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Abstract

Localized Components Analysis (LoCA) is a new method for describing surface shape variation

in an ensemble of objects using a linear subspace ofspatially-localizedshape components. In contrast

to earlier methods, LoCA optimizes explicitly for localized components and allows a flexible trade-off

between localized and concise representations, and the formulation of locality is flexible enough to

incorporate properties such as symmetry. We demonstrate the application of LoCA to the detection of

shape differences associated with sex, disease state, and species.

I. I NTRODUCTION

The parameterization of an ensemble of shapes is a key step in a broad array of applications

that require quantification or manipulation of the shape properties of objects. In this paper,

shape parameterization refers to the problem of converting a representation of the delineating

boundary of an object in 2D or 3D into a concise vector of numbers that captures its salient

shape characteristics. Converting the shape of an object such as an organ or bone into a small

set ofshape parametersfacilitates a variety of statistical analyses, including the characterization

of shape variability across an ensemble; comparison of object shape between groups; and the

tracking of shape change over time.

Often, converting shapes into concise parameter vectors is intended to make the compression,

transmission, classification, and modification of shape data more computationally efficient. In

contrast, we focus on finding an intuitive shape parameterization. In biology and medicine,

presenting the results of shape analyses in an intuitive way can encourage the connection of shape

properties to domain-specific physical or biological processes; for instance, the interpretability of

brain shape parameterization could be enhanced if each parameter represents an easily-grasped

aspect of the brain, such as the size of an identifiable, anatomically-localized brain region. The use

of an intuitive parameterization could in turn promote interpretations of brain shape differences

between healthy and sick individuals in terms of disease causes or effects. In graphics and vision,

using each parameter to represent a single, intuitive aspect of shape could enhance the usability

of user interfaces for shape model manipulation and could simplify automated methods for object

recognition based on the shape of object parts. However, we note that for some applications,

simultaneously representing distal, correlated shape characteristics in the same shape parameter

may be desirable for shape compression or analysis.
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Here, we define an intuitive paramaterization to be one that is bothconcise(capturing salient

shape characteristics in a small number of parameters) andspatially localized(accounting for

the shape of a spatially restricted sub-region in each parameter). Our hypothesis is that spatially-

localized shape parameterizations are more intuitive, since they allow users to conceptualize

object shape in terms a small number of object parts, which might be affected differentially

by physical phenomena, or may simply be of interest. In the above brain shape example, for

instance, shape change due to disease processes is known to occur in spatially-localized brain

sub-regions in a variety of disorders (e.g., [5]). Concise parameterizations are attractive both for

comprehensibility and because the statistical power of tests on those parameters is reduced as little

as possible by corrections for multiple comparisons [8]. While characterizing the deformation

of localized regions is not the goai of every analysis of shape variation – sometimes the focus

is on the correlation of deformations of distal characteristics, for instance – it is often useful.

We follow the linear subspaceparadigm of expressing each shape as a linear combination of

prototypical, orbasisshapes. That is, if each shape is represented as a vectorvj of the2m or 3m

coordinates ofm points sampled from its boundary (i.e., vj = [vj,1, vj,2, · · · vj,m], vj,k = [xk, yk]

for 2D shapes),vj is approximated as a linear combination ofk basis vectors{e1, e2, · · ·ek} :

vk
j =

k∑
i=1

αj,i ∗ ei

The shape parameters are the coefficientsαj,i. Linear subspace methods are attractive because

their linearity inei allows them to be manipulated using standard tools from linear algebra.

Figure 1 (left) depicts a typicalei generated by the classical linear subspace method, Principal

Components Analysis (PCA), applied to tracings of humancorpora callosa(CC). The basis

shape summarizes a complex pattern of shape characteristics across the entirety of the CC.

