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a b s t r a c t

Recent experimental results show that strain-induced crystallization can substantially improve the crack
growth resistance of natural rubber. While this might suggest superior designs of tires or other industrial
applications where elastomers are used, a more thorough understanding of the underlying physics of
strain-induced crystallization in natural rubber has to be developed before any design process can be
started. The objective of this work is to develop a computationally-accessible micro-mechanically based
continuum model, which is able to predict the macroscopic behavior of strain crystallizing natural rubber.
While several researchers have developed micro-mechanical models of partially crystallized polymer
chains, their results mainly give qualitative agreement with experimental data due to a lack of good
micro–macro transition theories or the lack of computational power. However, recent developments in
multiscale modeling in polymers give us new tools to continue this early work. To begin with, a micro-
mechanical model of a constrained partially crystallized polymer chain with an extend-chain crystal is
derived and connected to the macroscopic level using the non-affine micro-sphere model. Subsequently,
a description of the crystallization kinetics is introduced using an evolution law based on the gradient of
the macroscopic free energy function (chemical potential) and a simple threshold function. Finally a numer-
ical implementation of the model is proposed and its predictive performance assessed using published data.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The study of strain-induced crystallization (SIC) in natural rub-
ber (NR) dates back almost a century to Katz (1925). He discovered
that NR underwent a transformation from an initially amorphous
solid state to a semi-crystalline state when subjected to strain by
means of X-ray diffraction, a method that is still state of the art.
Ever since, SIC in NR has been a topic within the complex subject
of rubber elasticity, not only because NR is widely used in indus-
trial applications such as tires, seals, and medical devices, but also
because its study might deepen the understanding of the Mullins’
effect (Govindjee and Simo, 1991) and provide additional insight
into the superior crack growth resistance of natural rubber (Le
Cam and Toussaint, 2010). Despite this apparent significance, scant
work has been done in the development of a micro-mechanically
based continuum model of SIC in NR.

This type of modeling task typically includes a combination of
three equally important parts:

1. A micro-mechanical model of a partially crystallized polymer
chain.

2. A description of the crystallization kinetics in polymers, i.e. the
time evolution of the degree of crystallinity within the material.

3. A micro-to-macro transition that connects micro-kinematic
variables of the single chain with macroscopic continuum
deformation measures.

The cornerstone was laid by Flory’s statistical mechanical theory of
extended chain crystallization (Flory, 1947). In this theory he uses
a Gaussian distribution function to model the partially crystallized
polymer chains and assumes that the crystallized part of the chain
is oriented in the direction of stretch. There is no evolution of the
degree of crystallinity involved, since equilibrium crystallization
is assumed. All the relations in Flory’s model are derived for uniax-
ial loading using an affine deformation assumption, which is
known to result in inaccurate predictions for large deformations.
Some years later, Gaylord (1976) and Gaylord and Lohse (1976)
developed an improved theory of SIC with two modified assump-
tions. Unlike Flory, they took chain folding into account, which
adds insight about crystal morphologies and orientation, and they
used a non-Gaussian distribution function derived by Wang and
Guth (1952) to model the polymer chains. At the same time
another model was proposed by Smith (1976). He relaxed Flory’s
condition that the extended crystal has to be oriented in the direc-
tion of stretch by saying that the direction a chain takes through a

0020-7683/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.ijsolstr.2013.10.027

⇑ Corresponding author. Tel.: +1 510 642 6060.
E-mail address: s_g@berkeley.edu (S. Govindjee).

International Journal of Solids and Structures 51 (2014) 530–539

Contents lists available at ScienceDirect

International Journal of Solids and Structures

journal homepage: www.elsevier .com/locate / i jsolst r



Author's personal copy

crystal is determined by the first few links of a chain entrapped
within the crystal itself. Other than giving good qualitative agree-
ment with experimental data, all of the above mentioned models
have the following three things in common: Firstly, all of them
develop a detailed micro-mechanical model of a partially crystal-
lized polymer chain. Secondly, only equilibrium crystallization is
assumed and thus the time evolution of crystallinity is not consid-
ered. Thirdly, all of them lack a satisfactory micro-to-macro
transition.

Crystallization kinetics itself is a widely studied phenomenon,
e.g. in the study of phase changes in metals. Roughly speaking
there are three different approaches. One of the most extensively
used approaches to describe the process of crystallization is the
model of Avrami (1939, 1940, 1941). Based on geometric consider-
ations of nucleation and crystal growth, the equation of Avrami is
given by the exponential law x / 1� e�kVt , where x is the degree
of crystallinity, k is the average density of nuclei, and Vt is the vol-
ume a crystal would occupy after a time t. Here Vt depends on the
growth rate and the shape of the crystal. Some years later a similar
equation was obtained by Evans (1945) and applied to tempera-
ture-induced crystallization of Nylon 6,6 by Allen (1952). Gent
(1954) was the first to extend the treatment of Avrami to stretched
natural rubber vulcanizates and approximate the time functions
governing crystal growth. Another widely used approach is taken
by Becker (1938), Turnbull and Fisher (1949) and Hoffman and
Weeks (1962). They use an Arrhenius equation to describe the
crystallization process, _x / exp �DF=ðkBTÞð Þ, where _x is the rate
of crystallization and DF the free energy change upon crystalliza-
tion. A third approach first discussed for polymer crystallization
by Roe and Krigbaum (1965) is based on a micro-mechanical mod-
el of a partially crystallized polymer chain and uses its free energy
gradient (chemical potential) _x / �@F=@x as the driving force for
crystallization.

The lack of a satisfactory micro-to-macro transition has also
been a challenging topic within the micro-mechanically based
modeling of rubber elasticity. A good overview of constitutive
models can be found in Boyce and Arruda (2000). More recently
Miehe et al. (2004) have extended the micro-plane model of Bazant
and Oh (1985) to the so-called non-affine micro-sphere model of
rubber elasticity. This is a microscopically motivated finite defor-
mation model for rubberlike materials. The model combines three
special features: Firstly, it includes a non-affine stretch component,
where micro and macro stretches are linked through a fluctuation
field on a micro-sphere. The fluctuation field itself is determined by
a minimization of a microstructural free energy. Secondly, polymer
cross-links and entanglements are also considered using the so-
called tube model of rubber elasticity, where the movement of a
single chain is restricted by a tube-like constraint (Doi and Ed-
wards, 1986). Thirdly, since closed-form solutions to the averaging
integrals over a sphere are not available, a 21-point integration
scheme, as derived in the original micro-plane model of Bazant
and Oh (1985), is used.

