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The ability to adapt is a hallmark of the brain. Unlike most cells in the body,

most neurons are not replaced as one ages. Therefore, neurons are highly plastic, modi-

fying themselves biochemically and structurally across multiple lengthscales in a process

called synaptic plasticity. The backbone of these modifications lies in a neuron’s ability

to modulate the strength of its synapses, the connections between neurons. Most excita-

tory synapses are housed in small subcompartments, ∼ 0.1 femtoliter in volume, called

dendritic spines. Dendritic spines have characteristic shapes and sizes that correlate to

disease, learning, and aging. These spine shapes and sizes change during synaptic plastic-

ity and more specifically structural plasticity. When a dendritic spine receives a signal, it

triggers complex biochemical signaling networks that can modulate the synaptic strength

xxv



of the dendritic spine, or its synapse, by modulating the number of receptors on its mem-

brane, amongst other modifications. Therefore, there is a coupling and feedback between

the biochemical signaling underlying synaptic plasticity and the morphology of dendritic

spines.

In this work, we utilize computational and mathematical models to investigate this

structure-function relationship in dendritic spines, as well as in larger lengthscale com-

ponents such as dendrites and neurons. We start with an example of extreme structural

plasticity, where a biochemical signal can rupture connections between cells. We show that

biochemical signaling can trigger mechanical forces to modulate cellular morphology and

neural connections. Next, we investigate how neuronal morphology influences biochem-

ical signaling more closely in the context of synaptic plasticity in dendritic spines. We

consider different timescales of signaling starting with voltage propagation during spine

activation, and calcium influx into dendritic spines of different morphologies. We find that

spine morphology and ultrastructure can impact signaling dynamics even at these early

timescales. Finally, we use both a compartmental model and a spatial model to consider

the biochemistry underlying synaptic plasticity, and how signaling and receptor trafficking

couple during synaptic plasticity. We find that model architecture filters the influence of

upstream signaling on synaptic plasticity readouts and that spine morphology, in particu-

lar spine size, can act to regulate synaptic plasticity to prevent excessive receptor change.

This work strives to emphasize the coupling between spine morphology and biochemical

signaling networks that govern synaptic plasticity, creating a foundation for future work

to investigate structural plasticity in more detail.
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Chapter 1

Structural plasticity: A multi-scale

problem

1.1 Introduction

This thesis is a series of investigations into synaptic plasticity, more specifically

structural plasticity, organized by timescales and geometric complexity. Synaptic plasticity

refers to a synapse’s ability to modify its connection strength between its presynaptic and

postsynaptic terminals. In this thesis, we focus on modifications to the postsynaptic

terminal. The majority of excitatory synapses are housed in small protrusions along the

dendrites of neurons called dendritic spines [6]. How dendritic spines modify is of great

importance due to their key role in synaptic and neural function.

1.1.1 Synaptic plasticity as neural function

Information propagates through synaptic connections between neurons that com-

pose neural circuits. Synapses must be able to modify their connections for proper neural
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function. Neural communication is inherently a multiscale process in regards to length-

scales and timescales. Connections occur at individual synapses; synaptic responses sum

to create changes on the neuronal level; and neurons propagate the signal to their connec-

tions, with rewiring and connection strength changing for the whole circuit. A functional

brain depends on each level in this process operating correctly; and the fundamental unit

within this large neural process is the synapse. The ability to regulate synaptic strength

is the basis of the whole neural network. Therefore, it is vital to understand the process

of synaptic, and subsequently structural, plasticity. Within synaptic plasticity, the con-

nection strength of a synapse is referred to as synaptic strength or synaptic weight [7]. In

the following, we outline the main biochemical and structural components of structural

plasticity and several open questions regarding their interplay.

1.1.2 Biochemical processes underlying synaptic plasticity

Synaptic, and specifically structural, plasticity involves a combination of electrical,

biochemical, and mechanical responses. Synapses receive a biochemical signal from the

presynaptic terminal, often in the form of a neurotransmitter such as glutamate, which

triggers an electrical response in the postsynaptic spine. This electrical response is cou-

pled to a biochemical signaling response that triggers cascades of signaling networks [8].

More specifically, receptors such as α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptors (AMPARs) bind glutamate and open, allowing ions to flow down their gradi-

ents and electrical potentials, depolarizing the membrane. This initial depolarization can

trigger other receptors and channels, such as N-methyl-D-aspartate receptors (NMDARs)

and voltage sensitive calcium channels (VSCCs) to open, further depolarizing the mem-

brane. While many ions can flood into or out of the dendritic spine, Ca2+ is particularly

important as a second messenger that triggers numerous signaling cascades [9].
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A plenitude of biochemical signaling species are involved in this pathway, with com-

plex feedback loops, interdependencies, and cascades. Ultimately, these pathways trigger

changes to the number of AMPARs at the synapse [10]. This change in AMPAR number

effectively modifies how sensitive the synapse is to glutamate release from the presynaptic

terminal, adjusting synaptic strength. Therefore, synaptic plasticity is a complex feed-

back loop where a synapse modifies its connection strength based on its previous history

of activation.

Calcium and subsequently CaMKII as key players in synaptic plasticity

There are many unknowns within this biochemical process; in particular, the de-

pendency of AMPAR on various upstream signaling species remains unclear. It is known

that calcium plays a key role as a second messenger to propagate spine activation to down-

stream signaling species [11]. Due to its importance as a signaling molecule in neurons, it

has been proposed that Ca2+ levels can be correlated to synaptic weight. Several mod-

els and theories have been proposed to predict synaptic weight change based on Ca2+

dynamics at dendritic spines [12,13].

A few steps downstream of Ca2+ is CaMKII which is one of the most abundant

proteins in dendritic spines and is known to be associated with and required for synap-

tic plasticity [14, 15]. Historically, it was thought that CaMKII dynamics alone could

determine synaptic plasticity. However, if CaMKII activity directly determines AMPAR

dynamics remains an open question.

AMPAR as a readout for synaptic plasticity

AMPAR density at the synapse is a vital factor that governs synaptic weight and

sensitivity to presynaptic input. Therefore, it is a key factor that regulates synaptic

strength [16]. However, what is less clear is what factors influence AMPAR dynamics.
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CaMKII is known to be biochemically upstream of AMPAR, but additional biophysical

factors are proposed to influence AMPAR dynamics. In particular, AMPAR exists in sev-

eral locations in dendritic spines - on endosomes in the cytoplasm where they can undergo

endocytosis and exocytosis, on the spine membrane diffusing laterally, in extrasynaptic

pools on dendrites, and bound to scaffolding molecules at the postsynaptic density [17].

How these various pools of AMPAR interact and what governs their exchange and dynam-

ics are not well understood.

1.1.3 Structural processes during structural plasticity

As mentioned above, complex signaling cascades trigger changes to the number of

AMPAR at the membrane, modifying the biochemical profile of the synapse. However,

these signaling cascades also lead to structural changes in the shape and size of the synapse.

During synaptic plasticity, the morphology of the dendritic spine can change as biochemical

signaling triggers changes in the actin cytoskeleton [18]. Structural plasticity specifically

refers to a neuron’s ability to regulate its morphology. An increase in spine volume typically

accompanies an increase in AMPAR, while a decrease in spine volume accompanies a

decrease in AMPAR. The exact consequences of these increases and decreases in volume

are not fully understood.

Additionally, dendritic spines are spatial subcompartments with distinct morpholo-

gies [19,20]. They come in characteristic shapes – filopodial, stubby, thin, and mushroom.

These various morphologies have been shown to correspond to distinct developmental

stages of the brain and to various disease states [21–23]. Different spine sub-types have

been observed to display different structural dynamics; in particular larger mushroom

spines are quite stable compared to smaller thin spines which are more dynamic in their

structural changes [18]. Therefore, dendritic spines show structure-function relationships,
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although those relationships are not fully understood.

Consequences of neuronal morphology on signaling

What remains to be fully understood are the consequences of spine morphology on

neuronal events across different lengthscales and timescales. Dendritic spines propagate

signals electrically through ion movement and flux across the plasma membrane. What

impact does morphology have on fast ion movement and diffusion in dendritic spines and

dendrites? Ca2+ is one of the ions involved in membrane depolarization in spines and has

significant downstream signaling consequences. It is vital to consider how dendritic spine

morphology could alter this first step in signal propagation. Furthermore, further down-

stream AMPAR dynamics could depend on inherently spatial trafficking mechanisms such

as membrane diffusion and endocytosis/exocytosis, which are known to have morphological

dependencies [24–26].

Spine morphology serves a purpose within synaptic plasticity. While not fully un-

derstood, there is a signaling-morphology feedback loop, where biochemical signaling can

modify spine morphologies, which in turn affect their signaling dynamics and ultimately

their function, see Figure 1.1. Both arrows within this feedback loop need to be considered

and depend on a complex interplay between biochemistry and mechanics. More specifi-

cally, spine morphology would depend on a combination of actin mechanics and membrane

tension [27], which both depend on a combination of biochemical and biophysical factors

such as membrane composition, protein-membrane interactions, and osmolarity [28].

1.1.4 Mechanochemical modeling of structural plasticity

Thus, there are many open questions regarding structural plasticity and we can uti-

lize computational tools to start to address them. As experimental tools such as biosensors
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and electron microscopy have improved [29], we have observed dendritic spines and synap-

tic plasticity at finer resolutions and have found increasing complexity. The basis of neural

functionality lies in a synapse regulated by a complex interplay between biochemistry and

biophysics. In this thesis, we focus on how mathematical and computational models can

provide insights into and predictions of the process of structural plasticity, and its coupling

between signaling and morphology. Chapter 2 is focused on summarizing the biochemical

and biophysical considerations to modeling. This provides a methods background to how

we can think about using models to shed light on biological processes. Chapter 3 focuses

on an example of extreme structural plasticity where a biochemical signaling network can

trigger the destruction of synapses. Chapter 4 delves into how spine morphology could

influence membrane voltage propagation at fast timescales. Chapters 5 and 6 consider

how dendritic spine morphology could influence fast Ca2+ dynamics in both deterministic

and stochastic systems and how those Ca2+ dynamics could translate to synaptic weight

updates. Chapters 7 and 8 focus on the translation of CaMKII dynamics to AMPAR

dynamics, the impact of AMPAR trafficking, and how spine morphology influences those

biochemical and trafficking effects. We finish with concluding remarks and possible future

directions in Chapter 9, with emphasis on coupling between biochemical signaling and

structural complexities across multiple lengthscales in neurons.
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Figure 1.1: Structural plasticity is a feedback loop between biochemical signaling and
cellular morphology (a), and involves various length and timescales (b). Created with
BioRender.com.
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Chapter 2

Design decisions for incorporating

spatial and mechanical aspects in

models of signaling networks
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Design decisions for incorporating spatial and
mechanical aspects in models of signaling networks
Miriam K. Bell and Padmini Rangamani

Abstract
Systems biology is a powerful approach to study complex and
expansive biological systems and functions. Recently, ad-
vances in experimental imaging, experimental techniques, and
model frameworks have emphasized the role of cellular ge-
ometry and mechanical forces on signaling dynamics. The
complexity of biochemical and biophysical features in cells
makes disentangling individual contributions challenging. With
nuanced biological details and often subtle differences trig-
gering significant downstream events, decoding signaling dy-
namics in cells benefits from a multipronged and
multidisciplinary approach. Here we discuss the role of cell
geometry and mechanics on cellular signaling and discuss
exciting advances for integrating geometric information and
mechanochemical feedback loops to investigate cellular func-
tion and signaling dynamics.
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Introduction
The use of mathematical and computational modeling
in deciphering signal transduction mechanisms and
identifying emergent properties is now fairly common-

place [1]. Owing to the intricate and expansive nature of
biological systems, systems biology takes a multidisci-
plinary approach using theoretical, analytical, and
computational models to parse out underlying design
principles and emergent properties that aid in cellular
function and decision-making. Such models have

provided insight into fundamental principles of tempo-
ral signaling network dynamics, identification of
network motifs, and perhaps most importantly, insights
into physiological and diseased states [2,3]. Advances in
imaging and fluorescent sensor technologies have
revealed that spatiotemporal aspects of signaling are
important in identifying the design principles that sys-
tems biology models seek [4]. Therefore, mathematical

models need to consider the different factors that can
give rise to spatial heterogeneity of signaling molecules
in cells. For example, increasing evidence points to the
role of geometric features of a cell d cell shape, local
curvature, spatial localization of signaling molecules, and
organelle ultrastructure and location d as important
determinants of the dynamics of signaling molecules
[5�,6��,7]. Another important emerging area in systems
biology is the role of mechanochemical coupling d
signaling that is induced due to mechanical forces and
the feedback between signaling and cell mechanics [8].

Given that mechanics alters the geometric features
listed above, due to alterations of the cytoskeleton at
longer timescales, there is tight mechanochemical
feedback between signaling, mechanics, and cell shape.
Here, we survey recent efforts to capture this feedback
in modeling and experiments using the dynamics of
calcium and cyclic adenosine monophosphate (cAMP)
as model read-outs in different cases. In addition to
discussing the insights gained from these models, we
also highlight the costs and benefits of building models
of increasing spatiotemporal and mechanochemical

complexity. Such analyses are important in making
design decisions during the model building process as
shown in Figure 1.

Considerations of cellular geometry
The continuous improvement of tools such as FRET
biosensors and their accompanying analysis techniques
provide more detailed insights into cellular spatiotem-
poral signaling dynamics in vivo [9e11]. For instance,
recent use of FRET biosensors in b cells has identified
the cAMP spatial compartmentalization driven by
liquideliquid phase separation of protein kinase-A
(PKA) [12]. Coupled to these imaging advances are
new analysis techniques to interpret data. For example,
power spectrum analysis and spatiotemporal correlation

were used to identify calcium puff events obscured by
global calcium elevations due to IP3 activity [13]. This

Available online at www.sciencedirect.com

ScienceDirect
Current Opinion in

Systems Biology
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approach, along with TIRF and LLS microscopy, was
used to further show that there are two modes of IP3-
mediated calcium release that respond to different cal-
cium dynamics d transient, localized calcium increases
versus sustained, global calcium increases [14].

If we consider the above spatially resolved dynamics of
calcium and cAMP, what are the modeling aspects that
we would need to take into account? To construct a
spatial model of a signaling pathway, we first note that a
compartmental or well-mixed model can be extremely
valuable in setting the nominal timescale for the model
response [15,16]. Recent computational models have
highlighted the molecular complexity of calcium and
cAMP temporal dynamics, identifying signaling fre-
quency filters and linking their dynamics in dendritic
spines to synaptic plasticity [17,18��]. These temporal

models conduct sensitivity analyses and also help
identify the range of kinetic parameters by comparison
against experiment [19]. The translation of a well-
mixed system, often represented by a system of ordi-
nary differential equations to a spatial system, often
represented by partial differential equations (PDEs)
capturing reactionediffusion dynamics, requires not just
the specification of initial distributions but also
boundary conditions for various compartments, refer
Figure 1. Recently, we and others have shown that when
membrane bound reactions are written as boundary

conditions, they can affect the timescale of localized and
global calcium and cAMP dynamics [5�,20,21,22,23,24].
In particular, the relative sizes of different geometric
features, such as the volume of the cytoplasm, surface

area of the membrane, and distance to internal organ-
elles, can accentuate the consequences of these
boundary conditions, skewing spatiotemporal signaling
dynamics from well mixed predictions. These boundary
conditions are also a powerful way of representing

membrane localization of certain protein complexes as
we will discuss later in Section “The role of the
membrane: more than just a boundary”. Next, we
need to consider the geometry in which to simulate
these PDEs. Idealized geometries such as spheres and
ellipsoids are often used as starting places for such
models to identify the effect of cell size and shape
because they capture the spatial aspects but do away
with the internal complexity of a cell [25,20]. Recently,
idealized geometry models have been able to provide
great insight into the link between cell signaling and
shape such as how the height of filopodia in fibroblasts

can enhance PKC activation of MARCKs and thus sub-
sequent signaling feedback [26]. An added advantage of
idealized models is that the ability to finely tune the
geometries of interest allows for specific spatial factors
such as plasma membrane to sacroplasmic reticulum
(PM-SR)/plasma membrane to endoplasmic reticulum
distance (PM-ER) and cellular curvature to be investi-
gated [5�, 20, 22], further discussed in Section
“Organelle location and ultrastructure add layers of
complexity to spatiotemporal dynamics of signaling
molecules”. Although many of these manipulations

cannot yet be conducted experimentally, computational
models allow us to identify if such features are impor-
tant and what role they may play in tuning the spatio-
temporal dynamics of the species of interest.

Figure 1

Many options exist for computational modeling of protein signaling dynamics. When constructing a model, one must consider the complexity of reaction
and spatial geometry, along with available experimental data for both comparison and validation.
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Although idealized geometries provide insight into the
role of certain geometric features and possible design
principles, they do not completely capture the
complexity of the plasma membrane topology or cellular
organization. Indeed, advances in imaging technologies
and reconstruction methods have shed light on the
surface topology of the plasma membrane and it is far
from smooth or flat [27e29]. Do such topological

changes matter for signaling dynamics? Studies from
mechanics of membraneeprotein interactions suggest
that local curvature can act as a diffusion barrier for
membrane proteins and amplify local concentrations
creating a positive feedback between a microdomain and
signaling molecules [30e33]. Recent studies using
realistic geometries have revealed the estimated cal-
cium dynamics in the absence of fluorescent probes and
fate maps of calcium in dendritic spines [34] and
showed how microdomain spread of calcium and
CaMKII differ along dendrites, depending on coupling

between biophysical and biochemical factors [35]. A
study of both idealized and realistic cardiac myocyte
geometries have emphasized how realistic flux distri-
bution and dyad placement emphasizes spatial hetero-
geneity and realistic geometries showed different
signaling waveforms compared with idealized [36].

Organelle location and ultrastructure add
layers of complexity to spatiotemporal
dynamics of signaling molecules
In addition to insights on the topology of the plasma
membrane, the techniques described above have also
opened windows into the locations, sizes, and shapes of
organelles [37,27]. These features raise new questions
about our understanding of the movement of molecules
within the cell. Are these organelles purely diffusion
[38�]? Are they active participants in organizing the

spatiotemporal dynamics that we observe? Or both?
Consider, for example, calcium dynamics in cellsd they
are regulated by channels on the plasma membrane,
mitochondria, and the endoplasmic reticulum. It is well
known that internal organelles can act as internal stores
for signaling molecules; the endoplasmic reticulum and
sarcoplasmic reticulum, for example, are known calcium
stores, engaging in calcium buffering and dynamics
modulation, but how the morphology or location of the
ER or SR influences its buffering capacity or signaling
dynamics remains an important consideration. Key ex-

amples of these cases are dendritic spines and cardio-
myocytes, both of which will be discussed in the
following context.

Although the ER exists throughout dendrites and neu-
rons, some portion of dendritic spines have specialized
ER structures called spine apparatus in their spine
heads. Again, idealized geometries provide insight into
how organelles can influence intracellular signaling dy-
namics. Through spatial modeling efforts that vary

geometric factors in idealized spines and spine appa-
ratus, we found that the size of the spine apparatus
modulates the calcium dynamics in the spine [20]. Two
similar idealized geometry studies demonstrated that
the precise location of RyR-containing spine ER de-
termines spine-to-dendrite calcium communication and
fast calcium transients [39,40], whereas another found
that calcium release from IP3 receptors selectively

mitigates runaway synaptic strengthening at spines with
spine apparatus [25]. Other analyses of reconstructed
real dendrites have emphasized how ER and other
organelle structure and localization could be tied to
synaptic function [6��,41]. Experiments suggest that
localized signaling subcompartments play key roles in
nuanced information transfer such as how ER selectively
visits dendritic spines to potentially prevent runaway
potentiation of individual synapses [42�,43]. Similarly,
the ultrastructure of the ER can introduce additional
complexity through complex membrane folding and

network structure [20]. For example, in cardiomyocytes,
it is well known that the structure of t-tubules and
placement of SR is a vital factor for calcium induced
calcium release (CICR) [44]. Additionally, the discovery
of PM-ER, ER-mitochondria, and ER-membraneless
organelle contact sites shows that complex signaling
subcompartments exist within cells [45,46].

Just as cellular morphology has been found to influence
cellular signaling dynamics, it is safe to assume that
ultrastructure morphology will likewise modulate

signaling dynamics and add additional control and
nuance to cellular signaling capabilities. Therefore the
same complexity decisions for cellular geometries also
apply to ultrastructure geometries; based on the key
questions at hand, trade-offs between biochemical and
biophysical complexity versus traceable models and
interpretable results must also be decided for ultra-
structure models. The use of realistic geometries in
modeling signaling is not without its challenges, which
we will review in Section “Outlook and future
directions”.

The role of the membrane: more than just a
boundary
Membranes are key components of cells and intracel-
lular organelles, compartmentalizing and protecting
cellular components. However, cellular membranes play

a much more important role than just as passive
boundaries. To communicate and navigate, cells must
interact with their environment and therefore must
process information through their cellular membrane.
The composition of the membrane itself has significant
consequences for membrane structure, signaling dy-
namics, and localization [47,48]. Membrane-protein
interactions of membrane-bound, peripheral, and cyto-
solic proteins are all significant for signaling dynamics.
From a spatial modeling perspective, bulkesurface
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interactions are particularly interesting because they are
implemented as boundary conditions and the dimen-
sionality difference can lead to interesting signaling
dynamics [49]. For instance, the interplay between bulk
and surface interactions representing ligands and re-
ceptors drives protein aggregation and pattern formation
[50], while functional protein switching between the
membrane and cytoplasm also leads to pattern formation

[51]. Furthermore, surfaces have limited diffusion op-
tions compared with volumes in 3D, which has impli-
cations on diffusion, crowding, and confinement [52�].
Feedback effects between proteins and the membrane
can lead to both protein localization and membrane
curvature [53].

Much of the cellular input comes through receptors,
channels, and other species that interact with the
extracellular or external environment, and thus act as
the gatekeepers for signaling cascades. The localization

of these various stimulus-sensing species can be influ-
enced by membrane composition. For instance, lipid
rafts have been found to influence receptor localization
and vice versa for key immune receptors such as T cell
and B cell receptors [54,55]. Lipid rafts are associated
with the concept of liquideliquid phase separation
which is another important driver of signaling localiza-
tion. As another example, phase separation is believed to
drive the formation of synaptic clusters in the post-
synaptic density of dendritic spines [56]. The conse-
quential patterning of membrane associated proteins

has downstream effects on signaling dynamics. This
patterning was demonstrated in b cells where nano-
domains of adenylyl cyclases (ACs) versus phosphodi-
esterases lead to different cAMP dynamics [57]. New
experimental and computational methods continue to
be developed to investigate the complexity of the
cellular membrane [58]. The localization of signaling
species to the membrane and the role of lipids them-
selves in regulating signaling are important factors that
influence the spatiotemporal dynamics of signaling
molecules.

The role of mechanics: how cells
experience the world and push back
Cells exist in a 3D environment and depend on me-
chanical cues in addition to biochemical cues to inves-
tigate and navigate their environment [59]. Mechanics

influences signaling but signaling also influences me-
chanics; this mechanochemical feedback loop gives cells
their vital adaptability to their environments. The
coupling between mechanical features of the peri-
cellular environment [60] and cell signaling [61,62]
leads to regulation of cell size and shape [63,64]. A
specific example of this process is how cells sense sub-
strate stiffness and convert that into chemical activity of
downstream signaling molecules. Force transduction at
the level of integrins, Src-kinases, and focal adhesion

kinases are critical for reading the cellular environment
[64,65]. Axonal growth cones must both interpret their
mechanical environment as they search for postsynaptic
targets and translate signals into intracellular move-
ment; studies have showed important coupling between
external and internal mechanical and biochemical cues
during axonal growth [66,67]. The activation of G-pro-
teins by shear stress is another example of external

stimuli triggering biochemical responses [68].
Converting these molecular details to a continuum
description is often done by assuming a function that is
reminiscent of MichaeliseMenten kinetics [69e71].
While this type of modeling provides an elegant way to
capture the mechanical and chemical interplay for
signaling, finding data to validate the model parameters
can be challenging since this requires the mapping of
activity of many molecules in the pathway of interest as
a function of substrate stiffness. To our knowledge, such
data are limited or scattered across multiple systems,

leaving gaps in model validation.

There are a few other major considerations in this
mechanochemical coupling. Changes to the ECM
environment naturally change cell shape and ultra-
structure and cells respond by reorganizing their cyto-

skeleton. A model of cellesubstrate interactions during
cell crawling demonstrates how mechanical feedback
loops lead to stick-slip dynamics and cellular protrusions
[72]. Similarly, a combined modeling and experimental
work on actin polymerization found that actin-
membrane link depletion is necessary for membrane
protrusion initiation [73]. Cellecell interactions include
mechanical interplay between cells that can regulate
intracellular components; for example, intercellular
forces can determine intracellular pressure and impact
individual cell membrane tension [74] and affect

cellular responses through biochemical signaling [75].
Because of the biochemical complexity underlying many
intracellular load-bearing structures such as actin and
myosin dynamics, it is often useful to use phenomeno-
logical or simplified coupling dynamics to link
biochemical signaling and mechanics. This approach has
been used to link GTPase activity to cellular contraction
and relaxation waves [76] and GPCR activation and ER
calcium release to neurite retraction [77]. Recently, we
developed a model that used a modular approach to
investigate how cellular morphology coupled with me-

chanical forces due to substrate stiffness and cytoskel-
etal stiffness alters the nuclear translocation of YAP/
TAZ, an important transcription factor [70��]. Another
approach to modeling cellular mechanics is to simplify
the biochemical molecular machinery underlying the
mechanical force generation by abstracting out the de-
tails and using lumped parameters. This approach has
been used to study actin dynamics within dendritic
spines and found that spine shape fluctuations depend
on the number of actin polymerization foci [78��].
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Outlook and future directions
As with all fields of modeling, systems biology continues
to find the balance between simplification versus over-

simplification and idealization versus complexity. In
other words, how much detail can we leave out and still
be able to identify meaningful underlying biological
principles? Systems biology always requires some
simplification of signaling networks due to the sheer
number of proteins and chemical interactions in the cell;
not every pathway can be considered in every system of
interest. Similar considerations are needed for spatial
and mechanical aspects of modeling. The goal is not to
reconstruct the entire cell in a computer but to gain
insights in health and disease.

As described above, the field has made significant ad-
vances in incorporating spatial and mechanical aspects
that affect signaling in many clever ways. Future op-
portunities lie in our ability to use the large amount of
volume EM coming online as realistic geometries in the
simulation framework. There are numerous computa-
tional and technical challenges d most notably in seg-
mentation, meshing, and the use of appropriate
numerical solvers d that present themselves as oppor-
tunities for technical innovation. A bigger challenge lies

in transforming the volume EM data into meshes that
are compatible with finite element simulations.
Currently, obtaining such meshes is an onerous, human
labor intensive task. This is because segmentation and

reconstruction requires multiple expertise in imaging,
segmentation and cellular anatomy identification,
meshing algorithms, and computational modeling skills
[79��,80]. Although efforts are underway to use ma-
chine learning techniques for image segmentation and
mesh curation [81,82], complications persist and these
tasks are often performed manually or with substantial
manual intervention. Continued efforts in automating
these steps in the pipeline will greatly accelerate this

process [83e85]. These are discussed in detail in a
study by Vasan et al. [86].

Once realistic geometries are refined and can be used as
geometries for spatial models, the complex geometries
and non-linear signaling kinetics require the develop-
ment of numerical solvers that are robust for large sys-
tems of coupled PDEs across multiple compartments.
Working closely with computational scientists to ensure
that the new robust solvers can be developed is impor-
tant to ensure that simulations are producing reliable

numerical results. Another complexity arises in the
choice of kinetic parameters for the reactions being
modeled. Development of deep learning methods for
parameter estimation and uncertainty quantification of
kinetic parameters are necessary to build confidence in
models [87e90].

The messiness of biology is, in fact, the result of millions
of years of evolution, and thus we must be careful to not

Figure 2

Just as a limited view of an elephant will lead to wildly varying conclusions on what an elephant is (a), we are at risk of making similar mistakes in systems
biology if we only consider singular isolated views of the cell (b). Therefore, we must take a multidisciplinary and varied approach to studying cellular
function and dynamics. Created with BioRender.com.

74 Mathematical Modelling

Current Opinion in Systems Biology 2021, 25:70–77 www.sciencedirect.com

13



discount potential functions to that messiness. Every
tim,e we make a simplification in systems biology we run
the risk of losing sight of complex, non-obvious cellular
functions, refer Figure 2. The future of modeling
signaling networks in systems biology lies at the amal-
gamation of many different fields d machine learning,
computational mathematics, computer vision and
graphics, biophysics, cell and molecular biology, and

bioinformatics. In isolation, each of these fields has
made incredible progress in their own space but the
modern challenges in systems biology require these
fields to come together to build something bigger than
the individual fields (the LIGO project in physics is an
excellent recent example of this [91]). And when they
do come together, the hope is that we can push the
frontiers of knowledge and identify system biology’s
deep well-kept secrets.
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Gαq-mediated calcium dynamics and membrane 
tension modulate neurite plasticity

ABSTRACT  The formation and disruption of synaptic connections during development are 
a fundamental step in neural circuit formation. Subneuronal structures such as neurites are 
known to be sensitive to the level of spontaneous neuronal activity, but the specifics of 
how neurotransmitter-induced calcium activity regulates neurite homeostasis are not yet 
fully understood. In response to stimulation by neurotransmitters such as acetylcholine, 
calcium responses in cells are mediated by the Gαq/phospholipase Cβ (PLCβ)/phosphati-
dylinositol 4,5-bisphosphate (PI(4,5)P2) signaling pathway. Here, we show that prolonged 
Gαq stimulation results in the retraction of neurites in PC12 cells and the rupture of neu-
ronal synapses by modulating membrane tension. To understand the underlying cause, we 
dissected the behavior of individual components of the Gαq/PLCβ/PI(4,5)P2 pathway dur-
ing retraction and correlated these with the retraction of the membrane and cytoskeletal 
elements impacted by calcium signaling. We developed a mathematical model that 
combines biochemical signaling with membrane tension and cytoskeletal mechanics to 
show how signaling events are coupled to retraction velocity, membrane tension, and 
actin dynamics. The coupling between calcium and neurite retraction is shown to be 
operative in the Caenorhabditis elegans nervous system. This study uncovers a novel 
mechanochemical connection between Gαq/PLCβ /PI(4,5)P2 that couples calcium responses 
with neural plasticity.