Therefore, if the correspondingαi differs between groups, the explanation of the group difference

in physical terms is complex. Localized Components Analysis (LoCA), in contrast, optimizes the

ei for spatial locality and conciseness simultaneously. It improves on previous linear subspace

methods by explicitly optimizing for localized shape parameters and by allowing the user to

modulate the trade-off between locality and conciseness with greater flexibility than previous

methods. Figure 1 (right) shows a vector from a completely localized LoCA basis; differences

in the correspondingαi between groups gives rise to a simple physical explanation in terms of
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Fig. 1. The vector capturing the most shape variation in the corpora callosa data set is shown for PCA and LoCA bases with

increasing spatial locality. Arrows show how points are affected as the corresponding shape parameter is varied. The PCA basis

and most concise LoCA basis are equivalent, capturing90% of the shape variation with fewer vectors (in parentheses), but

consisting of vectors representing complex, global patterns of shape characteristics. The accompanying graph shows that points

distant from thecenter point(see Section III) are heavily displaced. As conciseness is traded in favor of locality, the LoCA

vectors focus on one particular characteristic (the expansion of the genu).

the genu, the CC subregion whose shape is captured by theei.

LoCA was introduced in a related conference paper [1]. That paper gave in-depth experimental

examples of LoCA on three data sets, comparing the locality and conciseness of LoCA to PCA

and related techniques. In this paper, we begin by summarizing related techniques in Section

II, and then we present LoCA in Section III (for more details and examples see [1]). Then in

Section IV, we use LoCA to illustrate the shape differences between groups in three datasets.

We examine how well-established sex differences in two-dimensional sections of human CCs are

expressed by LoCA, we compare LoCA with a complementary technique for the visualization

of shape changes in the lateral ventricles of human brains associated with HIV/AIDS, and we

use LoCA to isolate specific shape differences in the crania of closely-related colobine monkeys.

II. RELATED WORK

PCA has been used to find concise bases for shape spaces in medical image analysis [7],

morphometrics [4], computer graphics [2], and many other contexts. In PCA,ei is the ith

eigenvector of the covariance matrix of the examplevj vectors; therefore, theei are orthogonal

andvk
j is the bestk-th order approximation ofvj under theL2 norm. Related algorithms such as

Sparse PCA (S-PCA) [6] [23] [15], independent components analysis (ICA) or principal factor

analysis (PFA) do not directly optimize a locality-related objective function, but they appear

to generate spatially-localized components anyway [15] [16] [20] [3]. Alternatively, pre-defined

spatially located regions of interest can be integrated into PCA [21]. Our approach is inspired
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by S-PCA and follows a similar strategy of adjusting theei provided by PCA; but we explicitly

optimize for locality and allow the user to explicitly modulate the trade-off between conciseness

and locality.

Other recent techniques have been proposed to capture localized shape differences. Networks

of localized medial primitives [13] seem computationally more difficult than LoCA, while direct

comparison of correspondingvj,k [5] suffers from a reduction in statistical sensitivity as compared

to methods employing dimension reduction. We compare LoCA directly with the latter technique

in Section IV.

III. M ETHODS

PCA produces the most concise basis possible under theL2 norm; that is, for eachk,∑n
j=1 ||vj − vk

j ||L2 is minimized whene1 · · ·ek are the firstk eigenvectors of the covariance

matrix of thevj. We use a formulation of PCA as the minimization of an energy functionEvar

as in [6], and modify it by minimizingEvar + λEloc, whereEloc is a new energy term that

summarizes the spatial locality of theei. The λ balances the trade-off between the competing

interests of conciseness and locality (Figure 1).