The objective of this work is to leverage these ideas and develop
a computationally-accessible micro-mechanically based contin-
uum model, that is able to predict the macroscopic behavior of
NR. The derivation of this model parallels the steps in Miehe and
Göktepe’s non-affine micro-sphere model with select changes:
Firstly, on the microscopic level the free energy of a partially crys-
tallized unconstrained single chain is considered instead of a fully
amorphous chain. The model used for the chain will be a modified
version of Smith (1976), which provides a way of modeling a semi-
crystalline chain with extended crystals (Section 3). The micro-
scopic model is connected to the macroscopic level using the
non-affine micro-sphere model (Section 4). Secondly, on the mac-
roscopic level an evolution law for the degree of crystallinity based
on the macroscopic free energy is introduced, where the free en-

ergy gradient is used as a driving force (Roe and Krigbaum, 1965)
(Section 2). Moreover, a threshold function for the evolution law
inspired by phase change evolution in martensitic alloys (Govind-
jee and Miehe, 2001) is introduced. Thirdly, the numerical imple-
mentation using a return mapping algorithm is explained in
Section 6. Finally in Section 7 the model is discussed and the pre-
dictive performance of the proposed model assessed along with a
comparison to the work of Kroon (2010).

2. Macroscopic setting of model

At the macroscopic scale the model assumes a free energy
function that depends on the right Cauchy–Green deformation
tensor C and the internal variable x, a macroscopic measure of
the degree of crystallinity in the material:

W ¼ W C; xð Þ: ð1Þ

Following the argument that the mechanical dissipation cannot be
negative (see e.g. Coleman and Noll, 1963, Truesdell and Noll,
1965, Section 79, or Simo and Hughes, 1998)

Dmech ¼
1
2

S : _C � _W P 0; ð2Þ

the second Piola–Kirchhoff stress is given by

S ¼ 2
@W
@C

; ð3Þ

with the additional condition

� @W
@x

_x P 0: ð4Þ

The evolution of the degree of crystallinity is chosen to be governed
by the macroscopic free energy function by setting the rate of the
degree of crystallinity to

_x ¼ �A
@W
@x

; A P 0; ð5Þ

where the free energy gradient acts as a driving force for the crys-
tallinity. The condition A P 0 immediately follows from inserting
Eq. (5) into Eq. (4). The degree of crystallinity however, can only
evolve once a certain chemical potential threshold is reached. In or-
der to incorporate this into the model, a chemical potential ‘‘yield
function’’ of the form

g ¼ @W
@x

����
����� ðgc þ cxÞ 6 0 ð6Þ

is introduced, where gc P 0 (threshold at zero degree of crystallinity)
and c (hardening/softening parameter) are material constants. As
long as g < 0, the degree of crystallinity does not evolve; i.e. Ag ¼ 0.

Following common practice, a decoupling of the free energy
function into volumetric and isochoric parts is introduced by use
of the unimodular part of the deformation gradient (Flory, 1961)

�F :¼ J�1=3F; J ¼ det F ð7Þ

and using the form

W ¼ WvolðJÞ þ �W �C;x
� �

; �C ¼ �FT �F; ð8Þ

with volumetric and isochoric contributions to the free energy
function. Applying (3) to the decoupled macroscopic free energy
leads to the standard result in compressible hyperelasticity (see
e.g. Holzapfel, 2000, Chapter 6)

S ¼ JW0volðJÞC
�1 þ J�2=3

I� 1
3

C�1 � C
� �

: 2
@ �Wð�C;xÞ

@�C
: ð9Þ

The volumetric response WvolðJÞ can be any scalar valued function
which is strictly convex, has unbounded value as J ! 0 and
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J !1, and has a unique minimum at J ¼ 1. In the next two sections,
the isochoric response of the material, �W �C; x

� �
, is developed by first

considering a micro-mechanical model of a partially crystalline
chain and then bridging scales using the non-affine micro-sphere
model.

3. Micro-mechanical setting of model

In order to develop an expression for the total free energy w on
the micro-mechanical scale, two changes have to be made to the
classical statistical mechanical treatment of polymers (see e.g.
Weiner, 1983, Chapter 5). Firstly, instead of a fully amorphous
polymer chain, a semi-crystalline polymer chain will be consid-
ered. Secondly, in order to account for hindrances to the motion
of a single chain within a polymer network, the chain is assumed
to be confined to a tube (Miehe et al., 2004). To this end, an addi-
tive split of the total free energy w into a contribution due to the
unconstrained partially crystallized single chain wf , and a contribu-
tion due to the tube constraint wc

w ¼ wf þ wc ð10Þ

is assumed. In the following two subsections analytical expressions
for the free energy of an unconstrained partially crystallized single
chain wf and the free energy of the tube constraint wc are developed.

3.1. Free energy of an unconstrained partially crystallized single chain

In order to find the free energy of a fully amorphous single chain,
typically its entropy needs to be calculated first, which in turn
needs a probability density for the end-to-end vector r of the chain.
The most common way of finding an approximation to that func-
tion is by the so-called freely jointed chain model (Wang and Guth,
1952), where a real chain is modeled by a large number of small
rigid segments joined together by hinges, which allow complete
freedom of orientation. In other words the problem is simplified
to a random walk of N steps where each step is of length b and
the endpoint of each step is uniformly distributed on a sphere of
radius b. The result for the distribution function for r turns out to
be a Gaussian distribution

pðrÞ ¼ 3

2pNb2

� �3
2

exp � 3r2

2Nb2

	 

ð11Þ

for r � Nb, where r ¼ rj j. It is well known that a Gaussian distribu-
tion will result in a linear force-extension relation, often referred to
as a linear entropic spring. However, at high levels of stretch the
force-extension relation is known to be non-linear, where a charac-
teristic upturn due to the limited extensibility of polymer chains is
observable (Mark, 1981). In order to capture this stiffening behavior
at high stretches, a non-Gaussian distribution function of the form

pðrÞ ¼ 3

2pNb2

� �3
2

� exp � 3r2

2Nb2

	 

1� 3

4N
þ 3r2

2N2b2 �
9r4

20N3b4

	 

ð12Þ

is derived in Wang and Guth (1952). Given the probability density
pðrÞ of the chain, the entropy can be calculated from Boltzmann’s
equation as

s :¼ k ln p; ð13Þ

where k is the Boltzmann constant and the free energy is then sim-
ply obtained as

w :¼ �Ts ¼ �kT ln p; ð14Þ

where T > 0 is the absolute temperature.