INTRODUCTION
Throughout the course of an organism’s life, different neuronal con-
nections break and reform to generate new electrical patterns that 
allow optimal function during development and through adulthood. 
This plasticity of neuronal connections allows the rewiring of circuitry 

necessary for memory and learning (e.g., Licht et al., 2011; Stuchlik, 
2014; Takeuchi et al. 2014). Understanding the factors that permit 
appropriate and efficient rewiring is essential for understanding 
both developmental and neurodegenerative diseases.

Calcium is a key mediator of neuronal functions such as axonal 
growth, neurite protrusion, and spinogenesis (Clapham, 2007; Brini 
et al., 2014). Previous studies have shown that spontaneous activity 
in neurons can result in a frequency-dependent rate of axon elon
gation that is inversely proportional to the frequency of calcium 
transients (Goldberg and Grabham, 1999; Gomez and Spitzer, 
1999). The role of calcium in neurite growth and protrusions associ-
ated with development has been studied in different contexts (e.g., 
Mattson, 2007). This outgrowth process is stimulated by neuro-
trophic factors that carefully regulate the spatiotemporal aspects of 
intracellular calcium. Neurite growth can also be triggered by stress, 
pharmacological agents, or starvation (McKay et al., 1999; Gilbert 
and Man, 2017). These factors may occur during disease states and 
contribute to inappropriate neurite growth, which can result in an 
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increased number of smaller and nonproductive neurites, as seen in 
autism (Gilbert and Man, 2017).

Neurodegenerative diseases are associated with the disruption of 
normal calcium signaling. Specifically, diseases such as autism and 
amyotrophic lateral sclerosis (ALS) have been linked to overexcita-
tion of neurons or excitotoxicity caused by abnormal calcium ho-
meostasis (King et al., 2016). However, the link between calcium ho-
meostasis and the mechanical processes underlying neurite retraction 
remain poorly understood. Understanding the link between dysfunc-
tion of cellular calcium, especially prolonged signaling, and neuronal 
function is critical to understanding the mechanisms that underlie 
diseases typified by inappropriate neuronal excitation. While previ-
ous research has focused on the short-term effects of elevated cel-
lular calcium after stimulation and its effects on neurite growth or on 
spontaneous spiking activity (Goldberg and Grabham, 1999; Gomez 
and Spitzer, 1999; Rosenberg and Spitzer, 2011), little is known about 
the effect of extended elevated calcium on these same neurites over 
time, that is, cases that mimic an extended overstimulated state. In 
this study, we investigate the effects of prolonged stimulation of the 
Gαq/PLCβ/PIP2 /calcium signaling pathway by the neurotransmitter 
acetylcholine in a model neuronal cell line, PC12, and in the neuronal 
network in a small organism, Caenorhabditis elegans.

Calcium signals in neurites can be generated by several mecha-
nisms. In synapses, postsynaptic cells receive an influx of calcium di-
rectly through the openings of transmembrane channels in response 
to neurotransmitter release (Voglis and Tavernarakis, 2006). Neu-
rotransmitters, such as acetylcholine, activate G protein–coupled re-
ceptors (GPCRs) on the plasma membrane to cause the release of 
calcium from intracellular stores (McKay et al., 1999). Furthermore, 
neurotropic factors activate receptor tyrosine kinases to increase in-
tracellular calcium through another phospholipase C family, PLCγ. 
Downstream from these events is the opening of calcium-activated 
calcium channels on the endoplasmic reticulum (ER) membrane. 
Many of these channels are thought to respond to the increase in 
cytosolic calcium and to changes in the physical properties of the 
plasma membrane. These increases in cellular calcium regulate spe-
cific transcription factors and posttranscriptional processes that lead 
to appropriate downstream responses (West et al., 2001).

In this study, we show that neurites will retract completely to the 
soma following extended stimulation of the GPCR/Gαq/PLCβ 
pathway. This pathway mediates signals from many hormones and 
neurotransmitters such as acetylcholine, dopamine, histamine, and 
melatonin (Kadamur and Ross, 2013). Signaling begins with ligand 
binding to its specific G protein–coupled receptor to activate the 
Gαq family of G proteins by exchange of GTP for GDP. The GTP-
bound Gαq subunits then activate phospholipase Cβ (PLCβ). PLCβ 
catalyzes the hydrolysis of phosphatidylinositol 4,5-biphosphate 
(PIP2) to inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). 
IP3 binds to receptors on the endoplasmic reticulum, allowing the 
release of calcium from intracellular stores into the cytoplasm. 
The elevated calcium can then change the activity of a variety of 
intracellular proteins to generate a specific cell response.

Incorporated into this pathway are a number of positive and 
negative feedback loops. The initial calcium release generated by 
PLCβ in turn stimulates the highly active PLCδ that synergizes the 
calcium response (Guo et al., 2005). Increased calcium also opens 
calcium-induced calcium channels, further strengthening calcium 
responses (Lohmann and Wong, 2005). Negative feedback comes 
from the internalization of ligand-bound receptors into endosomes 
over a few minutes, which typically return unbound receptors to the 
plasma membrane over a period of 20–30 min (Freedman and 
Lefkowitz, 1996). Additionally, Gαq has GTPase activity that returns 

it to the basal state, and this activity is stimulated by the GTPase 
activating (GAP) activity of PLCβ (Berstein et al., 1992), along with 
RGS proteins that quickly turn off the signal (Dohlman and Thorner, 
1997). It is notable that these feedback loops are highly sensitive to 
the concentration of the pathway components and the concentra-
tions of competing species, as well as the physical state of the 
plasma membrane, which drives aggregation of the ligand-bound 
receptor and internalization, the accessibility of PI(4,5)P2 substrates 
to PLCβ and PLCδ, and the opening of calcium channels.

Components of the Gαq/PLCβ/PI(4,5)P2 pathway are also in-
volved in the regulation of membrane tension and cytoskeletal re-
modeling. The coupling between membrane tension and cytoskel-
etal adhesion through PI(4,5)P2 was established nearly two decades 
ago by Sheetz and coworkers (Raucher et al., 2000; Sheetz, 2001). In 
a series of elegant experiments, they showed that PIP2 regulates 
cytoskeleton–plasma membrane adhesion (Raucher et al., 2000) 
and that membrane tension plays a critical role in actin remodeling, 
membrane trafficking, and cell motility (van Rheenen and Jalink, 
2002; Bittner and Holz, 2005; Diz-Munoz et al., 2013). Subsequently, 
researchers continued to establish and identify increasing roles 
played by the plasma membrane tension and cortical tension in dif-
ferent cellular reorganization processes (Logan and Mandato, 2006; 
Rangamani et al., 2011; Datar et al., 2019). Specifically, in neurons, 
dynamics of growth cone formation, neurite protrusion, and axonal 
contractility have been shown to be mechanochemically coupled 
processes (Franze et al., 2009; Kerstein et al., 2015).

Despite these advances in neuronal biophysics, our understand-
ing of synaptic rupture and neurite retraction remains incomplete, 
especially in terms of the mechanisms that underlie overexcitatory 
responses. In this study, we set out to investigate the effects of 
prolonged (i.e., several minutes) agonist stimulation of the Gαq 
signaling pathway in a model neuronal cell line (PC12). We find that 
prolonged stimulation results in tension-driven neurite retraction, 
unlike the behavior seen in shorter exposures to neurotransmitters. 
To understand the factors that underlie the observed neurite retrac-
tion, we followed the individual components during the process and 
developed a mathematical model to predict the effects of calcium 
stimulation by acetylcholine (ACh) and its extended response on 
retraction through mobilization of the pathways that impact neurite 
retraction.

Our predictive models showing that membrane tension and 
actin reorganization are coupled to calcium dynamics through Gαq/
PLCβ/PI(4,5)P2 were verified in cultured PC12 cells as well as in the 
neuronal network of the nematode C. elegans. The 302 neurons 
that comprise the nervous system of C. elegans (Sengupta and 
Samuel, 2009) have been well characterized, and these organisms 
have been used as models to understand neurite formation and 
retraction (Sengupta and Samuel, 2009). Because of its optical 
clarity, C. elegans allows us to monitor the effects of acetylcholine 
stimulation on synapses in real time by microscopy. We find that the 
C. elegans neural architecture exhibits the same retraction behavior 
when exposed to Gαq agonists showing rupture along the spine in 
the nerve ring, suggesting that the coupling between membrane 
tension and calcium dynamics occur on the organismal level. Taken 
together, our studies connect signaling processes with mechanical 
effects that allow us to predict the signaling conditions that shift 
from outgrowth and maintenance to retraction.

RESULTS
Prolonged exposure to carbachol causes neurite retraction
Cultured PC12 cells differentiate to a neuronal phenotype upon 
treatment with nerve growth factor (NGF), which initiates activation 
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through TrkA receptors (Greene and Tischler, 1976). This treatment 
results in growth of neurites from the cell body that extend to 
roughly three times the length of the body over a 36-h period. 
These neurites can then connect with neurites from other cells, 
resulting in long tubular structures (Drubin et al., 1985).

Addition of a Gαq agonist to the cells activates PLCβ to catalyze 
the hydrolysis of PI(4,5)P2. This hydrolysis releases Ins(1,4,5)P3 into 
the cytosol, which then binds to Ins(1,4,5)P3 receptors on the ER to 
release calcium from intracellular stores. In addition to eliciting 
calcium signals, PI(4,5)P2 hydrolysis can exert mechanical effects on 
cells by altering membrane tension and actin–membrane adhesion 
(Raucher et al., 2000; Sheetz, 2001; Logan and Mandato, 2006). We 
sought to understand the interactions between the Gαq/PLCβ 
pathway and mechanical features of membrane–actin interaction 
(Figure 1, A and B).

We found that when we added a Gαq agonist, such as carbachol 
or bradykinin, to PC12 cells, the well-formed neurites became thin-
ner, their connections ruptured (compare Figure 1C with Figure 1E 
and Supplemental Figure S1), and they retract toward the soma 
after a period of 5–10 min (Figure 1, E and F). After retraction, the 
excess membrane appears as blebs around the sides of the cell 
(Figure 1G). This behavior was seen in every cell viewed in more 
than 100 experiments, but was not seen when a PLCβ inhibitor was 
added, or a Gαi agonist such as isoproterenol was used. The initia-
tion and rate of retraction depended on the particular treatment 
and condition of the experiment, as described below. The extent of 
retraction in a specific time period was robust to the length and 
thickness of the neurite.

Neurite retraction is coupled with the Gαq/PLCβ/calcium 
pathway
We followed the activation of the Gαq/PLCβ/calcium signaling 
pathway upon stimulation in single PC12 cells using the fluorescent 
calcium indicator Calcium Green, to determine whether neurite re-
traction is concurrent with activation. Our approach was to follow 
some of the molecular constituents of the Gαq pathway and deter-
mine the temporal correlation between activation of the individual 
signal components and neurite retraction. The retraction velocities 
of a generic Gαq-coupled receptor (i.e., the bradykinin receptor 
type 2 or B2R) were measured by transfecting cells with a fluores-
cence-tagged construct and stimulating the cells with an agonist 
(i.e., bradykinin). We note that B2R is not endogenous to PC12 cells, 
thus allowing us to compare Gαq-associated retraction with that 
which results from stimulation of endogenous muscarinic receptors. 
We find retraction behavior for neurite retraction after stimulating 
the B2R transfected cells with bradykinin identical to that which re-
sults from carbachol stimulation (Figure 2). These results support a 
connection between neurite retraction and Gαq/PLCβ activation.

We calculated the velocity of neurite retraction by analyzing the 
decrease in length of each neurite at each time point during the 
experiment (see Materials and Methods). These velocities were ana-
lyzed for PC12 cells transfected with eCFP-B2R (blue) and for the 
plasma membrane (orange) as monitored by phase contrast imag-
ing (Figure 2A). We find that the retraction of the plasma membrane 
is more gradual than that of the receptor, suggesting that move-
ment of the receptor toward the soma precedes the membrane.

Activation of the PLCβ pathway through Gαq-GPCRs results in 
hydrolysis of the signaling lipid PI(4,5)P2. We followed the change in 
the level and distribution of PI(4,5)P2 of the plasma membrane sur-
rounding the soma and neurite during retraction using a fluorescent 
PI(4,5)P2 sensor (i.e., eGFP-PH-PLCδ1). Our data show that PI(4,5)P2 
moves from the neurite into the soma with a retraction velocity 

FIGURE 1:  Neurite retraction in PC12 cells is induced by calcium 
stimulation. (A) Cartoon of the mechanochemical events underlying 
neurite retraction in a PC12 cell. The figure depicts the 
interconnection between calcium signaling and force regulation due 
to membrane cortical tension and actin remodeling. (B) Schematic 
showing the coupling between signaling and mechanical changes 
within the PC12 cell. We identify membrane cortical tension and actin 
dynamics as key players controlling neurite retraction rates and link 
calcium dynamics to actin reorganization and force generation, and 
PI(4,5)P2 hydrolysis to membrane tension change and tension force 
generation. Using this coupled model, we are able to reproduce the 
neurite retraction behavior observed experimentally. (C, D) Sample 
images of differentiated PC12 cells before stimulation. Confocal 
phase contrast (C) and fluorescence images of cells loaded with a 
fluorescent calcium sensor, Calcium Green (D) are shown. 
(E–H) Stimulation of cells with carbachol results in neurite thinning, 
retraction, and synaptic rupture. At 15 min after the addition of 
carbachol, we observe membrane retraction (e.g., purple box) and 
thinning of the neurite (E, F). At 30 min after carbachol addition, we 
see a complete retraction of the neurites into the soma and 
membrane blebbing at the retraction sties (e.g., red box) (G, H). In all 
images, the scale bar is 20 µm. Identical behavior was seen in 20 cells.
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similar to that of the GPCR (Figure 2E). However, this movement is 
oscillatory, showing three precipitous drops and recoveries during 
the retraction event. These are three distinct movements of PI(4,5)P2 
during the observed retraction, which occur at similar times (∼3, 10, 
and 15 min) for all cells tested and are interpreted as being due to 
PI(4,5)P2 replenishment during the course of the retraction.

In general, Gαq activation produces an increase in calcium, typi-
fied by an initial spike in the first few minutes followed by a slow 
recovery. We followed the calcium behavior upon stimulation in 
single cells using Calcium Green (Figures 1, D, F, and H, and 2J). 
Correlating calcium responses with neurite retraction shows that re-
traction occurs even in this initial phase and continues through the 
duration of the recovery phase.

We constructed a spatial model of the Gαq/PLCβ/PI(4,5)P2 sig-
naling pathway using reaction–diffusion equations. The reactions, 
kinetic parameters, and diffusion constants are given in Tables S1–
S4 in the Supplemental Material (SOM). The soma of the PC12 cell 
was modeled as a simplified geometry capturing the key features of 
these cells. Briefly, the soma was modeled as a sphere with a radius 
of 5 µm, and the neurite was modeled as a cylinder with a radius of 
1.25 µm and a length of 30 µm. The endoplasmic reticulum was 
modeled as a cylinder with a radius of 0.25 µm and a length of 25 
µm, and the nucleus as a sphere with a radius of 2 µm. Geometric 

details are given in Supplemental Table S5. The nucleus was treated 
as an excluded volume, while the ER was treated as a calcium 
source. Computational modeling of this pathway in a three-
dimensional spatial model using finite elements captured the 
calcium transients with the same time scale as the experiments 
(compare Figure 2, J and K). This framework sets the stage for the 
mechanical coupling of calcium dynamics to neurite retraction.

Actin remodeling proteins affect the dynamics of neurite 
retraction
Actin filaments are the major cytoskeletal components of synapses 
and are the key modulators of neurite plasticity. An actin filament is 
a dynamic structure in which monomers disassemble from one end 
and reassemble on the other, a behavior known as molecular tread-
milling. Retraction involves inward movement of the actin structure 
that defines the neurite shape, and so any model of retraction must 
incorporate actin disassembly. In neurites, actin filament remodeling 
is known to be associated with the drag forces related to protrusion 
(Datar et al., 2019). Additionally, PI(4,5)P2 hydrolysis is closely 
connected to membrane-actin adhesion and membrane tension 
regulation (Raucher et al., 2000).

On the basis of our experimental observations (Figure 2), we 
coupled PI(4,5)P2 hydrolysis and calcium release following carbachol 

FIGURE 2:  Neurite retraction of PC12 cells upon Gαq stimulation. (A) Decrease in neurite length of the B2R receptor in 
PC12 cells (blue) as compared with slow reduction in length of the membrane as followed by phase contrast (orange). 
(B) Images of differentiated PC12 cells expressing eCFP-B2R before stimulation with bradykinin and (C) 30 min after 
stimulation, where purple box shows the retraction data of A, and the corresponding phase contrast image is shown in 
D. (E) Decrease in neurite length as followed using a fluorescent PI(4,5)P2 sensor, PH-PLCδ1 (Garcia et al., 1995), where 
distinct oscillations are seen. (F–H) Images of a differentiated PC12 cell expressing PH-PLCδ1 (F) before stimulation and 
(G) 30 min after stimulation with carbachol and (H) the corresponding phase contrast image. (I) Cartoon showing the 
hydrolysis of PI(4,5)P2 to Ins(1,4,5)P3 and DAG, depicting the larger head group of PIP2, denoted by the scale bar (red 
box), as compared with the smaller DAG that remains in the membrane after hydrolysis (purple box). This decrease in 
the size of the membrane-bound molecule (PI(4,5)P2 to DAG) leads to a local change in tension (denoted by the scale 
bars). IP3 moves into the cytosol and the ER, causing a release of calcium. (J) Graph of calcium intensity in neurites of six 
different cells. This graph shows the lag time after the addition of carbachol, the initial spike in calcium, and the slow 
recovery. (K) Model replicating the intensity of calcium over time at two spatial locations (in the neurite and in the soma) 
after stimulation by carbachol. Inset: location of traces within the model geometry (in the neurite and in the soma). In all 
images, the scale bar is 20 µm, and n > 15 cells.
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stimulation with a mechanical model that balances the forces due to 
actin depolymerization and membrane cortical tension change. 
Owing to the time-scale separation between the biochemical 
signaling dynamics and neurite retraction, we coupled the three-
dimensional spatial model of the Gαq/PLCβ/calcium signaling path-
way (Figure l, A and B) to an ordinary differential equation model of 
neurite mechanics, assuming uniform signaling dynamics at ex-
tended timescales (Section S1-2 in the SOM). Briefly, the mechanical 
model proposes a force balance acting on the tip of the neurite 
(Hassinger et al., 2017). The force due to the actin cytoskeleton is 
acting outward, away from the soma, and the force exerted by the 
membrane cortical tension is acting toward the soma. In this case, 
we assume that the cortical tension is a function of the change in the 
area of the membrane. This change in membrane area can result 
from PI(4,5)P2 hydrolysis (Sheetz and Dai, 1996; Raucher et al., 
2000), from endocytosis of GPCRs (Getz et al., 2019), and from 
changes in tension (Simunovic et al., 2017). The force exerted by the 
actin cytoskeleton is modeled phenomenologically as a function of 
calcium-mediated cofilin and retrograde flow (Bornschlogl et al., 
2013). Thus, the net force balance can be written as
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This governing equation combines the force balance above with 
experimental observations that retraction velocity is proportional to 
neurite length. The force due to membrane cortical tension and ac-
tin dynamics depends on equations for τ and Factin, respectively, 
given as
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This is a phenomenological model with a combination of parame-
ters from literature and constants fit to the experimental results (see 
SOM). In particular, Eqs. 4 and 5 depend on f(PIP2) and g(CofilinAct), 
which are sigmoidal functions that trigger in response to PI(4,5)P2 
and activated cofilin, respectively (Zmurchok et al., 2018).

Using this model, we simulated calcium-mediated neurite retrac-
tion in control cells. We found that the model is able to capture the 
dynamics of neurite retraction events (Figure 3C). These models uti-
lized experimental retraction data collected using differentiated 
PC12 cells transfected with small amounts of mCherry-actin to fit the 
phenomenological constants (Figure 3). Effectively, the model pre-
dicts that when the force exerted by actin is matched by the force 
due to tension, there is no change in the length of the neurite. Upon 
increase in PI(4,5)P2 hydrolysis and calcium release into the cytosol, 
the forces due to membrane cortical tension increase, while the 
forces exerted by the actin decrease, and the neurite pulls back.

If this prediction is true, then we should be able to alter neurite 
retraction behavior by altering the expression of actin-related 
proteins or membrane tension separately. We next probed 
neurite retraction dynamics by varying the concentration of select 

FIGURE 3:  Modeling of neurite retraction. (A) Simplified schematic of actin dynamics depicting assembly/disassembly 
as a combination of effects due to actin, cofilin, and drebrin concentration. (B) Example of retraction in response to 
carbachol stimulation of differentiated PC12 cells transfected with mCherry-actin. Identical behavior was seen over an 
average of eight neurites shown in E. (C) Computational results for neurite retraction determined from the described 
model. (D) Calculation of force plots due to increased tension in response to PI(4,5)P2 hydrolysis, internalization of 
ligand-bound GPCRs, and tension effects. The force due to actin decreases and switches direction in response to actin 
breakdown and retrograde flow. (E) Table showing variation of retraction times under the same conditions.
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FIGURE 4:  Experimental validation of model predictions. (A–C) Schematic of the experimental study to test the actin 
force model where mCherry-actin, mCherry-cofilin, or eYFP-Drebrin was expressed at varying levels in PC12 cells using 
increasing amounts of DNA in the transfections. The corresponding images are shown directly below. While cofilin 
activity is mediated by calcium, actin and drebrin dynamics depends on local concentrations. Column 1 (panels 
A, D, G, J, M, Q, U) is results from studies following mCherry-actin expressed in PC12 cells. The increase in actin, as 
estimated by Western blotting, reduces the change in the actin force. Panel D is an example image of cells before 
carbachol stimulation. G is 15 min poststimulation, showing the beginning stage of actin breakdown, indicated by the 
white box, and J is 30 min poststimulation. A representative retraction velocity curve is shown in M. Panels Q and U are 
the results of modeling the retraction velocity (Q) due to a tension force and an actin force (U). We note that the 
overexpression of actin leads to less of a decrease in actin force, since the increased actin concentration slows overall 
actin breakdown. Column 2 (panels B, E, H, K, N, R, V) shows how cofilin overexpression creates a large negative actin 
force to increase the rate of disassembly as shown in the schematic B. Panel E is an example image of cells expressing 
cofilin-RFP before carbachol stimulation, H is 7 min poststimulation, and K is 16 min poststimulation. A representative 
retraction velocity curve is shown in N. Panels R and V are the results of modeling the retraction velocity (R) due to the 
tension force and a larger negative actin force (V) since increased cofilin concentration increases actin breakdown. 
Column 3 (panels C, F, I, L, O, S, W) shows how drebrin overexpression slows the change in actin force as shown in 
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actin-related proteins such as cofilin, drebrin, and actin itself, both 
in experiments and in modeling.

Actin modulators regulate neurite retraction velocity
We followed actin disassembly in real time during carbachol-stimu-
lated retraction using mCherry-actin in control cells and cells overex-
pressing cofilin or drebrin (Figure 4). Cofilin increases severing of 
actin filaments, increasing actin filament breakdown, while drebrin 
stabilizes actin filaments, inhibiting disassembly (McCullough et al., 
2008; Mikati et al., 2013; Calabrese et al., 2014; Grintsevich and 
Reisler, 2014). Figure 4, D–L, shows screen shots of the time lapse 
video made during retraction: Figure 4, D–F, shows representative 
cells before stimulation with carbachol, Figure 4, G–I, shows the 
same cells at the beginning of retraction, and Figure 4, J–L, shows 
the cells at longer times. Movies of retraction (SOM2) were analyzed 
to obtain the retraction velocities under the three different condi-
tions (Figure 4, M–P). This quantification enables the comparison of 
the neurite retraction dynamics of actin in our controls versus actin 
when cofilin and drebrin are overexpressed. As expected, overex-
pression of cofilin enhances the rate of neurite retraction (Figure 4, 
M vs. N), and complete retraction results in cells with a trapezoidal 
morphology rather than the circular one typifying undifferentiated 
PC12 cells. This altered morphology likely stems from the smaller 
number of actin filaments throughout the cell due to cofilin overex-
pression (Pavlov et al., 2007).

We expected that transfection of the cells with drebrin would 
strongly impede neurite retraction in the presence of carbachol, be-
cause drebrin is known to bind assembled actin filaments (F-actin) 
and stabilize them (Sharma et al., 2011; Mikati et al., 2013; Nair 
et al., 2017). Small amounts of actin allowed a sustained linear de-
crease (Figure 4O) whose compiled average was within error of 
mCherry-actin alone (Figure 4P). These data support the idea that 
disruption of the intact actin network and its dynamic modeling 
when impeded by cofilin overexpression (increased severing) or by 
drebrin overexpression (inhibition of disassembly and remodeling) 
are key driving forces in governing retraction dynamics.

We modeled overexpression of cofilin, drebrin, and actin in the 
mechanical framework by altering the Factin terms (Eq. 5) to repre-
sent the known effects of these proteins through the k contributions 
for each protein. We modeled actin force overall as a stress–strain 
relationship, where the k terms captured the contribution of each 
protein to overall actin force dynamics. For example, cofilin expres-
sion was incorporated into our constitutive equation as an increase 
in the total cofilin available for calcium activation, which therefore 
caused a faster decrease in Factin by increasing the magnitude of the 
rate of change of Factin through the kcofilin term. As a result, our 
model predicts that neurite retraction velocity is higher for cofilin 
overexpression than for controls (Figure 4, R and V). Similarly, we 
modeled drebrin overexpression by increasing drebrin concentra-
tion within the kdrebrin term, consistent with experimental observa-
tions that a higher drebrin concentration slows actin depolymeriza-
tion and thus slows the decrease in Factin (Sharma et al., 2011; Mikati 
et al., 2013). Therefore, our model predicts that drebrin overexpres-

sion slows neurite retraction velocity relative to that in controls 
(Figure 4, S and W). Actin overexpression can be modeled in a 
similar manner to that of drebrin and is captured through the kactin 
term. Thus, increasing actin concentration is essentially increasing 
the actin-to-cofilin ratio and therefore slowing the decrease in Factin. 
Our model predicts that actin overexpression will slow neurite 
retraction velocities from those for controls (Figure 4, Q and U).

The results in Figure 4 show that by varying cofilin, drebrin, and 
actin concentrations, we predict different actin force dynamics that 
translate to different neurite retraction rates. Specifically, we predict 
that cofilin, actin, and drebrin overexpression leads to more rapid, 
slower, and slightly slower neurite retraction velocities than in con-
trols, respectively. Our modeling results agree with experimental 
observations and suggest that actin disassembly and inhibition of 
reassembly are necessary for retraction. To support these studies, 
we quantified experiments that measured retraction of control cells 
and cells that overexpressed actin, cofilin, and drebrin. The experi-
mental velocities of the retractions are plotted in Figure 4P and 
validate our model predictions in Figure 4X.

Neurite retraction can be driven by membrane tension.
Given that there are two contributions to the force acting on the 
neurite, one from actin and the other from membrane cortical ten-
sion, we next asked whether neurite retraction could be driven by 
changes to the membrane cortical tension alone. We directly tested 
this idea using hyperosmotic stress to increase membrane tension. 
Increasing the hyperosmotic stress from 300 to 600 mOsm on cul-
tured PC12 cells resulted in the same retraction behavior and time 
scale as seen with carbachol stimulation (Figure 5A). To determine 
the change in membrane tension induced by this change in osmo-
larity, we measured tension by atomic force microscopy (AFM). This 
method allowed us to assess the stiffness of cells by measuring the 
amount of deflection experienced by a cantilever with a known 
spring constant as it indented the surface of the cell. For undifferen-
tiated, differentiated, and retracted PC12 cells, AFM measurements 
were taken at the bases of the neurites or retracted neurites. The 
stiffness of each cell was determined by averaging the stiffness val-
ues at three separate locations on each cell in order to combat the 
inherent heterogeneity in cell structure while ensuring no localized 
damage from a previous measurement. Undifferentiated cells were 
the stiffest condition tested, followed by retracted and then differ-
entiated (Figure 5B).

We also used AFM to determine the stiffness of cells subjected 
to hypoosmotic and hyperosmotic stress for undifferenced and dif-
ferentiated PC12 cells. Hypoosmotic and hyperosmotic stress, 
which lead to cell swelling and cell dehydration, respectively, result 
in an increase and a decrease in cell stiffness, respectively (Figure 
5B). Force curves that are representative of the average stiffness 
value for each condition show a smooth Hertz model relationship 
between indentation depth and applied force, as expected (Figure 
5, C and D). Taken together, these studies show a direct correlation 
between cell stiffness and osmotic stress, which is also correlated 
with retraction.

schematic C. Panel F is an example image of cells expressing drebrin-eYFP before carbachol stimulation. I is 15 min 
poststimulation, and L is 30 min poststimulation. A representative retraction velocity curve is shown in O. 
A representative retraction velocity curve is shown in O. Panels S and W are the results of modeling the retraction 
velocity (S) due to the tension force and the actin force (W). We note that increased drebrin concentration resists actin 
breakdown. Panels P, T, and X are compiled retraction velocities obtained experimentally (P) control (n = 4), actin (n = 4), 
cofilin (n = 3), and drebrin (n = 4) showing standard error, and computationally (T) and (X), showing the very close 
correlation between experimental and theoretical results. All scale bars = 20 µm.
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Within our model, we can also probe neurite retraction dynamics 
by varying the contribution of tension, the τ component of the 
mechanical model. Membrane cortical tension is altered under 
hyperosmotic conditions when water expulsion from the cell leads 
to a reduction in volume–to–surface area ratio. Therefore, to model 
hyperosmotic conditions instead of a carbachol stimulus, we predict 
that this volume–to–surface area ratio change causes an increase in 
membrane cortical tension. Therefore, we model a slightly elevated 
membrane cortical tension initial condition that triggers a related 
force (Figure 5E) and neurite retraction (Figure 5F). We also see a 
change in actin force, triggered by the coupling between actin and 
tension in the model, which is also predicted experimentally due to 
the necessary actin reorganization during retraction caused by 
hyperosmotic conditions. Therefore, our model predicts neurite 
retraction in the absence of a ligand stimulus with hyperosmotic 
conditions (Figure 5F), indicating that membrane cortical tension is 
a key component governing neurite retraction dynamics.