A. Energy Function

Each successive PCA component accounts for as much shape variation as possible; that is,

the distribution of shape variation over the PCA basis vectors is as concentrated as possible on

the leadingei. More formally, one can define the relative varianceβi of each basis vectorei as

βi =

∑n
j=1〈(vj − µ), ei〉2∑n

j=1 ||vj − µ||2

whereµ represents the mean of the data vectorsvj. The entropy of the distribution of relative

variances,−
∑k

i=1 βi log βi, is minimized, over all orthogonal bases, by the PCA basis, so

we define this to beEvar, as in [6]. Eachei consists of a concatenation of sub-vectorsei,j,

each of which correspond to the spatial coordinates of one of the surface points (i.e., ei =

[ei,1, ei,2, · · ·ei,m], ei,j = [ei,j,x, ei,j,y] for 2-D shapes). We encourage eachei to have simultaneous

nonzero entries corresponding to pointsp1 and p2 (i.e., simultaneous nonzero entries inei,1

and ei,2) if and only if p1 and p2 are close to each other. To do so, we introduce apairwise

compatibility matrixB whose entriesB[i, j] tend toward 1 whenpi andpj are near each other,
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and tend towards 0 when they are distant. In a variant of our method, called Symmetric LoCA,

B[i, j] tends toward 1 whenpi and pj are either close or symmetric: near each other after one

of the points is reflected across a symmetry plane defined on the object. TheB matricies we

use for our experiments vary as appropriate for the dataset. We use theB matrix to define a

cost functionC(ei, pc), which evaluates each surface pointpc as a potentialcenter pointfor ei.

The surface pointpc is a good center point forei if the deformation described byei is localized

aroundpc. Specifically:

C(ei, pc) =
m∑

j=1

|B[c, j] − ||ei,j||L2|κ

The ei have unit length, so bothB[c, j] and ||ei,j|| vary between 0 and 1. Center pointspc that

ei move significantly, and for whom the entries inei respect the compatibilities betweenpc and

other surface points, incur a low cost. We found experimentally that settingκ to a value less

than 2 (1.5 in all experiments below) helped us ameliorate outlier effects in our experiments.

A vector ei is well-localized if we can find one (or more) good center pointspc, but we need

to consider one additional complication: somepc may be favored as center points by the object

geometry, as expressed by the compatibilities in matrixB, irrespective of the deformations in

the input datavj (specifically, those near the center of the object). Therefore, for a givenpc,

we normalizeC(ei, pc) by the maximum value thatC(e, pc) could take over all possiblee.

Eloc =
∑

i

min
pc

C(ei, pc)

maxe C(e, pc)

The denominator for a givenpc is simply
∑

j max(|B[c, j] − 1|, |B[c, j] − 0|)κ. It needs to be

computed only once.

B. Optimization

We assume that we are given an ensemble ofn objects, each represented bym points on

its boundary, and the compatibility matrixB. Overall differences in object scale, rotation and

translation over the ensemble are removed through generalized Procrustes alignment [4]. The

resulting scaled and aligned data sets are used as input to the numerical optimization.

Our optimization procedure is similar to that used in [6]. PCA provides an initial orthonormal

basise, and every possible pairei, ej are rotated together in the two-dimensional plane they

span, so that the basis remains orthonormal. Each pair is rotated by the angleθ that minimizes
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Fig. 2. Behavior of the cost function when rotating pairs of the 10 basis vectors accounting for the most variation. These

graphs, generated from the ventricle data set, are representative of the graphs for the other data sets. In almost all cases, the

global minimum is found by Brent’s method. If local minima are found, it is typically due to a flat cost function where many

rotation angles provide nearly the same reduction in cost.

Evar + λEloc. The optimalθ is found numerically using Brent’s method [14]. As illustrated in

Figure 2, the global minimum is almost always found at each iteration, even though changes of

center point produce discontinuities.

The pairs are rotated in decreasing order of shape variation accounted for. The set of all

ei, ej pairs are adjusted repeatedly, and optimization ceases when adjusting them changes the

objective function less than a fixed threshold. Between 50 and 150 iterations were required for

each experiment below.

IV. RESULTS

Below, we compare LoCA to PCA on three data sets, two from brain imaging and one from

primate morphology: CCs, lateral ventricles, and colobine monkey skulls1.