In order to set up the free energy of an unconstrained partially
crystallized single chain wf , an approach from Smith (1976) can be
adapted. Crystallization is assumed to happen as depicted in
Fig. 1, where the chain has a rigid extended crystal part, two amor-
phous subparts, and is composed of N links each of length b. The
amorphous subchains r1 and r2 consist of N1 and N2 links, and
the crystallized part of the chain contains n links, such that
lj j ¼ nb and N1 þ N2 ¼ N � n. Since the crystal within the chain is

assumed to be rigid, the free energy only consists of two contribu-
tions: a pure thermodynamic part and an elastic part

wf :¼ �DHu 1� T

T0
m

 !
Nxþ DFe; ð15Þ

where DHu is the heat of fusion per link, T0
m is the crystallization

temperature, DFe is the elastic contribution, and the parameter x
is the degree of crystallinity defined as

x :¼ n
N
; x 2 0;1½ �: ð16Þ

Note that DHu represents, in the spirit of Flory (1947), the total
(internal) energy to bring a link into the crystal. This includes both
the traditional energy of fusion as well as amorphous-crystalline
interface energies (which are expected to be small). The heat of fu-
sion is an admittedly crude modeling device and properly should be
viewed as an effective material parameter.

In order to calculate DFe, the overall probability density pf of the
conformation in Fig. 1 is calculated as the product of the two prob-
ability densities p1 and p2 of the amorphous subchains

pf r1; r2ð Þ :¼ p1 r1ð Þp2 r2ð Þ: ð17Þ

Using the kinematic relation r2 ¼ r� lð Þ � r1; r2 is eliminated from
pf ðr1; r2Þ, resulting in

p̂f r1; rð Þ :¼ pf r1; r� lð Þ � r1ð Þ: ð18Þ

Since r1 is unknown, it is eliminated by integrating p̂f r1; rð Þ over all
possible values of r1 for fixed r and l. Thus, we get

~pf rð Þ :¼
Z

R3
p̂f r1; rð Þdr1: ð19Þ

Here, ~pf is the probability density of the conformation in Fig. 1, irre-
spective of the values of r1 and r2 in Eq. (17). Both, the Gaussian (11)
and the non-Gaussian (12) probability densities are considered in
what follows. For the Gaussian model, where the probability densi-
ties for the amorphous subchains p1 and p2 are Gaussian, a straight-
forward calculation leads to

~pf rð Þ ¼ 3

2Nb2p 1�xð Þ

 !3=2

exp � 3 r� lð Þ2

2Nb2 1�xð Þ

" #
: ð20Þ

Assuming that the crystal l has the same direction as r, the proba-
bility density can be rewritten as

Fig. 1. Schematic of a partially crystallized chain between two crosslinks with end-
to-end vectors of the two amorphous subchains r1; r2, the crystal vector l, and the
chain end-to-end vector r.
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�pf k;xð Þ ¼ 3

2Nb2p 1�xð Þ

 !3=2

exp �
3 k�

ffiffiffiffi
N
p

x
� 2

2 1�xð Þ

2
64

3
75; ð21Þ

where the micro-kinematic stretch k is defined as

k :¼ r
r0
; r0 ¼

ffiffiffiffi
N
p

b; k 2 0;
ffiffiffiffi
N
ph 

: ð22Þ

Thus, combining Eqs. (14) and (21), the elastic contribution reads

DFe ¼ �kT ln �pf k;xð Þ
� �

ð23Þ

and the free energy of an unconstrained partially crystallized chain
(15) has the form

wf k; xð Þ :¼ �DHu 1� T

T0
m

 !
Nx� 3kT

2
ln

3

2Nb2p 1�xð Þ

 !
�

k�
ffiffiffiffi
N
p

x
� 2

1�xð Þ

2
64

3
75:
ð24Þ

The derivation of the results for the Non-Gaussian model, where the
probability density for the amorphous subchains is non-Gaussian
(12), is more involved and the expression for �pf can be found in
Appendix A.

Remark 1. The probability density in Eq. (21) is invariant with
respect to changes in position of the extended chain crystal
within the single chain. This translational invariance implies that
the partially crystallized chain model in Fig. 1 is equivalent to a
single chain consisting of a crystalline part and only one
amorphous part.

Remark 2. It should be noted that no straining of the crystal is
permitted in the model. In natural rubber, our system of interest,
crystallinity is rarely greater than 20%. Thus the crystals, which
are substantially stiffer than the surrounding amorphous material,
experience low (relative) loads and store little strain energy as the
bulk of the motion is accommodated by the softer surrounding
material.

3.1.1. Free energy due to tube constraint
The tube constraint in our model is introduced following Miehe

et al. (2004). The probability density due to the constraint is given
by

pc ¼ p0 exp �a
r0

d0

� �2

m

" #
; ð25Þ

where p0 is a normalization constant, a is a numerical factor which
depends on the tube geometry, and the dimensionless kinematic
variable m is the micro-kinematic tube area contraction and is de-
fined as

m :¼ d0

d

� �2

; m 2 0;1ð Þ; ð26Þ

with d0 being the initial diameter of the tube and d the current
diameter. Using Eq. (14), the tube constraint free energy reduces to

wc mð Þ ¼ akTN
b
d0

� �2

mþ w0; ð27Þ

where w0 is a constant.

4. Micro–macro transition

Given the analytical expressions for the total free energy on the
microscale

w k; m;xð Þ ¼ wf k;xð Þ þ wc mð Þ; ð28Þ

the isochoric contribution to the total macroscopic free energy (8) is
calculated next. The additive split of the microscopic free energy w
motivates the following macroscopic split energy

�W �C;x
� �

¼ �Wf
�C;x
� �

þ �Wc
�C
� �

: ð29Þ

To connect the two expressions, a relationship between the micro-
kinematic variables k and m and macro-kinematic variables like �C or
�F has to be established. It is important to note here that the internal
variable x is assumed to be a measure of the degree of crystallinity
on the microscale as well as on the macroscale, and thus an identity
map for its micro–macro transition is assumed. In the following two
subsections the core result of the non-affine micro-sphere model
(Miehe et al., 2004) is used to find the desired macroscopic free
energies.