We tested whether the retraction that results from osmotic stress 
is convergent with the Gαq/PLCβ pathway. Keeping in mind that 
membrane compression regulates calcium flux to drive actin 

dynamics in model systems (Hartzell et al., 2016; Nourse and Pathak, 
2017; He et al., 2018), we determined whether hyperosmotic stress 
would open calcium channels to allow divalent cation influx to re-
lieve the osmotic stress. Using a fluorescent calcium indicator, we 
found that increasing the osmotic strength from 300 to 600 mOsm 
resulted in a small increase in intracellular calcium by ∼10% of the 
increase seen for ACh stimulation. To verify that calcium is mediat-
ing retraction, we removed extracellular calcium from the media and 
found that even though increasing the osmotic strength through the 
addition of KCl caused membrane folds and puckering, consistent 
with a loss in cell volume, neurite length remained constant (Figure 
5G). This result indicates that the two types of retraction pathways 
converge on calcium levels, those initiated by Gαq/PLCβ stimula-
tion and those initiated by extracellular calcium influx by tension-
sensitive calcium channels.

Prolonged exposure to Gαq agonists leads to nerve ring 
disruption in Caenorhabditis elegans
To determine whether we could disrupt neuronal connections and 
retract neurites in a neuronal network, we used the optically clear 

FIGURE 5:  Neurite retraction can be induced by membrane tension in response to hyperosmotic stress. (A) Phase 
contrast images of PC12 cells under isotonic conditions (300 mOsm, top left) and hyperosmotic conditions (450 mOsm, 
bottom left) after 10 min. The corresponding neurite retraction curve for the cell on the left is shown to the right. 
(B) Cell stiffness as measured by atomic force microscopy of undifferentiated and differentiated PC12 cells under 
isotonic conditions and cells subjected to hypoosmotic (150 mOsm) or hyperosmotic (450 mOsm) stress, where the 
number of cells n = 14–46, and where **p < 0.01, ***p < 0.001. (C, D) Force curves representative of the average 
stiffness values in B with automated Hertz model fitting (see methods) over 500 nm indentation for untreated cells (left) 
and hypoosmotic/hyperosmotic treated cells (right). (E, F) Hyperosmotic stress is modeled as an instantaneous increase 
in membrane tension due to the reduction in volume–to–surface area ratio, which causes a membrane tension increase 
and a smaller cytoskeletal force (E) and triggers neurite retraction through an increase in primary tension force (F), in the 
absence of ligand input. (G) Phase contrast images of differentiated PC12 cells before the application of osmotic stress 
(left) and after increasing the osmolarity from 300 to 600 mOsm in calcium-free medium. Note the loss in cell volume 
seen by membrane puckering but without retraction (right)
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FIGURE 6:  Neurite retraction induced by membrane tension is seen in the neural network of 
C. elegans. (A) General schematic of the nervous system of C. elegans. (B) Untreated C. elegans 
that expresses GFP G-CAMP through the nerve ring and ventral nerve. (C) A representative 
worm with 1 mM carbachol for 30 min showing a broken nerve ring and pilling ventral nerve. 
(D) A representative worm subjected to hyperosmotic stress showing a broken nerve ring. 
(E) Table showing the compiled results of each experimental condition and the number of 
resulting nerve rings that were broken. (F) Results of a chemotaxis assay testing movement of 
C. elegans with and without l mM carbachol treatment.

model system C. elegans. We first used a strain of C. elegans 
(QWl166) that expresses an integrated fluorescent calcium sensor 
G-CaMP throughout the nervous system. This system allows us to 
visualize by fluorescence the neurons that show increased calcium 
levels in response to acetylcholine stimulation. This specific strain 
has fluorescence in every neuron in the nerve ring, allowing us to 
look at the ring as a whole, as well as fluorescence in the entire ven-
tral nerve of the worm, which extends the entire length of the worm. 
We focused on acetylcholine signals emanating from neurons within 
the nerve ring located in the head of the worm and along the ventral 
nerve cord (Figure 6A). Normal signal transmission can be seen in 
the images in Figure 6B. For these studies, we wished to determine 
only whether there is broad neuronal rupture and retraction within 
the nerve ring and along the ventral nerve, which would be indi-
cated by the lack of fluorescence in the center in the ring and dark 
spots along the ventral nerve. In every worm tested (n = 10), we find 
neuronal rupture with acetylcholine stimulation that occurs in the 
nerve ring close to the organism’s mouth (Figure 6C). Additionally, 
we see a distinct pilling of the ventral nerve, which displays thinning 
and clustering, and portions that are no longer fluorescent, indicat-
ing large-scale neuronal damage.

We confirmed the connection between neuronal network disrup-
tion produced by extended acetylcholine stimulation to membrane 
tension by subjecting the worms to hyperosmotic stress (increasing 
the salt solution concentration by 50%). After osmotic stress, these 
organisms showed a lack of fluorescence in the nerve ring, indicat-

ing rupture and retraction of neurons. Also, 
we see much larger segments of the ventral 
nerve that have been disrupted with less 
pilling than seen for acetylcholine stimula-
tion (Figure 6D). The somewhat different 
morphological effects on the ventral nerve 
seen in osmotic stress are most likely due to 
the ability of the stress to be distributed 
uniformly along the length of the organism, 
as opposed to carbachol, whose receptors 
are concentrated mostly in the mouth.

To support neuronal disruption of the 
worms by acetylcholine, we followed 
changes in movement of the whole organ-
isms, using a chemotaxis assay with and 
without acetylcholine stimulation. These 
studies were also done using the C. elegans 
QWl166 strain. We see that after treatment 
with acetylcholine, 83% of the worms 
moved toward the attractant, while the re-
maining 17% did not move at all (Figure 6F).

DISCUSSION
For an organism to learn, neurons must 
break and reform connections with neigh-
boring neurons, and disruptions in these 
processes underlie learning-based neuro-
logical diseases and neurodegeneration. 
Despite the importance of synapse sever-
ing and formation, the mechanisms that 
underlie neural plasticity are not well 
understood (Licht et al., 2011). Previous 
studies of neural plasticity have mainly 
focused on contributors to neurogenesis 
in hippocampal neurons and cultured 
Drosophila neurons, such as neuronal stem 

cells (LaFerla, 2002). Here, we have defined the synaptic breakage 
and neurite rupture in neural plasticity in terms of membrane 
tension and calcium-induced retraction that will allow for predict-
able actin remodeling.

Calcium is a crucial component for the growth, differentiation, 
and survival of neurons (Rosenberg and Spitzer, 2011). Calcium 
helps to regulate the differentiation of specific neuronal types as 
well as their migration through the body, and calcium levels are di-
rectly liked to neurodegenerative diseases such as Alzheimer’s 
(LaFerla, 2002). We followed neuronal cell response to extended 
calcium signals that may mimic dysfunctional states. Unexpectedly, 
we found that extended calcium levels resulted in complete neurite 
retraction, and this retraction can be seen by following the plasma 
membrane, by a GPCR coupled to Gαq, and by PI(4,5)P2. These 
data show that the Gαq signaling pathways are intimately involved 
with the mechanical properties of the cell.

The connection between calcium signals from GPCR/Gαq and 
cell mechanics was supported using fluorescence-tagged actin 
and by measuring retraction when overexpressing cofilin, an ac-
tin depolymerizing protein, or drebrin, an actin monomer recruit-
ment protein. Overexpressing cofilin at a level 6x higher than 
endogenous levels allows for much faster velocities of neurite 
retraction initiated by GPCR-Gαq/Ca2+ after an initial lag period. 
These observations correlate well with cofilin’s ability to depoly-
merize actin, but shows that activation of the Gαq/PI(4,5)P2/
Ca2+ pathway is a necessary prerequisite. In contrast, cells 
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overexpressing drebrin show a similar retraction rate as endoge-
nous which correlates to its ability to stabilize actin monomers 
(Mikati et al., 2013). This observation indicates that the behavior 
we are viewing is due solely to actin depolymerization without 
contributions of the polymerization events. Thus, while Ca2+ 
signals drive retraction, actin plays a passive role.

There are other physiological events that might play a role in 
neurite retraction. PLCβ is the primary effector of Gαq, but we 
also note Gαq activates proteins that impact RhoA (see Sanchez-
Fernandez et al., 2014) potentially contributing to the mechani-
cal changes associated with retraction. However, this contribu-
tion will be operative only for retraction that occurs in response 
to carbachol and not osmotic stress. Additionally, the loss of 
neurites during retraction shifts its associated plasma membrane 
population to the cytosol in the cell body. This net increase in 
the cytosolic PLCβ population will promote PLCβ’s cytosolic 
roles in directing translation of specific mRNAs (see Scarlata 
et al., 2018; Scarlata, 2019), which are typically not operative 
during Gαq stimulation. The net effect of cytosolic PLCβ would 
be shifting protein populations during longer times not probed 
in this study.

The coupling between calcium signaling and mechanical 
forces has been observed in cell motility and in dendritic spines 
during long-term potentiation, astrocyte calcium signaling, and 
neurite protrusion and formation (Mutalik et al., 2018). On the 
basis of these studies, we postulated that neurite retraction 
results from changes in cortical tension brought about by recep-
tor endocytosis, PI(4,5)P2 hydrolysis and IP3 generation, and an 
increase in intracellular calcium, and we formulated a mechano-
chemical pathway to test this idea. We found that, indeed, a 
force balance between cortical tension and actin-mediated 
forces, both of which are mediated by intracellular calcium levels, 
is sufficient to capture the dynamics of neurite retraction. This 
idea was explicitly tested by measuring changes in membrane 
stiffness with osmotic strength and by altering the effects of 
different actin remodeling proteins. We also found that the 
effects of actin and cortical tension could be uncoupled to a 
certain extent, pointing toward multiple mechanical pathways 
that could exquisitely regulate neurite retraction. We acknowl-
edge that the proposed model is phenomenological, and while it 
captures the key physics of the processes underlying neurite 
retraction, future studies will focus on elaborating on some of the 
phenomenological relationships proposed here.

Our results show that acetylcholine-induced calcium signals 
may have a dramatic impact on neuronal morphology and synaptic 
connections, and this idea was demonstrated in C. elegans. 
Neurite formation and extension is essential to transition from neu-
roblast to mature neuron and C. elegans are an excellent model 
system to understand neurite formation and retraction. The site of 
nascent neurite outgrowth is determined by cell intrinsic factors 
that orchestrate the localized regulation of actin and microtubules, 
and in developing neurons, these factors are polarized at sites of 
neurite outgrowth in response to extracellular cues (Randlett, 
2011). Our finding that the neural network of this organism can be 
modified by Gαq activation or increased mechanical tension may 
form a basis for studies that better describe neural rewiring 
paradigms.

In summary, our studies indicate the role of acetylcholine in 
facilitating neurite retraction. Further research on how this pathway 
interacts with other pathways to coordinate remodeling with such 
spatiotemporal precision will provide insights into the molecular 
basis of neurodegeneration.

MATERIALS AND METHODS
Cell culture, transfection, and differentiation
PC12 cells, which are derived from rat pheochromocytoma (ATCC 
CRL-1721), were cultured in 35-mm or 100-mm poly-d-lysine–coated 
Petri dishes using DMEM (Life Technologies) with 10% heat-inacti-
vated horse serum (Life Technologies), 5% fetal bovine serum 
(Atlanta Biologicals), and 1% penicillin/streptomycin. The dishes 
were incubated with 5% CO2 at 37°C. Cells were transfected using 
different amounts of plasmid based on the concentration as tested 
using a NanoDrop. Cells were transfected using Lipofectamine 3000 
(Invitrogen) following the protocol of the manufacturer. The medium 
used in transfection was the same DMEM culture medium, with the 
exception of antibiotics to increase transfection efficiency, and the 
medium was changed back to normal culture medium after 24 h. 
Cells were differentiated using media that contained DMEM, 1% 
heat-inactivated horse serum, and 1% penicillin/streptomycin. 
Added to this would be a 1:1000 ratio of l00 ng/µl nerve growth 
factor (NGF) (Novoprotein). This medium is added to the cells for at 
least 48 h and up to 96 h to achieve long neurites.

Plasmids and maxi/min prep
Fluorescence-tagged plasmids were obtained and maxi/min 
prepped using a Qiagen kit and following the manufacturer’s guide-
lines. The plasmids were obtained from Addgene. Actin #54967 was 
derived by Michael Davidson at Harvard Medical School, Drebrin 
#40359 was derived by Phillip Gordon-Weeks at King’s College of 
London, Cofilin #51279 was derived by James Bamburg at Colo-
rado State University, the Pleckstrin homology (PH)-domain of PLC8 
#21179 was derived by Tobias Meyer at Stanford University, and the 
bradykinin type 2 receptor was modified from a construct provided 
by Fredrik Leed-Lundber, University of Texas, San Antonio.

Calcium green staining
Prior to imaging, cells were washed with Hanks’ balanced salt solu-
tion (HBSS) with calcium, magnesium, no phenol red (Thermofisher), 
and then a 1:200 mixture of HBSS and Calcium Green (Thermofisher) 
was added and allowed to incubate for 1 h before imaging.

Preparation of carbachol
Carbachol in powdered form was obtained from Sigma Aldrich. It 
was dissolved in water to a final concentration of l mM at a volume 
of l0 ml and aliquoted into 500-µl portions to be used for each 
experiment. The solutions were kept at –20°C.

Fluorescence microscopy/stimulation of cells
Fluorescence imaging was done using a Zeiss LSM510 inverted con-
focal microscope. Imaging was carried out at least 48 h after transfec-
tion and differentiation. The cells were grown and imaged in a MAT-
Tek 8 chamber glass-bottom plate or a MAT-Tek 35-mm glass-bottom 
dish. Once a single cell was found visually that expressed the plas-
mid or stain, the microscope was switched to the correct wavelength 
and laser intensity. A time series image was then started and stopped 
after 10 frames, the cells was manually stimulated by adding 
carbachol to the dish to achieve the desired final molarity, and the 
time series video was then started immediately after carbachol was 
added. Retraction velocities were determined by the software 
Re-Track (unpublished data).

Osmotic stress and EDTA studies
Osmotic stress studies were done using calcium-free isotonic media 
for imaging, with the addition of KCl at different concentrations to 
achieve osmotic stress. In studies that include EDTA (J.T. Baker), 
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cells were osmotically stressed and EDTA was added to the dish to 
give a final concentration of 0.5 μM for partial neurite retraction and 
1 μM for full neurite retraction.

Plasmid-specific studies
Calcium Green and enhanced green fluorescent protein (eGFP) 
studies were imaged using an argon laser at 488 nm. Red fluores-
cent protein (RFP) and mCherry were imaged using argon ion and 
HeNe lasers at 543 nm. YFP and CFP were imaged using argon ion 
and HeNe lasers at a wavelength of 545 nm. Multitrack imaging can 
also be done combining of these setups. Images were taken by 
alternating between probes when data for more than one were 
being monitored, and these images were subsequently merged.

Atomic force microscopy stiffness measurements
Live cells were probed utilizing an MFP-3D-BIO atomic force micro-
scope (Asylum Research) and a DNP cantilever (Bruker) with nominal 
spring constant 0.06 N/m. The cantilever was calibrated before 
each measurement to ensure accuracy. Cells were seeded on 
60 mm poly-d-lysine–coated Petri dishes using DMEM (Life Tech-
nologies) with 10% heat-inactivated horse serum (Life Technolo-
gies), 5% fetal bovine serum (Atlanta Biologicals), and 1% penicillin/
streptomycin. After 24 h of recovery, cells were differentiated using 
media containing DMEM, 1% heat-inactivated horse serum, and 1% 
penicillin/streptomycin. Added to this was a 1:1000 ratio of 100 ng/
µl nerve growth factor (NGF) (Novoprotein). This was added to the 
cells a minimum of 24 h before measurements were taken.

Cells were viewed 2 d after plating and 1 d after treatment with 
nerve growth factor (NGF). Cells with minimal cell–cell contact were 
selected to reduce the mechanical impacts of cell communication. 
Three force curves in separate perinuclear regions with cantilever 
velocity of 2 µm/s and trigger point lnN were taken for each 
selected cell. Measurements were taken within 30 min of removal 
from the incubator to facilitate cell viability.

The stiffness of the measured cells E was determined from the 
force curve data utilizing the Hertz model for conical cantilever tip 
geometry,

E kd v /1 2 tan2 2π ( )= − ∆ φ

where k is the cantilever spring constant, d is the cantilever deflection, 
ν is the Poisson’s ratio (0.5 used for an assumed incompressible 
material), ∆ is the sample indentation depth, and φ is the half-angle 
of the conical cantilever tip (35°). The force curves were processed 
using a custom MATLAB code that fits the indentation curve over a 
500 nm range after manual selection of the initial contact point.

Fluorescence imaging of Caenorhabditis elegans
Worms were transferred into a microcentrifuge tube containing 
l mM carbachol and were submerged in the tube for 30 min at room 
temperature or in 100 mM NaCl solution for 10 min. After 30 or 
10 min, respectively, the worms were removed from solution and 
placed on a glass slide with a thin layer of agar for the worms to lie 
on. Excess carbachol was wicked up from the pad and the worms 
were paralyzed using 25 M levamisole, which does not affect our 
pathway of interest. The worms were then imaged on an inverted 
confocal microscope and were visually checked for neurite rupture 
and retraction.

Chemotaxis assay of Caenorhabditis elegans
Worms were transferred to a new seeded plate 24 h before the ex-
periment. The day of the experiment an unseeded plate was marked 

with a dot in the center and two circles on either ends of the plate 
with the “C” for control of DI water and “D” for diacetyl, which is the 
attractant. Using approximately 1 ml of S Basal (5.85 g NaCl, 1 g K2 
HPO4, 6 g KH2PO4, 1 ml cholesterol [5 mg/ml in ethanol], H2O to 
1 liter; sterilize by autoclaving; see Stiernagle, 2006), the worms 
were washed into a microcentrifuge tube and allowed to pellet for 
5–10 min. Once pelleted, the worms were washed with S Basal two 
more times and finally with water. Suspended worms (10 μl) were 
transferred to the experimental plate previously made and 
the excess water was removed by wicking. The plate was then 
incubated for 45 min at 20°C, and afterward, the worms that moved 
to either the attractant or control were counted.
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Chapter 4

Does geometry influence membrane

voltage propagation in dendritic

spines and dendrites?

4.1 Introduction

Neurons use electrical signals to communicate quickly across multiple lengthscales.

This was first observed in axons where an action potential, a change in membrane volt-

age, propagates down from the soma to trigger communication to its downstream neigh-

bors. Historically, computational and mathematical models have been developed to de-

scribe these voltage dynamics, most notably the Hodgkin-Huxley model and cable equa-

tions [30,31]. Both these models can predict voltage depolarization as the sum of represen-

tative currents through voltage dependent channels, which mathematically are described

through voltage dependent gating variables and reverse potentials. This approach was

very successful and helped shepherd in the era of computational modeling into both the

neuroscience community and the larger biophysics community [30].
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Voltage propagation occurs on other portions of neurons as well, including along

dendrites and within dendritic spines [32]. Studies have used cable equations and sim-

ilar models to predict voltage in dendrites [33], but there are geometric constraints in

some dendrites and in dendritic spines that begin to potentially violate the assumptions

underlying those models. More specifically, we need to capture the small lengthscales,

complex morphologies, and heterogeneous channel and receptor distributions of dendritic

spines [7, 34, 35], and the cable equation has limitations to its spatial and biochemical

representations and assumptions.

Therefore, we use a computational model to investigate how morphology influences

membrane voltage propagation from a biochemical and electrical perspective. We want

to investigate the propagation of voltage in both dendrites and dendritic spines [36–39].

Fundamentally membrane voltage refers to a difference in ion concentration across a mem-

brane [40]; thus we propose the use of reaction-diffusion dynamics and Hodgkin-Huxley

and Morris-Lecar inspired dynamics to model membrane potential explicitly as a function

of spatial ion concentration [41]. In this way, we can directly relate membrane voltage to

ion movement, neuronal morphology, and ion channel properties and localization.

4.2 Methods

4.2.1 Mathematical Model

To address membrane voltage change in response to receptor and channel activation,

we developed 2D axisymmetric and 3D reaction-diffusion models in COMSOL with coupled

membrane voltage and membrane fluxes for various ions. We explicitly model Na+, K+,

Ca2+, and Cl- in the extracellular space (ECS), cytoplasm, and endoplasmic reticulum

(ER) using reaction-diffusion dynamics. Each ion has boundary conditions corresponding
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to ion influx or efflux through voltage-dependent channels, and the receptors AMPAR and

NMDAR for the dendritic spine cases. We consider several different model geometries

including a thin dendritic spine and dendrites.

4.2.2 Equations

Reaction diffusion dynamics

The various ion dynamics are given by reaction diffusion dynamics. For some ion

Y, its volumetric dynamics are given by

∂Y

dt
= DY∇2Y − f(Y, ...), (4.1)

where f(Y,...) are any volumetric reaction rates, and DY is the diffusion coefficient for ion

Y. In this framework, membrane flux is given by

−DY n · ∇Y = JY , (4.2)

where JY captures any membrane flux reaction terms for the ion Y through specified

boundaries.

Membrane voltage formulation

Membrane voltage is based on a combination of Hodgkin-Huxley and Morris-Lecar

dynamics. For models of dendritic segments, several channels contribute to membrane

dynamics including voltage-sensitive calcium channels, voltage-sensitive sodium channels,

and voltage-sensitive potassium channels [42]. In dendritic spines, contributing currents

come from AMPAR, SK channels, voltage-sensitive calcium channels, voltage-sensitive

sodium channels, voltage-sensitive potassium channels, and NMDAR [31, 43]. Membrane
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potential is given by

∂Vm
∂t

=
−1

Cm

(
∑
x

Ix), (4.3)

where Ix is the current due to the respective channel x. Voltage dynamics are

determined by the sum of all currents through the various channels. Voltage is defined as

a partial differential equation because it is defined everywhere on the membrane, but it

has no explicit diffusion term. Therefore, any change in voltage is due to ion movement

that changes the currents, Ix, in the equation above.

The current equations are given in the form of

Ii = gim
n
i (Vm − Ei), (4.4)

where i is the channel type, g is the channel conductance [pS], m is a gating parameter

raised to the nth power, and E is the reverse potential of the channel. We explain these

various components below.

Reverse potential formulation

The reverse potential, E, captures the difference in ion concentration across a mem-

brane. When the membrane is in thermodynamic equilibrium (no net flux of ions), E for

a specific ion is equal to the Nernst potential given by

E =
RT

zF
ln
YEC

Ycyto
, (4.5)

where Y is the ion of interest, R is the universal gas constant, T is temperature in

Kelvin, F is the Faraday constant, and z is the charge of the ion. For a postsynaptic neuron,

the reverse potential for the neurotransmitter receptor’s ion channel is the membrane
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potential at which a given neurotransmitter causes no net current flow of ions. However,

for the reverse potential when considering all ions that cross the membrane, the Goldman-

Hodgkin-Katz equation is used [30]. The Goldman equation is used when there are active

ion pumps and the cell is not in equilibrium, and is given by

E =
RT

F
ln(

∑
P+Y +

EC +
∑
P−Y −

EC∑
P+Y +

cyto +
∑
P−Y −

cyto

), (4.6)

where P is permeability [m/s].

When considering voltage across an internal membrane such as the endoplasmic

reticulum, we use the same formulation with Yout

Yin
now referring to Ycyto

YER
. Therefore, the

reverse potential for each channel current is defined at each location on the membrane and

is dependent on the ion concentrations at that location.

Gating parameters formulation

The gating parameters are typically nonlinear functions of voltage, or calcium in

the cause of SK channels. The two most common forms for the gating parameter equations

are, for some gating parameter n,

dn

dt
=
n∞ − n

τn
(4.7)

or

dn

dt
= α(1− n)− βn. (4.8)

These two forms are related through

n∞ =
α

α + β
(4.9)
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and

τn =
1

α + β
. (4.10)

α and β are typically exponentials with voltage dependence [43], see Tables 4.1,

4.2, and 4.3 for their form and parameters. Channels will have specific gating variables

with parameters tuned for that specific channel behavior.

4.2.3 Boundary Conditions

Each current terms in Eq. 4.3 corresponds to the total current through a channel

or receptor. However the current, Eq. 4.4, can have contributions due to various ions.

Therefore, membrane flux terms for each ion are defined as

Jy =
∑
x

ηνµIx, (4.11)

where η is some fraction that captures what percentage of the current through channel x

is due to ion y, ν is a conversion factor between charge and ions, and µ is a conversion

factor between ions and moles.

External stimulus of the system

Simplified models have an external current, Iext, as the stimulus. For this spatial

model, we consider this stimulus as a membrane source defined as

Jext =
Iext
Cm

, (4.12)

which we apply over a specific membrane area. The magnitude of Iext can vary and here

we model the stimulus as a square wave lasting 10 ms.
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4.2.4 Dendrite specific equations

The Hodgkin-Huxley and Morris-Lecar equations were designed for membrane volt-

age in axons, and here we first apply them to dendrites [43]. Therefore, voltage along the

PM of the dendrite is given by

dVm
dt

=
−1

Cm

(ICa + INa + IK + ICl − IP ), (4.13)

where IP is the current due to the sodium-potassium pump.

4.2.5 Dendritic spine specific equations

Dendritic spines have specialized receptors and channels compared to the dendrite.

The exact composition and distribution of these channels and receptors are not well known.

Considering some of these specialized channels and receptors, we write voltage along the

PM of the dendritic spine as

dVm
dt

=
−1

Cm

(IA + IN + ISK + IL), (4.14)

where IA is the current due to AMPAR, IN is the current due to NMDAR, ISK is

the current due to SK channels, and IL is the current due to a leak term [44]. However, we

can make additional changes to this equation to fully capture additional channels present

in dendritic spines, such as those from voltage dependent calcium, sodium, and chloride

channels. With these considerations, we get

dVm
dt

=
−1

Cm

(IA + IN + ISK + ICa + INa + ICl − IP ). (4.15)

For this model, instead of an artificial step function for the external current stim-
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ulus, the stimulus is the activation of AMPAR and NMDAR due to glutamate binding.

We implement the AMPAR and NMDAR currents only at the postsynaptic density (PSD)

region at the top of the spine head.

4.3 Results

4.3.1 Simplified approach in dendrite segment shows effects of

ultrastructure

We first implement a model for membrane voltage propagation in a dendrite with

a combination of traditional Hodgkin-Huxley and Morris-Lecar channel dynamics. The

spatial model generates a spike with characteristic dynamics seen in neurons, see Fig. 4.1.

We model voltage in a cylindrical dendrite with a half micron radius and an oscillating ER

structure acting as an excluded volume. We have an artificial external current as the input

to the system, which we apply to the bottom half of the dendrite. An external current of

5 µA
cm2 was applied over an area of 2.3562 µm2. The membrane voltage propagates upward

from the stimulated area, as seen in Fig. 4.2. The oscillating ER structure appears to

alter the propagation of the membrane voltage depending on the distance between the ER

and PM.

4.3.2 Simplified approach in toroid demonstrates halting of volt-

age propagation

Building on the results from the section of dendrite, a toroid with similar dimensions

to the dendrite was constructed with the same governing voltage and ion equations as the

dendrite model. We stimulate a quarter of this toroid with an external current, such that

39



Figure 4.1: Temporal dynamics of membrane voltage propagation along the plasma
membrane of a dendrite. The resting membrane voltage is ∼-70 mV while the maximum
depolarization is∼20 mV. The classic sections of an action potential in a neuron can be seen
with depolarization, repolarization, hyperpolarization, and return to resting membrane
voltage.
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Figure 4.2: Spatial dynamics of membrane voltage propagation along the plasma mem-
brane of a dendrite at 30 ms. The spike moves upwards from the stimulated lower half of
the dendrite.
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an area of 4.9342 µm2 was stimulated with a current of 50 µA
cm2 . We see that due to the

symmetry of the model, spiking propagates from both sides of the activated section, and

interestingly, two spikes appear at both ends, separated by a certain length and time, see

Fig. 4.3. Furthermore, as the spike propagates around the toroid, the difference between

the perimeter on the inner and outer radius of the toroid becomes apparent as the spiking

on the outer radius begins to lag behind the spiking at the inner membrane, see Fig. 4.4.

Given enough time, in this case about 100 ms, the spikes meet at the other side of the

toroid and annihilate each other.

4.3.3 Simplified approach in dendritic spines shows no spatial

gradients

As a first step, we implement the same system as the dendrite and toroid model

in a dendritic spine geometry taken from [3]. We localize the external stimulus to the

post-synaptic density (PSD) region at the top of the spine head. We apply a stimulus of

41 µA
cm2 over the PSD area of 0.076 µm2. We see a similar temporal profile as the dendrite

and toroid trials but with a more gradual depolarization section, see Fig. 4.5. However,

the dendritic spine shows no spatial gradient for membrane voltage.

