as optimize food distribution chains (Zwietering et al, 1990).

Growth curves arise from repeated observations on a number of individuals in an 

orderly fashion, usually over time. Growth curve models are more general than repeated 

measurement alone in  that the former models the functional relationship between the 

responses (or dependent variables) and the regressors (or explanatory variables, such as 
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time,  capital,  income,  etc.)  These  functional  relationships  can  be  approximated  and 

represented either by linear or nonlinear curves, and the coefficients therein are of interest 

in growth curve models.

Growth curve models were first introduced by Potthoff and Roy (1964), and later 

analyzed by Khatri  (1966), Grizzle and Allen (1969) and many others. However, Not 

much literature can be found discussing growth curves under Bayesian formulation. C. R. 

Rao (1987) discussed a Bayesian and empirical Bayesian methods in the prediction of 

future observations  in  growth curve  models.  He described how to derive  a  Bayesian 

prediction  probability.  He  also  developed  some  growth  models  and  studied  their 

usefulness in prediction.  Some of the growth curves he mentioned include the Jenss, 

Winsor, Wright and Bock, and Thissen growth curves. These curves are used to provide 

an individuals growth trend over a long time period. Kshirsagar and Smith (1995) gave 

some details about the pioneering work by Geisser (1970, 1980) and Lee and Geisser 

(1972) discussed details regarding Bayesian growth curves.

Barry  (1995)  used  a  Gaussian  process  growth  function  for  Bayesian  model 

analysis. Robinson and Crowder (2000) presented Bayesian methods for a growth-curve 

degradation model with repeated measures. The application of this kind of analysis is 

mainly for  the reliability of  manufactured products.  Zhang et  al.  (2007) used growth 

curve models to analyze longitudinal data under Bayesian methodology. Their statistical 

inference on posteriors is based on point estimation and credible intervals. They also 
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discussed  the  application  of  latent  (unobserved)  variables  in  growth  curves,  using 

WinBugs for their simulation. 

 Regarding errors-in-variables (EIV), these arise in many experimental problems, 

such  as  in  biology  (Dellaportas,  1995),  in  engineering  (Jitjareonchai,  2006)  and  in 

economics (Edgerton and Jochumzen). The use of errors-in-variables (EIV) models has 

been shown to be indispensable and requisite. If we let

y={y j , j=1,... , n}  a set of  n  measured (observed) values in the y -coordinate,

x={x j , j=1,. .. n}  a set of  n  measured (observed) values in the x -coordinate, 

w={w j , j=1,. .. , n}  a set of n  true (actual or unobserved) x – coordinate. 

Then a simple definition of EIV is as follows:

Classical Model:

y j= f w j j , j=1,... , n , x j=w je j , j=1,... , n ,

Berkson-type Model:

y j= f w j j , j=1,... , n , w j= x je j , j=1,... , n ,

where  j and e j are random errors, f w j  is the growth curve. =1 , ... , p  is the 

parameters in  f w j ,  where  p  is the number of parameters in  .  The distinction 

between the two types of EIV models is ignorable under a Bayesian formulation except 

purely for reasons of model specification (Dellaportas and Stephens, 1995).

When data, which are contaminated with some measurement error, are used to 

estimate the parameters of any mathematical model by methods such as least squares, it is 

more the rule than the exception that at least some of the contaminated data (quantities) 
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can  be  treated  as  independent  variables,  contrary  to  the  basic  requirement  that 

independent variables be perfectly known. While useful results can often be obtained by 

neglecting errors in some of the variables, it is true that some degree of approximation is 

still present, usually unknown. EIV is used in eliminating this approximation.

Much  statistical  literature  has  been  devoted  to  the  classical  analysis  of  EIV 

models. Maximum likelihood methods and least-squares solutions are widely used and 

discussed in solving the parameter estimation problems involving EIV (see for example, 

Madansky,  1959,  Solari,  1969,  Britt  and  Leucke,  1973,  Fuller,  1987,  Schafer  ,1987, 

Whittemore and Keler, 1988, Caroll, 1989, Carroll, Gail and Lubin, 1993). Solari (1969) 

pointed out that the maximum likelihood solution for linear EIV problems is a saddle 

point (a point of a function or surface which is a stationary point but not an extremum) 

instead of a simple maximum in the case of unknown error variances. Since a saddle 

point is  not  a  true maximum, the maximum likelihood solutions in  this  case may be 

misleading. Schafer (1987) further indicated that maximum likelihood or least-squares 

estimation is far from straightforward, especially in the non-linear case, where numerical 

stability problems might arise.

A Bayesian approach was first proposed by Lindley and El-Sayyad (1968) and 

was shown to yield more sensible results than maximum likelihood method. They pointed 

out that the parameter estimation for the usual models, even with normal errors, present 

difficulties and the results of the maximum likelihood method in EIV problems may be 

misleading  except  for  exceptional  cases  where  at  least  the  ratio  of  the  errors  of 
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observations  in Y and X is  known  and  only  then  are  the  parameters  estimates 

reliable.

The Bayesian method for  EIV problems was further  developed by Reilly and 

Patino-Leal (1981) and later extended to case where error covariance matrix is unknown 

(Keeler and Reilly, 1991). They use conventional optimization techniques to obtain point 

estimates of the parameters and to calculate approximate confidence limits. Dellaportas 

and Stephens (1995) use a  Bayesian approach and Gibbs sampler  technique to  solve 

examples of nonlinear curve EIV problems.  Nummi (2000) proposed a growth curve 

model  in  which  the  observed  time  intervals  (the  regressor  variable)  are  subject  to 

measurement errors. Jitjareonchai, Reilly, Duever and Chambers (2006) further pointed 

out  that  these  traditional  techniques  consist  of  complicated  matrix  manipulation  and 

sometimes lead to convergence problems. So, they also proposed and implemented Gibbs 

Sampler techniques and succeeded to solve EIV problems with much ease and obtain 

results with satisfactory degree of accuracy. 

In our study, we incorporate  auxiliary information with errors-in-variables (EIV) 

and an autoregressive covariance structure, AR(1), into our models and use a Bayesian 

approach in our analysis, as this methodology is more effective in dealing with models of 

larger complexity. In spite of a large number of studies in this area, models similar to the 

ones in our study were not found in the existing literature.
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6.3 Model Formulation

We adopt the same notations as in previous chapter and assume a growth model 

for a single experimental unit of the form, y j= f w j ,q z j , j , j=1 , ... , n ,

n is  the  total  number  of  observations, x j=z je j ,  is  a  vector  of  parameters;

w j is  the  independent  variable  for  the j th observation; q ,  with  a  vector  of 

coefficients  ,  denotes  the  function  of  a  vector  of  auxiliary  variable

z={z j , j=1 ,... , n} ;  x={x j , j=1 ,... , n} is  a  vector  of  ''observed''  (not  true) 

auxiliary  variables  and  therefore  there  exists  an  assumed  vector  of  random  errors

e={e j~
iid N 0, e

2 , j=1 ,... , n} ;  j~N 0, 2 is independent random error of y j , 

here f w j , is  one  of  the  different  types  of  growth  curves.  We  assume  that  the 

covariance for the j th and k th observation is =2 , where

 = [ 1 
 1

⋯ n−1

⋯ n−2

⋮ ⋮
n−1 n−2

⋱ ⋮
⋯ 1 ]

n×n

,  is the autocorrelation coefficient. 

To simplify the model, we further assume, as is often done in existing literature on 

EIV,  that  y given w  and  z  is  independent  of  x .  Let

f l w j , l  , l=1, 2,3, 4 be four different types of growth curves. We use the same four 

commonly used growth curves for our model:
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1. Jenss growth curve f 1w j ,1=a1b1 w j – expc1d 1 w j , a vector of 

parameters 1
' =a1 b1 c1 d 1 , where a1 , b10 , c1 and d 1∈ℝ .