4.1. Non-affine network model for the partially crystallized chain

The main idea in the non-affine micro-sphere model is to con-
nect the micro-kinematic variables through an averaging over a
unit sphere to macro-kinematic quantities. In the case of the
unconstrained partially crystallized chain the micro-stretches k
are allowed to fluctuate on the unit sphere

k ¼ �kf ðh;/Þ; ð30Þ

where h and / are coordinates on the sphere, �k2 ¼M � �CM is the
macro-stretch induced on the undeformed sphere by �C in the direc-
tion of a sphere orientation vector M (and M �M ¼ 1), and f is a
stretch-fluctuation field defined on the unit sphere. In an affine
model the value of f would be unity in all unit sphere directions.
However, in the non-affine model f needs to be determined; this
is accomplished by requiring the following constraint to hold

kh ip ¼ �k
� �

p; ð31Þ

where �h ip is the p-root average over the unit sphere S

�h ip ¼
1
Sj j

Z
S
�ð Þp dA

� �1
p

ð32Þ

and p is a model parameter of the micro–macro transition scheme.
The macroscopic free energy for an unconstrained partially crystal-
lized material is then determined by the minimization

�Wf ð�C; xÞ ¼ sup
j

inf
f
fhnDwf ð�kf ;xÞi � jðh�kf ip � h�kipÞg; ð33Þ

where �h i :¼ �h i1 is an integration over the unit sphere, j a Lagrange
multiplier for the constraint (31), and nD is the number of chains in
the polymer network per unit volume. The necessary condition for
the minimization problem is

nD
@wf

�kf ;x
� �
@k

� jðh�kf ipÞ
ð1�pÞð�kf Þðp�1Þ ¼ 0; ð34Þ

which can be rewritten as

j ¼ nD
@wf

�kf ;x
� �
@k

ðh�kf ipÞ
ðp�1Þð�kf Þð1�pÞ

; ð35Þ

where j is constant on the sphere. Since x is also assumed to be
constant on the unit sphere, a non-trivial solution can only be de-
rived if k ¼ �kf is constant. Thus, we find the simple result

k ¼ �k
� �

p ð36Þ

and the macroscopic free energy contribution from the uncon-
strained partially crystallized chain reads

�Wf ð�C; xÞ ¼ nDwf ðh�kip; xÞ: ð37Þ
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4.2. Non-affine network model for the tube constraint

In order to introduce a non-affine relationship between the mi-
cro-tube area contraction m as defined in Eq. (26) and a macro-area
stretch on a sphere �m the power law of Miehe et al. (2004) is used

m ¼ �mð Þq; ð38Þ

where �m ¼ N � �C�1N, and N is a unit normal vector to an area element
on the undeformed sphere. Using the power law the macroscopic
energy contribution ends up being

�Wc
�C
� �
¼ nDwc �mqð Þh i; ð39Þ

where q is a model parameter.

Remark 3. It should be noted that the modeling framework that
has been laid out is restricted to modest degrees of crystallinity – a
situation seen in NR where the maximum expected degree of
crystallinity is around 20%. At higher values, say approaching
100%, one would expect the material to behave more in line with
the Cauchy–Born rule (CBR); see e.g. Erickson (2008) for a recent
commentary on this rule. In a general CBR motion the lattice
moves affinely coupled with a non-affine basis (atom) relaxation
(Weiner, 1983, Section 4.3). The micro-sphere model incorporates
a relaxation but lacks a mechanism (beyond the averaging
constraint) for inter-chain interactions which would allow for
the ‘‘natural’’ appearance of CBR-like behavior. Thus the use of the
micro-sphere framework for a strain crystallizing model is
restricted to materials such as NR that do not exhibit large degrees
of crystallization.

Remark 4. The model presented is isotropic and this warrants fur-
ther discussion. When NR crystallizes it forms monoclinic crystals
(Bunn, 1942a,b; Toki et al., 2003) and these are principally aligned
with the loading axis (Flory, 1947; Toki et al., 2003; Guilie et al.,
2013). There is clearly an induced anisotropy on the microscale.
Since the micro-sphere framework allows one to consider indepen-
dent directions it would appear that an anisotropic micro-sphere
model would be possible; in fact Guilie et al. (2013) propose one
such model. However, central to the micro-sphere framework is
the relaxation in Eq. (33). This relaxation differentiates the
micro-sphere model from the earlier efforts of, say, Treloar and
Riding (1979) and Wu and van der Giessen (1993) in which affine
assumptions were invoked (i.e. no relaxation) and it is what gives
the micro-sphere framework its superior modeling capabilities. The
addition of anisotropy with relaxation is non-trivial and works
dealing with anisotropy and the micro-sphere model invariably
assume an affine motion; see e.g. Göktepe and Miehe (2005), Men-
zel and Waffenschmidt (2009), or Guilie et al. (2013). In the limit-
ing case of x ¼ 0, the affine model is known to give a poor result;
relaxation is required. The primary question is what is the appro-
priate variational principle to impose on the micro-sphere model
during anisotropic evolution of the microstructure. With an eye
towards phase transformations and plastic flow some variational
principles have been developed; see e.g. Mielke (2004) and Mielke
and Ortiz (2008). Unfortunately, the mathematical structure of
these developments is not directly compatible with the micro-
sphere framework which lacks a gradient constraint on micro-
structural state. Kroon (2010) in his strain crystallization model
does provide one mechanism for an anisotropic relaxation but it
relies on the addition of an ad hoc term to the micro-sphere energy.
For these reasons, we choose to work with an isotropic model and
view the final result as a single (isotropic) order parameter model
which provides a spatially averaged measure of the true state of
the material.

5. Macroscopic material response and summary

In this section the derivatives needed for the macroscopic
stress–strain response are calculated and evaluated for the case
of the partially crystallized single chain having a Gaussian proba-
bility density (11).

5.1. Derivatives

At this point, the contribution from the partially crystallized
chain and the contribution from the non-affine tube constraint
can be assembled into the overall isochoric response of the
material

�W �C;x
� �

¼ nDwf ðh�kip;xÞ þ hnDwcð�mqÞi: ð40Þ

In order to calculate the second Piola–Kirchhoff stress tensor as gi-
ven in Eq. (9), the following derivative is needed,

@ �Wð�C;xÞ
@�C

¼ @
�Wf ð�C; xÞ
@�C

þ @
�Wcð�CÞ
@�C

: ð41Þ

It is important to note that the derivative is taken with respect to �C
at a constant degree of crystallinity x. Thus, using the result in Eq.
(36), the contribution from the partially crystallized chain ends up
being

@ �Wf

@�C

� �
kl

¼
@wf

@k
@k

@�k

@�k

@�C

� �
kl

¼ 1
2

nD
@wf

@k
k1�p �kp�2MkMl

� �
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and using (38), the non-affine tube constraint contribution results in

@ �Wc

@�C

� �
kl
¼ @wc

@m
@m
@�m

@�m
@�C

� �
kl

¼ � nD
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q�mq�2 1

4
ð�C�1

ik
�C�1

lj þ �C�1
il

�C�1
kj ÞNiNj

� �
: ð43Þ

The only derivatives left to evaluate are @wf =@k from (42), @wc=@m
from (43), and @W=@x from (5) for the evolution of the internal var-
iable x. For the simple case of the Gaussian probability density (11)
the derivatives are listed next. The derivatives for the Non-Gaussian
model with the probability density (12) can be calculated using the
expression for �pf given in Appendix A. Using (24), the partial deriv-
ative reads

nD
@wf

@k
¼ 3l

1�x
k�

ffiffiffiffi
N
p

x
� 

; l :¼ nDkT; ð44Þ

where l, the effective shear modulus is introduced. Using (27)

nD
@wc

@m
¼ lNU; U :¼ a

b
d0

� �2

; ð45Þ

where U is the effective tube geometry parameter. The gradient in
(5) is calculated using (8), and (40):

@Wð�C; xÞ
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#
k¼h�kip

;

ð46Þ

where lD :¼ nDDHu is the effective heat of fusion.