4.3.4 Specialized model in dendritic spines highlights numerical

complexity of model

We then implement the full specialized system of equations in the dendritic spine

geometry. We localize AMPAR and NMDAR currents and fluxes to the postsynaptic

density (PSD) region at the top of the spine head. Using this set of equations, we found

that our system is not properly tuned to generate realistic spiking dynamics. For instance,

activation of the PSD region lead to numerous spikes with a larger membrane voltage range
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Figure 4.3: Temporal dynamics of membrane voltage propagation along the plasma
membrane of a toroid. The resting membrane voltage is about -70 mV while the maximum
depolarization is about 40 mV. There are two spikes emitting from both sides of the
stimulated area and are separated by about 10 ms.
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Figure 4.4: Spatial dynamics of membrane voltage propagation along the plasma mem-
brane of a toroid. Two spikes initiate from both sides of the activated region and follow
each other around the toroid.
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Figure 4.5: Temporal dynamics of membrane voltage in a dendritic spine with the simpli-
fied model. The dendritic spine shows similar temporal dynamics to the dendrite segment,
but without any spatial gradient.
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Figure 4.6: Membrane voltage in a dendritic spine with the more complex spiking model.
Despite the spherical spine head being symmetric with respect to its PSD, voltage propa-
gated non-symmetrically and feedback in the system lead to spiral formations.

than experimentally observed. Therefore, further tuning and parameter adjustments must

be made to specialize the voltage model to the dendritic spine. Additionally, due to the

coupled nature of the system, small numerical errors have severe consequences on the

results and mesh quality can impact the results, as seen in Fig. 4.6 where mesh quality

lead to voltage spirals.

4.4 Discussion

Based on these results, we can make several conclusions regarding membrane volt-

age propagation and membrane morphology. In particular, we expect that the area and

magnitude of stimulation plays an important role in spiking frequency and amplitude. The
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presence of two pairs of spikes in the toroid was most likely due to the large area of stim-

ulation, while the multiple spikes in the dendritic spine was mostly likely due to extended

activation time or magnitude. We predict that the subsequent annihilation of the spikes

when they collided in the toroid was due to the deactivation of channels preventing further

spiking behavior. We also predict that the time period of stimulation plays an important

role as extended stimulation could cause deactivation of certain channels.

Ultrastructure also plays a role in membrane voltage propagation, with the ER

structure altering the voltage dynamics in the dendrite section. Therefore, we predict

that PM-ER contact sites could play important roles in modulating membrane voltage

propagation. An outstanding question that remains is the potential role of membrane

voltage propagation in the ER. It has recently been shown that the ER has a change in its

membrane potential associated with the change in PM membrane voltage [45]. Therefore,

it is possible that the ER, or spine apparatus, has a role in propagating electrical signals

within neurons or influencing the electrical activity on the PM. Our collaborators explored

this question and found that the ER might actually suppress its voltage propagation in

neurons (Evan P. Campbell, Ahmed A. Abushawish, Miriam K. Bell, Melita Haryono,

Padmini Rangamani, and Brenda L. Bloodgood. ”Electrical signals in neuronal ER: large,

linear, and spatially restricted.” (in review)).

The dendritic spine shows no spatial gradient in membrane voltage when using the

same equations as the dendrite model, which might be due to the short lengthscale and

small volume of the dendritic spine. The cytoplasm of the dendritic spine is a crowded,

actin-dense environment, potentially creating a slower effective diffusion coefficient for the

cytosolic ions which might make a voltage gradient possible [46].

It should be noted that various parameters in this simplified model are actually

variables with calcium-dependent properties; in particular, various channel permeabilities
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are calcium-sensitive. Therefore, it is vital to consider the role of calcium influx on variable

channel permeabilities. There are many additional factors to consider including the spatial

distribution of ion channels and receptors, particularly in the dendritic spine; the identities

and properties of channels and receptors; and the presence of a spine apparatus [3, 47].

Additionally, while not shown here, we also considered voltage propagation in ta-

pered dendrites and between mother and daughter dendrites. Directionality of voltage

propagation in dendrites has been shown to matter for voltage speed and propagation

distance [33,48], but the reasons for the asymmetry of propagation dynamics are not fully

understood. We found that using our model, our voltage propagation speeds were consis-

tently several orders of magnitude smaller than what has been experimentally recorded.

There are several potential reasons for this: 1. The wave speed might be parameter

dependent as was found for another pseudo-wave, a curvature wave due to bar protein

recruitment [49, 50]; or 2. We are lacking a component of the model. In particular, it

might be necessary to consider contributions due to electrodiffusion in this system due to

the high concentrations of charged ions in small spaces [51, 52].

While we present a simplified signaling model, this work is a critical first step in cou-

pling signaling, electrical activity, and morphology in dendrites and dendritic spines. Cou-

pling reaction-diffusion dynamics and membrane flux boundary conditions with Hodgkin-

Huxley and Morris-Lecar style voltage dynamics can generate realistic membrane potential

spikes in both dendrites and dendritic spines. Much work remains to generate more spe-

cialized models that take into account biophysical and biochemical considerations such

as specialized receptors and channels within dendritic spines, membrane flux distribution,

and ultrastructure, and additional phenomena such as electrodiffusion.
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Table 4.1: Equations in model for all PM voltage.

Equation Expression Meaning Reference

INa+ (gNaL + gNa ∗m3 ∗ h)(VPM − ENa) Na+ channel current [43]

IK+ (gKL + gK ∗ n4)(VPM − EK) K+ channel current [43]

ICl− (gClL)(VPM − ECl) Cl- channel current [43]

ICa2+ (gCa)r2s(VPM − ECa) Ca2+ channel current [42]

rm am(1−m)− bmm
1
s

[43]

am
am1(VPM+amV 1)

1−exp(
−(VPM+amV 2)

amV 3
)

1
s

[43]

bm bm1 ∗ exp(−(VPM−bmV 1)
bmV 2

) 1
s

[43]

rh ah(1− h)− bhh
1
s

[43]

ah ah1 ∗ exp(−(VPM+ahV 1)
ahV 2

) 1
s

[43]

bh
bh1

1+exp(bhV 1(VPM−bhV 2))
1
s

[43]

rn an(1− n)− bnn
1
s

[43]

an
an1(VPM+anV 1)

1−exp(
−(VPM+anV 2)

anV 3
)

1
s

[43]

bn bn1 ∗ exp(−(VPM+bnV 1)
bnV 2

) 1
s

[43]

rr
dr
dt

= r∞−r
τr

1
s

[42]

r∞
1

1+exp(
−(VPM+rinfV 1)

rinfV 2
)

1
s

[42]

τr

tr1+ 1

exp(
VPM−trV 1

trV 2
)+exp(

−(VPM+trV 3)
trV 4

)

tr2
1
s

[42]

r˙s ds
dt

= s∞−s
τs

1
s

[42]

s∞
1

1+exp(
−(VPM+sinfV 1)

sinfV 2
)

1
s

[42]

τs

ts1+ 1

exp(
VPM+tsV 1

tsV 2
)+exp(

−(VPM+tsV 3)
tsV 4

)

ts2
1
s

[42]

Ip ρ(1 + exp(
ANa+−Nacyto

BNa+
))−1(1 + exp(

AK+−KEC

BK+
))−1
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Table 4.2: Subset of parameters in model for all PM voltage.

Parameter Value Units Reference

Cm 1 µF
cm2 [43]

gNaL 0.0175 mS
cm2 [43]

gNa 100 mS
cm2 [43]

gK˙L 0.15 mS
cm2 -

gK 40 mS
cm2 [43]

gClL 0.05 mS
cm2 [43]

gCa 1.1 mS
cm2 -

am1 0.1 1
msmV

[43]

amV1 30 mV [43]

amV2 30 mV [43]

amV3 10 mV [43]

bm1 4 1
ms

[43]

bmV1 55 mV [43]

bmV2 18 mV [43]

ah1 0.07 1
ms

[43]

ahV1 44 mV [43]

ahV2 20 mV [43]

bh1 1 1
ms

[43]

bhV1 -0.1 1
mV

[43]

bhV2 24 mV [43]

an1 0.01 1
msmV

[43]

anV1 34 mV [43]

anV2 34 mV [43]

anV3 10 mV [43]

bn1 0.125 1
ms

[43]

bnV1 44 mV [43]

bnV2 80 mV [43]
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Table 4.3: Rest of parameters in model for all PM voltage.

Parameter Value Units Reference

rinfV1 20 mV [42]

rinfV2 7.4 mV [42]

tr1 3 1 [42]

tr2 3 1 [42]

trV1 5 mV [42]

trV2 10 mV [42]

trV3 70 mV [42]

trV4 15 mV [42]

sinfV1 48 mV [42]

sinfV2 5 mV [42]

ts1 350 1 [42]

ts2 3 1 [42]

tsV1 16 mV [42]

tsV2 4 mV [42]

tsV3 375 mV [42]

tsV4 50 mV [42]

ρ 5.25 µA
cm2 [43]

ANa+ 25 mM [43]

BNa+ 3 mM [43]

AK+ 5.5 mM [43]

BK+ 1 mM [43]
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RESEARCH ARTICLE

Dendritic spine geometry and spine apparatus
organization govern the spatiotemporal dynamics of
calcium
Miriam Bell1, Tom Bartol2, Terrence Sejnowski2,3, and Padmini Rangamani1

Dendritic spines are small subcompartments that protrude from the dendrites of neurons and are important for signaling
activity and synaptic communication. These subcompartments have been characterized to have different shapes. While it is
known that these shapes are associated with spine function, the specific nature of these shape–function relationships is not
well understood. In this work, we systematically investigated the relationship between the shape and size of both the spine
head and spine apparatus, a specialized endoplasmic reticulum compartment within the spine head, in modulating rapid calcium
dynamics using mathematical modeling. We developed a spatial multicompartment reaction–diffusion model of calcium
dynamics in three dimensions with various flux sources, including N-methyl-D-aspartate receptors (NMDARs), voltage-
sensitive calcium channels (VSCCs), and different ion pumps on the plasma membrane. Using this model, we make several
important predictions. First, the volume to surface area ratio of the spine regulates calcium dynamics. Second, membrane
fluxes impact calcium dynamics temporally and spatially in a nonlinear fashion. Finally, the spine apparatus can act as a
physical buffer for calcium by acting as a sink and rescaling the calcium concentration. These predictions set the stage for
future experimental investigations of calcium dynamics in dendritic spines.

Introduction
Dendritic spines, small protein- and actin-rich protrusions
located on dendrites of neurons, have emerged as a critical
hub for learning, memory, and synaptic plasticity in both
short-term and long-term synaptic events (Bourne and Harris,
2008; Rangamani et al., 2016). These subcompartments pro-
vide valuable surface area for cell–cell interaction at synapses,
and compartmentalization of signaling proteins to control and
process incoming signals from the presynaptic terminal
(Nishiyama and Yasuda, 2015; Yasuda, 2017). Thus, dendritic
spines are hotbeds of electrical and chemical activity. Since
calcium is the first incoming signal into the postsynaptic
terminal, calcium temporal dynamics have been extensively
studied experimentally and more recently computationally
(Denk et al., 1996; Augustine et al., 2003; Bloodgood and
Sabatini, 2005; Bartol et al., 2015b; Yasuda, 2017). In partic-
ular, calcium acts as a vital second messenger, triggering
various signaling cascades that can lead to long-term poten-
tiation, long-term depression, actin cytoskeleton rearrange-
ments, and volume expansion, among other events (Holmes,
1990; Bourne and Harris, 2008; Rangamani et al., 2016).

Dendritic spine activity has numerous timescales, with
signaling pathways operating on the millisecond to the hour
timescale following spine activation (Yuste et al., 2000; Segal,
2005; Rangamani et al., 2016). Calcium dynamics are on the
millisecond timescale, since calcium is the second messenger
that floods the spine following the release of neurotransmitter
from the presynaptic terminal. The temporal dynamics of
calcium have provided valuable insight into the signaling
dynamics in dendritic spines, and it is quite clear that calcium
dynamics are influenced by a large number of factors. Mul-
tiple studies have connected the electrical activity of the
plasma membrane (PM) voltage to calcium dynamics of
N-methyl-D-aspartate receptors (NMDARs; Jahr and Stevens,
1993; Shouval et al., 2002; Rackham et al., 2010). The elec-
trophysiology of dendritic spines influences many signaling
dynamics through voltage-sensitive (or voltage-dependent)
ion channels (Jaffe et al., 1994), and thus, models of these
dynamics can be linked to downstream signaling.

Calcium is critical for almost all the reactions in the brain
(Augustine et al., 2003) and is believed to accomplish a vast
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variety of functions through localization (Clapham, 1995, 2007;
Yuste and Denk, 1995). One possible way to achieve localization
is by restricting the distance between the calcium source (often a
channel) and the sink (calcium sensors and buffers). Thus, the
localization of calcium can result from the location and mobility
of different buffers and sensors (Schmidt, 2012). Spatial models
of calcium dynamics in dendritic spines that consider such ef-
fects have been proposed previously (Holcman et al., 2004;
Means et al., 2006; Bartol et al., 2015b). Spatial-temporal models
of calcium dynamics have highlighted the role of calcium-
induced cytosolic flow and calcium influx regulation by Ca2+-
activated K+ channels (SK channels; Holcman et al., 2004;
Rackham et al., 2010). Computational studies using stochastic
models of calcium transients have revealed that the readout of
fluorescent probes can alter experimental readouts (Yuste et al.,
2000; Higley and Sabatini, 2012; Bartol et al., 2015b). In partic-
ular, fluorescent probes can sequester calcium, effectively acting
as calcium buffers and lowering the perceived calcium concen-
trations. Therefore, computational studies have already provided
some insight into the spatiotemporal dynamics of calcium in
both dendritic spines (Yuste et al., 2000; Segal, 2005; Rangamani
et al., 2016) and whole neurons (Loewenstein and Sompolinsky,
2003). In this study, we specifically focus on the effect of spine
geometry on calcium signals in the postsynaptic spine.

Recent advances in imaging and reconstruction techniques
have shed light into the complex surface area of a single spine
and the ultrastructure of the spine apparatus (SpApp; Kuwajima
et al., 2013; Bartol et al., 2015a,b; Wu et al., 2017). Experimental
evidence shows that calcium signals remain predominantly lo-
calized to single spines (Holmes, 1990; Koch and Zador, 1993;
Sabatini et al., 2002). Dendritic spines have a unique set of
shapes and recently the size and shape distribution of spines has
been linked to their physiological function (Hering and Sheng,
2001; Berry and Nedivi, 2017). Additionally, only ∼14% of spines
have a specialized ER known as the SpApp (Basnayake et al.,
2018 Preprint; Jedlicka et al., 2008), which serves as a calcium
store (Wuytack et al., 2002; Jedlicka et al., 2008). Indeed, cal-
cium dynamics in dendritic spines are quite complex.

Given the importance of calcium dynamics in dendritic
spines and the complexity of spine ultrastructure (Spacek and
Harris, 1997; Holbro et al., 2009; Wu et al., 2017), we sought to
use a computational approach to probe the role of spine ge-
ometry in modulating the spatiotemporal dynamics of calci-
um. Specifically, we seek to address the following questions:
(i) How does the size and shape of both the spine head and
SpApp affect calcium dynamics? (ii) How does the distribution
of channels along the synaptic membrane modulate calcium
dynamics within the spine? (iii) How do calcium buffers and
calcium diffusion rates affect the spatiotemporal dynamics of
calcium? To answer these questions, we develop a spatial 3-D
reaction-diffusion model with multiple compartments. We
chose a computational approach because it is not yet possible
to manipulate spine size, shape, or SpApp location with pre-
cise control experimentally. However, the insights obtained
from computational approaches can lay the groundwork for
generating experimentally testable predictions (Kotaleski and
Blackwell, 2010).

Materials and methods
Model assumptions
To interrogate the spatiotemporal dynamics of calcium in den-
dritic spines, we developed a reaction-diffusion model that ac-
counts for the fluxes through the different sources and sinks
shown in Fig. 1. We briefly discuss the assumptions made in
developing this model and outline the key equations below. See
Table 1 for common notation.

Time scale
Wemodel a single dendritic spine of a rat hippocampal area CA1
pyramidal neuron as an isolated system, because we focus on the
10- to 100-ms timescale and the ability of the spine neck to act as
a diffusion barrier for calcium (Yuste and Denk, 1995; Bloodgood
and Sabatini, 2005; Byrne et al., 2011; Gallimore et al., 2016). As a
result, we do not consider calcium dynamics due to the mito-
chondria. This assumption is valid in our model, because even
though mitochondria are known to act as calcium stores, their
dynamics are on a longer timescale (10–100 s; Wacquier et al.,
2016) andmitochondria are located in the dendrite outside of the
dendritic spine. Although, it is well known that the SpApp acts
as a source for calcium, Ca2+ release from the SpApp occurs at
longer timescales because of IP3 receptors, RYR, and CICR
(Jedlicka et al., 2008). It should also be noted that not all neurons
have RYR and IP3R on the SpApp (Mattson et al., 2000).
Therefore, for the purpose and timescale of this study, we do not
focus on CICR and therefore do not include RYR or IP3R dy-
namics in this study.

Membrane voltage stimulus
We model membrane voltage as an algebraic equation based on
the summation of an excitatory postsynaptic potential (EPSP)
and a back-propagating action potential (BPAP) applied to the
entire PM (Jahr and Stevens, 1993; Shouval et al., 2002; Griffith
et al., 2016). The EPSP arrives 2 ms before the BPAP to stimulate
the maximum possible membrane depolarization (Fig. 1 d; Hu
et al., 2018). This stimulus triggers the influx of calcium into the
spine head.

Spine head
The average spine head volume is ∼0.03 µm3 (Spacek and
Harris, 1997; Bartol et al., 2015b), but a large variation has
been observed physiologically. The commonly observed shapes
of dendritic spines include filopodia-like, stubby, short, and
mushroom-shaped spines (Bourne and Harris, 2008; Berry and
Nedivi, 2017). In this work, we consider two idealized geome-
tries: a spherical spine head to represent a younger spine and an
ellipsoidal spine head to represent a more mature mushroom
spine (Spacek and Harris, 1997). The postsynaptic density (PSD)
is modeled as a section of the membrane at the top of the spine
head (Fig. 1 c). In simulations where the spine size is varied, we
assume that the PSD changes surface area approximately pro-
portionally to the spine head volume (Arellano et al., 2007).

SpApp
SpApps are found primarily in larger mushroom spines (Spacek
and Harris, 1997), which hints at their role in potential
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regulation of sustained spine volume (Ostroff et al., 2017). We
assume that the SpApp acts as a calcium sink within the time-
scale of interest (Segal et al., 2010). Another assumption is that
the SpApp has the same shape as the spine head, a simplification
of the more complicated and intricate SpApp geometry (Spacek
and Harris, 1997).

PM fluxes
To maintain our focus on the short-timescale events associated
with calcium dynamics, we include the following PM sources and
sinks of calcium: voltage-sensitive calcium channels (VSCC),
NMDARs, PM Ca2+-ATPase (PMCA) pumps, and sodium–calcium

exchanger (NCX) pumps. NMDARs are localized on the postsyn-
aptic membrane adjacent to the PSD, designated at the top of the
spine head. VSCC, PMCA, and NCX pumps are uniformly dis-
tributed along the PM, including at the base of the spine neck.
Therefore, we model the dendritic spine as an isolated system
with the spine neck base modeled in the same manner as the rest
of the PM rather than explicitly modeling the base with an out-
ward flux into the dendrite (see the following assumption).

Boundary condition at the base of the neck
Wemodel the spine as an isolated system (Yuste and Denk, 1995;
Sabatini et al., 2002; Bloodgood and Sabatini, 2005; Lee et al.,

Figure 1. Physical and chemical determinants of calcium influx in dendritic spines. (a) Spatiotemporal dynamics of calcium in dendritic spines
depend on multiple sources and sinks on both the spine membrane and the SpApp membrane. Fluxes are denoted as Jx, where x is the source or sink.
These include receptors (NMDARs), channels (VSCCs), and pumps (PMCA and NCX). Calcium buffers are present both in the cytoplasm and on the
PM. α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) is another important receptor that is often used as a readout for long
term potentiation and depression. We do not include its dynamics in this model. (b) A partial list of factors that can influence these dynamics include
biochemical components (shown in panel a), geometry, and protein transport components, which are effectively coupled through transport phe-
nomena. In this study, we focus on the effects of spine and SpApp size, spine and SpApp shape, flux through NMDAR and VSCC distribution on
calcium spatiotemporal dynamics, and buffers. (c) Four different combinations of spine head and SpApp geometries are used as model geometries
(spherical head with spherical apparatus, spherical head with ellipsoidal apparatus, ellipsoidal head with ellipsoidal apparatus, and ellipsoidal head
with spherical apparatus) to study how spine geometry affects calcium dynamics. The coordinate axes correspond to 100 nm in the different ge-
ometries. The blue shaded regions denote the PSD for each geometry. (d) In our model, depolarization of the membrane is triggered by an EPSP
followed closely by a BPAP to create a maximal depolarization according to STDP. This membrane voltage acts as the input to our model. Inset:
Timing of the EPSP and the BPAP. We model the maximum possible membrane depolarization based on STDP with the EPSP arriving 2 ms before the
BPAP.
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2009). Therefore, for most of our analyses, we use the same
boundary conditions at the base of the spine neck as the rest of
the PM. In the online supplemental material, we relax this as-
sumption and test different boundary conditions, including a
clamped calcium concentration at the base of the neck and an
explicit effect of a dendritic shaft attached to the spine neck
(Figs. S4 and S5).

Compartmental specific calcium ion concentration
We explicitly model calcium in the cytoplasm and in the
SpApp. We assume that the calcium concentration in the ex-
tracellular space (ECS) is large enough (2 mM; Clapham, 1995;
Bartol et al., 2015b) that the calcium influx into the spine has
an insignificant effect on ECS calcium concentration. There-
fore, ECS calcium concentration is assumed constant. We only
solve the volumetric reactions in the cytoplasm. The ER cal-
cium concentration is assumed to only affect the fluxes on the
ER membrane.

Calcium-binding proteins (CBPs; buffers)
There are numerous CBPs present in the cytoplasm that act
rapidly on any free calcium in the spine head (Yuste and Denk,
1995; Yuste et al., 2000; Sabatini et al., 2001, 2002; Bartol et al.,
2015b). These CBPs are modeled as bothmobile and fixed buffers
in our system. Mobile buffers are modeled as volume compo-
nents in the cytoplasm (Schmidt and Eilers, 2009; Schmidt,
2012), and they are modeled as a diffusive species with mass-
action kinetics in the cytoplasm. We assume that the mobile
buffers have a buffering capacity, κ, of 20, where κ = [Bm]/Kd

(Sabatini et al., 2002; Matthews and Dietrich, 2015; Bm is the
mobile buffer concentration; Kd is the dissociation constant).
Dendritic spines also have fixed or immobile buffers, but the
molecular identity of fixed buffers remains more elusive.
Studies suggest that they are primarily membrane-bound com-
ponents (Matthews and Dietrich, 2015); therefore, we model
fixed buffers as immobile species localized to the PM. As a result,
the interactions of calcium with these fixed buffers are treated
as flux boundary conditions for the surface reactions with mass-
action kinetics. We assume fixed buffers have a Kd = 2 µM
(Bartol et al., 2015b) and have a concentration of 78.7 µM (Bartol
et al., 2015b). These values are converted to a membrane density
by multiplying by the spine volume over PM surface area (nPMr;
see online supplemental material section S1.1 for more details.).

SpApp fluxes
In this model, the SpApp acts as a Ca2+ sink in the 10- to 100-ms
timescale (Fifková et al., 1983; Fifková, 1985; Jedlicka et al.,
2008). The implications of this assumption are discussed later
in the paper. We assume that SERCA pumps are located uni-
formly on the SpApp membrane. SERCA pumps have been ob-
served to buffer a large percentage of calcium within the spine,
so we include SERCA pumps with a relatively large influx
(Higley and Sabatini, 2012; Hu et al., 2018). We also include a
small leak current from the SpApp to the cytoplasm and set this
leak current to offset pump dynamics at basal calcium concen-
trations of 100 nM (Bartol et al., 2015b; Futagi and Kitano, 2015).

Based on these assumptions, we constructed a 3-D spatial
model of Ca2+ dynamics in dendritic spines. Our control geom-
etry is a medium-sized spine with volume of ∼0.06 µm3 in-
cluding the spine head and neck, with a SpApp of volume
∼0.003 µm3. We use a spherical spine with spherical SpApp and
ellipsoidal spine with ellipsoidal SpApp as our two control spines
of interest. Most results are shown as a 2-D cross section for ease
of interpretation (see Fig. S7 for examples of the full 3-D
solutions).

Spatial model of Ca2+ influx
The spatiotemporal dynamics of calcium are determined by the
combination of dynamics within the spine volume and boundary
conditions at the PM and SpApp. Calcium dynamics in the spine
volume are represented by a single reaction–diffusion equation:

∂Ca2+

∂t
� D=2Ca2+ − f

�
Ca2+cyto,CBP

�
. (1)

Here, D is the diffusion coefficient of calcium and f (Ca2+cyto,CDP) is
a function that represents the reaction between cytosolic

Table 1. Notation used in this study

Variable/
parameter

Units Definition/meaning

Ca2+cyto µM Calcium in the cytoplasm

Ca2+ER µM Calcium in the ER (SpApp)

D µm2

s Diffusion rate

Bm µM Mobile buffers

Bf Mol/
(µm2 s)

Fixed buffers

PDE Partial differential equation

ODE Ordinary differential equation

Jx Mol/
(µm2 s)

Boundary flux due to x

CBP µM Calcium-binding proteins (calcium buffers)

Vcyto µm3 Volume of the cytoplasm excluding the SpApp
volume

PM Plasma membrane

SpApp Spine apparatus

ECS Extracellular space

n µm Scale factor to convert between volume
reactions to boundary flux

nPM µm Volume-to-surface area ratio of the cytoplasm
to the PM

nSpApp µm Volume-to-surface area ratio of the SpApp
volume to the SpApp surface area

AUC Ions/s Area under the curve

EPSP mV Excitatory postsynaptic potential

BPAP mV Back-propagating action potential

NMDAR N-methyl-D-aspartate receptor

VSCC Voltage-sensitive calcium channel

PMCA Plasma membrane calcium ATPase

NCX Sodium–calcium exchanger
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calcium and mobile buffers in the cytoplasm; =2 is the Laplacian
operator in three dimensions. The stimulus to the system is the
depolarization of the membrane based on an ESPS and BPAP
separated by 2 ms (Fig. 1 d). The boundary conditions at the PM
and the SpApp are given by time-dependent fluxes that repre-
sent the kinetics of different channels, pumps, and fixed buffers.

Boundary conditions at the PM
We model the calcium influx through activated NMDARs in
response to glutamate release in the synaptic cleft and the cal-
cium influx through VSCCs in response to membrane depolar-
ization (Jahr and Stevens, 1993; Shouval et al., 2002; Bartol et al.,
2015b). We should note that the majority of existing models for
NMDAR and VSCC calcium influx assume well-mixed con-
ditions. In this model, these species are restricted to the PM,
which is the boundary of the geometry. This results in a time-
dependent flux at the PM. Both the NMDAR and VSCC-mediated
calcium influx depend on the membrane voltage (see Fig. 1 d);
we prescribe this voltage as a set of biexponentials to capture a
BPAP and EPSP based on previous studies (Jahr and Stevens,
1993; Shouval et al., 2002). On the PM, we also include PMCA
and NCX that are activated in response to a change in cytosolic
calcium concentration (Calizo et al., 2017 Preprint; Maurya and
Subramaniam, 2007). We also localize fixed CBPs (fixed buffers)
to the PM. Therefore, the binding of cytosolic calcium to fixed
buffers (Bf) is modeled as a membrane flux, JBf. The flux
boundary condition at the PM is then the sum of all these fluxes
and is given by

−D(n · =Ca2+) PM � JNMDAR + JV SCC − JPMCA − JNCX − JBf .
�� (2)

The functions that define the flux terms in Eq. 2 are given in
Table S1.

Boundary condition at the SpApp membrane
In the cases where we included a SpApp, we included SERCA
pumps and a leak term along the SpApp membrane that are
functions of the cytosolic calcium concentration. The boundary
condition for the flux across the SpApp membrane is given by

−D(n · =Ca ) SpApp � JSERCA − JLEAK.
�� (3)

The functions that define the flux term in Eq. 3 are given in
Table S1.

To briefly summarize, these governing equations are
simply the balance equations that keep track of the spatio-
temporal dynamics of cytosolic calcium due to calcium dif-
fusion and mobile buffers (Eq. 1), influx and efflux through
the PM (Eq. 2), and influx and efflux through the SpApp
membrane (Eq. 3). The coupled nature of this system of
equations and time-dependent fluxes limits the possibility of
obtaining analytical solutions even for simple geometries
(Cugno et al., 2018 Preprint). Therefore, we use computational
methods to solve these equations.

Parametric sensitivity analyses
Given the vast number of parameters in this model, we con-
strain the parameters in our model as follows: parameter val-
ues are chosen from experimental observations or existing

computational models or to match overall experimental and
computational observations with respect to pump or channel
dynamics (section S1). Overall, we predict a high calcium
concentration and relatively fast decay dynamics (Sabatini
et al., 2002; Higley and Sabatini, 2012; Hu et al., 2018). See
Fig. S2 for a comparison of temporal dynamics to existing lit-
erature. We conducted a kinetic parameter sensitivity analysis
for our model using the open source software COPASI—a
COmplex PAthway SImulator (Supplemental text). The sensi-
tivity analysis was performed in COPASI by converting our
spatial model into a compartmental ordinary differential
equation (ODE) system. This conversion involves transforming
boundary flux equations into volumetric reaction rate through
the lengthscale factor n, the volume-to-surface area ratio.

Geometries used in the model
We modeled the dendritic spines using idealized geometries of
spheres and ellipsoids; dendritic spines consist of a spine head
attached to a neck, with a similarly structured SpApp within the
spine, see Fig. 1 c for the different model geometries used in this
study. These geometries were inspired by reconstructions
(Bartol et al., 2015a; Griffith et al., 2016; Paulin et al., 2016) and
were idealized for ease of computation. For the variations of the
base of the neck, we also include a condition with an explicit
dendrite modeled as a cylinder attached to the spine neck, Figs.
S4 and S5. The geometric parameters, including volume and
surface area, are given in Table S8.