2. Gompertz growth curve f 2w j ,2=a2⋅exp[−expb2−c2 w j]  and a vector of 

parameters 2
' =a1 b2 c2  , where a2 , c20 , b2∈ℝ .

3. Richards growth curve f 3w j ,3=a3⋅{1b3exp [c3d 3−w j]}
−1/b3 , and a vector 

of parameters 3
' =a3 b3 c3 d 3 , where a3 , b30 , c3 , d 3∈ℝ .

4. Polynomial growth curve f 4w j ,4=a4b4 w jc4 w j
2d 4 w j

3 , and a vector of 

parameters 4
' =a4 b4 c4 d 4 , where where a4 , b4 , c4 and d 4∈ℝ .

Now let this f l w j ,l  , l=1,2,3,4 be substituted into the growth model. We 

denote y={y j , j=1,... , n} , w={w j , j=1,. .. , n} , z={z j , j=1,. .. , n} ,

Bl=x−z1×nx−z ' n×1 and 

Al=[ y− f l w ,l – q z ,l] ' 1×nn×n
−1 [ y− f l w ,l – q z ,l]n×1 for l=1, 2,3, 4 . 

Then we get their likelihood functions, respectively, as follows:

g  y∣l ,l , 2 ,e
2 , ,w , x , z = 1

2n e
2n /22n /2∣∣

exp{− Al

22−
Bl

2 e
2} . (6.1)

Now we propose the following distributions for the four growth curve priors (note 

that empirical Bayes estimate vectors i , i=1 ,... ,4 in the following four curves can be 

obtained  from  nonlinear  least  square  regression  results  by  using  MATLAB  nlinfit 

function to fit nonlinear Jenss, Gompertz and Richards curves and polyfit function to fit 
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polynomial  curves.  For  details,  please  refer  to  MATLAB Help  and  Seber  and Wild, 

1989):

1. Jenss curve with auxiliary variable:

a1~Expon  1
a1
 , b1~Expon 1

b1

 , c1

d 1

1
~N 4 c1

d 1
1
, 1 where 

c1 , d 1 ,1' are multivariate normal distributed with mean vector

 c1 , d 1 , 1' , and variance covariance matrix is 1 . The vector

1= a1 , b1 , c1 , d 1 , 1 , 1 . So the prior distribution can be written as follows:

h 1∣1∝
1
a1

1
b1

1
∣ 1∣

1/2 exp{−1
2  c1−c1

d 1−d 1

1− 1


'

1
−1 c1−c1

d 1− d 1

1− 1
−a1

a1
−

b1

b1} . (6.2)

2. Gompertz growth curve with auxiliary variable :

a2~Expon 1
a2
 , c2~Expon  1

c2
 , b2~N  b2 , b

2 , 2~N  2 ,  then

2=a2 , b2 , c2 , 2 , b
2 , 

2  . So the prior distribution is: 

h 2∣2∝
1
a2 c2

1
 b 

exp{−1
2 [ b2−b2

2

b
2 

2− 2
2


2 ]−[ a2

a2


c2

c2 ]} . (6.3)

3. Richards curve with auxiliary variable:

a3~Expon  1
a3
 , b3~Expon 1

b3

 , c3

d 3
3
~N 3 c3

d 3
3
, 3 , where
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c3 , d 3 ,3 ' are  multivariate  normally  distributed  with  mean  vector 

 c3 , d 3 , 3 ' ,  and  variance  covariance  matrix 3 .  The  vector

3= a3 , b3 , c3 , d 3 , 3 , 3 . So the prior distribution is:

h 3∣3∝
1

a3
b3

1
∣ 3∣

1 /2 exp{−1
2 c3−c3

d 3−d 3

3− 3


'

3
−1 c3−c3

d 3− d 3

3− 3
−[ a3

a3


b3

b3 ]} . (6.4)

4. Polynomial curve with auxiliary variable: 


a4

b4

c4

d 4

4

~N 5 a4
b4

c4
d 4
4

 , 4 , where a4 ,b4 , c4 , c4 ,4 ' are multivariate normally 

distributed with mean vector  a4 , b4 , c4 , d 4 , 4' , variance and covariance 

matrix is 4 . The vector 4= a4 , b4 , c4 , d 4 , 4 , 4 . So the prior 

distribution is:

h 4∣4∝
1

∣ 4∣
1 /2 exp{−1

2 
a4−a4

b4−b4

c4−c4

d 4− d 4

4− 4


'

4
−1

a4−a4

b4−b4

c4−c4

d 4− d 4

4− 4

} . (6.5)

We assume Jeffrey's prior for 2 and e
2 and thus have density p 2∝ 1

2 ,
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p e
2∝ 1

e
2 .  But  for  the  prior  for  ,  we  assume  that ∗=1

2
~Beta   ,  , 

0∗1 ,  where  and  are  some  known  constants  for  the  beta  prior 

distribution.  After  transformation  we  get  the  prior  distribution  for  ,

p ∝1 −11− −1 . We further assume that z j ~iid N x , e
2 , j=1 ,... , n ,

where x=
1
n∑j=1

n

x j and  z
2=var x  .  One  more  assumption  is  to  let  function

q  z ,= z j , j=1 ,... , n be  linear  and  the  prior  for  the  coefficient  be

~N 0, 
2  (we can estimate 

2 using the results of the least square method for

 ). So the posterior distributions are as follows:

1. Jenss growth curve:

11 , 2 ,e
2 ,1 ,1 , z ∣y ,w , x∝

11 −11−1
−1

n2e
n2∣∣

exp{− A1

22−
B1

2 e
2

−1
2 c1−c1

d 1− d 1

1− 1


'

1
−1 c1−c1

d 1− d 1

1− 1
−[ a1

a1


b1

b1

 1
2 e

2∑
j=1

n

 z j−x2]} .

Integrating out 2 and e
2 , respectively, we have

11 ,1 ,1 , z ∣y ,w , x∝
11 −11−1

−1

∣∣

exp{−[ a1

a1


b1

b1

 1
2 e

2∑
j=1

n

 z j−x2]−1
2  c1−c1

d 1−d 1

1− 1


'

1
−1 c1−c1

d 1− d 1

1− 1
}⋅A1

−n
2⋅B1

−n
2

.(6.6)
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2. Gompertz growth curve:

22 ,2 , e
2 ,2 ,2 , z ∣y ,w , x ∝

21 −1 1−2
−1

 n2e
n2∣∣

exp{− A2

22−
B2

2e
2

−1
2 [ 2− 2

2


2 

b2−b2
2

 b
2 

∑
j=1

n

 z j−x2

 e
2 ]−[ a2

a2


c2

c2 ]} .

Integrating out 2 and e
2 , respectively,  we have 

22 ,2 ,2 , z ∣y ,w , x ∝
21 −11−2

−1

∣∣

exp{−1
2 [ 2− 2

2


2 

b2−b2
2

 b
2 

∑
j=1

n

 z j−x 2

e
2 ]−[ a2

a2


c2

c2 ]}⋅A2

−
n
2⋅B2

−
n
2

. (6.7)

3. Richards growth curve:

33 ,2 , e
2 ,3 ,3 , z ∣y ,w , x∝

31 −11−3
−1

n2e
n2∣∣

exp{− A3

2 2−
B3

2 e
2−
∑
j=1

n

 z j−x 2

2  e
2 −1

2  c3−c3

d 3− d 3

3− 3


'

3
−1 c3−c3

d 3−d 3

3− 3
−[ a3

a3


b3

b3 ]} .