5.2. Model summary

The proposed model has a total of eight material parameters,
summarized in Table 1, in addition to the ambient temperature T
and the crystallization temperature T0

m, which are both used in
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Eq. (46). Five of the parameters are associated with the non-affine
micro-sphere model and three additional parameters are intro-
duced for the crystallization kinetics: lD is the heat of fusion
(per unit volume); gC is the threshold value the driving force
@W=@xj j has to reach before the crystallization process can start;
c is a hardening/softening parameter, meaning that if c > 0, the
driving force threshold increases as the degree of crystallinity goes
up. On the other hand if c < 0, the driving force threshold de-
creases as the degree of crystallinity goes up, which in turn means
that once the crystallization process has started, it becomes pro-
gressively easier for the crystallization to continue.

6. Return mapping algorithm

In this section the algorithmic setting of the proposed constitu-
tive model for strain-induced crystallization is explained. The goal
of the numerical implementation is to be able to calculate the evo-
lution of the stress tensor and the degree of crystallinity for a given
deformation cycle.

As a first step of the algorithm a trial stress tensor (9) is calculated
assuming no evolution of crystallinity. In order to do so, the averaging
integrals over the unit sphere in (42) and (43) have to be evaluated.
This is done using a 21-point integration scheme as derived in Bazant
and Oh (1986). A very thorough and easy-to-follow description of the
algorithm using the 21-point integration scheme is provided in Miehe
et al. (2004) and thus it is not further discussed here.

Once the trial stress tensor Strial
nþ1 has been computed, a return

mapping algorithm is proposed in order to determine the evolution
of the degree of crystallinity and to correct the stress computation.
The idea is to start with the trial state where the evolution of the
degree of crystallinity is frozen, that is xtrial

nþ1 is assumed to be the
same as the previous one xn. Next gtrial

nþ1 is evaluated using xtrial
nþ1

and the actual Cnþ1 as summarized in step 1 of Table 2. Since the
trial state may or may not be a physically admissible state, the va-
lue of the threshold function gtrial

nþ1 is checked for consistency. If
gtrial

nþ1 6 0, then no evolution of the degree of crystallinity is allowed
and the trial state indeed is a physically admissible state. However
if gtrial

nþ1 > 0, the trial step cannot be a solution, and there has to be
an evolution of the degree of crystallinity. By numerically solving
the equation gðCnþ1;xnþ1Þ ¼ 0 for xnþ1, an admissible degree of
crystallinity xnþ1 and an updated SðCnþ1;xnþ1Þ can be computed.

7. Numerical results and discussion

This section uses published X-ray diffraction measurements
carried out by Toki et al. (2003) to test the proposed model. More-
over the proposed model is compared to the recent model of Kroon
(2010) and the differences between them are discussed.

7.1. Model compared to experiments

In the experiments of Toki et al. (2003), strain-induced crystal-
lization is measured using in situ synchrotron wide-angle X-ray

diffraction on sulfur (NR-S) and peroxide (NR-P) cured natural rub-
ber as well as sulfur vulcanized synthetic polyisoprene rubber (IR-
S). The experiments are conducted at 0 �C, where a 25 mm sample
is uniaxially deformed from a stretch of 1 to a stretch of 6 and back
at 10 mm/min. One loading cycle thus takes approximately 25 min.
The data for the NR-S, NR-P, and IR-S samples are plotted as dotted
lines in Figs. 2, 3, and 4, respectively. Optimized model parameters
are found in two steps. In a first step, the evolution of the degree of
crystallinity from the experiments is considered as given and only
the stress–strain curve is fit. An estimate of the five material
parameters of the non-affine micro-sphere model ðN; p;l; q;UÞ is
thus calculated using a least squares fit. As a next step, the remain-
ing three parameters (lD; gC ; c) are fit by hand with only minor
changes of the other parameters. This is feasible because of a clear
meaning of the three parameters: an increase in lD decreases the
maximum degree of crystallinity, and slightly increases the incipi-
ent crystallization stretch; an increase in gC increases the the incip-
ient crystallization stretch and lowers the maximum degree of
crystallinity; and an increase in c decreases/delays incipient
decrystallization stretch and slightly decreases the maximum de-
gree of crystallinity. The optimized material parameters for the
model curves are listed in Table 3.

In Fig. 2(a) Toki’s experimental data for the NR-S sample is indi-
cated by the dotted line and the prediction by the Gaussian model
by the solid line. The prediction of the stress–strain hysteresis is
in good agreement up to a stretch of 4. Above a stretch of 4, during
loading, our model under predicts the stress due to the fact that
our crystallization flow-rule is rate independent; this point is sup-
ported by the experimental observations of Marchal (2006). Note,
that this rate dependency is independent of whether or not the
background material model is elastic or viscoelastic. The prediction
of the crystallization is seen to be quite good, except for the decrys-
tallization from a stretch of 3 to 1. The prediction there appears to
have some type of ‘‘inverse yielding’’ (necking during unloading) as
mentioned in Albouy et al. (2005) and Trabelsi et al. (2003). Note a
negative value of c is used which suggests a softening as men-
tioned in Section 5.2. It is also important to point out that the pre-
dicted value of N � 196 is physically sound. Assuming a monomer
length of b ¼ 4 Å, the maximum degree of crystallinity xmax � 0:15
gives us an estimated crystallite length of lc � Nxmaxb � 118 Å,
which falls into the range of reported crystallite lengths of
80 Å to 180 Å (Chenal et al., 2007; Trabelsi et al., 2003). Lastly it
is noted that no relevant differences are found between the predic-
tion generated by the Non-Gaussian model in Fig. 2(b) and the
Gaussian model in Fig. 2(a).