Numerical methods
Simulations for calcium dynamics were conducted using com-
mercial finite-element software (COMSOL Multiphysics 5.4).
Specifically, the general form and boundary partial differential
equations (PDEs) interface were used and time-dependent flux
boundary conditions were prescribed. A user-defined tetrahe-
dral mesh with a maximum and minimum element size of
0.0574 µm and 0.00717 µm, respectively, was used. Due to the
time-dependent, nonlinear boundary conditions used in this
model, we also prescribed four boundary layers (prism mesh
elements) on all membranes in COMSOL. A time-dependent
solver was used to solve the system, specifically a MUMPS
(MUltifrontal Massively Parallel sparse direct Solver) solver
with backward differentiation formula time-stepping method
with a free time stepper. Results were exported to MATLAB for
further analysis. All COMSOL files will be posted on the Ran-
gamani Lab website for public dissemination.

Online supplemental material
All model equations and parameters and geometric parameters
can be found in the online supplemental material. Fig. S1 shows
the effects due to using a different lengthscale, n. Fig. S2 shows
temporal comparison with other existing models. Fig. S3 is a
sensitivity analysis of model parameters. Figs. S4 and S5 show
the case when the neck base has different boundary conditions
in spherical and ellipsoidal spines, respectively. Fig. S6 shows
the effect of spine neck radius. Fig. S7 shows calcium spatial
dynamics in 3D for spherical and ellipsoidal spines. Fig. S8
shows temporal dynamics and peak concentrations for spines of
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various shapes. Fig. S9 shows the effects of different calcium
buffers in ellipsoidal spines. Table S1 lists the main equations in
the model. Table S2 lists parameters used in the model for the
volumes. Table S3 lists parameters for NMDAR. Table S4 lists
parameters for membrane voltage. Table S5 lists parameters for
VSCC. Table S6 lists parameters for PMCA and NCX pumps.
Table S7 lists parameters for SERCA. Table S8 lists the size and
shape parameters of the different geometries. Table S9 lists size
variations for the spherical spine head with spherical SpApp.
Table S10 lists size variations for the ellipsoidal spine head with
ellipsoidal SpApp. Table S11 lists size variations for the spherical
spine head with spherical SpApp when varying SpApp volume.
Table S12 lists size variations for the ellipsoidal spine head with
ellipsoidal SpApp when varying SpApp volume.

Results
Using the model developed above (Eqs. 1–3), we investigated
how different geometric factors of the spine head and SpApp
affect calcium dynamics. Because of the coupling between the
volume dynamics (Eq. 1) and the fluxes on themembranes due to
biochemical components (Eqs. 2 and 3), the effect of spine ge-
ometry on calcium dynamics is quite complex. To parse the
coupled effects, we have categorized and organized our simu-
lations as follows and discuss each case in detail. First, we in-
vestigated the effect of spine volume to surface area ratio. This
parameter can be changed in multiple ways: by changing the
shape of the spine head and the shape or presence of the SpApp
(Figs. 2 and 3), by changing the size of the spine head alone
(Fig. 4), or by changing the size of the SpApp alone (Fig. 5). Next,
we investigated the effect of spatial distribution of the fluxes on
the PM (Fig. 6). Finally, we demonstrate the effect of buffer
types and their location (Figs. 7 and 8).We describe each of these
results in detail below.

Effect of spine volume to surface area on calcium dynamics
Effects of shape of the spine head and the shape of the SpApp on
calcium dynamics
We first analyzed how the volume to surface area ratio of the
spine affects the spatiotemporal dynamics of calcium by simu-
lating calcium dynamics in the different geometries shown in
Fig. 1 c. All of these geometries were constructed such that they
have the same volume of the spine cytosol but the surface area of
the PM and SpApp vary because of the shape (Table S8). We note
that in all the geometries, the temporal dynamics of calcium
shows a rapid increase in the first 2–3 ms and a decay over
∼50 ms (Fig. S8). This time course is consistent with experi-
mentally observed and computationally modeled calcium dy-
namics (Ngo-Anh et al., 2005; Matthews et al., 2013; Hu et al.,
2018; Figs. 2 d and S2, respectively). The spatial profiles of cal-
cium in spheres and ellipsoids (Fig. 2, a and b) show that spine
shape can alter the spatial gradients and decay profiles of cal-
cium. In particular, we observe that while at 5 ms all shapes
demonstrate a gradient from the PSD region to the spine neck,
because of the localized influx of calcium through the NMDAR in
the PSD, at 10 ms, the ellipsoidal spine heads have almost no
gradient within the spine head. Instead, they have a more

pronounced difference between the spine head and spine neck.
We also changed the shape of the SpApp to get different com-
binations of spine head and SpApp geometries (Fig. 2). Since the
apparatus acts as a sink, we find that the reduction in surface
area to volume ratio of the spherical apparatus leads to less in-
flux into the SpApp, compared with the ellipsoidal SpApp
(Fig. 2 c). This result emphasizes the nonintuitive relationships
between organelle shape and spine shape.

In addition to the transient response of calcium, the cumu-
lative calcium (total calcium) also carries information with re-
spect to synaptic plasticity (Bourne andHarris, 2008; Rangamani
et al., 2016; Basak and Narayanan, 2018). Therefore, we calcu-
lated the integrated calcium over the entire spine volume (area
under the curve [AUC]; Gorman and Sejnowski, 1988; Heinrich
et al., 2002; Atay and Skotheim, 2017) over 300ms. CalciumAUC
at 300 ms (Fig. 2 c) shows that all spines have slightly different
accumulated calcium. Upon closer examination of themembrane
fluxes of the sphere and ellipsoid spines (Fig. 2, e–m), we see that
there is a complex relationship between the calcium ion con-
centration and nonlinear flux terms. In particular, the higher
calcium influx in the ellipsoids due to the larger surface area
leads to a higher efflux of calcium through the PMCA, NCX, and
SERCA pumps and increased binding to fixed buffers on the PM.
Therefore, the nonlinear effects of the fluxes associated with the
pumps reduces the difference in calcium between spines of
different shapes.

Effects of the presence/absence of the SpApp on volume to
surface area
Another way to modulate the volume to surface area ratio is to
consider spines with and without the SpApp. In our model, the
SpApp serves both as a calcium sink through SERCA pumps and
as an excluded volume. We observe that the presence of the
SpApp in both spheres and ellipsoids (Fig. 3, a and d, top row)
results in a steeper gradient from the PSD to the neck when
compared with the spines without a SpApp (Fig. 3, a and d,
bottom row). Additionally, at 10 ms, spines without a SpApp
have a higher calcium concentration than spines with a SpApp.
This is because the dynamics of calcium are altered in the
presence of the SpApp by the SERCA fluxes, Eq. 3. As a result,
regardless of the shape, spines with a SpApp have a faster decay
of cytosolic calcium (Fig. 3, b and e). We found that in both
geometries, the AUC of spines with a SpApp was lower at dif-
ferent time points when compared with spines without a SpApp
(Fig. 3, c and f). At 300ms, the spine without a SpApp has 47.75%
more total calcium for the spherical geometry and 49.09% more
for the ellipsoidal geometry. Thus the flux due to SERCA plays a
significant role in altering the decay dynamics of calcium in
spines with SpApp and as a result alters the total calcium.

Effect of spine volume on calcium dynamics
In addition to spine shape, spine size (volume) is also known to
change during development and plasticity related events (Knott
et al., 2006; Kasai et al., 2010; Rangamani et al., 2016). How does
changing the volume of the spine, while maintaining the same
shape, affect calcium dynamics? To answer this question, we
conducted simulations in spherical and ellipsoidal spines of
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Figure 2. Spine head volume-to-surface area ratio modifies calcium dynamics through membrane flux contributions. (a and b) Spatial distribution of
calcium in spines at two different time points (5 ms [a] and 10 ms [b]). The instantaneous gradient of calcium ions depends on the shape of the spine head and
the shape of the SpApp. (c) Calcium accumulation at 300 ms was calculated using the AUC of the spatial and temporal dynamics of calcium throughout the
volume; the differences between the shapes are small, with the most pronounced difference being a 12% increase in AUC between the sphere and ellipsoid
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different volumes. Recall that the control spine has a cytosolic
volume, Vcyto, of 0.06 µm3 (Table S8). For each geometry (sphere
and ellipsoid), we maintained the same size and shape of the

SpApp as before and only changed the spine cytoplasm volume
in the range of 0.5 Vcyto to 1.5 Vcyto (Tables S9 and S10). We found
that the relationship between spine volume and calcium

spines. (d) We plot the temporal dynamics at the top of the spherical control spine versus reported experimental calcium transients from previous studies
(Sabatini et al., 2002; Hoogland and Saggau, 2004; Segal and Korkotian, 2014). The experimental transients are reported in terms of fluorescence, which we
assume are linearly proportional to concentration (Yasuda et al., 2004). We plot Fig. 1 F from Sabatini et al. (2002), Fig. 1 from Segal and Korkotian (2014), and
Fig. 2 D fromHoogland and Saggau (2004). PlotDigitizer was used to trace the temporal profiles that were then plotted in MATLAB. Wemore closely compared
the spherical and ellipsoidal spines by integrating total calcium ions over time (e) and considering the integrated fluxes for both shapes (f–m). We see that the
ellipsoid has more calcium ions than the sphere (e), because despite having more calcium influx due to VSCC (j), the subsequent higher calcium concentration
leads to higher efflux due to pumps (h and l) and buffers (m). Note the timescale in panels e–m is shortened to 50 ms for clarity.

Figure 3. The presence of a SpApp, acting as a sink, modulates calcium dynamics. Spines without SpApp have higher and more sustained calcium activity
despite their increased volume in both spherical (a) and ellipsoidal (d) spines. Temporal dynamics (b and e) and AUC (c and f) plots show that the absence of a
SpApp (no SERCA flux, denoted as JSERCA) leads to a prolonged calcium transient and higher total calcium levels for both spherical and ellipsoidal shapes. Insets
in panels b and e show the location in the spine from where the time courses were plotted.
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concentration is inversely proportional. For spine volumes
smaller than the control, we observed an increase in calcium
concentration for both geometries, whereas for larger volumes,
calcium concentration decreases (Fig. 4, a and b). As expected,
we found that for both geometries, an increase in spine volume
resulted in an increase in cumulative calcium (Fig. 4 c). Fur-
thermore, we found that the change in cumulative calcium has a
direct but nonlinear relationship with the change in spine vol-
ume. For the range of volumes investigated, the peak calcium
concentration and AUC show an exponential relationship with
respect to volume. We see at all sizes the ellipsoid has higher
peak concentrations but lower AUC compared with the sphere.

Effect of SpApp size and geometry
The complex architecture of the SpApp was recently elucidated in
a focused ion beam scanning electron microscopy study by Wu
et al. (2017). Since we cannot yet manipulate the shape of the
SpApp in vivo, we varied the geometric features of the SpApp
in silico to see how they affect calcium dynamics. Previously, we
showed that SpApp shape and spine volume separately can alter
the AUC and peak calcium. Here, for a given spine shape, we

varied the volume of the SpApp to modulate the cytosolic volume
to SpApp volume ratio. In this case, by varying the SpApp volume,
we altered the spine volume to be 50% and 75% of Vcyto, the control
spine volume. Here, we change the spine volume by the changing
SpApp size (Fig. 5). We found that a larger SpApp leads to a de-
crease in calcium concentrations and AUC (Fig. 5, a and c) but an
increase in peak concentration (Fig. 5 b). We note that as SpApp
volume increases, AUC drops in a nonlinear manner in both ge-
ometries. The spherical spine has a 55.4% and 77.8% reduction in
AUC from control for the 75% and 50% spines, while the ellipsoidal
spine has a 57.2% and 79.4% reduction from control. For all sizes,
the ellipsoid shows higher peak concentrations but lower AUC
compared with the sphere. This effect is in part due to the short-
ened distance between the PSD and SpApp in the ellipsoid. The
distance between the PSD and SpApp is an important lengthscale
in the spine, since it controls the distance between the sources and
sinks of calcium. Therefore, changing this lengthscale, as happens
when changing the SpApp volume, influences calciumdynamics in
nonlinear ways. From these observations, we conclude that spine
volume coupled with SpApp volume and surface area is an im-
portant regulator of calcium dynamics in dendritic spines.

Figure 4. Accumulated calcium scales inversely proportional to the spine head volume. (a) Calcium dynamics in spines of different sizes show that as
spine volume increases, calcium concentration in the spine decreases. The effect of spine size on the temporal dynamics of calcium is seen in the peak values
(b) and AUCs of calcium (c). Increasing spine volume decreases the peak calcium concentration but increases overall AUC in the spine irrespective of the spine
shape. cyto, cytoplasm.
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Figure 5. Increasing SpApp volume reduces accumulated calcium and SpApp volume-to-surface areamodulates its ability to act as a sink. (a) Calcium
dynamics depends on the size of SpApp; decreasing cytoplasmic volume by increasing SpApp size results in a smaller calcium concentration when compared
with a larger spine volume with smaller SpApp. The effect of SpApp size on the temporal dynamics of calcium is seen in the (b) peak values and (c) AUCs of
calcium. Increasing SpApp volume (decreasing spine volume) decreases calcium concentration in the spine (a and c) but leads to higher peak concentrations (b).
For both geometries, the peak calcium concentration increases for decreasing volume, and can be fit to exponential curves. (d) While we are used idealized
geometries for both the spine and SpApp, in reality, the SpApp has a complex, helicoidal structure. We investigate this realistic geometry by changing the nSpApp
contribution in the SERCA flux equation. We see that increasing nSpAppmakes SERCAmore effective, leading to lower peak concentrations (e) and lower AUC (f).
However, we see that as we decrease nSpApp, the change in peak concentration and AUC plateaus, representing highly inefficient SERCA pumps. cyto,
cytoplasm.
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An intriguing feature of the SpApp in particular (Fig. 5 d; Wu
et al., 2017) and the ER in general (Nixon-Abell et al., 2016) is the
large surface-to-volume ratio occupied by this organelle.
Therefore, we next considered the effect of the volume-to-
surface area ratio (n; given in units of length) of the SpApp
(Fig. 5, d–f). We modeled the boundary flux on the SpApp
membrane such that this flux is proportional to nSpApp (volume-
to-surface area ratio for the SpApp). As a result, when we in-
crease the “volume” of the SpApp by increasing nSpApp, calcium
flux into the SpAppwill increase. We noticed that at lower nSpApp
values, the peak calcium concentration and to a less obvious
extent the AUC (Fig. 5, e and f) plateau but decrease substantially
at larger nSpApp values.

From these observations, we conclude that the SpApp acts as
a physical and spatial buffer for calcium dynamics by regulating
the timescale through surface to volume regulation in the inte-
rior of the spine. The SpApp acts as a calcium sink in the
timescale of interest (Fifková et al., 1983; Fifková, 1985; Jedlicka
et al., 2008), and in the absence of the SpApp, the only way to
remove calcium from this system is through CBPs and pumps.
Furthermore, since the SpApp has been known to grow and
retract from the dendritic spine in response to stimuli (Deller
et al., 2006), regulation of SpApp surface area can also allow for
rescaling calcium dynamics in the spine (Wilson et al., 1983).

Spatial distribution of membrane fluxes governs calcium
dynamics supralinearly in dendritic spines
The density of VSCCs and number of NMDARs that open in
response to stimuli in dendritic spines varies (Sabatini and

Svoboda, 2000). One of the primary determinants of calcium
dynamics in the spine is the various membrane fluxes, because
these fluxes serve as sources and sinks at the PM and sinks at the
SpApp membrane. We investigated the effect of the spatial
distribution of membrane fluxes on calcium dynamics in the
dendritic spine by considering either only NMDARs or VSCCs as
the calcium source (Fig. 6). We observed that if only NMDAR
activity was present, then calcium concentration was high in the
PSD region due to the localization of NMDARs to the PSD but the
overall calcium concentration was small regardless of the spine
head shape (Fig. 6 a). However, if only VSCCs were active, then
the spatial gradient of calcium is mainly between the spine head
and spine neck (Fig. 6 a). The temporal dynamics are also af-
fected by the receptor and channel distributions (Fig. 6 b). With
only VSCC present, there is a larger calcium peak, but with
faster decay. With only NMDARs, we observe a lower calcium
peak concentration but a prolonged transient. Therefore,
membrane flux distribution can impact the spatial and temporal
dynamics of calcium in a nonlinear manner. This agrees with
experimental results stating that the various calcium sources
behave supralinearly (Yuste and Denk, 1995) and a balance be-
tween various calcium fluxes is required for tightly regulating
calcium concentrations in these small volumes.

Calcium buffers and diffusion couple to alter calcium
spatiotemporal dynamics
Due to the vast number of buffers that are known to affect
calcium dynamics, we investigated the effect of four different
buffer conditions: (i) both fixed membrane-bound buffers and

Figure 6. Localization of membrane fluxes alters the spatiotemporal dynamics of calcium. (a) Spatial dynamics at 2 ms for spherical and ellipsoidal
spines with only one of VSCC or NMDAR as the calcium source. When the main calcium source is the VSCC, we see a more uniform concentration with the main
gradient between the spine head and spine neck. When the NMDAR is the main calcium source, we see a large spatial gradient with a higher concentration at
the PSD, because the NMDAR is localized to the PSD. (b) Temporal dynamics for spherical and ellipsoidal spines with either the VSCC or NMDAR as the calcium
source. Temporal dynamics clearly show that VSCCs act on a faster timescale and have a higher peak calcium when compared with the NMDARs. However,
NMDAR influx leads to a more prolonged calcium transient.
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mobile cytosolic buffers (control), (ii) fixed buffers localized to
the membrane, (iii) mobile buffers in the cytoplasm, and (iv) a
uniform exponential decay applied across the whole cytoplasm
(Figs. 7 and S9). We observe similar spatial dynamics for all
buffer types (Fig. 7 a), but temporal dynamics differ greatly
(Fig. 7 b) and, as a result, alter accumulated calcium (Fig. 7 c).We
see that the decay behavior of calcium, and therefore total cal-
cium, is highly dependent on buffer type. Peak calcium follows
the same trend as AUC, with mobile buffers having the highest
calcium concentrations and total calcium, then exponential de-
cay, fixed buffers, and finally the control. We also consider how
reaction dynamics versus diffusion rate govern calcium dy-
namics because buffer dynamics and diffusion rates of calcium
are coupled (Yuste et al., 2000). We varied the diffusion rate of
calcium and the concentration of mobile buffers to quantify how
calcium dynamics are reaction or diffusion controlled (Fig. 8).
We see that diffusion controls the spatial gradient seen within
the spine (Fig. 8 a), while mobile buffer concentration controls
the lifetime of the calcium transient (Fig. 8 b). Combining these
effects, we see that the buffer concentration variation has the
greatest effect at lower diffusion rates (bottom row of Fig. 8, a
and b, and Fig. 8 c). The peak concentration of calcium is almost
entirely dependent on the diffusion rate (Fig. 8 d). Therefore,

based on the high diffusion rate of Ca2+ reported in the litera-
ture, we expect the system to be in a diffusion-dominated
regimen.

Discussion
Calcium is a fundamental player in both neuronal (cellular)
and neural (systems) functionality (Siesjö, 1990; Keener and
Sneyd, 1998; Yuste, 2010). Compartmentalized by dendritic
spines, calcium has a vital role in triggering signaling path-
ways for long-term potentiation, long-term depression, syn-
aptic plasticity, and other processes associated with learning
and memory formation (Rangamani et al., 2016). However,
while dendritic spines are known to form functional sub-
compartments, it is less understood how this specialized
compartmentalization impacts calcium dynamics (Yuste et al.,
2000). In this study, we explored the intricate relationship
between calcium dynamics and the shape and size of dendritic
spine structures. We found that while the relationship be-
tween spine geometry and calcium dynamics is quite com-
plicated (Hering and Sheng, 2001; Rochefort and Konnerth,
2012; Berry and Nedivi, 2017), some general conclusions can
be drawn from our study.

Figure 7. Calcium buffers and CBPs modify all aspects of calcium dynamics. (a) Spatial dynamics at 2 ms for spherical spines with different buffer
conditions: control (with both fixed and mobile buffers), only fixed buffers, only mobile buffers, and a lumped exponential decay. While all buffer cases show
relatively similar peak concentrations (d), all other quantifications show that buffer type greatly impacts the calcium transient decay time (a–c). Temporal
dynamics (b) show that the control and fixed buffer cases have much faster decay, which translates into lower AUC values (c).
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Figure 8. Calcium diffusion rates control spatial gradients of calcium while buffer concentrations control transient decay dynamics. (a) Spatial
dynamics at 2 ms and 10 ms for a spherical spine. We varied the diffusion coefficient and the mobile buffer concentration. Based on this phase diagram, the
diffusion coefficient dictates the range of the spatial gradient of calcium, while buffer binding rate influences the lifetime of the spatial gradient. (b) Temporal
calcium dynamics at the top of the spherical spine. The temporal dynamics show that the concentration of mobile buffer affects the lifetime of the calcium
transient, as expected. (c) AUC shows that lower mobile buffer concentration and lower diffusion rates leads to higher levels of total calcium. (d) Peak
concentration is primarily determined by the diffusion rate of calcium and is almost independent of mobile buffer concentration.
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First, the volume-to-surface ratio, rather than the shape and
size itself, seems to have a dramatic effect on spine calcium
(Figs. 2, 3, 4, and 5). Of course, the volume-to-surface ratio itself
can be dramatically altered by size, shape, and internal organi-
zation as a many-to-one function. Then, we can think of the
ultrastructural organization of the dendritic spine (Spacek and
Harris, 1997) as perhaps “optimized” to not only increase con-
tacts with neighboring axons and neural circuit connection
(Yuste and Denk, 1995; Yuste et al., 2000; Yuste, 2010) but also
tune this volume-to-surface ratio dynamically (Murakoshi and
Yasuda, 2012). This volume-to-surface ratio coupling further
highlights the complex relationship between spatial sources and
sinks of calcium, which becomes apparent when the distance
between the spine PM and internal organelle becomes quite
small. We note that in our model, we assume constant pump
density, which highlights the volume-to-surface area ratios be-
tween various shapes (Matsuzaki et al., 2001; Noguchi et al.,
2005). Experimental results have already shown different be-
havior in large versus small dendritic spines (Paulin et al., 2016),
and additional studies on dendritic spine geometry have shown
that stable, mature spines are usually larger spines that tend
toward mushroom shapes as they grow around adjoining axons
and are more likely to have a SpApp (Spacek and Harris, 1997).
In comparison, younger, less stable spines tend to be smaller and
more spherical (Spacek and Harris, 1997; Berry and Nedivi,
2017). Therefore, we predict that spine size and SpApp pres-
ence are coupled to control calcium dynamics. This result should
be investigated further, in particular to make predictions on
why stable spines tend to be larger and mushroom shaped. The
inverse relationship between the volume-to-surface ratio that
we found and a possible exponential relationship suggest a po-
tential limiting mechanism for maintaining homeostasis of
synaptic potentiation (Lee et al., 2010, 2012; Béı̈que et al., 2011;
Turrigiano, 2011). By altering the spine size dynamically
(Murakoshi and Yasuda, 2012) and the presence and absence of
the SpApp dynamically (Deller et al., 2006), spines could
maintain their optimal range of synaptic function (Lee et al.,
2010, 2012; Béı̈que et al., 2011; Turrigiano, 2011).

Second, localization of membrane fluxes alters calcium
transients (Figs. 5 and 6). These fluxes, which serve as boundary
conditions, can be altered by changing the density and distri-
bution of calcium sources and sinks. This idea is consistent with
how calcium signal localization is a result of tuning the distance
between sources and sinks (Augustine et al., 2003). We show
here that in addition to distance, the strength of the fluxes is
important. Thus, in various disease states that impact the dis-
tribution or strength of membrane components, we predict
atypical spatial calcium gradients are possible that could impact
downstream signaling pathways. For example, NMDAR dys-
function, whether leading to increased or decreased function-
ality, can potentially lead to central nervous system diseases
such as stroke, Huntington’s disease, or schizophrenia (Zhou
and Sheng, 2013).

Finally, the role buffers play in modulating calcium tran-
sients is not only by changing the decay time as previously
thought but also by tuning the membrane fluxes, especially in
the case of fixed buffers (Figs. 7 and 8; Higley and Sabatini, 2012;

Matthews and Dietrich, 2015). Again, the timescale that we see is
a combination of rate alterations at the membrane and rate al-
terations in the volume resulting in broader control of calcium
dynamics. The crowded environment within the spine head also
has consequences for calcium diffusion, and while it is possible
for calcium to diffuse through a crowded space, particularly in
the PSD, the exact mechanisms of such transport remain unclear
(Santamaria et al., 2006; Hotulainen and Hoogenraad, 2010;
Byrne et al., 2011). Thus, our study highlights the need for
connecting biophysical features of the spine and molecule
localization to the dynamics of calcium (Fig. 1).

We also note that our model has certain limitations. In par-
ticular, within the crowded environment of the dendritic spine
cytoplasm is an abundance of actin, which has previously been
shown to have the potential to create cytosolic flow through
contraction following spine activation, leading to faster calcium
diffusion (Holcman et al., 2004). We do not address this spine
contraction in this model, but actin contributions are a focus of
ongoing research in our group. While we touched upon the role
of diffusion and CBPs, we also acknowledge that much work
remains to be done on the true impact of the dense actin net-
work and crowded environment within dendritic spines in
regulating these processes (Ouyang et al., 2005). In addition, we
modeled isolated spines, but the width of the spine neck has
been showed as an important determinant of calcium dynamics
when comparing larger and smaller spines (Noguchi et al., 2005;
Arellano et al., 2007; Araya et al., 2014) and could play into
communication to the dendrite. It is also possible that stochastic
modeling will give better quantitative insights without altering
the underlying physics (Kotaleski and Blackwell, 2010; Bartol
et al., 2015b; Voorsluijs et al., 2019). The development of a
combined stochastic–deterministic model can help combine
these two regimes to address the fundamental physics that oc-
curs in these small systems with complex membrane dynamics
and few molecule situations.