Integrating out 2 and e
2 , respectively, we have

33 ,3 ,3 ∣y ,w , z ∝
31 −11−3

−1

∣∣

exp{−∑j=1

n

 z j−x 
2

2 e
2 −1

2 c3−c3

d 3−d 3

3− 3


'

3
−1 c3−c3

d 3− d 3

3− 3
−[ a3

a3


b3

b3 ]}⋅A3

−
n
2⋅B3

−
n
2

. (6.8)
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4. Polynomial growth curve:

44 , 2 ,e
2 ,4 ,4 , z ∣y ,w , x∝

41 −11−4
−1

 n2 e
n2∣∣

exp{− A4

22−
B4

2e
2−
∑
j=1

n

 z j−x 
2

2 e
2 −1

2
a4−a4

b4−b4

c4−c4

d 4−d 4

4− 4


'

4
−1

a4−a4

b4−b4

c4−c4

d 4−d 4

4− 4

} .

Integrating out 2 and e
2 , respectively, we have

4 4 ,4 ,4 , z∣y ,w , x ∝
41 −11−4

−1

∣∣ ⋅

exp{−∑j=1

n

 z j−x 2

2 e
2 −1

2 
a4−a4

b4−b4

c4−c4

d 4− d 4

4− 4


'

4
−1

a4−a4

b4−b4

c4−c4

d 4− d 4

4− 4

}⋅A4

−
n
2⋅B4

−
n
2

. (6.9)

 We now take Gompertz growth curve to illustrate how we can apply this model. 

In order to use MH algorithm, we first need to get the full conditionals for the parameters  

from (6.7). These are presented in the following equations (6.10)-(6.15):

2a2 ∣⋅∝exp{−a2

a2}A2

−
n
2 , (6.10)

2b2 ∣⋅∝exp{−1
2
b2−b2

2

b
2 }A2

−n
2 , (6.11)

2c2 ∣⋅∝exp{−c2

c2}A2

−
n
2 , (6.12)
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22 ∣⋅∝
41 −11−4

−1

∣∣ A2

− n
2 , (6.13)

22 ∣⋅∝exp{−1
2
2− 2

2


2 }A2

− n
2 , (6.14)

2 z ∣⋅∝exp{−1
2  z

2∑
j=1

n

 z j−x 2}A2

−
n
2 B2

−
n
2 . (6.15)

MH Algorithm:

Let's  take  the  sampling  of  a2 in  Gompertz  curve  as  an  example.  To  define  the 

algorithm,  let a2
old  , a2

new  denote  a  source  density  for  a  candidate  draw a2
new 

given the current value a2
old  in the sampled sequence. The density a2

old  , a2
new  is 

referred to as the proposal or candidate generating density. Then, the MH algorithm is 

defined by two steps: a first step in which a proposal value is drawn from the candidate  

generating density and a second step in which the proposal value is accepted as the next 

iterate in the Markov chain according to the probability: 

 a2
old  , a2

new =min{2 a2
new a2

new , a2
old

2a2
old  a2

old  , a2
new

,1} , 

if 2a2
old  a2

old  , a2
new0 (otherwise  a2

old  , a2
new =1 ). 

If the proposal value is rejected, then the next sampled value is taken to be the current 

value. Let's follow this recursive procedure:

76



1. Specify an initial value a2
0  .

2. Repeat for j=1,2,... ,M :

a) Propose a2
new ~a2

 j ,⋅ , and

b) Let a2
 j1 =a2

new  if U 0,1a2
 j  , a2

new  otherwise a2
 j1 =a2

 j  .

3. Return the values a2
1 , a2

2 ,... , a2
M  .

We take samples of 2 , 2 , 2 and z  by using the full conditionals from 

(6.10) to (6.15) and MH algorithm within Gibbs Samplers through the following steps:

1. Set j=0  and select a set of starting parameter values for 2
0 , 2

0 , 

2
0=a2

0  , b2
0  , c2

0  and z0  .

2. Sample a2
 j1  from  a j1∣⋅ .

3. Sample b2
 j1  from 2b2

 j1∣⋅ .

4. Sample c2
 j1   from 2c2

 j1∣⋅ .

5. Sample 2
 j1  from 22

 j1∣⋅ .

6. Sample z j1  from 2 z
 j1 ∣⋅ .

7. Replace 2
 j⇐2

 j1  , 2
 j⇐2

 j1 , 2
 j⇐2

 j1 and z j ⇐ z j1 .

8. Set j= j1  and repeat steps 2 through 8.

9. Stop when j=NB , ( B  is burn-in samples to be dropped and N is 

sample size).

In the long run, the N samples taken from these full conditionals will form a 

sample drawn approximately from the above posterior  distribution.  In addition to the 
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above  estimation  of  parameters,  we  also  generate  highest  density  regions  for  the 

estimated parameters. Further, 90% confidence limits for the best-fit growth curve can be 

obtained by using the 5% and 95% percentiles of y (calculated by substituting the N

samples of 2 , given w and z ).

6.4 An Illustrative Example

We  use  similar  simulation  data  (see  Table  6.3)  to  demonstrate  our  Bayesian 

analysis  EIV  in  auxiliary  variable  with  AR(1)  in  covariance  structure  model.  The 

advantages of incorporating EIV and auxiliary variable into models have already been 

demonstrated.  So in  this  section,  we  further  explore  the  goodness  of  fit  statistics  as 

criteria in determining a proper growth curve model.  

We can use Bayesian analysis, in conjunction with least squares method, to obtain 

estimates of the parameters of interest and then use goodness of fit statistics to select the 

best model. The results of the Bayesian estimates for the parameters are shown in Table 

6.3. From the goodness of fit statistics therein we see that although Cubic growth curve 

appears to have the best fit model (SSE almost equals to zero and R2 almost one), we also 

have Gompertz curve that yields a very high R2  (adjusted R2 is almost the same) value but 

employs a smaller number of parameters. This may explain why (in Table 6.4) Gompertz 

has higher  BIC score than the other  three curves  (even though the simulated data  is 

actually based on an original cubic polynomial growth curve).

In summary, we have demonstrated that EIV in auxiliary variables is important 
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when data is subject to autocorrelation. We proposed a Bayesian growth curve model 

through goodness of fit statistics. We determined that we would choose a Cubic model 

according  to  the  goodness  of  fit  statistics.  This  conclusion  is  consistent  with  our 

expectation, as the data was simulated using a cubic polynomial curve. Note however that 

the Gompertz curve is also competitive as it has the advantage of getting almost the same 

goodness of fit statistics using one less parameter in the curve.

 Table 6.3 Bayesian Analysis of EIV in Auxiliary Variable with Autocorrelation

Type R2 Adj. R2 SSE 0 std 1 std 2  std 3 std  std  std

=0.4
Jenss 0.92 0.90 6.10 2.86 0.013 4.520 1.881 0.737 0.018 -0.002 0.014 0.909 0.016 0.372 0.064

Gompertz 0.99 0.99 0.93 5409.06 0.009 2.092 0.012 0.151 0.012 NA NA 1.004 0.016 0.374 0.062

Richards 0.68 0.60 24.93 64.48 0.292 5.595 0.648 7.111 0.043 2.986 0.014 0.983 0.011 0.364 0.065

Cubic 1.00 1.00 0.00 2.06 0.044 1.007 0.053 1.002 0.039 1.007 0.040 1.004 0.039 0.379 0.072


2 =10, e

2 =1, Z are m=15 random samples from N 1, 1 , 1000 iterations 
using data simulated from a given parameter vector =1 1 1 1 , =1 and

W=[0.1, 0.2 , ... , 1.5 ] .  Note that the large estimate value for 0 of Gompertz 
curve should not be a surprise because there are two exponential functions in the curve.