LoCA behavior depends strongly onλ, the parameter that modulates the trade-off between

conciseness and locality (Figure 1). Forλ = 0, LoCA reduces to PCA. For smallλ, LoCA basis

1Movies and larger images are at: http://idav.ucdavis.edu/∼dfalcant/loca.html
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Fig. 3. Reconstruction error when using only the firstk vectors of the basis. The numbers in parentheses denote the number

of vectors required to capture90% of the shape variation. For the corpora callosa, these numbers correspond to the differentλ

settings used in Figure 1. When available, LoCA bases are compared with Symmetric LoCA bases requiring a similar number

of vectors. Symmetric LoCA provides a small tradeoff between reconstruction error and symmetry across the midsagittal plane.
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Fig. 4. Corpora callosa basis comparison. The first 12 out of 54 basis vectors are shown. LoCA successfully captures the major

shape deformations of the genu and splenium in the first four vectors.

vectors accounting for the highest amounts of shape variation resemble PCA basis vectors, while

the rest of the basis is clearly localized. For largerλ, all LoCA basis vectors are local, and the

bases require more basis vectors to account for shape variation in the data. In Figures 4, 5, and

8, LoCA basis vectors are depicted for the smallest value ofλ for which the bases lacked global

basis vectors. Reconstruction error for all three datasets is graphed in Figure 3, in which we can

see that strongly local bases (i.e., higherλ) require more vectors for accurate reconstruction.

A. Corpora callosa

The CC data set represents 31 AIDS patients and 19 HIV-seronegative controls (mean age

42.64 +/- 11.28 S.D.), who underwent high-resolution magnetic resonance brain scans as part
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of a previously-described study [18]. As part of that study, each scan was rigidly aligned to

the ICBM-53 template based on intensity cues, and all scans were then further aligned to each

other in a groupwise fashion, based on manual sulcal landmarks. The CC was manually traced

on the midsagittal slice of each scan using a reliable and repeatable protocol, partitioned using

the Witelson criteria [22], and automatically marked with 103 surface correspondences [10].

We compared the ability of LoCA and PCA to detect what is likely the most firmly-established

difference in CC morphology between men and women, based on post-mortem [22] and imaging-

based [11] [17] findings: that women have larger isthmuses (i.e.posterior midbodies). We selected

the LoCA and PCA coefficients for the shape components that captured 90% of the CC shape

variation: the top 7 for PCA, and the top 26 for LoCA (see Figure 4). For each shape component,

gender differences in its coefficients were tested in linear statistical models that controlled for

other factors known to affect CC morphology: presence of AIDS, handedness, and age. The

significance of the gender differences were assessed byF tests in an ANOVA design.

Among the top 26 LoCA shape components, only components 5 and 9 had coefficients that

differed significantly by gender at thep < .05 level, indicating thicker superior and inferior

aspects of the isthmus in women (component 5:F = 5.44, p = 0.024; component 9:F = 4.24,

p = 0.045, p values uncorrected). This gender difference has been reported extensively (e.g.,

[22] [11] [17]). Only the first PCA component differed significantly between men and women

(F = 5.41, p = 0.024); it represents a complex pattern of elongation, rotation, bending and

twisting of the entire structure. The complexity makes the shape component relatively difficult

to interpret in simple anatomical terms. Also, some of the represented modes of CC deformation

have not been reported to differ between genders in the literature, so their validity is uncertain.

B. Lateral Ventricles

Lateral ventricles were also traced manually in 3D on 54 of the 55 group-aligned scans of

healthy and HIV/AIDS patients from a prior study [18]. The boundaries of the frontal, temporal

and occipital horns were traced on each slice based on a reliable, repeatable protocol described

previously [12]. Dense one-to-one correspondences between subjects at homologous surface

points were established by threading medial curves down the center of each of the frontal,

temporal, and occipital horns, and resampling each horn to contain a fixed number of axis-aligned

parallel traces [18]. Within each trace, rays were cast outward from the medial curve point toward
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Fig. 5. Top and bottom views of the first 6 basis vectors from the ventricle data set, ordered by reconstruction error and

colored by displacement magnitude. Symmetric LoCA affects corresponding parts of the ventricles at the same time: its first

vector lengthens both occipital horns, while its second expands both frontal horns.

the ventricular surface everyθ radians. Across subjects, 330 correspondences were established

between points in analogous traces and analogousθ. Geodesic distances were computed between

pairs of resampled surface points, and the distances were used to compute compatibilities. The

resampled surface points were the input to the shape parameterization methods.