Despite these shortcomings, we have identified several key
features of the relationship between dendritic spine geometry
and calcium dynamics. Current models of synaptic weight up-
dates use calcium as the determinant for the synaptic weight
vector and the learning rate (Malenka et al., 1988; Cummings
et al., 1996; Shouval et al., 2002; Yeung et al., 2004). Here, we
show that calcium in a spine, even in short timescales, is a
function of geometry, ultrastructure, and buffers. Based on these
insights, we speculate on what the biophysical features of the
spine mean for neural systems-level functionality. It has long
been considered that a neural circuit level model of synaptic
weight updates can be informed by the calcium transients in the
synapse. As a result, weighting functions have been proposed
that consider calcium dynamics (Cummings et al., 1996; Shouval
et al., 2002; Yeung et al., 2004), and these functions have been
used to connect biophysical features of NMDARs to synaptic
weight updates in models of spike time-dependent plasticity
(STDP; Sejnowski, 1977; Song et al., 2000; Izhikevich, 2007; Bush
and Jin, 2012; Standage et al., 2014). We now propose that the
calcium transient is explicitly a function of the spine volume-to-
surface area, ultrastructure, and buffers, and that the calcium
functions that inform the synaptic weight vectors and synaptic
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learning rate (Fig. 9) must be updated to consider such geo-
metric information. We anticipate that such new models can
give us better insight into the neural circuitry of the brain and
also better inform bioinspired engineering of neuromorphic
circuits (Cruz-Albrecht et al., 2012). We also acknowledge that
much work remains to be done in connecting the spatial sig-
naling aspects in postsynaptic spines with neural circuit be-
havior but hope that this work will inspire more multiscale
modeling efforts in this field. The spatial aspects of calcium
dynamics are also fundamental toward understanding the
downstream dynamics of critical molecules such as calcium/
calmodulin-dependent protein kinase II (CaMKII), the small
RhoGTPases (Cdc42, Rho, and Rac), and subsequently actin dy-
namics in dendritic spine remodeling (Oertner andMatus, 2005;
Murakoshi and Yasuda, 2012; Miermans et al., 2017; Ohadi and
Rangamani, 2019 Preprint; Ohadi et al., 2019 Preprint; Yasuda
et al., 2003; Rangamani et al., 2016; Yasuda, 2017). Going

beyond single spine dynamics, the propagation of the down-
stream mechanochemical activity to neighboring spines is a key
step toward integrating single spine behavior to multiple spines,
across the dendrite, and ultimately the whole cell (Majewska
et al., 2000; Bloodgood and Sabatini, 2005; Herz et al., 2006;
Schmidt et al., 2007; Yasuda, 2017). Thus, we posit that ac-
counting for the spatial and physical aspects of calcium dy-
namics is the first step toward deciphering the complex
shape–function relationships of dendritic spines.
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Figure 9. Biophysical factors can impact synaptic weights through calcium dynamics. (a) Synaptic weight can be calculated from calcium dynamics
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various factors governing calcium dynamics influence both synaptic weights and learning rates of dendritic spines. This surface plot visualizes how three
different factors (volume to surface area ratio, ultrastructure, and calcium buffers) couple to influence calcium AUC (color bar) that feeds back into synaptic
weight changes and learning rates.
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Lee, K.F., C. Soares, and J.-C. Béı̈que. 2012. Examining form and function of
dendritic spines. Neural Plast. 2012:704103. https://doi.org/10.1155/
2012/704103

Lee, M.-C., R. Yasuda, and M.D. Ehlers. 2010. Metaplasticity at single gluta-
matergic synapses. Neuron. 66:859–870. https://doi.org/10.1016/j.neuron
.2010.05.015

Lee, S.-J.R., Y. Escobedo-Lozoya, E.M. Szatmari, and R. Yasuda. 2009. Acti-
vation of CaMKII in single dendritic spines during long-term potenti-
ation. Nature. 458:299–304. https://doi.org/10.1038/nature07842

Loewenstein, Y., andH. Sompolinsky. 2003. Temporal integration by calcium
dynamics in a model neuron. Nat. Neurosci. 6:961–967. https://doi.org/
10.1038/nn1109

Majewska, A., A. Tashiro, and R. Yuste. 2000. Regulation of spine calcium
dynamics by rapid spine motility. J. Neurosci. 20:8262–8268. https://doi
.org/10.1523/JNEUROSCI.20-22-08262.2000

Malenka, R.C., J.A. Kauer, R.S. Zucker, and R.A. Nicoll. 1988. Postsynaptic
calcium is sufficient for potentiation of hippocampal synaptic trans-
mission. Science. 242:81–84. https://doi.org/10.1126/science.2845577

Matsuzaki, M., G.C. Ellis-Davies, T. Nemoto, Y. Miyashita, M. Iino, and H.
Kasai. 2001. Dendritic spine geometry is critical for AMPA receptor
expression in hippocampal CA1 pyramidal neurons. Nat. Neurosci. 4:
1086–1092. https://doi.org/10.1038/nn736

Matthews, E.A., and D. Dietrich. 2015. Buffer mobility and the regulation of
neuronal calcium domains. Front. Cell. Neurosci. 9:48. https://doi.org/10
.3389/fncel.2015.00048

Matthews, E.A., S. Schoch, and D. Dietrich. 2013. Tuning local calcium
availability: cell-type-specific immobile calcium buffer capacity in
hippocampal neurons. J. Neurosci. 33:14431–14445. https://doi.org/10
.1523/JNEUROSCI.4118-12.2013

Mattson, M.P., F.M. LaFerla, S.L. Chan, M.A. Leissring, P.N. Shepel, and J.D.
Geiger. 2000. Calcium signaling in the ER: its role in neuronal plasticity
and neurodegenerative disorders. Trends Neurosci. 23:222–229. https://
doi.org/10.1016/S0166-2236(00)01548-4

Maurya, M.R., and S. Subramaniam. 2007. A kinetic model for calcium dy-
namics in RAW 264.7 cells: 1. Mechanisms, parameters, and sub-
populational variability. Biophys. J. 93:709–728. https://doi.org/10.1529/
biophysj.106.097469

Means, S., A.J. Smith, J. Shepherd, J. Shadid, J. Fowler, R.J. Wojcikiewicz, T.
Mazel, G.D. Smith, and B.S. Wilson. 2006. Reaction diffusion modeling
of calcium dynamics with realistic ER geometry. Biophys. J. 91:537–557.
https://doi.org/10.1529/biophysj.105.075036

Miermans, C.A., R.P. Kusters, C.C. Hoogenraad, and C. Storm. 2017. Bio-
physical model of the role of actin remodeling on dendritic spine
morphology. PLoS One. 12:e0170113. https://doi.org/10.1371/journal
.pone.0170113

Murakoshi, H., and R. Yasuda. 2012. Postsynaptic signaling during plasticity
of dendritic spines. Trends Neurosci. 35:135–143. https://doi.org/10.1016/
j.tins.2011.12.002

Ngo-Anh, T.J., B.L. Bloodgood, M. Lin, B.L. Sabatini, J. Maylie, and J.P.
Adelman. 2005. SK channels and NMDA receptors form a Ca2+-
mediated feedback loop in dendritic spines. Nat. Neurosci. 8:642–649.
https://doi.org/10.1038/nn1449

Nishiyama, J., and R. Yasuda. 2015. Biochemical computation for spine
structural plasticity. Neuron. 87:63–75. https://doi.org/10.1016/j.neuron
.2015.05.043

Nixon-Abell, J., C.J. Obara, A.V. Weigel, D. Li, W.R. Legant, C.S. Xu, H.A.
Pasolli, K. Harvey, H.F. Hess, E. Betzig, et al. 2016. Increased spatio-
temporal resolution reveals highly dynamic dense tubular matrices in
the peripheral ER. Science. 354:aaf3928. https://doi.org/10.1126/science
.aaf3928

Noguchi, J., M. Matsuzaki, G.C. Ellis-Davies, and H. Kasai. 2005. Spine-neck
geometry determines NMDA receptor-dependent Ca2+ signaling in
dendrites. Neuron. 46:609–622. https://doi.org/10.1016/j.neuron.2005
.03.015

Oertner, T.G., and A. Matus. 2005. Calcium regulation of actin dynamics in
dendritic spines. Cell Calcium. 37:477–482. https://doi.org/10.1016/j.ceca
.2005.01.016

Ohadi, D., and P. Rangamani. 2019. Geometric control of frequency modu-
lation of camp oscillations due to ca2+-bursts in dendritic spines. bio-
Rxiv. doi:10.1101/520643 (Preprint posted January 15, 2019)

Ohadi, D., D.L. Schmitt, B. Calabrese, S. Halpain, J. Zhang, and P. Rangamani.
2019. Computational modeling reveals frequency modulation of calci-
um-camp/pka pathway in dendritic spines. bioRxiv. doi:10.1101521740
(Preprint posted January 16, 2019)

Ostroff, L.E., B. Botsford, S. Gindina, K.K. Cowansage, J.E. LeDoux, E. Klann,
and C. Hoeffer. 2017. Accumulation of polyribosomes in dendritic spine
heads, but not bases and necks, during memory consolidation depends
on cap-dependent translation initiation. J. Neurosci. 37:1862–1872.
https://doi.org/10.1523/JNEUROSCI.3301-16.2017

Ouyang, Y., M. Wong, F. Capani, N. Rensing, C.-S. Lee, Q. Liu, C. Neusch, M.E.
Martone, J.Y.Wu, K. Yamada, et al. 2005. Transient decrease in F-actinmay
be necessary for translocation of proteins into dendritic spines. Eur.
J. Neurosci. 22:2995–3005. https://doi.org/10.1111/j.1460-9568.2005.04521.x

Paulin, J.J., P. Haslehurst, A.D. Fellows, W. Liu, J.D. Jackson, Z. Joel, D.M.
Cummings, and F.A. Edwards. 2016. Large and small dendritic spines
serve different interacting functions in hippocampal synaptic plasticity
and homeostasis. Neural Plast. 2016:6170509. https://doi.org/10.1155/
2016/6170509

Rackham, O.J., K. Tsaneva-Atanasova, A. Ganesh, and J.R. Mellor. 2010. A
ca2+-based computational model for nmda receptor-dependent synap-
tic plasticity at individual post-synaptic spines in the hippocampus.
Front. Synaptic Neurosci. 2:31.

Rangamani, P., M.G. Levy, S. Khan, and G. Oster. 2016. Paradoxical signaling
regulates structural plasticity in dendritic spines. Proc. Natl. Acad. Sci.
USA. 113:E5298–E5307. https://doi.org/10.1073/pnas.1610391113

Rochefort, N.L., and A. Konnerth. 2012. Dendritic spines: from structure to
in vivo function. EMBO Rep. 13:699–708. https://doi.org/10.1038/embor
.2012.102

Sabatini, B.L., and K. Svoboda. 2000. Analysis of calcium channels in single
spines using optical fluctuation analysis. Nature. 408:589–593. https://
doi.org/10.1038/35046076

Sabatini, B.L., M. Maravall, and K. Svoboda. 2001. Ca(2+) signaling in den-
dritic spines. Curr. Opin. Neurobiol. 11:349–356. https://doi.org/10.1016/
S0959-4388(00)00218-X

Sabatini, B.L., T.G. Oertner, and K. Svoboda. 2002. The life cycle of Ca(2+)
ions in dendritic spines. Neuron. 33:439–452. https://doi.org/10.1016/
S0896-6273(02)00573-1

Santamaria, F., S. Wils, E. De Schutter, and G.J. Augustine. 2006. Anomalous
diffusion in Purkinje cell dendrites caused by spines. Neuron. 52:
635–648. https://doi.org/10.1016/j.neuron.2006.10.025

Schmidt, H. 2012. Three functional facets of calbindin D-28k. Front. Mol.
Neurosci. 5:25. https://doi.org/10.3389/fnmol.2012.00025

Schmidt, H., and J. Eilers. 2009. Spine neck geometry determines spino-
dendritic cross-talk in the presence of mobile endogenous calcium
binding proteins. J. Comput. Neurosci. 27:229–243. https://doi.org/10
.1007/s10827-009-0139-5

Schmidt, H., S. Kunerth, C. Wilms, R. Strotmann, and J. Eilers. 2007. Spino-
dendritic cross-talk in rodent Purkinje neurons mediated by endoge-
nous Ca2+-binding proteins. J. Physiol. 581:619–629. https://doi.org/10
.1113/jphysiol.2007.127860

Bell et al. Journal of General Physiology 17

Spatiotemporal dynamics of calcium in dendritic spines https://doi.org/10.1085/jgp.201812261

69



Segal, M. 2005. Dendritic spines and long-term plasticity. Nat. Rev. Neurosci.
6:277–284. https://doi.org/10.1038/nrn1649

Segal, M., and E. Korkotian. 2014. Endoplasmic reticulum calcium stores in
dendritic spines. Front. Neuroanat. 8:64. https://doi.org/10.3389/fnana
.2014.00064

Segal, M., A. Vlachos, and E. Korkotian. 2010. The spine apparatus, syn-
aptopodin, and dendritic spine plasticity. Neuroscientist. 16:125–131.
https://doi.org/10.1177/1073858409355829

Sejnowski, T.J. 1977. Statistical constraints on synaptic plasticity. J. Theor. Biol.
69:385–389. https://doi.org/10.1016/0022-5193(77)90146-1

Shouval, H.Z., M.F. Bear, and L.N. Cooper. 2002. A unified model of NMDA
receptor-dependent bidirectional synaptic plasticity. Proc. Natl. Acad.
Sci. USA. 99:10831–10836. https://doi.org/10.1073/pnas.152343099
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Chapter 6

Stochastic simulations reveal that

dendritic spine morphology regulates

synaptic plasticity in a deterministic

manner

6.1 Introduction

Dendritic spines are small protrusions along the dendrites of neurons that com-

partmentalize postsynaptic biochemical, electrical, and mechanical responses. These sub-

compartments house the majority of excitatory synapses and are key for neuronal com-

munication and function [6, 53]. Because of their unique biochemical compartmentation

capabilities, spines are thought of as computational units that can modify their synaptic

strength through a process called synaptic plasticity [53,54].

Calcium plays a key role as a second messenger in biochemical and physical modi-
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fications during synaptic plasticity, triggering downstream signaling cascades within den-

dritic spines, and the entire neuron [54–56]. Efforts have also linked calcium levels to

synaptic weight change [13, 57–59]. Synaptic weight update refers to the change in the

strength of the postsynaptic response in the event of neurotransmitter release from the

presynapse. Calcium levels have often been used as an indicator of the early events pre-

ceding the complex downstream signaling [12,13,60,61], specifically the modulation of α-

amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor (AMPAR) density [7], and

thus inform the synaptic weight update. An increase in synaptic weight is associated with

Long Term Potentiation (LTP), while a decrease in synaptic weight is associated with

Long Term Depression (LTD) [62, 63]. While synaptic weight update requires a host of

downstream signaling and mechanical interactions, the level of calcium can be thought of

as an indicator of synaptic plasticity and weight [13,64].

Dendritic spines have characteristic sizes and shapes that dynamically change over

time in response to stimulus, and are associated with their function and synaptic plastic-

ity [65]. Just as whole cell shape is known to influence signaling dynamics [66–69], studies

have specifically probed the interplay between calcium dynamics and dendritic spine mor-

phology [3, 55, 70, 71]. Due to the historical significance of dendritic spines as electrical

subcompartments, the morphology of the spine neck has been implicated in regulating

calcium signaling and longer spine necks were found to decouple spine-dendrite calcium

signaling [72]. Additional modeling work coupled actin-myosin contractions to cytoplasmic

flow to identify two timescales of calcium motion, driven by flow and diffusion respectively,

that depend on spine geometry [73]. A combined analytical and numerical study showed

how geometry and curvature gives rise to pseudo-harmonic functions that can predict the

locations of maximum and minimum calcium concentration [70]. More recently, we used a

deterministic reaction-diffusion model to investigate dendritic spine morphology and ultra-
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structure, and found that dendritic spine volume-to-surface area ratios and the presence of

spine apparatus modulate calcium levels [3]. As we have shown before, the natural length

scale that emerges for reaction-diffusion systems with boundary conditions that have in-

flux and efflux rates is the volume-to-surface area ratio [66, 70]. What remains unclear

is whether the trends from dimensional analysis of deterministic models continue to hold

despite the stochastic nature of calcium influx and efflux across the wide range of spine

shapes.

Due the small volume of dendritic spines, stochastic calculations are important to

gain insight into the spatiotemporal dynamics of spine calcium; there are approximately

seven ions of calcium in a resting spine [71, 74]. Due to their probabilistic nature and

discrete number, calcium channels and receptors appear to behave stochastically [75–77].

This indicates that the system leans towards stochasticity and it has been suggested that

synaptic plasticity itself relies on stochasticity for robustness [75, 78, 79]. In this work,

using idealized and realistic spine geometries, we investigate the impact of shape and

stochasticity on calcium dynamics and synaptic weight change. We seek to answer the

following specific question: How do specific geometric parameters – namely shape and size

of dendritic spines – influence calcium dynamics? To address these questions, we built

a spatial, stochastic model of calcium dynamics in various dendritic spines geometries.

We used idealized geometries to control for various geometric parameters and then ex-

tended our calculations to realistic geometries. We probed the influence of spine shape,

volume, and volume-to-surface area ratio on calcium influx, variance of calcium dynamics,

and the robustness of synaptic weight. We show that although calcium dynamics in indi-

vidual spines is stochastic, the key readouts from the model, including mean calcium and

synaptic weight update, behave deterministically with respect to the variation of geometric

parameters.
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Figure 6.1: Model overview. a) Our stochastic model includes calcium influx through
NMDAR and VSCC, calcium efflux to the extracellular space through PMCA and NCX
pumps, and to the Spine Apparatus through SERCA pumps. Arrows indicate the move-

ment of Ca2+ through the labeled pump, channel, or receptor. Ωneck represents the Dirich-
let boundary condition at the base of the spine neck, at which the concentration of calcium
ions is clamped to zero. Cytosolic calcium is buffered using mobile and immobile calcium
buffers. Inset: A change in membrane potential triggered by an excitatory postsynaptic
action potential (EPSP) and back propagating action potential (BPAP) acts as the model
stimulus. b) The geometric factors considered in our model include spine shape, spine
size, neck radius and length, and SpApp size. We investigate three spine shapes: thin,
mushroom, and filopodia-shaped. Calcium levels determine the learning rate τw, (c), and
function Ωw, (d), that in turn determine synaptic weight, (e). The influence of geometry
and ultrastructure on calcium signaling thus has an influence on synaptic weight. θD and
θP represent the thresholds for long term depression and potentiation, respectively. Panel
a) was generated using biorender.com.
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6.2 Results

In this work, we sought to decipher the contributions of spine size and shape to

synaptic weight change. We briefly summarize our model development strategy here as

shown in Figure 6.1. We conducted stochastic simulations of calcium influx through N -

methyl-D-aspartate Receptor (NMDAR) and Voltage Sensitive Calcium Channels (VSCCs)

based on [71]. The system stimulus is a Excitatory Postsynaptic Potential (EPSP) and

Back Propagating Action Potential (BPAP) offset by 10 ms [71]. Calcium ions leave the

spine volume through the pumps on the plasma membrane, Plasma Membrane Ca2+-

ATPase (PMCA) and Sodium-Calcium Exchanger (NCX), and into the Spine Apparatus

(SpApp) (if present) through Sarco/Endoplasmic Reticulum Ca2+-ATPase (SERCA). In

addition, the base of the spine neck has a Dirichlet boundary condition of calcium clamped

to zero. Mobile and immobile buffers are present in the cytoplasm to reversibly bind cal-

cium, and there is an additional exponential decay throughout the cytoplasm. All sim-

ulations were performed using MCell [80–82] to capture the stochastic nature of calcium

dynamics in the small spine volumes and each simulation condition was run with 50 ran-

dom seeds. System configuration and analysis scripts are all available on Github https:

//github.com/RangamaniLabUCSD/StochasticSpineSimulations. Synaptic weight was

calculated using an ordinary differential equation dependent on the total number of cal-

cium ions in the cytoplasm at each time point, see supplement of [4].The rate of synaptic

weight update depends on a learning rate, τw, and a thresholding function, Ωw, that are

both dependent on calcium ion levels, Figure 6.1c-d. We investigate how spine geometry

and ultrastructure can influence synaptic weight change (Figure 6.1e). Model geometries

were selected as follows: idealized geometries of thin, mushroom, and filopodia-shaped

geometries from [27], see supplemental figures in [4].For each geometry, the Postsynaptic

Density (PSD) area was set as a fixed proportion of the spine volume. We first investi-
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gate whether spine size has any effect on filopodia-shaped spines (Figure 6.2), thin spines

(Figure 6.3), and mushroom spines (Figure 6.4). Next we consider the role of spine ap-

paratus (Figure 6.5). Last we test the trends we find in idealized spines on realistic spine

geometries (Figure 6.6). Our results predict that synaptic weight change through calcium

dynamics is a deterministic function of geometric parameters of the spines (Figure 6.7).

We note that our goal is not to provide a function fit but to demonstrate trends. We

discuss these results in detail below.

6.2.1 Synaptic weight change depends on spine volume-to-surface

ratio in filopodia-shaped spines

We begin our analysis with a simple question – does spine size alter synaptic weight

change? To answer this question, we first examined filopodia-shaped spines. Dendritic

filopodia are precursors of dendritic spines and serve to bridge the gap between the dendrite

and an axon that is passing by during synapse formation [83]. These are highly motile

elongated structures that resemble tubules (lengths of 2–20µm and neck diameters smaller

than 0.3 µm). The simplicity of this geometry allows us to focus on the role of size alone in

a simple spine geometry. We used spine geometries of three different volumes (0.017, 0.058

and 0.138 µm3). Simulations revealed that the calcium dynamics in these tubule-shaped

spines appeared to follow a ‘plug-flow’ behavior where at 15ms, all the calcium is localized

to one region (Figure 6.2a). This behavior is because of the narrow geometry of the spine,

preventing dispersion of the calcium. Next, we look at the temporal dynamics of calcium

and note that the larger spines have larger numbers of calcium ions (Figure 6.2b) but also

have a larger variance of calcium ions (Figure 6.2c). We further characterized the dynamics

by considering the peak calcium values and decay time constants of the calcium transients

versus the spine volume-to-surface area ratio. We chose the volume-to-surface area ratio as
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Figure 6.2: Calcium dynamics and synaptic weight change in filopodia-shaped

spines depend on spine size. a) Spatial plots illustrating Ca2+ localization at 15 and
30ms for filopodia-shaped spines with different volumes (0.017, 0.058 and 0.138µm3). The

number above each geometry corresponds to the number of Ca2+ in that frame. Scale bars:

2 µm. b) Mean (solid) and standard deviation (shaded area) of Ca2+ transients across 50

simulations for each of the three filopodia-shaped spine sizes. c) Variance of Ca2+ over

time. d) The mean and standard error (n=50) of the peak number of Ca2+ in different
filopodia-shaped spine sizes shows statistically significant differences; p* = 2.0262×10−11;
p** = 9.898×10−8; p*** = 4.362×10−26 using a two-tailed t-test. We fit the trend in

peak Ca2+ as a linear function of volume-to-surface area ratio, ζ; r2 = 0.5521 for the

linear fit. e) The decay timescales of each Ca2+ transient are estimated by fitting with
an exponential decay function c · exp(−kt). The mean and standard error (n=50) of the
decay time constant, k, shows statistically significant differences across filopodia-shaped
spine sizes; p* = 1.6331×10−4; p** = 0.0209; p*** = 1.3381×10−6 from a two-tailed t-test.
The mean decay time constants as a function of volume-to-surface area ratio, ζ, was fit
with an exponential a · exp(−bζ); r2 = 0.203 for the exponential fit. f) The mean and
standard error (n=50) of the calculated synaptic weight change at the last time point in
the simulation for all filopodia-shaped spine sizes, plotted against the volume-to-surface
area ratio, shows statistically significant differences between all cases; p* = 2.7290×10−5;
p** = 2.8626×10−6; p*** = 1.6321×10−14 from two-tailed t-test.
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a geometric metric of spine morphology because it encompasses both the cytosolic volume

through which calcium diffuses and the surface area of the spine membrane through which

calcium can enter and leave the system. Additional analyses with respect to spine volume

are shown in the supplement of [4].

We note that, indeed, increasing spine size and therefore the volume-to-surface

ratio, causes a linearly proportional and significant increase in peak calcium ions (Fig-

ure 6.2d). We also found that the decay time of calcium from the peak decreased with

increasing volume-to-surface area ratios and satisfied an exponential dependence (Fig-

ure 6.2e). As spine size increases, the decay time constant decreases, showing that it

takes longer for calcium to clear out of the larger spines and spines with larger volume-to-

surface area ratios. Finally, we calculated the synaptic weight change (see Supplemental

Section in [4]) and compared this value at 35ms across volume-to-surface area ratios for

the filopodia-shaped spines (Figure 6.2f).We observed that while the smallest spine had

no observable weight change presumably because of the net low calcium influx, the weight

change increases with increase in spine volume-to-surface-area ratio (Figure 6.2f). Thus,

we find that even for a shape as simple as a filopodia-shaped spine, changes in spine

volume-to-surface area ratio can dramatically alter calcium dynamics and synaptic weight

change even in stochastic conditions suggesting a close coupling between spinogenesis and

calcium handling.

6.2.2 Thin and mushroom-shaped spines modulate synaptic

weight changes as a function of volume-to-surface area ra-

tio

We next asked if the relationships of spine size and synaptic weight change observed

for filopodia-shaped spines (Figure 6.2) also holds for thin and mushroom-shaped spines.
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Figure 6.3: Changing thin spine size modulates calcium dynamics and synaptic

weight change. a) Spatial plots illustrating Ca2+ localization at 15 and 30ms for thin
spines with different volumes 0.035, 0.119 and 0.283 µm3). The number above each geome-

try corresponds to the number of Ca2+ in the frame. Scale bars: 0.5µm. b) Mean (solid)

and standard deviation (shaded area) of Ca2+ transients across 50 simulations for each

of the three thin spine sizes. c) Variance of Ca2+ over time. d) The mean and standard

error (n=50) of the peak number of Ca2+ in different thin spine sizes shows statistically
significant differences; p* = 5.2641×10−6; p** = 2.7377×10−9; p*** = 5.0036×10−20 from

two-tailed t-test. We fit the trend in peak Ca2+ as a linear function of volume-to-surface

area ratio, ζ; r2 = 0.4676 for the linear fit. e) The decay timescales of each Ca2+ transient
are estimated by fitting with an exponential decay function c · exp(−kt). The mean and
standard error (n = 50) of the decay time constant, k, shows statistically significant differ-
ences across thin spine sizes; p* = 4.3976×10−4; p** = 1.1541×10−4; p*** = 5.4590×10−8

from two-tailed t-test. The mean decay time constants as a function of volume-to-surface
area ratio, ζ, was fit with an exponential a·exp(−bζ); r2 = 0.2285 for the exponential fit. f)
The mean and standard error (n = 50) of the calculated synaptic weight change at the last
time point in the simulation for all thin spine sizes, plotted against the volume-to-surface
area ratio, shows statistically significant differences between all cases; p* = 0.0315; p** =
1.0661×10−5; p*** = 2.5751×10−8 from two-tailed t-test.
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Thin and mushroom-shaped spines emerge from filopodia-shaped spines as spinogenesis

progresses [83,84]. While it has been proposed that spines exist in a continuum of shapes

[85], historically it has been useful to categorize spines into specific categories of shapes [34].

Thin spines, with small heads and thin necks, have been classified as ‘write-enabled’ or

learning spines due to their high motility. Mushroom spines, on the other hand, with

bulbous heads and relatively wider necks, are termed ‘write-protected’ or memory spines

due to their stability [86]. Thin spines are characterized by a spherical head and we

repeated the calcium influx simulations in thin spines of three different volumes (0.035,

0.119 and 0.283µm3) that were informed by the ranges found in the literature, Figure 6.3.

We observe that, in thin spines, the calcium ions are concentrated in the head at 15

ms but disperse more uniformly by 30ms (Figure 6.3a).We do not observe a plug-flow

like behavior as we did for filopodia-shaped spines likely because of the differences in

both shape and volume of the thin spines. Calcium dynamics in thin spines follows the

expected temporal dynamics (Figure 6.3b), with larger spines having larger peak calcium

and increased time to decay. Larger thin spines also have larger variance in the calcium

ion concentration over time (Figure 6.3c). Next, we found that the maximum calcium

ions per spine was significantly larger in larger spines with statistically different values

for the different sized spines. The peak calcium increased linearly compared to spine

volume-to-surface area but with a smaller slope when compared to the filopodia-shaped

spines (max peak values in filopodia-shaped spines increased three times faster than those

in thin spines), (Figure 6.3d). This suggests that the size dependence of calcium grows

slower in thin spines than in filopodia-shaped spines. The decay time also showed an

exponential decay in thin spines with increasing volume-to-surface area ratio (Figure 6.3e).

The exponent was smaller for thin spines when compared to filopodia-shaped spines (47.9

versus 23.27) suggesting that the decay rate with respect to volume-to-surface area ratio
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was slower in thin spines. Finally, the synaptic weight change showed an increase with

volume-to-surface area ratio in thin spines (Figure 6.3f) indicating that larger spines are

capable of stronger learning outcomes.

Finally, we repeated our analysis for mushroom-shaped spines of increasing volume

(0.080, 0.271 and 0.643µm3), (Figure 6.4). The effect of the shape of the spines is evident

in the spatial dynamics of calcium (Figure 6.4a).Even at 15ms, we note that while a vast

majority of calcium ions are localized in the spine head, there is spillover of calcium into

the neck; this is particularly evident in the spines of larger volume in (Figure 6.4a). We

further investigated the role of the spine neck in both thin and mushroom spines in the

supplement of [4].

The effect of increases in volume, and therefore increases in volume-to-surface area

on the temporal dynamics of calcium is an increase in peak calcium (Figure 6.4b,d) and

variance (Figure 6.4c), and a decrease in the decay time constant (Figure 6.4e). The synap-

tic weight change in mushroom spines increases with spine volume-to-surface area and is

larger for these mushroom spines than the filopodia-shaped and thin spines (Figure 6.4f).

We observe that the peak calcium shows a linear increase with volume-to-surface area ratio

with a slope that lies between the thin spines and filopodia-shaped spines. Finally, the

decay time constant decreases with spine volume-to-surface area ratio but with a smaller

exponential decay when compared to thin spines and filopodia-shaped spines. These two

results point to the following conclusions – first, an increase in spine volume results in

an increase in critical readouts of synaptic plasticity and second, the shape of the spine

alters the quantitative relationships of synaptic plasticity by allowing access to different

volume-to-surface area ratios.
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Figure 6.4: Changing mushroom spine size modulates calcium dynamics and

synaptic weight change. a) Spatial plots illustrating Ca2+ localization at 15 and
30ms for mushroom spines with different volumes (0.080, 0.271 and 0.643 µm3). The

number above each geometry corresponds to the number of Ca2+ in the frame. Scale

bars: 0.5 µm. b) Mean (solid) and standard deviation (shaded area) of Ca2+ transients

across 50 simulations for each of the three mushroom spine sizes. c) Variance of Ca2+ over

time. d) The mean and standard error (n=50) of the peak number of Ca2+ in different
mushroom spine sizes shows statistically significant differences; p* = 4.1244×10−13; p** =

6.6467×10−15; p*** = 7.8934×10−32 from two-tailed t-test. We fit the trend in peak Ca2+

as a linear function of volume-to-surface area ratio, ζ; r2 = 0.6655 for the linear fit. e) The

decay timescales of each Ca2+ transient are estimated by fitting with an exponential decay
function c · exp(−kt). The mean and standard error (n=50) of the decay time constant, k,
shows statistically significant differences across mushroom spine sizes; p* = 6.8175×10−6;
p** = 6.4075×10−6; p*** = 1.1118×10−10 from two-tailed t-test. The mean decay time
constants as a function of volume-to-surface area ratio, ζ, was fit with an exponential
a · exp(−bζ); r2 = 0.3223 for the exponential fit. f) The mean and standard error (n=50)
of the calculated synaptic weight change at the last time point in the simulation for all
mushroom spine sizes, plotted against the volume-to-surface area ratio, shows statistically
significant differences between all cases; p* = 5.1012×10−10; p** = 2.0097×10−11; p*** =
2.1447×10−23 from two-tailed t-test.
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Figure 6.5: Spine apparatus size modulates synaptic weight change in mush-
room spines. a) Spatial plots at 15 and 30ms for mushroom spines with spine apparatus
of different volumes (net spine volumes of 0.203, 0.235 and 0.255 µm3). The numbers on
top of the shape indicate the total number of calcium ions at that instant in both the
spine apparatus and cytoplasm. Scale bars: 0.5 µm. Calcium ions over time as mean and
standard deviation (b) and variance (c) for all three mushroom spines with different spine
apparatus sizes. Shaded regions in (b) denote standard deviation. d) Peak calcium ion
number for each mushroom spine with a spine apparatus, with the mean and standard
error (n=50), show statistically significant differences; p* = 0.0101; p** = 0.0010; p*** =
4.0801×10−7 from two-tailed t-test. We fit the trend in peak values with a linear function
against the volume-to-surface area ratio; r2=0.1768 for the linear fit. e) We fit the decay
dynamics of each calcium transient with c · exp(−kt) and report the decay time constant,
k, as a mean and standard error (n = 50) against volume-to-surface area ratio. The decay
time constants were not statistically different. We fit the trend in decay time constants
as a function of volume-to-surface area ratio with an exponential a · exp(−bζ), where ζ
is the volume-to-surface area ratio; r2 = 0.0166 for the fit. f) Calculated synaptic weight
change mean and standard error (n = 50) at the last time point for all three mushroom
spines with spine apparatus show statistically significant differences between all cases; p*
= 0.0198; p** = 2.0977×10−4; p*** = 6.0097×10−7 from two-tailed t-test.
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6.2.3 Spine apparatus size tunes synaptic weight changes by al-

tering the volume-to-surface area relationships

Approximately 14% of dendritic spines have specialized endoplasmic reticulum

called spine apparatus which are preferentially present in larger, mature spines [3, 87, 88].