Table 6.4 BIC for Different Growth Curves
 Jenss Growth Curve 6.73

 Gompertz Growth Curve 6.53*

 Richards Growth Curve 6.74

Cubic Polynomial Growth Curve 6.81
* Gompertz has the smallest BIC value
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In  the  following  Figure  6.1  we see  the  comparison of  the  four  growth curve 

models  and  their  90%  credible  intervals.  We  can  see  that  the  figure  confirms  our 

conclusion  in  determining a  model  with the  best  fit  (the best  one is  Cubic and then 

Gompertz). 

Figure 6.1  Credible Intervals for the Four Different Curves
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6.5 Conclusion

We have presented some very practical but complex growth curve models under 

Bayesian methodology and have shown that they are implementable and useful in terms 

of obtaining better goodness of fit statistics in different scenarios (such scenarios include 

various combinations of correlation coefficients, with or without auxiliary variables and 

using different auxiliary variable functions contaminated by EIV) versus models ignoring 

some or all of those components. This is the main thrust of our contribution, as such 

models are currently non-existent in the literature.
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Chapter 7 Bayesian Analysis of Multivariate 

Growth Curve Models

7.0 Abstract

Growth curve models have been widely studied and extensively applied in many 
areas because they are useful in situations when time (an important factor) is involved. 
Researchers have considered growth curves (mainly linear) in conjunction with different 
covariance structures for numerous applications. In this paper, our interest is to use some 
commonly used nonlinear growth curves to describe (in terms of time) each variable in a 
multivariate  dataset  in  the  presence  of  random  error  covariance  structures  with 
autocorrelation  dependence.  No  similar  attempts  have  been  found  in  the  literature 
because under this complex scenario, the models become too complicated for classical 
analysis without making a lot of compromising assumptions. 

In our paper, we show that under a Bayesian formulation, by judicious choice of 
priors, one can obtain the full conditionals and this allows one to conveniently implement 
the Metropolis Hastings algorithm to sample/generate observations from the conditional 
(posterior) observations. This makes Bayesian approach a simpler but useful alternative 
to classical analysis. We use intrauterine growth retardation in rats data as an illustrative 
example for our model. 

7.1 Introduction

The motivation for conducting multivariate analysis in our research is that we are 

able to study the effect of several variables acting simultaneously. This gives a closer 

resemblance  to  our  intuition  as  well  as  better  understanding  about  the  relationship 

between  the  variables.  When  more  variables  are  analyzed  simultaneously,  greater 

statistical power will be obtained and we gain easier visualization and interpretation of 

the data through graphical measures, such as scatter plots or higher dimensional  plots 

(e.g. 3D plots). So our focus is also spontaneously shifted from individual or isolated 

factors to the relationships among several variables of interest in a data set. 
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Growth curve models, which are useful especially for studying growth behavior 

of  short  time  series  in  economics,  biology,  medical  research  and  epidemiological 

problems (Grizzle and Allen, 1969, Lee and Geisser 1972), have a long history. Their 

initiation may be attributed to Potthoff and Roy (1964), who introduced their formulation 

and then  studied  the  growth  curve  problems.  Then  subsequently,  Rao  (1965),  Khatri 

(1966),  Geisser  (1970)  and  von  Rosen  (1989,  1990,  1991)  became  the  primary 

researchers  in  analyzing the  growth curve  models.  However,  it  took nearly a  decade 

before the Bayesian approach (including predictive problem from a Bayesian perspective) 

was applied to  the  analysis  of  growth curve  models  and different  assumptions  about 

covariance matrices were also made accordingly. Lindley and Smith (1972) and Geisser 

(1980) assumed that covariance matrices were known, Fearn (1975) assumed that they 

were identity matrices with unknown variances. Barry (1995) gave a different treatment 

of  the  problem  under  Bayesian  approach  but  also  assumed  identity  matrix  for 

covariances.

In our research,  we approach similar  general  multivariate  growth problems by 

assuming that the multivariate dependent variables (such as weight, height, etc.) can be 

described by some commonly used nonlinear growth curves in terms of the independent 

variable  (time)  with  a  certain  correlation  (dependence)  relationship  in  the  covariance 

matrix.  So  the  multivariate  growth  curve  models  we  propose  will  include  nonlinear 

growth  curves  with  autocorrelated  errors  in  their  covariance  structures.  The  classical 

analysis  for these types  of  realistic  models  becomes either  too complicated to  obtain 
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analytical  solutions  or  may require  a  lot  of  simplifying  assumptions,  thus  becoming 

unrealistic. Bayesian analysis, including experts' opinions, can help us computationally to 

get to the estimates of the parameters for growth curve models and thus become more 

appealing, as well as important to researchers. To the best of our knowledge, we have 

found no similar models which consider such complex scenarios (multivariate nonlinear 

growth curves with autocorrelation in covariance matrix) available in the literature.

 We will detail the model formulation and then use the Gompertz growth curve as 

an example in first two sections. Then in the last two sections, we will demonstrate the 

applications of the models using a bivariate growth data set and discuss the simulation 

results as our conclusion.

7.2 Model Formulation

We consider a single subject of n observations. Y j
 p×1

, for j=1 ,... , n , is a 

vector of p multivariate correlated dependent variables. We define our model as,

Y=M E , where E~N p0, ,  is a p× p variance covariance matrix, 

Y
 p×n

= y1 '
⋮

y p '  p×n

= Y 1
 p×1

, ... , Y n
 p×1 , where yk= y1 k

⋮
y nk
 for k=1 , ... , p ,

and

M
 p×n

=1 '
⋮
p ' p×n

= M 1
 p×1

, ... , M n
 p×1 , where k=1k

⋮
nk
 for k=1 , ... , p .
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W=w1 ,… , wn is  a  vector  of  independent  variables  (i.e.,  time)  and


q× p

= 1
q×1

, ... , p
q×1

 , where k , k=1,.. , p is a vector of coefficients (parameters) for 

growth curves and q is the number of coefficients for the specific growth curve in that 

model  (e.g., q=3 in  a  Gompertz  curve).  Let f W∣k  , k=1 , ... , p be  the  growth 

curve. So for k=1 , ... , p , k
n×1
= f W∣k 

n×1
, and M

p×n
=[ f W∣n× p ] ' .

Our model considers a covariance structure between weight and length in that, 

under normal conditions, the lengthier the subject grows, the weightier it becomes and 

vice versa.  We assume that Y follows a p×n matrix normal distribution,  which is 

actually a  special  case  of  the pn -variate  multivariate  normal  distribution when the 

covariate matrix is separable. If we denote a pn -variate normal distribution with pn

-dimensional mean  and pn×pn covariance matrix  , then the p.d.f. function is 

as follows:

g  y∣ ,=2
−np

2 ∣∣
−1

2 exp{−1
2
 y− '−1 y−} , (7.1) 

where y
 pn×1 

=vect Y ' = y1 ' , ... , y p '  ' , =vect M ' =1 ' ,... , p '  ' , in which the 

operator vect ⋅ stacks the columns of its matrix argument from left to right in a single 

vector. The separable matrix =⊗ ,  where ⊗ is the Kronecker product which 

multiplies every entry of its first matrix argument by its entire second matrix argument, 

can be written as:
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⊗=11
⋮

 p1

⋯

⋯

1 p
⋮

 p p .

Also  we know that −1=⊗−1=−1⊗−1 and ∣⊗∣
− 1

2=∣∣
−n

2∣∣
− p

2 .  Then we 

have

g  y∣ , ,=2
−np

2 ∣∣
− n

2∣∣
− p

2 exp{−1
2
 y− ' ⊗−1 y−} .

Note that also with the matrix identity, we have 

 y− ' 1×np⊗
−1

np×np y−np×1 = tr −1
p× p Y−M p×nn×n

−1 Y−M  ' n×p , 

g Y∣M , ,=2
− np

2 ∣∣
−n

2∣∣
− p

2 exp{−1
2

tr −1
p× pY−M p×nn×n

−1 Y−M  ' n×p} .