In Fig. 3(a) Toki’s experimental data for the NR-P sample is indi-
cated by the dotted line and the prediction by the Gaussian model
by the solid line. The same remarks as made for the quality of
the NR-S fit can be made here as well. However in Fig. 4(a) the
quality of the stress–strain hysteresis fit for Toki’s IR-S seems to
be better than the quality of the previous two fits. Deviations are
only found on the loading curve between stretches of 4 and 6.
Additionally the model is able to fully capture the instant start of
the decrystallization as seen in the unloading part of the

Table 1
Material parameters of the model.

# Parameter Name Eq. Effect

1 l :¼ nDkT Shear modulus (44) Ground state stiffness
2 N Number of chain segments (11) Chain locking response
3 p Non-affine stretch parameter (31) 3D locking characteristic
4 U :¼ a b=d0ð Þ2 Tube geometry parameter (45) Additional constraint stiffness

5 q Non-affine tube parameter (38) Shape of constraint stress

6 lD :¼ nDDHu Heat of fusion (46) Heat of fusion
7 gC Threshold parameter (5) Threshold at x ¼ 0
8 c Threshold evolution parameter (5) Softening/hardening
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crystallization curve. The same also holds true for the Non-Gaussian
model in Fig. 4(b).

7.2. Model compared to Kroon’s model

As mentioned in Section 1 a similar model was recently devel-
oped by Kroon (2010). One of the core differences between the two
models is in how they view the increase of the degree of crystallinity.
In the proposed model the increase in crystallinity stems from the
growth of the extended-chain crystallites, which is supported by
Chenal et al. (2007). Kroon uses the idea of Murakami et al. (2002),
where the crystallite size is thought to be constant and the growth
driven by nucleation. However, it is also mentioned in Murakami
et al. (2002) that the induced crystallites are well packed, which
can be seen as a growing crystallite provided the definition of a crys-
tallite is loosened a bit. In any case, researchers do not seem to fully
agree on the mechanism that governs the increase in crystallinity.

Another important point is viscoelasticity. In order to be able to
predict the stress–strain hysteresis, Kroon uses a phenomenological
viscoelastic component. However Murakami et al. (2002) and Trab-

elsi et al., 2003 clearly note that the hysteresis is entirely due to the
phenomenon of crystallization and not due to viscoelastic effects.
Toki’s loading rate is also observed to be rather slow. Kroon’s predic-
tions with and without the viscoelastic component are plotted in
Figs. 2(c), 3(c), and 4(c). The plots show that without the viscoelastic
component only a slight stress–strain hysteresis is observable. In the
proposed model no viscoelastic component is used. This issue is
clearly important if the model is to be utilized for fracture prediction
where energy balance issues are of paramount interest.

Another difference in the models is the evolution law for the de-
gree of crystallinity. In Kroon’s model a phenomenological Arrhe-
nius equation is implemented to govern the crystallinity.
However in the proposed model it is felt that the approach using
the chemical potential as a driving force is more physical and
provides the better predictions for the degree of crystallinity,
especially if compared in the case of IR-S in Fig. 4.

A further modeling difference is found in the way the non-affine
deformation is introduced. Kroon uses a phenomenological
compliance stretch on the microscopic scale to incorporate
non-affine deformation. Computationally it is equivalent to the

Table 2
Implementation of the return mapping algorithm for strain-induced crystallization.

1 Given the deformation Cnþ1, compute the trial state (no evolution of crystallinity):
xtrial

nþ1 ¼ xn

gtrial
nþ1 ¼ gðCnþ1;xnÞ

Strial
nþ1 ¼ SðCnþ1;xnÞ

2 Check consistency of crystallization step:

if gtrial
nþ1 6 0, then ð � Þnþ1 :¼ ð�Þtrial

nþ1 & EXIT

3 else gtrial
nþ1 > 0, set

gnþ1 ¼
@Wð �kh ip ;xnþ1Þ

@x

����
����� ðgC þ cxnþ1Þ ¼ 0

and solve for xnþ1 using a Newton–Raphson scheme, where a Backward-Euler scheme is used to integrate the evolution equation:
xnþ1 ¼ xn � Aðtnþ1 � tnÞð@Wð �k

� �
p ;xnþ1Þ=@xÞ

4 Calculate the new Snþ1 using the updated xnþ1
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Fig. 2. Comparison of the sulfur vulcanized NR data (dotted line) to: (a) the Gaussian model; (b) the non-Gaussian model; and (c) Kroon’s model with (solid line) and without
(dashed line) viscoelasticity. The curve for the degree of crystallinity is only plotted once because it stays the same for both cases. Optimized parameters for (a) and (b) can be
found in Table 3 under NR-S.
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introduction of an ad hoc penalty constraint, which is used to penal-
ize non-affine deformation. In our proposed model the non-affine
deformation is derived from a principle of minimum free energy
and a simple closed-form result is obtained (Miehe et al., 2004). It
is noted that Kroon’s methodology can lead to unstable behavior at
large stretches.

As a last point, the model parameters regarding the crystallite
size are mentioned. Kroon uses a parameter N as the number of
participating chains in the crystallite and a parameter nc as the
number of links in the extended-chain crystal. The first value turns
out to be N ¼ 0:1, which is not physical and the second value is
around nc ¼ 11, which is physically quite low. In the proposed
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Fig. 3. Comparison of the peroxide vulcanized NR data (dotted line) to: (a) the Gaussian model; (b) the non-Gaussian model; and (c) Kroon’s model with (solid line) and
without (dashed line) viscoelasticity. The curve for the degree of crystallinity is only plotted once because it stays the same for both cases. Optimized parameters for (a) and
(b) can be found in Table 3 under NR-P.
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Fig. 4. Comparison of the sulfur vulcanized synthetic polyisoprene rubber data (dotted line) to: (a) the Gaussian model; (b) the non-Gaussian model; and (c) Kroon’s model
with (solid line) and without (dashed line) viscoelasticity. The curve for the degree of crystallinity is only plotted once because it stays the same for both cases. Optimized
parameters for (a) and (b) can be found in Table 3 under IR-S.
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model however, the predicted size of the crystallite fully agrees
with experimentally reported values.

Remark 5. The predictions in Figs. 2(c), 3(c), and 4(c) are
reproduced results from Kroon (2010) and might slightly differ
from the original predictions, since here a 21-point integration
scheme (Bazant and Oh, 1986) is used to integrate over a spherical
surface instead of the 50-point integration scheme mentioned in
Kroon (2010). The material parameters used for the reproduced
results of Kroon’s model curves are listed in Table 4.