Furthermore, recent studies have shown that the spine apparatus and the ER are dynamic

structures in the dendrite and dendritic spines [89]. Previously, we showed that the spine

apparatus modulates calcium transients in deterministic models of calcium influx [3] by

altering the net fluxes [70]. Here, we investigate how these relationships are altered in

stochastic models in mushroom spines, Figure 6.5 (See [4] for the consideration of thin

spines with spine apparatus).When a spine apparatus is present in the spine head, it

effectively reduces the volume of the spine cytosol and in the time frame of our consider-

ation, acts as a calcium sink (by the action of the SERCA pumps) [90]. We also varied

spine apparatus size in the medium-sized mushroom spine, see Figure 6.5a and supplement

of [4].Calcium transients and variance showed much smoother dynamics for the mushroom

spines compared to the thin spines, compare Figure 6.5b-c versus figures in the supplement

of [4].Peak calcium values were all statistically different for the different spine apparatus

sizes and followed a linear relationship with respect to the volume-to-surface area ratio,

Figure 6.5d. Decay time constants were fit with an exponential relationship but there were

no statistical differences across different spines (Figure 6.5e). All different spine apparatus

sizes produce synaptic weight changes that are statistically different, such that increases

in spine apparatus size result in smaller spine volume (and smaller volume-to-surface area

ratio) and therefore produce smaller weight changes, Figure 6.5f. Thus, the presence of

spine apparatus alters the volume-to-surface area ratio for spines and therefore tunes cal-

cium levels and synaptic weight updates in the large mushroom spines with an inverse

relationship to the spine apparatus size.
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Figure 6.6: Real spine geometries show size dependence for calcium dynam-
ics. a) Spines similar to the idealized geometries were selected from a reconstructed
dendrite [29]. Representative filopodia-shaped spines, thin spines, and mushroom spines
were selected and labelled with their volume and shape. Scale bars: 0.5 µm. b) Calcium
transients as means and standard deviation, along with variance over time for the realistic
spines of different shapes; i-ii) filopodia-shaped spines, iii-iv) thin spines, and v-vi) mush-
room spines. The realistic spines are labeled with their volumes.

86



6.2.4 Simulations in realistic geometries reveals that synaptic

weight change depends on spine volume and volume-to-

surface area

Thus far, we focused on idealized geometries of spines, to identify relationships

between key synaptic variables and key geometric variables. We found that the peak

calcium concentration, decay time constant, and synaptic weight depend on the volume-

to-surface area ratio within each shape classification. Do these relationships hold for

realistic geometries as well? To answer this question, we selected realistic geometries from

mesh models [91] informed by electron micrographs from Wu et al [29].

Realistic spines have more complex geometries that do not fall into the exact mor-

phological categories that we used for idealized spines. To test the significance of these

variations, we selected two spines of each shape (thin, mushroom, and filopodia-shaped)

and conducted simulations with the exact same parameters as the idealized simulations

(Figure 6.6a). We chose realistic geometries that were within the range of sizes of the

idealized geometries. The PSDs in the realistic spines were annotated during the segmen-

tation process and no modifications were made to the PSD marked regions. To capture

filopodia-shaped protrusions, we selected long, thin spines (with minimal differentiation

between the head and neck) that had marked PSD, because we did not include dendritic

filopodia in the section. Details on how to use realistic geometries in these simulation

modalities can be found in the Supplemental Material.

For filopodia-shaped spines, we found that peak calcium and variance varied with

volume but the variance was not appreciably different for the two spines that we used to

conduct simulations (Figure 6.6b(i-ii)). The realistic thin spines we chose had volumes sim-

ilar to the filopodia-shaped spines and they also exhibited calcium dynamics proportional

to their volume (Figure 6.6b(iii-iv)).Mushroom spines had larger volumes and larger PSD
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areas when compared to the thin or filopodia-shaped spines (Figure 6.6b(v, vi)).Again,

the calcium dynamics was proportional to the volume and showed that larger spines have

higher peak calcium concentrations. Thus, the relationships of spine geometry and calcium

dynamics hold in realistic geometries as well.

6.3 Discussion

Dendritic spines have been studied extensively as biochemical signaling compart-

ments and their role in calcium sequestration has been theorized extensively [3,6,55,70,92–

94]. Their unique morphological features and the classification of spine sizes and shapes

with respect to function suggests possible structure-function relationships at the level of

individual spines. In this work, we used stochastic modeling of calcium transients in den-

dritic spines of different geometries to understand how spine size and shape affect synaptic

weight change. Using a stochastic simulation is important to investigate variance amongst

spine shape and size as dendritic spines have small volumes and probabilistic channel

dynamics. Using idealized and select realistic geometries we found that geometric proper-

ties, specifically, the volume-to-surface area affected key properties of calcium transients

including peak calcium, decay time constants, and synaptic weight change. We discuss

these findings in the context of different aspects of synaptic plasticity.

Our models predict despite the individual calcium transients being stochastic, there

is a predictive deterministic trend that appears to carry through the different sizes and

shapes of spines used in our model (Figure 6.7). We highlight that our goal is to demon-

strate a trend in the data as opposed to building numerical functions. Although we fit

the various data, we note that the r2 is often weak, indicative of the complexities that

underlie such efforts. With this in mind, one of the advantages of our modeling approach

here is that we can directly compare across the entire range of idealized and realistic ge-
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Figure 6.7: Idealized and realistic spines show overall trends in peak calcium,
decay rates, and synaptic weight change with respect to volume-to-surface area
ratios. a) All calcium peaks as mean and standard error (n=50) across volume to surface
area ratio show an overall increasing trend. We fit the trend in peak values with a linear
function against the volume-to-surface area ratio; r2 = 0.351 for the linear fit. b) We fit
the decay dynamics of each calcium transient with c · exp(−kt) and report the decay time
constant, k, as a mean and standard error (n = 50) against volume-to-surface area ratio.
We fit the trend in decay time constants as a function of volume-to-surface area ratio with
an exponential a · exp(−bζ), where ζ is the volume-to-surface area ratio; r2 = 0.1114 for
the fit. c) Calculated synaptic weight change mean and standard error (n = 50) at the last
time point for all idealized and realistic spines shows an increasing trend. We fit the trend
in synaptic weight change with a linear function against the volume-to-surface area ratio;
r2 = 0.2815 for the linear fit. d) All calcium peaks as mean and standard error (n=50)
across PSD surface area to plasma membrane surface area ratio show an overall increasing
trend. We fit the trend in peak values with a linear function against the PSD-to-surface
area ratio; r2 = 0.1441 for the linear fit. e) We fit the decay dynamics of each calcium
transient with c · exp(−kt) and report the decay time constant, k, as a mean and standard
error (n = 50) against PSD-to-surface area ratio. We fit the trend in decay time constants
as a function of PSD-to-surface area ratio with an exponential a · exp(−bη), where η is the
volume-to-surface area ratio; r2 = 0.0428 for the fit. f) Calculated synaptic weight change
mean and standard error (n = 50) at the last time point for all idealized and realistic
spines shows an increasing trend. We fit the trend in synaptic weight change with a linear
function against the PSD-to-surface area ratio; r2 = 0.1186 for the linear fit.
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ometries. By considering all the data from our models, for a total of 18 geometries with 50

simulations in each, we find that the peak calcium density is more-or-less linear with the

volume-to-surface area ratio (Figure 6.7a). The decay time constant for calcium transients

shows an exponential decay for larger volume-to-surface ratios with quite a bit of variabil-

ity for smaller ratios (Figure 6.7b). And finally, the synaptic weight change increases as

volume-to-surface area increases (Figure 6.7c).

In the idealized geometries, the PSD area is a manually-fixed proportion of the spine

volume but realistic geometries do not have this artificial constraint. Therefore, we redid

our analysis using PSD area-to-surface area ratios (PSD to Plasma Membrane (PM) ratio).

We still found the same relationships overall (Figure 6.7d-f) but this time with clustering

of data around some ratios. This indicates that the PSD area is an important additional

degree of freedom for synaptic weight change that must be considered for interpretation

of geometric features and using realistic geometries with boundary markings allows us to

investigate this. It is important to note that there is a lot more variability in the smaller

volume-to-surface area ratios suggesting the response of smaller spines may be more erratic

than larger spines. This feature can work as a double-edged sword – it may provide an

advantage during the development of spines or be an disadvantage in the case of loss of

spines [95, 96].

Finally, we interpret our predictions in the context of spine shapes. Filopodia

are prevalent during early synaptogenesis and can transition into dendritic spines based

on synaptic activity [83]. Additionally, various disease states produce modified dendritic

spines that appear more like filopodia [97]. The lack of significant weight changes for

the smallest filopodia-shaped spine indicates that there is a volume threshold at which

filopodia receive enough stimulus trigger synaptic weight change and transition towards

more stable, mature dendritic spines. Importantly, the early synaptic weight changes
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emphasize how the increase in spine volume changes the weight outcome from LTD to

LTP. This increase in synaptic weight emphasizes how an increase in spine size can push

a thin spine to transition into a stable, larger mushroom spine.

The difference in peak calcium level, decay dynamics, and synaptic weight changes

as different spine shapes are scanned across different sizes can also provide insight on spine

shape transitions during development and maturation. Filopodia-shaped spines have larger

increases in peak calcium levels and synaptic weight updates and faster decreases in decay

time constants as their volume-to-surface area ratios and volumes increase, compared to

both thin and mushroom spines; Figure 6.2, Figure 6.3, and Figure 6.4. This suggests

that filopodia can very quickly alter their calcium levels, and therefore are well-suited

for initially identifying possible synaptic partners and subsequently directing resources

to those filopodia that are good candidates to transition to dendritic spines [98]. Once

filopodia are established, their linear calcium increase with volume might be unsustainable

and might lead to the reduced levels of increase for thin spines of comparable volume-to-

surface area (and volume). This suggests that larger stimuli might be necessary to push

thin spines towards more excitation, perhaps prevent excessive numbers of thin spines from

maturing and leading to resource depletion and excess neural connectivity [99]. Mushroom

spines once again show more of an increase in synaptic weight as they increase in volume-

to-surface area ratio (and volume) but at volumes shifted from the filopodia-shaped spines,

perhaps highlighting their role as key communication hubs [99]. The volume shift seen in

mushroom spines versus filopodia-shaped spines might serve to limit the number of mature,

highly excitable dendritic spines as both a key neuronal network and resource regulation

feature. When the spine apparatus acts as a sink, its presence dampens synaptic weight

changes in mushroom spines, potentially acting to stabilize the spine from future changes

as suggested by others [86,100].
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We note that our study is only a small piece of the puzzle with respect to synaptic

plasticity. For instance, whether one should use total number of calcium ions or use

calcium concentration in evaluating synaptic weight change requires additional exploration.

For instance, we find that when calcium results are converted from total ions to average

concentration along with the phenomenological synaptic weight equations, we get different

trends in synaptic weight update results, see Supplement of [4].However, converting our

previous results [3] into total ions shows the same trends for max Ca2+ peak and decay

time constants as this current study, see Supplement of [4].Thus, a simple unit issue can

lead to conflicting results in spatial models and indicates that we need further discussion

and investigation on the structure of phenomenological equations for synaptic weight to

understand which factors of calcium dynamics matter and to what degree. An additional

limitation of this study is the usage of traditional p-values for statistical analysis of the data

(see Supplement of [4] for details on h and p-values), since the statistics field has suggested

moving away from null-hypothesis significance testing [101]. We also note that our current

focus is on very early events and these models must be extended to longer time scale events

to explore the biochemical and geometric interplay for downstream signaling [102–105].

In summary, our computational models using idealized and realistic geometries of

dendritic spines have identified potential relationships between spine geometry and synap-

tic weight change that emerge despite the inherent stochasticity of calcium transients. The

advances in computational modeling and techniques have set the stage for a detailed ex-

ploration of biophysical processes in dendritic spines [11,102,106]. Such efforts are critical

for identifying emergent properties of systems behavior and also eliminating hypotheses

that are physically infeasible [1, 107]. Models such as this and others can set the stage

for investigating longer time scale events in spines including the downstream effectors of

calcium [64,103,108,109], and actin remodeling for structural plasticity [23,28].
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6.4 Methods

We constructed a system of stochastic partial differential equations to describe

calcium dynamics in the postsynaptic spine following glutamate release from the presy-

naptic terminal. The signaling model was developed from prior art from Refs. [3,71]. The

equations for estimating synaptic weight update were modified from Refs. [13, 100]. Sim-

ulations were carried out in MCell [80, 81] and analyzed in MATLAB. Idealized dendritic

spine geometries were adapted from geometries obtained from the mechanical equilibrium

of membranes described by thin-shell mechanics in Ref. [27]. Electron microscopy images

taken from [29] were meshed and curated using techniques from [91] to generate realistic

dendritic spine geometries. Additional details regarding the signaling model, simulation

parameters, and analysis can be found in the Supplement of [4].
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Chapter 7

Crosstalk between biochemical

signaling & trafficking governs

AMPAR dynamics in synaptic

plasticity

Introduction

A vast majority of the excitatory postsynaptic sites of synapses are housed in den-

dritic spines. Dendritic spines are small protrusions, 0.01 to 0.8 µm3 in volume, along

the dendrites of neurons and act as signaling subcompartments, generating biochemical,

electrical, and mechanical responses in response to stimuli from the presynaptic termi-

nal [6]. Despite their small size, dendritic spines undergo complex biochemical signal

transduction, spanning multiple timescales and pathways involving many protein kinases

and phosphatases [93,110]. Integration of these different pathways into a readout for learn-
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ing and memory formation is the basis of synaptic plasticity, which refers to the ability

of a synapse to regulate its connection strength through both biochemical and structural

components [93].

A widely accepted and functional readout of synaptic plasticity is the density of the

glutamatergic receptor, AMPAR (α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

receptor), at the postsynaptic density (PSD) on the spine head [10]. Due to the importance

of AMPAR for proper synaptic plasticity and neural function, dysregulation in either the

underlying biochemical signaling or trafficking mechanisms of AMPAR can lead to severe

consequences on learning, memory formation, and neural function, see Figure 7.1a.

Even though the processes associated with accumulation of AMPAR at the PSD are

quite complex, to understand the events leading to the modification of AMPAR density

on the spine head, we first provide a brief summary of the upstream signaling events

organized by timescales, see Figure 7.1b for a schematic of these event timescales. The

timescale of AMPAR increase/decrease at PSD after a stimulus varies from 10s [110–112]

to a longer timescale of 60 minutes associated with long-term potentiation/depression

(LTP/LTD) [24, 113, 114]. The main events occurring within these timescales are listed

below.

• In response to a glutamate release event coupled with a voltage stimulus (primarily,

an excitatory postsynaptic potential (EPSP) and a backpropagating action potential

(BPAP)), N-methyl-D-aspartate receptors (NMDAR) and voltage sensitive calcium

channels (VSCC) open on the spine membrane, resulting in an influx of Ca2+ into

the spine. Calcium influx into the spine is the first step in numerous different sig-

naling pathways important for synaptic function and from a modeling perspective

is one of the most studied event in spines [11, 70,71,100,102,115,116]. This voltage

depolarization and subsequent calcium influx occurs over the millisecond timescale
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and is the fastest timescale considered in our model.

• Cytosolic Ca2+ rapidly binds a variety of different species over the millisecond to

second timescale, notably calmodulin (CaM) [117], which in turn triggers various

kinases and phosphatases including Calcium/calmodulin-dependent protein kinase

II (CaMKII) and protein phosphatase 1 (PP1) [103,110,118]. Free cytosolic Ca2+ is

also bound to various calcium buffers both in the cytoplasm and located on the mem-

brane [115,119]. CaM additionally binds to scaffolding proteins such as neurogranin

(Ng) which impacts the available CaM for CaMKII activation [109].

• CaMKII is one of the most abundant proteins in the brain and its dynamics are

vital for neural processes like synaptic plasticity, specifically LTP and LTD [14, 15].

CaMKII is known to increase the exocytosis rate of AMPAR to the surface of the

spine head [112], promoting the idea that it is a molecular marker of memory [120,

121]. CaMKII is activated rapidly by Ca2+-bound CaM but its activity can remain

elevated in the minute timescale due to its autophosphorylation dynamics (discussed

more below) [122,123]. CaMKII is also known to deactivate different phosphatases,

including PP1 [124, 125]. In light of the critical role played by CaMKII in synaptic

plasticity, a brief history of modeling is warranted.

In [126], the idea that CaMKII activation exhibited bistability was proposed as a

model to explain the long-time activation of CaMKII even after the stimulus was

removed. In particular, [110] proposed a bistable model that included mutual in-

hibition and autoactivation of CaMKII and PP1 through Michaelis-Menten style

dynamics [110, 126–128], see Figure 7.1c for a model of these bistable dynamics.

This achieved multiple steady states of CaMKII and PP1 dependent on the level of

Ca2+ input. While this system provided a switch that was protected from stochas-

tic fluctuations and provided sustained CaMKII activity to model either LTP or
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LTD, experiments at the time only showed transient CaMKII activity [122,129] and

failed to find a hysteresis in the CaMKII-PP1 system [130, 131]. However, more

recently, [132] experimentally showed the presence of CaMKII-PP1 hysteresis and

bistability within individual holoenzymes in the presence of an NMDAR-derived

peptide. They concluded that the CaMKII-PP1 system can act as a memory switch

with bistability but only in the presence of NMDAR [132]. Other experiments showed

that the observed bistability features required higher than relevant concentrations of

Ca2+ suggesting that (a) bistability could exist at basal conditions if there are addi-

tional, currently unknown, signaling interactions that alter CaMKII dynamics [131],

or (b) bistability might exist within localized domains such as within the PSD versus

the spine cytoplasm [133], or (c) the observed hysteresis is not from true bistable

dynamics but rather just a delayed return to a monostable state [132], which was

supported by other models [134].

The temporal dynamics of CaMKII have also been extensively investigated experi-

mentally. CaMKII was initially thought to have sustained activation because of its

elevated levels following a brief stimulus and the necessity of CaMKII autophospho-

rylation for LTP [135]. However, more recent experiments show that CaMKII acti-

vation is actually transient and that LTP is associated with only transient CaMKII

activity [129], see Figure 7.1d for a model of transient CaMKII and PP1 dynamics.

Experimentally measured CaMKII dynamics are often fit with a biexponential decay

with a fast and slow timescale [136]. While phosphastases are known to be involved

in CaMKII inactivation, it was shown that phosphatases do not affect the fast decay

dynamics of CaMKII [136]. Recently, we developed a multiscale model of CaMKII

activation that considered monomer kinetics and holoenzyme kinetics and showed

that CaMKII acts as a leaky integrator of Ca2+ pulses in the presence of Ng and
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PP1 [109], as seen experimentally in sLTP [137]. Another model also suggests that

CaMKII is a leaky integrator of Ca2+ when in a PP1-rich environment [133].

• In addition to CaMKII, different phosphatases are also activated by Ca2+-bound

CaM and play important roles in signaling control loops for synaptic plasticity [124,

130, 138]. PP1 in particular is enriched in dendritic spines and is implicated in the

regulation of LTD [118,138,139] and its activation is thought to increase the rate of

endocytosis of AMPAR [126,140]. PP1 has been hypothesized to deactivate CaMKII

[124]; CaMKII is ultrasensitive in the presence of phosphatases and CaMKII within

PSD was mainly dephosphorylated by PP1 [118]. Inhibiting protein phosphatases

could convert short-term potentiation (STD) induced by exposure to K+ into LTP

[129].

• CaMKII and PP1 influence AMPAR dynamics at the PSD by regulating exocytosis

to the membrane and endocytosis from the membrane, respectively [140]. Specif-

ically when CaMKII levels are high, AMPAR trafficking to the PSD is increased

through exocytosis [141] and these conditions support the induction of LTP [121].

In contrast, when PP1 dominates the system, AMPAR density at the PSD decreases

through endocytosis, supporting the induction of LTD [118,142,143]. Beyond endo-

and exocytosis, there are other sources of AMPAR that can interact with AMPAR

at the PSD. Pools of AMPAR exist on both the perisynaptic region and extrasy-

naptic regions both in the spine and on the dendrite, and laterally diffuse across the

membrane into the PSD [25]. Synaptic activity, particularly CaMKII activation, can

trigger movement of these AMPAR sources into the dendritic spine and towards the

PSD region [15, 16, 144]. Therefore, AMPAR dynamics during this early synaptic

plasticity phase occur over the 5-10 minute timescale [103]. Retention of the AM-

PAR at the PSD can occur through scaffolding molecules. TARPS (e.g. stargazin)
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binds to AMPAR very early on in the AMPAR lifecycle [16]. AMPAR also binds

to scaffolding proteins, such as PSD95, to form bound AMPAR and this binding

interaction plays a key role in determining AMPAR dynamics and localization in the

PSD [14,145].

Given the complexity of AMPAR density at the PSD, we seek to answer the follow-

ing questions using computational modeling. How do the timescales of upstream biochem-

ical signaling affect AMPAR dynamics? Specifically, how does the choice of biochemical

signaling (bistable versus monostable model, Figure 7.1c versus d) of CaMKII/PP1 influ-

ence bound AMPAR dynamics? What is the role played by the trafficking modalities and

influx of AMPAR on these dynamics? And finally, how do these response change with

frequency of stimulus? To answer these questions, we developed a system of coupled com-

partmental ordinary differential equations. While we fully acknowledge that our model

makes significant simplifications of the complex signaling processes [103], our focus is on

understanding how these different timescales and contributions play an important role,

see Figure 7.1. Using this model, we demonstrate that AMPAR dynamics depends in an

expected manner on upstream signaling but unexpectedly on trafficking.

Model development

To study the dynamics of AMPAR during synaptic plasticity, we constructed a sys-

tem of compartmental deterministic ordinary differential equations (ODEs) that describes

the influx of calcium, activation of CaMKII and PP1, and AMPAR dynamics on the mem-

brane. We note that the pathways involved are quite complex and we make simplifying

assumptions to probe the timescales of AMPAR dynamics on the membrane. Here we

list these model assumptions, describe the key components of the model, and provide the

governing equations.
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Figure 7.1: Schematic of AMPAR signaling and trafficking. a) AMPAR dynamics
depend on a combination of signaling dynamics triggered through synaptic communication
and movement of AMPAR through different trafficking mechanisms. b) Synaptic plasticity
and specifically AMPAR modifications span several timescales from fast calcium influx to
receptor trafficking into the dendritic spine. Although the signaling underlying synaptic
plasticity is very complex, here we present two simplified biochemical signaling pathways
to investigate the effects of both biochemical and trafficking variations on bound AMPAR
at the PSD. The bistable model (c) and monostable model (d) represent two different
mathematical formulations to describe how CaMKII and PP1 interact in dendritic spines.
Black lines represent activation, red lines represent inhibition, and teal lines highlight
biochemical influences on trafficking mechanisms. Made with Biorender.com.
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Model assumptions

• Compartments: We model a dendritic spine in the hippocampus as an two com-

partment system with a cytoplasm and plasma membrane. The cytoplasm has a

volume of 0.06 µm3 based on the average dendritic spine volume [115,146,147]. The

plasma membrane has a surface area of 0.8 µm2, which is the approximately surface

area for an idealized spherical spine with a volume of 0.06 µm3 [115]. When convert-

ing between the volumetric cytoplasm and 2D plasma membrane compartments, we

use a length scale conversion (n) of 0.1011 µm to convert units [148]. All species are

well mixed within their compartment. We model the spine as an isolated compart-

ment besides the initial Ca2+ influx and the influx of CaMKII-dependent membrane

AMPAR [54,122].

• Timescales: We focus on AMPAR dynamics associated with synaptic plasticity on

the 10 minute timescale [103].

• Reaction types: A vast majority of the reactions are modeled as either mass

action dynamics or enzymatic Hill function reactions (See Tables 7.1, 7.2, 7.3, 7.4,

7.5, 7.6). Several components, including the dynamics of NMDAR and VSCC, are

custom equations that describe how their activation depends on voltage [57, 115].

AMPAR endocytosis and exocytosis are taken as modified mass action dynamics

with additional dependence on activated CaMKII and PP1 [110, 126]. AMPAR

influx from extrasynaptic pools outside of the dendritic spine is modeled as a time-

dependent and activated CaMKII-dependent process to represent activity-dependent

diffusion of membrane AMPAR into the system [144,149]. This AMPAR influx term

means that the system does not have mass conservation for the membrane AMPAR

(Amem) species.
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• Kinetic parameters: Reaction rates were taken from previous studies [115,124] or

approximately fit to experimental data. In particular, the rates for CaMKII and PP1

decay dynamics for the monostable model were fit to experimental data [116,136,137],

see Figure 7.2j-k.

Key components

The goal of this model is to investigate AMPAR dynamics during spine activa-

tion and the key upstream kinase and phosphatase activity. We highlight the key model

components below.

• Stimulus and Ca2+ influx: We simulate the activation of a dendritic spine due

to voltage depolarization so the model stimulus is a time dependence voltage profile

representing an EPSP and a BPAP offset by 2 ms [115]. The voltage depolarization

is assumed to accompany a glutamate release, such that both NMDARs and VSCCs

are activated, allowing for calcium influx into the spine. We do not explicitly model

the glutamate release from the presynapse or the diffusion of glutamate in the extra-

cellular space. We also do not explicitly model extracellular calcium, as we assume

it has such a high concentration that the calcium influx into the dendritic spine

has negligible effects [115]. After Ca2+ floods into the spine through NMDAR and

VSCC, it is pumped out of the spine through PM Ca2+-ATPase (PMCA) pumps

and sodium–calcium exchanger (NCX) pumps [115]. Ca2+ influx into the spine is

also rapidly buffered by downstream signaling species, and here we explicitly model

Ca2+ binding to Calmodulin (CaM) [124]. We do not consider additional buffers

here due to explicit modeling of binding to CaM.

• Calmodulin activation: Calmodulin (CaM) is quickly bound to Ca2+ in dendritic

spines and we simplify Ca2+/CaM binding in a single mass action equation. We
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note that Ca2+/CaM binding is a multistate process with different intermediates

[105,109]; we simplify the process to focus on key timescales of CaM. We denote the

activated CaM complex (CaM bound to 4 Ca2+, Ca2+4CaM) as Ca2+CaM.

• Activation of downstream components by calmodulin: CaM acts as a key

propagating signal by binding with the scaffolding protein neurogranin (Ng) [109],

and activated CaM activates both CaMKII and the phosphatase cascade [124].

• CaMKII and phosphatase dynamics: We investigate two different models for

CaMKII and phosphatase dynamics, shown in Fig. 7.1c and d.

– Bistable model: In the bistable model, activated CaM triggers the phospho-

rylation of CaMKII, which can then autophosphorylate itself [110,124,127,150].

Activated CaM triggers the dephosphorylation of calneurin (CaN), which is the

first step in a phosphatase cascade involving inhibitor-1 (I1) and PP1, where

CaN activates I1 and I1 activates PP1 [124,151], see Supplemental Material for

a comment on I1. Activated PP1 can then autodephosphorylate itself [124,152].

Active CaMKII can deactivate each of the active phosphatases. Activated

PP1 can dephosphorylate CaMKII, while activated CaMKII can phosphory-

late PP1, so the active species of both CaMKII and PP1 deactivate the other

species [132,152]. We refer to this model as the bistable model because this sys-

tem can achieve different steady state behavior of CaMKII and PP1 dependent

on different stimulus, initial conditions, and other factors [110].

– Monostable model: In the monostable model, activated CaM triggers the

phosphorylation of CaMKII, but CaMKII deactivates over time proportionally

to its activated concentration [122, 153]. Similarly, activated CaM triggers the

activation of PP1, which then decays to its inactive state proportionally to its
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active concentration. We refer to this model as the monostable model because

the rate of decrease for both active CaMKII and active PP1 is linearly pro-

portional to their concentrations and therefore only produce a single steady

state.

• AMPAR trafficking and signaling: AMPAR is a membrane-bound protein; it is

located on the plasma membrane and on endosomal membranes, and undergoes both

basal and activity dependent endocytosis and exocytosis [154, 155]. In our model,

we incorporate CaMKII-dependent exocytosis [141] and PP1-dependent endocytosis

[110]. AMPARs also diffuses into the spine in response to CaMKII activity through

lateral membrane diffusion from extrasynaptic pools on the dendrite [25,141]. On the

membrane, AMPAR binds to scaffolding proteins, such as PSD95, to stabilize at the

PSD [156]. We assume that there is a pool of PSD95 available to bind with membrane

AMPAR. This bound AMPAR/PSD95 complex, denoted as bound AMPAR, is the

model readout.

Governing equations

We construct a compartmental system of ordinary differential equations that rep-

resent signaling species in the two different compartments, the cytoplasm and the plasma

membrane. The temporal dynamics of each signaling species, ci, is given by

dci
dt

= Ri, (7.1)

where Ri represents the net flux of the species i. The reactions governing the dynamics of

each species are the sum of sources and sinks such that Ri = Ri,source −Ri,sink. For mem-

brane AMPAR, this coupled system can be understood through a series of CaMKII and
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PP1 dependent sources and sinks for AMPAR on the membrane. Unbound AMPAR on

the membrane increases through CaMKII-dependent exocytosis and influx, and decreases

through PP1-dependent endocytosis. Free AMPAR on the membrane can bind to scaffold-

ing proteins such as PSD95 to become bound in the PSD region. As mentioned above, the

exact dynamics of CaMKII and phosphatase cascades in dendritic spines remain unknown.

How those CaMKII and phosphastase dynamics in turn then affect AMPAR dynamics is

also unclear.

The various species and their reactions can be found in Tables 7.1, 7.2, and 7.3 for

the bistable model, and Tables 7.4, 7.5, and 7.6 for the monostable model.

Variations of different parameters

To investigate the role of upstream kinase and phosphatase cascades on AMPAR

dynamics, we compare two different signaling networks – the bistable and monostable

models described above. Additionally, due to the coupling of CaMKII and PP1 and their

opposing effects on AMPAR, we also varied the initial conditions of CaMKII and PP1,

specifically their inactive species’ initial condition. This initial concentration variation is

meant to represent variations in spine size along with different cytosolic conditions such

as variations that occur after synaptic activation or in different regions such as the PSD.