(7.2)

So Y is a random variable that follows a p×n matrix normal distribution and 

can be denoted as:

Y∣M , ,~N p×nM ,⊗ ,

where M , , parameterize the above distribution with Y∈ℝ p×n ,  M ∈ℝ p×n

and  ,0 (  and  are commonly referred to as the within and between covariance 

matrices). Recall that M is a function of  and assume that  is a function of correlation 

coefficient  and that,  for simplicity,  ,  and  are independent and adopt vague 

prior  distributions  for  , , .  Then we  have h  , ,=hh h  and 

because  is  a  function  of  ,  their  prior  distribution  assumptions  are  as  follows:

h ∝constant , ∝1 −11− −1 for −11 (i.e., 1/2 ~

Beta   ,  , where  and  can be chosen such that the mean /  is
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 consistent with the empirical value for  ) and h ∝ 1
∣∣ p1/2 .

So  the  prior  distribution  is h  , ,∝ 1 −11− −1

∣∣ p1 /2 ,  and  the  joint 

posterior distribution of the parameters follows:

 , ,∣W ,Y =2
−np

2 ∣∣
− n p1

2 ∣∣
− p

2 1 −11−−1⋅

exp{−1
2

tr −1
p× pY−M p×nn×n

−1 Y−M  ' n× p} . (7.3)

Let G=Y−M −1Y−M ' then (7.3) becomes

 , ,∣W ,Y ∝ [∣∣−n p1
2 exp{−1

2
tr −1G}]⋅∣∣− p

2 1−11− −1 .

This can be reduced to the joint distribution of  and  if we integrate out  ,

 ,∣W ,Y ∝ [ ∫
0

∣∣
−np1

2 exp{−1
2

tr −1G}d ]⋅∣∣− p
2 1 −11−−1 ,

The integration can be easily worked out by recognizing that if −1 follows a Wishart 

distribution (we follow J. Press, 2002, see sections 12.3.5-6 therein for the justification of 

making  the  assumptions  of  vague  prior  for  and  Wishart  distribution  for −1 in 

posterior distribution to simplify the integration) then it can be written as:

 ,∣W ,Y ∝∣∣
− p

2 1 −11− −1

∣G∣n /2
. (7.4)

Assume an autocorrelation matrix for  with correlation coefficient  as follows:
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= 1

⋮

n−1


1
⋮
n−2

2


⋮

n−3

⋯
⋯

⋯

n−1

n−2

⋮
1  , (7.5)

where  is the correlation coefficient. Then we can substitute the results that 

∣∣=1−2n−1 , into (7.4) and get the posterior function

 ,∣W ,Y ∝ 1 −1 −p n−1 /21− −1−p n−1 /2

∣G∣n/2
. (7.6)

7.3 Gompertz Curve as An Illustrative Example

If we take the Gompertz curve as an illustrative example in fitting a bivariate data 

set which has weight and length as the variables and the following priors for

={1 2}={a1 a2

b1 b2

c1 c2
} ,where a1~Expon  1

a1
 , a2~Expon 1

a2
 ,

{b1

b2}~N 2{b1
b2}, b , c1~Expon  1

c1
 and c2~Expon  1

c2
 .  

Let = a1 , a2 , b1 , b2 , c1 , c2 , b (these  can  be  estimated  through  empirical 

Bayes estimates from nonlinear least square regression method and results can be easily 

obtained using MATLAB nlinfit function to fit nonlinear Jenss, Gompertz and Richards 

curves and polyfit function to fit polynomial curves. For details, please refer to MATLAB 

Help and Seber and Wild, 1989). Depending on the data, although sometimes we could 
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get estimates of b , most of the time we have to assume them to be equal to some 

proper value for our Bayesian analysis. So the prior distributions are: 

 h ∣ ∝ 1
a1 a2 c1 c2∣ b∣

1 /2 exp{−1
2 b1−b1

b2−b2
'

b
−1b1−b1

b2−b2−
a1

a1


a2

a2


c1

c1


c2

c2 } .(7.7)

Let (7.7) be substituted into (7.6), then it becomes 

 ,∣W ,Y ∝1 −1 −p n−1 /21− −1−p n−1 /2

∣Y−M −1Y−M '∣n/2
⋅

exp{−a1

a1


c1

c1


a2

a2


c2

c2 −1
2 b1−b1

b2−b2
'
b
−1b1−b1

b2−b2}
. (7.8)

Then we get the full conditionals of the parameters as follows:

 ∣⋅∝
1 −1− p n−1 /21− −1− p n−1/2

∣Y−M −1Y−M  '∣n/ 2
, (7.9)

a1∣⋅∝
exp {−a1/ a1}

∣Y−M −1Y−M  '∣n /2
, (7.10)

a2∣⋅∝
exp {−a2/ a2}

∣Y−M −1Y−M  '∣n/2
, (7.11)

b1∣⋅∝
1

∣Y−M −1Y−M  '∣n /2
exp{−1

2 b1−b1

b2−b2
'
b
−1b1−b1

b2−b2} , (7.12)

b2∣⋅∝
1

∣Y−M −1 Y−M  '∣n/2
exp{−1

2 b1−b1

b2−b2
'

b
−1b1−b1

b2−b2} , (7.13)

c1∣⋅∝
exp {−c1 / c1}

∣Y−M −1Y−M  '∣n /2
, (7.14)
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c2∣⋅∝
exp {−c2/ c2}

∣Y−M −1Y−M '∣n/2
. (7.15)

Regarding the MH Algorithm:

Let's take the sampling of a2 in Gompertz curve as an example. To define the 

algorithm, let  a2
old  , a2

new  denote a source density for a candidate draw a2
new 

given the current value a2
old  in the sampled sequence. The density a2

old  , a2
new is 

referred to as the proposal or candidate generating density. Then, the MH algorithm is 

defined by two steps: a first step in which a proposal value is drawn from the candidate  

generating density and a second step in which the proposal value is accepted as the next 

iterate in the Markov chain according to the probability: 

 a2
old  , a2

new =min{2a2
new a2

new , a2
old 

2a2
old a2

old  , a2
new

,1} , 

if 2a2
old  a2

old  , a2
new0 (otherwise  a2

old  , a2
new =1 ). 

If the proposal value is rejected, then the next sampled value is taken to be the 

current value. Let's follow this recursive procedure:

Metropolis-Hastings Algorithm:

1. Specify an initial value a2
0  .

2. Repeat for j=1,2,... ,M :

a) Propose a2
new ~a2

 j ,⋅ , and
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b) Let a2
 j1 =a2

new   if U 0,1a2
 j  , a2

new  otherwise a2
 j1 =a2

 j  .

3. Return the values a2
1 , a2

2 ,... , a2
M  .

We follow the above  Metropolis-Hastings Algorithm in taking samples of 

and  by using (7.9)-(7.15) through the following steps:

1. Set j=0  and select a set of initial parameter values for 0 , B0 and 0 .

2. Sample  j1  from (7.9) (using MH algorithm).

3. Sample  j1  from (7.10)-(7.15) (using MH algorithm).

4. Replace  j by  j1 ,  j by  j1 and B j by B j1 .

5. Set j= j1  and repeat steps 2 through 4.

Drop the initial burn-in sets and retain the rest of the data for marginal distribution 

analysis.  This  analysis  includes  highest  density  regions  for  the  estimated  parameters.

In addition to this  analysis  of parameters,  we can also generate 90% Credible 

Intervals (CIs or HDR's, Highest Density Regions) for the best-fit growth curve under 

this  Bayesian formulation by using the 5% and 95% percentiles  of y calculated by 

substituting the M samples of  (a vector of growth curve parameters, see section 

7.2 for definition) at a given w j .