8. Concluding remarks

It has been shown how to develop a simple computationally-
accessible micro-mechanically based continuum model for
strain-induced crystallization in natural rubber. As a first step, a
micro-mechanical model of a constrained partially crystallized
polymer chain was derived and subsequently connected to the
macroscopic level using the non-affine micro-sphere model. Fur-
thermore, a description of the crystallization kinetics was intro-
duced using an evolution law based on the gradient of the
macroscopic free energy function (chemical potential) and a simple
threshold function. Key here is the addition of a softening of the
critical chemical potential driving force with advancing crystalliza-
tion. The predictive performance of the proposed model was
shown by fitting available experimental data for various cross-
linked rubber samples, and as a last step the model was compared
to a recently developed constitutive model to highlight its physical
features. It is seen that both the coarse scale stress–strain response
is reasonably reproduced as is the internal state degree of crystal-
linity. Further the fitted model parameters are seen to correctly fit
in the physical range seen in experiments. The good behavior ob-
served occurs despite our rather basic isotropic crystallization
model. With added experimental work and model fitting even bet-
ter data matches are envisaged.

Appendix A

The probability density of the conformation in Fig. 1 using the
Non-Gaussian probability density (12) is given as

�pf k; xð Þ ¼ � 1

3200N4p3=2ð�1þxÞ8
ffiffiffiffiffiffiffiffiffiffi

1
N�Nx

q 3

ffiffiffi
3
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r
e
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ffiffi
N
p

xÞ2

2ð�1þxÞ ð3ð243k8 � 828k6ð�1

þxÞ � 2346k4ð�1þxÞ2 � 900k2ð�1þxÞ3 � 485ð�1þxÞ4Þ

� 72
ffiffiffiffi
N
p

kð81k6 � 207k4ð�1þxÞ � 391k2ð�1þxÞ2

� 75ð�1þxÞ3Þx� 5832N7=2kx7 þ 729N4x8

� 72N5=2kx3ð�160þxð480 þ ð�273þ 567k2 � 47xÞxÞÞ

þ 36N3x4ð�80þxð240þxð�171þ 567k2 þ 11xÞÞÞ

� 24N3=2kxð1701k4x2 � 30k2ð�1þxÞð�16 þxð32þ 53xÞÞ

� ð�1þxÞ2ð1120 þxð�2240 þ 2293xÞÞÞ þ 12Nð1701k6x2

� 225ð�1þxÞ3x2 � 15k4ð�1þxÞð�16þxð32 þ 191xÞÞ

� k2ð�1þxÞ2ð1120þxð�2240 þ 4639xÞÞÞ � 2N2ð800

þxð�4800þxð18720 � 25515k4x2 þ 270k2ð�1þxÞð�32

þxð64þ 37xÞÞ þxð�42880 þxð55839þxð�38718

þ 11039xÞÞÞÞÞÞÞ;

where N1 and N2 are assumed to be Nð1�xÞ=2, since the position
of the extended crystal within the chain does not change the result.
The probability density �pf was calculated using Mathematica.

References

Albouy, P., Marchal, J., Rault, J., 2005. Chain orientation in natural rubber, part I: the
inverse yielding effect. European Physical Journal E 17, 247–259.

Allen, P., 1952. The kinetics of the crystallization of hexamethylene adipamide
polymer. Transactions of the Faraday Society 48, 1178–1185.

Avrami, M., 1939. Kinetics of phase change I – General theory. The Journal of
Chemical Physics 7, 1103–1112.

Avrami, M., 1940. Kinetics of phase change. II. Transformation-time relations for
random distribution of nuclei. The Journal of Chemical Physics 8, 212–224.

Avrami, M., 1941. Granulation, phase change, and microstructure - kinetics of phase
change. III. The Journal of Chemical Physics 9, 177–184.

Table 3
Optimized material parameters for the models with Gaussian and non-Gaussian probability densities. The ambient temperature is T ¼ 0 �C and the crystallization temperature is
assumed to be T0

m ¼ �143:95 �C (isoprene).

Gaussian model Non-Gaussian model

NR-S NR-P IR-S NR-S NR-P IR-S

N [–] 195.95 191.13 199.95 175.95 191.70 191.95
p [–] 1.4692 1.1594 1.4692 1.4692 1.4941 1.46922
l [MPa] 0.62023 1.0191 1.02023 0.62023 1.0878 1.02023
q [–] 16.933 15.048 16.200 17.053 14.766 16.260
U [–] 3.7578e�8 1.9937e�7 3.7578e�8 3.7578e�8 2.3993e�7 3.7578e�8

lD [MPa] 0.110 0.125 0.210 0.115 0.130 0.205
gC [MPa] 18 34 42 14 34 34
c [MPa] �65 �140 �260 �45 �120 �205

Table 4
The material parameters used for the reproduced results of Kroon’s model.

Viscoelasticity No viscoelasticity

NR-P IR-S NR-S NR-P IR-S NR-S

n [–] 22.0 20.0 23.3 22.0 27.6 22.4
nc [–] 9.3 11.0 11.0 9.9 13.1 11.0
N [–] 0.1 0.1 0.1 0.1 0.1 0.1
lc [MPa] 1.05 1.20 0.60 1.00 1.35 0.6
a [MPa] 0 0 0 0 0 0
lnc [MPa] 180 63 170 245 270 200
lv [MPa] 1 1 1 0 0 0
g [MPa min] 0.25 0.12 0.20 – – –
gc [min�1] 0.088 0.047 0.044 0.073 0.066 0.051
ga [min�1] 0.31 0.74 0.50 0.31 0.59 0.48

538 S.J. Mistry, S. Govindjee / International Journal of Solids and Structures 51 (2014) 530–539



Author's personal copy

Bazant, Z., Oh, B., 1985. Microplane model for progressive fracture of concrete and
rock. Journal of Engineering Mechanics 111, 559–582.

Bazant, Z., Oh, B., 1986. Efficient numerical-integration on the surface of a sphere.
Zeitschrift fuer Angewandte Mathematik und Mechanik 66, 37–49.

Becker, R., 1938. Die Keimbildung bei der Ausscheidung in metallischen
Mischkristallen. Annalen der Physik 424, 128–140.

Boyce, M., Arruda, E., 2000. Constitutive models of rubber elasticity: A review.
Rubber Chemistry and Technology 73, 504–523.

Bunn, C., 1942a. Molecular structure and rubber-like elasticity. I. The crystal
structure of b gutta-percha, rubber and polychloroprene. Proceedings of the
Royal Society A 180, 40–66.

Bunn, C., 1942b. Molecular structure and rubber-like elasticity. III. Molecular
movements in rubber-like polymers. Proceedings of the Royal Society A 180, 82–99.