We used PCA and Symmetric LoCA to assess differences in shape component coefficients

between AIDS and control groups, and compared the results to differences between these groups

that were previously presented using an established radial ventricular mapping approach [18].

The radial mapping approach has been strongly validated and used to characterize ventricular

shape variation across a large number of medical covariates [12][5][19]. At each surface point,

local thickness values were computed by calculating the distance from the surface point to the

medial curve; mean thickness values were computed for AIDS and control groups. The ratios

of mean local thicknesses between AIDS and control groups were computed and mapped to

color values in a 3D rendering of the ventricular surface (Figure 6). Red regions represent

portions of the ventricular surface that were extremely dilated in AIDS patients compared to

controls. Coefficients for the top PCA and LoCA shape components accounting for 90% of

ventricular shape variation were analyzed in statistical models (17 PCA components and 36 LoCA
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Fig. 6. Differences between AIDS and control groups in ventricular shape as characterized by LoCA and a complementary

radial thickness mapping approach. Regions that are extremely dilated in the AIDS group are shown in red in the spatial map;

LoCA shape components whose coefficients differed significantly between AIDS and control groups are also shown to illustrate

the agreement between the methods. Shownp values have been Bonferroni-corrected to correct for multiple comparisons. The

spatial map was adapted from a similar figure in [18].

components; the initial vectors in each basis appear in Figure 5). The LoCA shape components

that differed significantly at thep < .05 level between groups, in two-tailedt tests with Bonferroni

correction for multiple comparisons, are shown in Figure 6. The ventricular regions covered by

these shape components roughly correspond to the (red) regions that are grossly dilated in AIDS

patients on the spatial maps, including the lateral walls, superior ridge and anterior tip of the

frontal horns; the superior and lateral aspects of the occipital horns; and the tips of the temporal

horns. The only statistically significant PCA component was the second (Figure 5,p = 8.59e−05,

t = 26.25), which represents nearly uniform inflation of the entire ventricular surface with no

indication that some portions of the surface are more or less dilated in the AIDS group.

C. Colobine monkey crania

A shape space was built from a set of 238 colobine monkey crania (Subfamily Colobinae,

Family Cercopithecidae) representing seventeen species (two of them outgroups, not pictured in

Figure 9). Various primate morphologists collected 45 landmark points on each cranium using a
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Fig. 7. Locations of the 45 landmark points, shown on theColobus guerezacranium, warped to match the average landmark

locations over the whole dataset.

Microscribe 3D digitizer as part of data collection for a long-term project on Old World monkey

cranial evolution. Twenty-nine of the landmarks were collected from the dorsal aspect of the

cranium, and sixteen were collected from the ventral aspect (Figure 7, and see [9] for details).

The landmark sets were rescaled to remove the influence of size differences, and aligned using

GPA. Since we did not have surface models for each of the specimens, but only the landmarks,

we estimated geodesic distance between landmarks by connecting them with a graph, weighted

by distance, representing adjacency on the skull surface, and using distance in the weighted

graph. Results of the LoCA and Symmetric LoCA computations are visualized in figure 8.

We used the smallest value ofλ which produced a Symmetric LoCA basis which was mostly

localized; it required 45 components to account for90% of the shape variance. We then compared

pairs of sister taxa in the tree, testing the statistical significance of the PCA and LoCA vectors

for discriminating between the two groups. We employed Welch’s two samplet-tests, using

Bonferroni correction for multiple comparisons. In each case, we found several statistically

significant LoCA components with correctedp-values at or below 0.05. Three examples are

shown in Figure 9; we chose these three because there were roughly equal numbers of males

and females in the populations sampled, so that the examples can reasonably be interpreted as

species and not sex differences, (which are in any case not well-captured by this landmark set).