7.4 Example: Using Intrauterine Growth Retardation in Rats Data

We use the intrauterine growth retarded rats data (Oyhenart et al, 2003) in this 

section as an example to demonstrate how to apply our approach to Bayesian analysis of 

multivariate growth curve model in a bivariate data setting (weight and length). In their 
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experiment, Oyhenart et al. chose fifty female rats that were mated overnight with ten 

adult males and then divided the pregnant female rats into three groups  (control group, 

intrauterine growth control group  and sham-operated group). They then measured body 

weight, body length, and other facial characteristics of the rats that were in those three 

groups, respectively, every four days for twenty days. For illustrative purposes and for 

simplifying our analysis, we chose the control group and only use the bivariates body 

weight and body length in our growth curve model. The dataset is as follows (units for 

ages: days, weight: gram and length: mm):

Table 7.1 Rats Growth Data

Age (Days) Weight (g) Length (mm) 

1 6.6 54.5
5 10.4 65.6
9 16.3 77.2
13 23.2 87.5
17 28.6 94.6
21 38.4 110.4

We present below the growth curve models explicitly for this specific example: 

1. Jenss growth curve: f w =abw−exp cdw .

2. Gompertz growth curve: f w =aexp [−exp bc w ] .

3. Richards growth curve: f w =a {1bexp [c d−w]}−1 /b .

4. Polynomial growth curve: f w =abwcw2dw3 .
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In  this  data  set,  we assume that b is  equal  to s2[ 1 0.1
0.1 1 ] for  Gompertz 

curve  (the  same  or  similar  assumption  is  made  for  the  other  growth  curves  for 

comparison. Here the constant s2 could be quite small if prior knowledge is reliable, 

and the number we assume would allow some moderate correlation relationship between 

the covariates length and weight). 

Bayesian estimates are displayed in Table 7.2. Using BIC, in conjunction with the 

graphs and CIs,  it  seems natural  to say that  the Cubic growth curve is  the model  of 

selection (better than other curves) for this specific bivariate intrauterine growth retarded 

rats data.

Table 7.2 Bayesian Estimates of Parameters and BIC

Note:  Take the numbers in the two columns under Gompertz as examples. They 
are the estimates of the parameters (coefficients) of the bivariate growth curves 
(for length and weight, respectively), where

length= f w =275.231 exp−exp0.5010.027 w
weight= f w=146.321exp −exp 1.1670.041 w  .
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Richards Cubic Polynomial
(they are sample means of posterior distribution through MH within Gibbs Sampler )

Estimates

a 52.299 21.536 275.231 146.321 966.688 747.626 50.226 5.325
b 2.674 1.575 0.501 1.167 -0.744 -0.393 3.998 1.051
c 0.115 2.906 0.027 0.041 0.005 0.010 -0.162 0.012
d -0.861 0.000 - - 37.458 76.668 0.005 0.001

-0.336 -0.361 -0.360 -0.369
BIC 7.73 5.74 5.59 5.57

 

Jenss Gompertz

length  
vs. time
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vs. time
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Figure 7.1 Weight vs. Time Credible Intervals for the Four Different Growth Curves

Figure 7.2 Length vs. Time Credible Intervals for the Four Different Growth Curves

97

5 10 15 20
-20

0

20

40

60

80

Time

W
e
ig

h
t

90% Credible Interval for Jenss Growth Curve

 

 
Upper & Lower Bounds
Bayesian Estimates
Original Curve

5 10 15 20
-20

0

20

40

60

80

Time

W
e
ig

h
t

90% Credible Interval for Gompertz Growth Curve

 

 

5 10 15 20
-20

0

20

40

60

80

Time

W
e
ig

h
t

90% Credible Interval for Richards Growth Curve

 

 

5 10 15 20
-20

0

20

40

60

80

Time

W
e
ig

h
t

90% Credible Interval for Cubic Polynomial Growth Curve

 

 

5 10 15 20

50

100

150

200

Time

L
e
n
g
th

90% Credible Interval for Jenss Growth Curve

 

 
Upper & Lower Bounds
Bayesian Estimates
Original Curve

5 10 15 20

50

100

150

200

Time

L
e
n
g
th

90% Credible Interval for Gompertz Growth Curve

 

 

5 10 15 20

50

100

150

200

Time

L
e
n
g
th

90% Credible Interval for Richards Growth Curve

 

 

5 10 15 20

50

100

150

200

Time

L
e
n
g
th

90% Credible Interval for Cubic Polynomial Growth Curve

 

 



Figure 7.3 Weight vs. Length for the Four Different Growth Curves

Figure 7.4 Three Dimensional Plot (Time, Weight and Length) 
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7.5 Discussion

We have exhibited the 90% Credible Intervals, the fitted curves, and the estimates 

of the model parameters for the four growth curves in Figures 7.1-4 and Table 7.1-2. 

There, we see that for weight versus time (Figure 7.1) and length vs. time (Figure 7.2), 

the 90% CI of Cubic curve is the narrowest among all four curves when time is small (but 

diverges like a funnel shape as time increases to approximately more than 15 days); for 

weight vs. time in Figure 7.1, Jenss and Gompertz curves both have relatively narrow 

90% CIs, whereas for length vs. time in Figure 7.2, Jenss curve has smaller 90% CI. In 

Figures 7.3-7.4, we observed that on the one hand, the data display a positive trend that as 

length increases, the rate of change in weight also increases; on the other hand, when 

weight increases, the rate of change in length decreases. 

Although  all  four  curves  fit  the  data  reasonably  well,  the  Cubic  curve  is 

apparently the best fit  curve among them. In addition,  we see that,  as time increases 

(approximately before the fifteenth day), the rate of change in length and in weight both 

increase  as  weight  and length  increase.  Here  we observe  again  that  the  Cubic  curve 

appears to be the best fit curve for the given data (BIC can be one of the useful criteria in  

model selection because the smaller value it is, the better curve fitting it will be, and this 

is consistent with our observations in those Figures).

In summary, our Bayesian analysis of multivariate growth curve models provides 

a formulation for generating Bayesian estimates as well as describing the dependence 
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relationship  between  variables  with  a  certain  autocorrelation  relationship  under 

consideration.       
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Chapter 8 Application of Dirichlet Mixture of Normals in 

Growth Curve Models

8.0 Abstract 

In this chapter, we present growth curve models with an auxiliary variable which 
contains an uncertain data distribution based on mixtures of standard components, such 
as normal distributions. The multimodality of the auxiliary random variable motivates 
and  necessitates  the  use  of  mixtures  of  normal  distributions  in  our  model.  We have 
observed that Dirichlet process priors, composed of discrete and continuous components, 
are appropriate in addressing the two problems of determining the number of components 
and estimating the parameters simultaneously and are especially useful and advantageous 
in the aforementioned multimodal scenario. 

The application of Dirichlet mixture of normals (DMN) in growth curve models 
under Bayesian formulation is presented and algorithms for computing the number of 
components,  as  well  as  estimating  the  parameters  are  also  rendered.  The  simulation 
results show that our model gives improved goodness of fit statistics over models without 
DMN and the estimates for the number of components and for parameters are reasonably 
accurate.

8.1 Introduction

In our study of growth curve models with auxiliary variables, we observed that 

there are situations when auxiliary variables could come from multimodal distributions. 

For example, the  distribution of the weekly average oxygen as an auxiliary variable on 

the fish weight growth (Dellaportas and Stephens, 1995) exhibits some multimodality, 

i.e.,  the auxiliary variable may come from uncertain data distributions or mixtures of 

some  standard  components,  such  as  normal  distributions.  So,  if  we  could  somehow 

estimate the number of components as well as the parameters of the mixtures of normals, 

then our model would be a better fit to that specific type of data.  In our literature survey,  

we find that  the framework of the Dirichlet  process by Ferguson (1983) for deriving 
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mixture normals is useful in addressing our problem. There are, of course, subsequent 

developments along this line by West (1990) concerned with the algorithm for predictive 

distributions; Escobar and West (1995) developed a method to compute and evaluate the 

parameters of posterior and predictive distributions. MacEachern and Muller (2000) used 

Dirichlet process priors to extend the parametric models into the nonparametric models. 