Chenal, J.-M., Chazeau, L., Guy, L., Bomal, Y., Gauthier, C., 2007. Molecular weight
between physical entanglements in natural rubber: A critical parameter during
strain-induced crystallization. Polymer 48, 1042–1046.

Coleman, B., Noll, W., 1963. The thermodynamics of elastic materials with heat
conduction and viscosity. Archive for Rational Mechanics and Analysis 13, 167–178.

Doi, M., Edwards, S., 1986. The Theory of Polymer Dynamics. The International
Series of Monographs on Physics Series. Oxford University Press Inc.

Ericksen, J., 2008. On the Cauchy–Born rule. Mathematics and Mechanics of Solids
13, 199–220.

Evans, U., 1945. The laws of expanding circles and spheres in relation to the lateral
growth of surface films and the grain-size of metals. Transactions of the Faraday
Society 41, 365–374.

Flory, P., 1947. Thermodynamics of crystallization in high polymers. 1.
Crystallization induced by stretching. The Journal of Chemical Physics 15,
397–408.

Flory, P., 1961. Thermodynamic relations for high elastic materials. Transactions of
the Faraday Society 57, 829–838.

Gaylord, R., 1976. A theory of the stress-induced crystallization of crosslinked
polymeric networks. Journal of Polymer Science Part B, Polymer Physics 14,
1827–1837.

Gaylord, R., Lohse, D., 1976. Morphological changes during oriented polymer
crystallization. Polymer Engineering and Science 16, 163–167.

Gent, A., 1954. Crystallization and the relaxation of stress in stretched natural
rubber vulcanizates. Transactions of the Faraday Society 50, 521–533.

Göktepe, S., Miehe, C., 2005. A micro–macro approach to rubber-like materials: Part
III: The micro-sphere model of anisotropic Mullins-type damage. Journal of the
Mechanics and Physics of Solids 53, 2259–2283.

Govindjee, S., Miehe, C., 2001. A multi-variant martensitic phase transformation
model: Formulation and numerical implementation. Computer Methods in
Applied Mechanics and Engineering 191, 215–238.

Govindjee, S., Simo, J., 1991. A micro-mechanically based continuum damage model
for carbon black-filled rubbers incorporating Mullins effect. Journal of the
Mechanics and Physics of Solids 39, 87–112.

Guilie, J., Lê, T.-N., Le Tallec, P., 2013. Microsphere model for strain-induced
crystallization in rubber. In: Alonso, G.-N. (Ed.), Proceedings of the 8th
Conference on Constitutive Models in Rubbers. Taylor & Francis, San
Sebastian, Espagne, pp. 467–472.

Hoffman, J., Weeks, J., 1962. Rate of spherulitic crystallization with chain folds in
polychlorotrifluoroethylene. Journal of Chemical Physics 37, 1723.

Holzapfel, G., 2000. Nonlinear Solid Mechanics: A Continuum Approach for
Engineering. John Wiley & Sons.

Katz, J., 1925. Was sind die Ursachen der eigentuemlichen Dehnbarkeit des
Kautschuks? Kolloid-Zeitschrift 36, 300–307.

Kroon, M., 2010. A constitutive model for strain-crystallising rubber-like materials.
Mechanics of Materials 42, 873–885.

Le Cam, J.-B., Toussaint, E., 2010. The mechanism of fatigue crack growth in rubbers
under severe loading: The effect of stress-induced crystallization.
Macromolecules 43, 4708–4714.

Marchal, J., 2006. Cristallisation des caoutchoucs chargés et non chargés sous
contrainte: effet sur les chaînes amorphes. Ph.D. thesis, University of Paris XI,
Orsay.

Mark, J., 1981. Rubber elasticity. Journal of Chemical Education 58, 898–903.
Menzel, A., Waffenschmidt, T., 2009. A microsphere-based remodelling formulation

for anisotropic biological tissues. Philosophical Transactions of the Royal
Society A 367, 3499–3523.

Miehe, C., Goktepe, S., Lulei, F., 2004. A micro–macro approach to rubber-like
materials – Part I: The non-affine micro-sphere model of rubber elasticity.
Journal of the Mechanics and Physics of Solids 52, 2617–2660.

Mielke, A., 2004. Deriving new evolution equations for microstructures via
relaxation of variational incremental problems. Computer Methods in Applied
Mechanics and Engineering 193, 5095–5127.

Mielke, A., Ortiz, M., 2008. A class of minimum principles for characterizing the
trajectories and the relaxation of dissipative systems. ESAIM: Control,
Optimisation and Calculus of Variations 14, 494–516.

Murakami, S., Senoo, K., Toki, S., Kohjiya, S., 2002. Structural development of natural
rubber during uniaxial stretching by in situ wide angle x-ray diffraction using a
synchrotron radiation. Polymer 43, 2117–2120.

Roe, R.-J., Krigbaum, W., 1965. Application of irreversible thermodynamics to the
kinetics of polymer crystallization from seeded nuclei. Polymer 6, 231–236.

Simo, J., Hughes, T., 1998. Computational Inelasticity. Interdisciplinary Applied
Mathematics: Mechanics and Materials. Springer Verlag.

Smith Jr., K., 1976. Crystallization of networks under stress. Polymer Engineering
and Science 16, 168–175.

Toki, S., Sics, I., Ran, S., Liu, L., Hsiao, B., 2003. Molecular orientation and structural
development in vulcanized polyisoprene rubbers during uniaxial deformation
by in situ synchrotron x-ray diffraction. Polymer 44, 6003–6011.

Trabelsi, S., Albouy, P., Rault, J., 2003. Crystallization and melting processes in
vulcanized stretched natural rubber. Macromolecules 36, 7624–7639.

Treloar, L., Riding, G., 1979. A non-Gaussian theory for rubber in biaxial strain. I.
Mechanical properties. Proceedings of the Royal Society A 369, 261–280.

Truesdell, C., Noll, W., 1965. The Non-Linear Field Theories of Mechanics. Springer
Verlag, New York.

Turnbull, D., Fisher, J., 1949. Rate of nucleation in condensed systems. Journal of
Chemical Physics 17, 71–73.

Wang, M., Guth, E., 1952. Statistical theory of networks of non-Gaussian flexible
chains. The Journal of Chemical Physics 20, 1144–1157.

Weiner, J., 1983. Statistical Mechanics of Elasticity. John Wiley & Sons Inc.
Wu, P., van der Giessen, E., 1993. On improved network models for rubber elasticity

and their applications to orientation hardening in glassy polymers. Journal of
the Mechanics and Physics of Solids 41, 427–456.

S.J. Mistry, S. Govindjee / International Journal of Solids and Structures 51 (2014) 530–539 539