For LoCA, vector 8 captures one difference betweenPresbytis melalophosand Presbytis

potenziani. It represents a deformation of the sphenoid bone, internal to the zygomatic arch

(cheekbone) and just behind the tooth row. The dramatic difference at the top of the head is also

represented in the Symmetric LoCA basis by Vector 19, with a correctedp-value of5.32e − 7,

but we show Vector 8 instead since the brain case is not sampled well by this landmark set.
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Fig. 8. Cranial basis comparison. For visualization, displacements of the landmark points by each vector are computed and then

interpolated onto aColobus guerezacranium using a thin-plate-spline. Darker locations indicate greater displacement magnitudes;

because the crania are shown from a single angle, vectors representing motion on the bottom of the cranium appear completely

white. Bottom: alternative views of similar looking cranial basis vectors.A shows prognathism (snout elongation), whileB

shows facial kyphosis (teeth straightening).C and D both affect a single landmark point at the top of the skull, with one

moving it vertically and the other horizontally.

One of the vectors differentiating betweenNasalis larvatusand Simias concoloris vector 20,

which affects the vertical angle of the zygomatic arches. Vector 5 represents a deformation of the

nasal bone; it is extended above the snout inProcolobus verus, but lays behind it inPiliocolobus

badius. There are also PCA vectors which discriminate between these three sibling pairs, with

low p-values, but they represent complicated deformations which are not easily described, as

shown in Figure 9.

V. D ISCUSSION

The LoCA components spread the shape variation in the ensemble across more significant

components than PCA does, with each component optimized for spatial locality. These compo-

nents isolate the shape variation of specific parts of the object. Because we often understand

shape variation in terms of spatially-localized object parts, this decomposition is useful in the

analysis and interpretation of shape differences between groups. Also, we found that representing
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Fig. 9. T-tests comparing the coefficients of three sister taxa pairs in the crania data set were run on PCA and Symmetric

LoCA bases. Vectors with small Bonferroni correctedp-values are shown next to crania exbihiting their effects on the average

model. To the right of each vector, the distribution of coefficients is shown for the two species (left and right) and genders

(light and dark). Each PCA vector shows several shape changes, while the LoCA vectors focus on a single feature that can be

intuitively understood.

the shape of single, rather than multiple, object regions in a single shape parameter helped to

prevent the obfuscation of relationships between individual regions and auxiliary variables.

We found that LoCA is broadly applicable to a variety of data sets despite differences in

dimension, shape representation, and the density, accuracy, and source of the point-to-point

correspondences. This flexibility suggests that it might be applied even more broadly, particular

to articulated forms. The method is also flexible with respect to the definition of compatibility

between surface points; the incorporation of symmetry that we used here is just one example.

Another appealing possibility would be somehow combining geodesic distance with curvature

change, to encourage vectors affecting regions of similar curvature (eg. the ridges of the ventri-

cles).

In our formulation, pairs of points are more compatible if the geodesic distance between

them is lower. Hence we implicitly encouraged a fixed neighborhood size for our localized basis
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vectors. It may be more natural to encourage shape basis vectors in which all of the points in a

particular surface neighborhood deform in concert, regardless of the size of the neighborhood.

Future work will address the problem of how to construct shape bases whose basis vectors are

spatially-localized in this scale-invariant fashion.

It is unclear whether we would generate shape parameterizations that are more spatially-

localized, or more useful for making shape-based inferences, if we dropped the orthogonality

constraint from LoCA or added other constraints to the optimization; for example, we could

seek shape components that are both spatially localized and statistically independent, as in ICA.

Future work will address this variant of our current method.
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