Muller  and  Quintana  (2004)  reviewed  some  Bayesian  inference  problems,  including 

Dirichlet process models. Bhattacharya and SenGupta (2009), using Dirichlet process and 

simple  Gibbs sampling algorithm for  simulating  the mixture  components  involved in 

their multivariate linear-circular model, were able to handle a varieties of uncertainties 

arising in a linear-circular data set. We refer mainly to Bhattacharya and SenGupta (2009) 

for our base framework and extend the application to growth curve models. Thus the 

novelty of this paper lies in applying the Dirichlet process to growth curve models with 

auxiliary  variables,  handling  uncertainties  from  mixtures  of  normals,  and  deriving 

algorithms  to  generate  estimates  for  the  number  of  components  as  well  as  for  the 

parameters of the model.

What motivates us in using Dirichlet Process Priors (DPP) for mixture normals is 

that, given the distribution of the error terms of the data, the model is appropriate and 

useful for determining the number of components and in estimating the parameters. If 

there are p components in the mixture normals from which the data was obtained, we 

begin by assuming the maximum number of distinct components p0 ( p0 p ). Then 

through  DPP and  the  use  of  appropriate  algorithms,  we  can  simultaneously  get  an 
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estimate p* for p (the discrete part of DPP) and obtain reasonable estimates for the 

parameters (the continuous part of DPP).

This  chapter  is  organized  in  the  following  order:  the  first  section  is  the 

introduction and literature review. In the second section,  we will  introduce the model 

under two scenarios. The third section will describe the algorithm for sampling from the 

model for inferences and the simulation results generated. Lastly, we will conclude with 

some discussion.

8.2 Model Formulation

The growth curve with auxiliary variable model is assumed to be

y t= f t ,q  z t ,t , t=1 , ... ,T where t~N 0, t
2 so

y t~N  f t ,q z t , , t
2  ( t

2 will  be  assumed  to  be  equal  to 2 and  that

2 is  either  a  constant  or  follows  a  certain  prior  distribution  later)  and y t ' s are 

independent. In addition, we assume a linear relationship for the function of auxiliary 

variable, which is q  zt ,= z t , and the mixture normals from which the auxiliary 

variable is sampled is given by:

z t~∑
i=1

p

i N i , z
2 , (8.1)

where ∑
i=1

p

i=1 and p is the unknown number of normal components and must be 

inferred from the prior and the data set. This can also be expressed as an average of a 

fixed number of components, as shown in this alternate form:
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z t~
1
p0
∑
i=1

p0

N i , z
2 , (8.2)

where p0 p can be defined as the maximum number of distinct mixture components

of zt , with i=
1
p0

for each i . Based on the implicit assumption that i can be 

reasonably approximated by the ratio of two integers, we now show in the following that 

under  a  nonparametric  prior  assumption  for {i :1i p0} ,  (8.2)  boils  down to  the 

form of (8.1).

We assume that the parameters (means of the mixture normals) {i :1i p0}

are  samples  drawn from a  Dirichlet  Process  (see  Escobar  and West,  1995).  In  other 

words, we assume that 1 ,... ,p0 are samples from some unknown prior distribution

G⋅ on the real line. We further assume G~DG0 , a Dirichlet process defined 

by  , a positive scalar, and G0⋅ , a specified univariate distribution function over 

the real line. Put more simply, we assume that 

1 , ... ,p0
∣G0 ~iid G and G~DG0 .

 A larger  value here indicates a higher probability of sampling i from the 

base distribution G0 than from ¬i (define ={1 , ... , p0} and

¬i={1 ,... ,i−1 ,i1 , ... , p0} ) because the full conditional priors for i is given 

by

i∣
¬i ~ p0−1−1G0 ip0−1−1 ∑

j≠i , j=1

p0

 j
i , (8.3)
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(8.3) in fact shows that the joint distribution of 1 ,... , p0
 is given by the following:

1~G0 and for i=2,... , p0 ,

i∣1 , ... ,i−1~i−1−1G0 ii−1−1∑
j=1

i−1

 j
i . Thus, given a sample

1 , ... ,i−1 , i is drawn from G0 with probability i−1−1 and is otherwise 

drawn uniformly with probability i1−1 from among the sample {1 ,... ,i−1} .

Now, suppose that a sample from the joint distribution of ={1 , ... , p0} yields

p* distinct realizations given by * and let p i denote the number of times the 

ith member of * appears in  . Then i=p i / p0 , so

 ∑
i=1

p

i=∑
i=1

p0 1
p0
=∑

i=1

p * pi

p0
=1 , where ∑

i=1

p *

pi= p0 . 

In other words, we get an estimate p* for p by assuming a maximum number of 

distinct realizations of samples p0 and then collapse p0 to only p* . This explains 

how (8.2) reduces to the form of (8.1).

In our simulation example, we assume p0 =5 to be the maximum number of 

components, ~Gamma 1, 1 and  the  base  prior  for  Dirichlet  process  is

G0 i≡N  i , 0
2 , where i and 0

2 are some known constants. We can get the 

distribution for (8.2) as follows:

For t=1 , ... ,T and i=1 , ... , p0 , 
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p Z∣ , z
2= 1

2 z
2−T /2 p0

T∑
i=1

p0

exp{–∑t=1

T

 zt−i 
2

2 z
2 } , (8.4)

we can rearrange the terms and rewrite it as 

i∣Z , z
2~N Z ,

 z
2

T  , where Z= 1
T ∑t=1

T

zt . (8.5)

To  simplify  our  analysis,  we  let  z
2 be  a  known  constant,  then  we  get  the  full 

conditional of i given the rest in conjunction with (8.3) as follows

i∣Z , z
2 ,¬i ~ p0−1−1G0 i p i∣Z , z

2

p0−1−1 ∑
l≠i ,l=1

p0

p l∣Z , z
2i

l
. (8.6)

Thus by substituting G0 i≡N  0 , 0
2 into (8.6) and reorganizing the equation, we 

obtain the full conditional distribution for i as follows (we use ⋅ to denote the given

 conditions and let =
 z

2

 z
2T 0

2 to simplify the notations):

i∣⋅{~ G i=N  i1− Z , 0
2  with  probability c q0 i

=l , l=1 ,... , p0, l≠i with probability  cq l i
, (8.7)

where qo i=


0 z
 Z−i

 z
2/T0

2  , q l i= l−Z
 z/T  , ⋅ is the standard 

normal probability density function and subject to the constraint

c q0 i ∑
l≠i ,l=1

p0

c ql i=1 , i.e.
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c=[ q0 i ∑
l≠i , l=1

p0

ql i]
−1

.

For  simplicity  and  illustrative  purposes,  we  assume f t ,=12t ,

q  zt ,= z t and  the  priors  for i~N  i , s2 , i=1, 2 and ~N   , s2 where 

i , i=1 ,2 and  are  given  constants.  Now  we  will  see  the  full  conditional 

distribution for  and  by considering two different cases for the prior variances

s2 :

Case A: s2=2

For 1 we  have p 1∣⋅∝ p 1[ p Y∣ f  , t  , q  ,Z  , 2 p 2] ,  where

t=1 , 2 , ... , T  .  We  substitute  in  the  Jeffrey  prior  for 2 ,  integrate  out 2 , 

reorganize  the  terms  in  the  brackets  (the  likelihood  function),  and  let

Qt= y t−2 t− z t we  get 1∣⋅~tT  ,  a T−1 degree  of  freedom t

distribution, where the location parameter and the scale parameter are

 = 1
T1∑t=1

T

Qt1 , and


2 = 1

T1T−1 [∑t=1

T

Q t
21

2− 1
T1∑t=1

T

Qt1
2] , respectively.

Like 1 , the full conditional distribution for 2 can be obtained in a similar 

way and is 2∣⋅~tT   , a  t-distribution with T−1 degree of freedom, where the 

location parameter and the scale parameter are
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 = 1
∑ t 21 ∑t=1

T

Rt2 and


2 = 1

∑ t 21T−1 [∑t=1

T

Rt
22

2− 1
∑ t 21 ∑t=1

T

R t2
2

] , respectively, where

Rt= y t−1− z t t .

Like 1 and 2 , the full conditional distribution for  can be obtained in a 

similar way and is ∣⋅~tT   , a t-distribution with T−1 degree of freedom, 

where the location parameter and the scale parameter are

 = 1
∑ z t

21 ∑t=1

T

O t  and


2 = 1

T−1∑ z t
21 [∑t=1

T

Ot
2 2− 1

∑ z t
21 ∑t=1

T

O t 
2] , respectively and

Ot= y t−1−2 t  zt .

Case B: s2≠2

For 1 we have p 1∣⋅∝ p 1[ p Y∣ f  , W  , q , Z  ,2 p 2] . 

Substituting in the Jeffrey prior for 2 , integrating out 2 , reorganizing the terms in 

the brackets (actually the likelihood function), and letting Qt= y t−2 t− z t we get a

t distribution with T−1 degree of freedom, where the location

 parameter and the scale parameter are 1
T ∑t=1

T

Qt and 1
T ∑t=1

T

Qt
2− 1

T 2 ∑
t=1

T

Qt 
2

, 
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respectively. So the full conditional distribution for 1 is proportional to the product of 

the density function of the prior of N  1 , s2 and the density function of this t

distribution.

Like 1 , the full conditional distribution for 2 can be obtained in a similar 

way and is the product of a density function of the prior of N  2, s
2 and the density 

function of a t distribution with T−1 degree of freedom, location parameter

1
∑ t 2∑

t=1

T

Rt and scale parameter
1
∑ t 2∑

t=1

T

Rt
2− 1

∑ t22 ∑t=1

T

Rt
2

, where

Rt= y t−1− z t t .

Further, the full conditional distribution for  can be obtained in a similar way 

and  is  the  product  of  a  density  function  of  the  prior  of N   , s2 and  the  density 

function of a t distribution with T−1 degree of  freedom, location parameter is

1
∑ zt

2∑
t=1

T

O t and scale parameter is
1

∑ zt
2∑

t=1

T

O t
2− 1

∑ zt
2 2 ∑t=1

T

O t
2

where

Ot= y t−1−2 t  zt .

8.3 Algorithm for Implementing the Model

Escobar and West (1995) elucidated that estimating the number of components in 

their Dirichlet mixtures of normals (which is equivalent to the p* , an estimate of p

in our model) could be as straightforward as using a histogram approximation. In our 
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research,  we  present  a  way  to  estimate  using  an  algorithm which  combines  the 

calculation and estimation of the ''discrete random variable''( p ) and the ''continuous 

random variable'' (  ) in one setting. In our algorithm, we use a similar but yet more 

complicated approach to obtain the estimate of p (i.e., p* ) by collapsing the same 

i ' s in  in the iteration (composed of modes) from iterations which have both the 

same  number  of  modes  (from the  histogram)  and  the  identical  combination  (whose 

frequency is higher than those of all other combinations). After collapsing, the distinct 

* spontaneously become the  estimates  of  the  means  of  the  mixture  normals  and 

simultaneously producing estimates for  as well.

We use the following Metropolis Hastings within Gibbs sampling algorithm to 

sample the parameters from the previous full conditional distributions:

• Step 1: Obtain initial values for 0 , 0 , 0 (e.g., from the least square 

estimates) and 0  .

• Step 2: Let j be the j th step in the total N iterations, and denote p  j  to be 

the number of distinct  in the j th step, then do 

For j in 1: N

   sample 1
 j from

1∣2=2
 j−1  ,3=3

 j−1 , ... , p0
=p0

 j−1 ,
1=1

 j−1  ,2=2
 j−1 ,= j−1 ,= j−1 ,

   sample 2
 j from

2∣1=1
 j  ,3=3

 j−1 , ... ,p0
= p0

 j−1 ,1=1
 j−1 ,

2=2
 j−1 ,= j−1 ,= j−1 ,= j−1 ,

⋮
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   sample p0

 j from
p0
∣1=1

 j ,2=2
 j  , ... ,p0−1= p0−1

 j  ,
1=1

 j−1  ,2=2
 j−1 ,= j−1 ,= j−1 ,

   sample 1
 j from

1∣1=1
 j ,2=2

 j , ... , p0
=p0

 j ,
2=2

 j−1 ,= j−1 ,= j−1 ,

   sample 2
 j from

2∣1=1
 j  ,2=2

 j ,... , p0
=p0

 j  ,
1=1

 j  ,= j−1 ,= j−1 ,

   sample  j from
∣1=1

 j ,2=2
 j ,... , p0

=p0

 j ,
1=1

 j  ,2=2
 j  ,= j−1 ,

   sample  j  from
∣1=1

 j  ,2=2
 j  , ... , p0

=p0

 j ,
1=1

 j  ,2=2
 j  ,= j  ,

   p  j  = # of distinct i
 j  for i=1 , ... , p0 in this j th step.

End

• Step  3:  Construct  a  histogram  for p 1 ,... , pN  and  its  mode p * is  the 

estimate of p , the number of distinct realizations of  .

• Step 4: Choose only the iterations that have exactly p * distinct realizations and 

count the frequencies of the (at most) C p *
p 0 number of different combinations.

• Step 5: Retain only the highest frequency iterations from step 4. Then in these 

iterations, keep only the highest frequency identical combination iterations.

• Step 6: Now use the iterations picked out in Step 5 to:

1. Calculate the means of the same distinct realization in the iterations, these 

means are estimates * for  .

2. Calculate the mode of the numbers of duplications for every single distinct 
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realization in these iterations and divide this mode by p0 , we get estimates 

* for  .

3. Thus we obtain estimates p* (in step 3), * and * for p ,  and

 , respectively.

8.4 Simulation 

For simplicity, we consider Case A and run a simulation of 3000 iterations (the 

first  2000  burn-ins  dropped)  by  assuming T=30 , =1 2=1 1 , =0.5 ,

=1 and that the auxiliary variable data come from a population of a mixture of two 

normal  distributions,  with  probability  1=0.3 from N 0,1 and  probability

2=0.7 from N 3,1 . Using the aforementioned algorithm, we get these estimates : 

1. p*=2 (the same as the number of components in the original data).

2. *=0.55017 ,2.71725 , 1
*=0.2 and 2

*=0.8 (very  close  to  the  values 

above). 

3. 1
* 2

* 1
* = 0.99362 0.99995 1.00312 ,  almost  the same as  the above 

values. Standard deviations are 0.17921 4.38442 0.66974 .

4. Adjusted R2 for model using DPP is 0.9546 (better than 0.95295 for not using 

DPP model).
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Figure 8.1 

8.5 Conclusion

In this chapter we have presented growth curve models with auxiliary variables 

containing uncertain data distributions based on mixtures of standard components and 

using normal distributions in our simulation example. We have also developed a useful 

algorithm in estimating the model parameters. The results from this algorithm show that 

our model can successfully estimate the number of components in the mixture normals, 

the probabilities from which the auxiliary variables arise and the means of the normal 

distributions in the components of the mixture normals. The estimates and goodness of fit 

statistics  (adjusted R2 ),  show that  models  with  DPP can  outperform those  models 

without DPP. 
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