Next, we vary the relative contributions of endocytosis/exocytosis and AMPAR influx

to investigate the role of signaling on different trafficking mechanisms. This variation of

trafficking also accounts for differences in dendritic spine geometry, such as differences in

spine surface area and volume that would influence speed or magnitude of the trafficking

mechanism. We also specifically vary the contributions of endocytosis and exocytosis

separately in two different manners - 1. where we scale the contributions of the activity

dependent terms, and 2. where we scale the contributions of the whole endocytosis and
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Table 7.1: AMPAR pathway reactions, reaction types, and reaction rates used
in the bistable model

List of Reactions Reaction Type Reaction Rate

Module 0: Ca2+ Influx

0 Ca2+ECS
−−⇀↽−− Ca2+cyto Custom(0) R0 = Jinflux − Jefflux

Module 1: Ca2+/CaM Complex Formation

1 3Ca2+ + CaM
kf1−−⇀↽−−
kb1

Ca2+CaM MA(1) R1 = kf1[Ca
2+]3[CaM ]− kb1[Ca

2+CaM ]

Module 2: CaM/Ng Complex Formation

2 CaM+Ng
kf2−−⇀↽−−
kb2

CaMNg MA R2 = kf2[CaM ][Ng]− kb2[CaMNg]

Module 3: CaMKII activation and deactivation

3 CaMKII +Ca2+CaM
Kcat3−−−−→ CaMKIIp CB(2,3) R3 =

Kcat3[Ca2+CaM ]4[CaMKII]

K4
m3+[Ca2+CaM ]4

4 CaMKII +CaMKIIp
Kcat4−−−−→ CaMKIIp CB R4 =

Kcat4[CaMKIIp][CaMKII]
Km4+[CaMKII]

5 CaMKIIp +PP1
Kcat5−−−−→ CaMKII CB R5 =

Kcat5[PP1][CaMKIIp]
Km5+[CaMKIIp]

Module 4: Phosphatase cascade activation and deactivation

6 CaNp +Ca2+CaM
Kcat6−−−−→ CaN CB R6 =

Kcat6[Ca2+CaM ]4[CaNp]

K4
m6+[Ca2+CaM ]4

7 CaN +CaMKIIp
Kcat7−−−−→ CaNp CB R7 =

Kcat7[CaMKIIp][CaMKII]
Km7+[CaMKII]

8 I1p +CaN
Kcat8−−−−→ I1 CB R8 =

Kcat8[CaN ][I1p]
Km8+[I1p]

9 I1 +CaMKIIp
Kcat9−−−−→ I1p CB R9 =

Kcat9[CaMKIIp][I1]
Km9+[I1]

10 PP1p + I1
Kcat10−−−−−→ PP1 CB R10 =

Kcat10[I1][PP1p]
Km10+[PP1p]

11 PP1p +PP1
Kcat11−−−−−→ PP1 CB R11 =

Kcat11[PP1][PP1p]
Km11+[PP1p]

12 PP1 +CaMKIIp
Kcat12−−−−−→ PP1p CB R12 =

Kcat12[CaMKIIp][PP1]
Km12+[PP1]

Module 5: AMPAR trafficking

13 Aint
kf13(CaMKIIp)
−−−−−−−−−−−−⇀↽−−−−−−−−−−−−

kb13(PP1)
Amem MA R13 = (c1[CaMKIIp] + c3)[Aint]− (c2[PP1] + c4)[Amem]

14 ∅
kf14(CaMKIIp)
−−−−−−−−−−−−→ Amem Custom(4) R14 = (kf14(t)[CaMKIIp])

Module 6: AMPAR/Scaffolding Complex

15 Amem+ PSD95
kf15−−−⇀↽−−−
kb15

ABound MA R15 = kf15[Amem][PSD95]− kb15[ABound]

1 (0) Custom taken from [115]: see Supplemental material for details. Jinflux = JNMDAR+JV SCC +
Jleak and Jefflux = JPMCA + JNCX .; (1) MA: Mass Action; (2) CB: Cooperative Binding; (3)

Enzyme is in bold type. (4) Custom is given in Supplemental material.

exocytosis terms. These trafficking variations can represent disease states where AMPAR

influx, or endocytosis and exocytosis are hindered or upregulated. Finally, we vary the

model stimulus by supplying active CaM pulses of different frequencies and magnitudes.
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Table 7.2: Reaction parameters calculated for the bistable model
Reaction rate kf unit kb unit Kcat unit Km unit Kr unit

R1 7.75 µM−3 · s−1 1 s−1 - - - - - -

R2 5 µM1 · s−1 1 s−1 - - - - - -

R3 - - - - 120 s−1 4 µM - -

R4 - - - - 1 s−1 10 µM - -

R5 - - - - 15 s−1 3 µM - -

R6 - - - - 127 s−1 0.34 µM - -

R7 - - - - 0.34 s−1 127 µM - -

R8 - - - - 0.034 s−1 4.97 µM - -

R9 - - - - 0.0688 s−1 127 µM - -

R10 - - - - 50 s−1 80 µM - -

R11 - - - - 2 s−1 80 µM - -

R12 - - - - 0.07166 s−1 4.97 µM - -

R∗
13 1,6 µM−1 · s−1, s−1 1,8 µM−1 · s−1, s−1 - - - - - -

R∗∗
14 - - - - - - - - - -

R15 0.0349 µm2 ·molecules−1 · s−1 1 s−1 - - - - - -

1 * This reaction represents a membrane flux so there is a reaction between species of different
compartments. The units here represent the base reaction without unit conversion between species.
Please see Supplemental material for more detail.

2 ** This reaction represents a CaMKIIp-dependent influx of membrane AMPAR and is a custom
reaction. Please see Supplemental material for more detail on this reaction and R0.

Numerical methods

The system of deterministic ordinary differential equations was coded and solved

in MATLAB R2018b and R2020b. The solver ode23s was used for all numerical simula-

tions. The model was run for 500 s with outputs every 0.01 s. Time stepping was set

up automatically in MATLAB. Time-to-peak (TTP) and peak values were found using

the MATLAB function max() for a precise numerical value. Steady state was determined

when the rate of change of the species was determined to be small (approximately 1×10−3)

or for simplicity at the end of the simulation time range, see Supplemental Material for

more information. A sensitivity analysis was run for both signaling models in COPASI.

The model files can be found on GitHub under RangamaniLabUCSD.
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Table 7.3: Initial concentrations and ordinary differential equations for bistable
model

Species Initial condition Units ODE

Ca2+ 0.1 µM d[Ca2+]
dt

= R0 − 3R1

CaM 10 µM d[CaM ]
dt

= −R1

Ca2+CaM 0 µM d[Ca2+CaM ]
dt

= R1

Ng 20 µM d[Ng]
dt

= −R2

CaMNg 0 µM d[CaMNg]
dt

= R2

CaMKII 201 µM d[CaMKII]
dt

= −R3 −R4 +R5

CaMKIIp 0 µM d[CaMKIIp]
dt

= R3 +R4 −R5

CaNp 1 µM d[CaNp]
dt

= −R6 +R7

CaN 0 µM d[CaN ]
dt

= R6 −R7

I1p 1.8 µM d[I1p]
dt

= −R8 +R9

I1 0 µM d[CaN ]
dt

= R8 −R9

PP1p 0.251 µM d[PP1p]
dt

= −R10 −R11 +R12

PP1 0 µM d[PP1]
dt

= R10 +R11 −R12

Aint 0.1597 µM d[Aint]
dt

= −R13

Amem 7.288 molecules
µm2

d[Amem]
dt

= R13 +R14 −R15

PSD95 4000 molecules
µm2

d[PSD95]
dt

= −R15

ABound 1000 molecules
µm2

d[ABound]
dt

= R15

1 Initial condition is varied in some of the simulations.
In simulations, membrane components are converted to moles per meter squared.

Results

Using a compartmental ODE model, we investigated the timescales of different bio-

chemical signaling events underlying AMPAR dynamics during synaptic plasticity. We

use the following metrics to generate quantitative comparisons between the different con-

ditions tested in the model: peak concentration, time to peak, steady state concentration,

and time to steady state. Bound AMPAR (membrane AMPAR bound to PSD95) is the

ultimate model readout for synaptic plasticity.
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Table 7.4: AMPAR pathway reactions, reaction types, and reaction rates used
in the monostable model

List of Reactions Reaction Type Reaction Rate

Module 0: Ca2+ Influx

0 Ca2+ECS
−−⇀↽−− Ca2+cyto Custom(0) R0 = Jinflux − Jefflux

Module 1: Ca2+/CaM Complex Formation

1 3Ca2+ + CaM
kf1−−⇀↽−−
kb1

Ca2+CaM MA(1) R1 = kf1[Ca
2+]3[CaM ]− kb1[Ca

2+CaM ]

Module 2: CaM/Ng Complex Formation

2 CaM+Ng
kf2−−⇀↽−−
kb2

CaMNg MA R2 = kf2[CaM ][Ng]− kb2[CaMNg]

Module 3: CaMKII activation and deactivation

3 CaMKII +Ca2+CaM
Kcat3−−−−→ CaMKIIp CB(2,3) R3 =

Kcat3[Ca2+CaM ]4[CaMKII]

K4
m3+[Ca2+CaM ]4

4 CaMKIIp
kf4−−→ CaMKII MA R4 = kf4[CaMKIIp]

Module 4: Phosphatase cascade activation and deactivation

5 PP1p +Ca2+CaM
Kcat5−−−−→ PP1 CB R5 =

Kcat5[Ca2+CaM ]4[PP1p]

K4
m5+[Ca2+CaM ]4

6 PP1
kf6−−→ PP1p MA R6 = kf6[PP1]

Module 5: AMPAR trafficking

7 Aint
kf7(CaMKIIp)
−−−−−−−−−−−⇀↽−−−−−−−−−−−

kb7(PP1)
Amem MA R7 = (c1[CaMKIIp] + c3)[Aint]− (c2[PP1] + c4)[Amem]

8 ∅
kf8(CaMKIIp)
−−−−−−−−−−−→ Amem Custom(4) R8 = (kf8(t)[CaMKIIp])

Module 6: AMPAR/Scaffolding Complex

9 Amem+ PSD95
kf9−−⇀↽−−
kb9

ABound MA R9 = kf9[Amem][PSD95]− kb9[ABound]

1 (0) Custom taken from [115]: see Supplemental material for details. Jinflux = JNMDAR+JV SCC +
Jleak and Jefflux = JPMCA + JNCX .; (1) MA: Mass Action; (2) CB: Cooperative Binding; (3)

Enzyme is in bold type. (4) Custom is given in Supplemental material.

Ca2+ influx dynamics are the same for both the monostable and

the bistable models

We first focus on the early events in the spine in response to Ca2+ influx (Figure 7.2;

bistable in blue, monostable in red). When Ca2+ floods into the spine, it is rapidly

bound by CaM and effluxes through various pumps; see Module 0 and 1 in Table 7.1 and

Table 7.4. In response to the voltage stimulus (Figure 7.2a, inset; see Key Components

of model), Ca2+ influx is rapid and decays within 10 s (Figure 7.2a), consistent with

previous models [71, 109, 115] and experiments [157, 158]. Ca2+ bound CaM, denoted as

Ca2+CaM, shows a slightly slower increase to peak value compared to Ca2+ (290 ms for
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Table 7.5: Reaction parameters calculated for the monostable model

Reaction rate kf unit kb unit Kcat unit Km unit Kr unit

R1 7.75 µM−3 · s−1 1 s−1 - - - - - -

R2 5 µM1 · s−1 1 s−1 - - - - - -

R3 - - - - 120 s−1 4 µM - -

R4 - - - - - - - - 0.05 s−1

R5 - - - - 127 s−1 0.34 µM - -

R6 - - - - - - - - 0.025 s−1

R∗
7 1,6 µM−1 · s−1, s−1 1,8 µM−1 · s−1, s−1 - - - - - -

R∗∗
8 - - - - - - - - - -

R9 0.0349 µm2 ·molecules−1 · s−1 1 s−1 - - - - - -

1 * This reaction represents a membrane flux so there is a reaction between species of different
compartments. The units here represent the base reaction without unit conversion between species.
Please see Supplemental material for more detail.

2 ** This reaction represents a CaMKIIp-dependent influx of membrane AMPAR and is a custom
reaction. Please see Supplemental material for more detail on this reaction and R0.

Ca2+CaM versus 90 ms for Ca2+) and also decays within the approximately 10 s timescale

(Figure 7.2b). Free CaM can also bind to the scaffolding protein neurogranin [109, 159].

Our model is a closed system for all species except Amem and begins with no CaM·Ng, so

this model only considers Ng as a CaM sink. In our simulations, the CaM·Ng complex

attains a high value at steady state (9.8 µM) in that same time frame of 10 s (Figure 7.2c).

Because of the upstream nature of these modules, both the bistable and monostable

model show very similar dynamics and model readouts for these species, see Figure 7.2d-e.

We note that the CaM·Ng complex reaches an ultimate peak value after achieving steady

state because we define steady state as when the rate of change of the species is small (see

Supplemental material). We also see that the time to peak for CaM·Ng in the monostable

model is longer than the time to peak for the bistable model (∼ 37 s vs ∼ 27 s); however

the concentrations for peak value and steady state value for both models are all the same

(9.81 µM) so the differences in time to peak and steady state time are not of significance in

the model (Figure 7.2d-e). Thus, the influx of Ca2+ and buffering by CaM are not affected
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Table 7.6: Initial concentrations and ordinary differential equations for bistable
model

Species Initial condition Units ODE

Ca2+ 0.1 µM d[Ca2+]
dt

= R0 − 3R1

CaM 10 µM d[CaM ]
dt

= −R1

Ca2+CaM 0 µM d[Ca2+CaM ]
dt

= R1

Ng 20 µM d[Ng]
dt

= −R2

CaMNg 0 µM d[CaMNg]
dt

= R2

CaMKII 201 µM d[CaMKII]
dt

= −R3 +R4

CaMKIIp 0 µM d[CaMKIIp]
dt

= R3 −R4

PP1p 0.251 µM d[PP1p]
dt

= −R5 +R6

PP1 0 µM d[PP1]
dt

= R5 −R6

Aint 0.1597 µM d[Aint]
dt

= −R7

Amem 7.288 molecules
µm2

d[Amem]
dt

= R7 +R8 −R9

PSD95 4000 molecules
µm2

d[PSD95]
dt

= −R9

ABound 1000 molecules
µm2

d[ABound]
dt

= R9

1 Initial condition is varied in some of the simulations.
In simulations, membrane components are converted to moles per meter squared.

by the choice of the model for CaMKII/AMPAR dynamics as expected, establishing the

proof-of-principle that the early time scale dynamics, particularly for Ca2+ influx, are

unaffected by model choice.

Kinase and phosphatase dynamics differ between the monostable

and the bistable models as expected

We next describe the dynamics of the kinases and phosphatases in the cascade for

one particular choice of initial conditions (IC) (inactive CaMKII IC of 20 µM and inactive

PP1 IC of 0.25 µM; see Table 7.3 and Table 7.6). Given the differences in the models used

to describe CaMKII activation and phosphatase dynamics, we see substantial differences
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Figure 7.2: Early and intermediate timescale events. Temporal dynamics of cytosolic

Ca2+ (a), activated Ca2+/CaM complex (b), and CaM/Ng complex (c) all show similar
dynamics for both the bistable (blue line) and monostable models (red line). Black inset
in (a) is the voltage stimulus that represents a EPSP and BPAP separated by 2 ms. Peak

and steady state values and times for Ca2+, Ca2+/CaM complex, and CaM/Ng complex
for the bistable (d) and monostable (e) models show similar dynamics for early timescale
events. Temporal dynamics of activated CaMKII (f), activated CaN (g), activated I1 (h),
and activated PP1 (i) for both the bistable and monostable models show very different
results. Note that the monostable model does not involve CaN and I1. j) Comparison of
CaMKII dynamics between the bistable (blue) and monostable (red) models, experimental
observations [136,137], and other models [116]. k) Comparison of PP1 dynamics between
both the bistable (blue) and monostable (red) models and another model [116]. Peak and
steady state values and times for activated CaMKII, activated CaN, activated I1, and
activated PP1 for the bistable (l) and monostable (m) models show different dynamics.
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in the kinetics when comparing the two signaling models (Figure 7.2). In both models,

Ca2+CaM activates CaMKII rapidly to its maximum value (20 µM). However, in the

bistable model, CaMKII remains elevated at its maximum value while in the monostable

model CaMKII decays towards zero, see Figure 7.2f. In the bistable model, Ca2+CaM

activates CaN as the first step of the phosphatase cascade, see Figure 7.2g-i, blue line. The

bistable phosphatase cascade shows rapid activation of CaN to its maximum concentration

(1 µM), which then triggers activation of I1 and then PP1 (Figure 7.2g-i). I1 and PP1

have larger peak times than CaN in the bistable model because of the temporal relay of

information (∼ 40 s versus less than 1 s for CaN peak), see Figure 7.2l,m. The monostable

model has a different activation pathway for PP1; PP1 is directly activated by Ca2+CaM

such that it operates on the same timescale as CaMKII [116]. As a result, PP1 and

CaMKII have very similar kinetics in the monostable model with a rapid rise followed by

a decay to zero (Figure 7.2f, i, red line).

We compare our computational model results to other experimental [136,137] and

computational results [116] (Figure 7.2j-k). We note that our goal is not to match the ex-

act dynamics of CaMKII or PP1 dynamics from experiments but to provide estimates for

different timescales based on experimental conditions. [137] studies CaMKII dynamics in

dendritic spines using fast-framing two-photon fluorescence lifetime imaging of hippocam-

pal slices. Similarly [136] studies CaMKII and various mutants in hippocampal slices using

two photon glutamate uncaging. To compare timescales, we scale all other results to our

maximum CaMKII and PP1 concentrations. We see that across all published data CaMKII

concentration increases rapidly, but there is variation in decay time (17.6 s for [137], 38.1 s

for [136], 61.5 s for [116]). The monostable model decays with a rate of 20 s which resembles

the rate of [137], while the various other CaMKII results all decay within approximately

100 s except the bistable model which remains elevated (Figure 7.2j), for this choice of IC.
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Phosphatase temporal dynamics are harder to compare against experiments because many

studies do not capture these dynamics; however PP1 decay parameters appear slower than

CaMKII decay [116,124] so we include these dynamics in our monostable model. Observa-

tions of PP1 temporal dynamics from [116] show a longer elevated period compared to our

monostable results (decay time of 85.7 s from [116]) but have rise dynamics intermediate

between our bistable and monostable dynamics (Figure 7.2k).

To more directly compare our CaMKII and PP1 temporal dynamics, we compare

the decay times across experimental and model results. CaMKII decay dynamics have been

estimated experimentally as having two timescales of delay τfast = 6.4 ± 0.7 s and τslow

= 92.6 ± 50.7 s with different fractions of fast and slow decay (74% vs 26%) [137] ( [136]

shows similar decay values). Equivalent parameters for PP1 could not be immediately

found for this system. Our time constants for CaMKII and PP1 decay were τ = 20 s and

τ = 40 s, respectively (See Table 7.2 and Table 7.5).

A direct comparison of model readouts for the bistable and the monostable model

are shown in Figure 7.2l-m, respectively. The main differences in the CaMKII dynamics

are in the steady state values in the bistable and the monostable model (19.9 µM versus

0.02 µM respectively) and the time to steady state (∼ 219 s versus ∼ 141 s), where the

bistable model takes longer to reach steady state but hovers near maximal value. When

comparing PP1 dynamics for both the models, we note that the bistable model has a

lower peak value (0.06 µM) when compared to the monostable model (0.25 µM). While

PP1 steady state goes to zero for both models for this choice of initial conditions, the time

it takes for steady state is different (∼ 260 s for the bistable model compared to ∼172

s for the monostable model) suggesting that these differences in timescales may have an

impact on downstream events.
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Figure 7.3: Late timescale dynamics. a) Temporal dynamics of internal AMPAR in
endosomes (Aint, a), free AMPAR on the membrane (Amem, b), and bound AMPAR (c)
for both the bistable and monostable models show similar general trends. Peak and steady
state values and times for Aint, Amem, PSD95, and bound AMPAR for the bistable (d)
and monostable (e) models show key differences in dynamics. Scaled sensitivity analysis
results with respect to the bound AMPAR readout for the bistable parameters (f), bistable
initial conditions (g), and a zoomed view of the bistable IC results (h). Scaled sensitivity
analysis results with respect to the bound AMPAR readout for the monostable parameters
(i), monostable initial conditions (j), and a zoomed view of the monostable IC results (k).
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AMPAR dynamics are dependent on model choice for

CaMKII/PP1 balance

We next investigated how the differences in kinase and phosphatase dynamics

might influence the dynamics of AMPAR for a single set of initial conditions (20 µM

for CaMKII and 0.25 µM for PP1). Given that downstream signaling can integrate the

details of upstream signaling kinetics [160] and can integrate out the effect of upstream

timescales [105], we wondered if the differences in the two models would make a difference

in AMPAR dynamics. We track three populations of AMPAR in our model – AMPAR in

endosomes (Aint, modeled as a volume component), free AMPAR on the synaptic mem-

brane (Amem), and AMPAR bound to PSD95 (bound AMPAR). Internalized AMPAR

can become membrane-bound as a result of CaMKII-dependent exocytosis; membrane

bound AMPAR is endocytosed in a PP1-dependent manner (R13 in Table 7.1 and R7 in

Table 7.4). Membrane AMPAR increases through a CaMKII-dependent influx that rep-

resents AMPAR diffusing laterally into the spine from extrasynaptic pools of membrane

AMPAR outside of the spine [25,141] (R14 in Table 7.1 and R8 in Table 7.4). Membrane

bound AMPAR can be immobilized by binding to PSD95 among other PSD proteins (R15

in Table 7.1 and R9 in Table 7.4). AMPAR is known to interact with a plethora of cy-

tosolic and membrane bound species at the PSD, often with complex phosphorylation or

other activation dynamics [16,145,161]; however in our system we chose to model PSD95

and Amem binding through simple mass action kinetics (Module 6 in Table 7.1 and Ta-

ble 7.4). Despite simple reaction kinetics, this scaffold interaction significantly influences

the system, demonstrating how simple signaling components can dominate more complex

signaling motifs [162]. Our simulations show that internal AMPAR (Aint) is quickly exo-

cytosed but then gradually increases again due to endocytosis, with the monostable model

having a larger increase in internal AMPAR steady state compared to the bistable model
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(0.20 µM versus 0.08 µM; Figure 7.3a). Free AMPAR on the membrane increases to a

new steady state with the bistable model having a significantly higher density than the

monostable model (Figure 7.3b). The higher Amem density in the bistable model is be-

cause the bistable model has a higher steady state value of CaMKII for the ICs (20 µM

for CaMKII and 0.25 µM for PP1) than the monostable model and even though the PP1

peak is higher in the monostable model, the impact of CaMKII is stronger on the balance

between Aint and Amem. Naturally, the unbounded scaffolding protein PSD95 decreases

to a new steady state value as it binds to free membrane AMPAR (Amem) to form bound

AMPAR (Figure B.4a) in both cases. We note that membrane AMPAR has rapid binding

to form bound AMPAR, but also has a rapid increase in endocytosis/exocytosis and in-

flux rates (Figure B.4b-c). Bound AMPAR increases in both models to new steady states

but reaches a much higher density in the bistable model compared to the monostable

model (∼ 1802 receptors per micron squared versus ∼ 1229 receptors per micron squared;

Figure 7.3c), again because of the stronger effect of CaMKII. These densities of bound

AMPAR are within the range of AMPAR densities observed in experiments [146,163–168].

The monostable model achieves steady state for all AMPAR species and PSD95 within

∼ 117 s, faster than the bistable model whose fastest component, Aint, took ∼ 125 s to

reach steady state (Figure 7.3d-e).

Next, we conducted a sensitivity analysis to better understand the significant pa-

rameters and initial conditions that influenced bound AMPAR in both models (Figure 7.3f-

k). The sensitivity analysis was run in COPASI [169] and the influence of each parameter

and initial condition was considered on the final readout of bound AMPAR, see Supple-

mental material sensitivity analysis section for more details. We find similar trends for

both the bistable and monostable models – bound AMPAR is most sensitive to the ki-

netic parameters that govern endo/exocytosis, CaMKII-mediated AMPAR influx, PSD95
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binding rates, and to the initial conditions of CaMKII, PSD95, and the subpopulations of

different AMPAR species. As expected, the bound AMPAR readout was highly sensitive

to the IC of bound AMPAR, but was also sensitive to parameters and species associated

with the scaffold binding reactions. Thus, CaMKII-mediated AMPAR influx and AM-

PAR binding to PSD95 both greatly influence bound AMPAR dynamics as compared to

CaMKII and PP1-mediated exocytosis and endocytosis. The slower timescale and higher

steady state density for bound AMPAR associated with the bistable model can be ex-

plained by the elevated CaMKII steady state that leads to a higher influx of membrane

AMPAR. Thus, because of the nature of the upstream kinase (prolonged activation versus

finite time activation), the density of bound AMPAR on the membrane can be significantly

impacted.

Effect of CaMKII and PP1 initial conditions on model-dependent

AMPAR readout

One of the key differences between a bistable model formulation for CaMKII (in

this case coupled with a phosphatase cascade) and the monostable model is the dependence

of steady state values for CaMKII and PP1 on the initial conditions (IC) [124, 128]. To

understand how bound AMPAR depends on the initial condition of inactive CaMKII

and PP1, we conducted a parameter sweep (Figure 7.4) and focus on the steady state

behavior. For temporal dynamics of all active PP1 and active CaMKII for both the

bistable and monostable models across the explored IC regimes, see Figure B.1. Temporal

dynamics of bound AMPAR for both the bistable and monostable models can be found

in Figure B.3. For the bistable model, active CaMKII, active PP1, and bound AMPAR

steady states all show dependence on both CaMKII and PP1 initial conditions, with the

higher CaMKII IC leading to higher bound AMPAR density, and higher PP1 IC leading
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to lower bound AMPAR density (Figure 7.4a). It is useful to recall that an increase in

bound AMPAR density is associated with LTP, while a decrease is associated with LTD.

In these cases, despite PP1 IC having a strong influence on the bistable system, all cases

either display LTP or no change (NC). High CaMKII IC and low PP1 IC leads to high

active CaMKII at steady state in the bistable model and therefore high bound AMPAR,

whereas low CaMKII IC with high PP1 IC will lead to low active CaMKII at steady state

and therefore low bound AMPAR (Figure 7.4b). We also see that for two different PP1

concentrations, CaMKII can achieve two different steady state values for the same CaMKII

IC, the hallmark of bistability, Figure 7.4b. Similarly, for two different CaMKII ICs, PP1

can also achieve two different steady state values for the same PP1 IC. Considering bound

AMPAR across CaMKII ICs for two different PP1 ICs, for a small PP1 IC (0.1 µM), bound

AMPAR at steady state is linear with respect to CaMKII IC; for the higher PP1 IC (0.5

µM), bound AMPAR shows a non-linear dependence on CaMKII ICs. When we vary PP1

ICs for two different CaMKII ICs, we observe that for a small CaMKII IC (12 µM), bound

AMPAR steady state decreases with respect to PP1 IC; for the higher CaMKII IC (20

µM), bound AMPAR shows only slight dependence on PP1 IC, slightly decreasing for high

PP1 IC.

We conducted a similar parameter sweep with the monostable model (Figure 7.4c-

d). The monostable model only has one steady state for both CaMKII and PP1 which

is zero (Figure 7.4c). Therefore, the initial condition only determines the peak value of

the model without any coupling between CaMKII and PP1, as seen in Figure B.2. Bound

AMPAR shows dependence on CaMKII IC but none on PP1 IC in this case (Figure 7.4c,d).

Overall the monostable model did not demonstrate a strong dependence on ICs as com-

pared to the bistable model. The steady state heatmaps clearly show that the monostable

model has no coupling between CaMKII and PP1 dynamics and the bound AMPAR steady
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state depends on the CaMKII IC (Figure 7.4c, d, right column).

Effect of varying trafficking conditions on AMPAR dynamics

Thus far, we have focused only on the signaling dynamics of CaMKII and PP1

on AMPAR. Next, we investigated how the coupling between signaling dynamics and

trafficking dynamics can affect bound AMPAR. As described in Table 7.1 and Table 7.4,

bound AMPAR also depends on endo- and exocytosis and influx of AMPAR from the

extrasynaptic pool (see Figure B.4).

The dynamics of Amem are given by the following equation

(7.2)

dAmem

dt
= (c1[CaMKIIp] + c3)[Aint]n︸ ︷︷ ︸

Basal and CaMKII-dependent exocytosis

− (c2[PP1] + c4)[Amem]︸ ︷︷ ︸
Basal and PP1-dependent endocytosis

− (kbind[PSD95][Amem])− krelease[ABound])︸ ︷︷ ︸
scaffolding

+
Pbasee

−t
τdecay [CaMKIIp]

τbase︸ ︷︷ ︸
CaMKII-mediated influx from extrasynaptic space

.

The new terms introduced here are the following: Pbase = 0.9069 µm, τbase = 800 s, τdecay =

60 s, and n = 0.1011 µm. Pbase is the spine neck base perimeter and we approximate it from

an average thin spine in [115]. Endocytosis and exocytosis rates were taken from [110].

τbase is the timescale of influx and can be though of as the timescale at which AMPAR

moves into the dendritic spine [114]. τdecay is the timescale of CaMKII activity and captures

the timescale over which active CaMKII triggers the influx of membrane AMPAR into the

spine [141]. n is the lengthscale conversion factor and captures the spine volume to surface

area ratio. The CaMKII-mediated influx is inspired by [141] and captures how elevated

CaMKII levels can trigger the movement of AMPAR into the activated spine, but the

signal must turn off to prevent excessive AMPAR influx. We note that mathematically the
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Figure 7.4: Variations in initial conditions for inactive CaMKII and PP1 influences
active CaMKII, active PP1, and bound AMPAR dynamics in a model-dependent manner.
a) Steady state values for active CaMKII, active PP1, and bound AMPAR (top to bottom
row, respectively) for the bistable model. b) Steady state value of CaMKII, PP1, and
bound AMPAR for two set PP1 ICs and varied CaMKII IC and for two set CaMKII IC
and varied PP1 ICs for the bistable model. c) Steady state values for active CaMKII,
active PP1, and bound AMPAR (top to bottom row, respectively) for the monostable
model. d) Steady state value of CaMKII, PP1, and bound AMPAR for two set PP1 ICs
and varied CaMKII IC and for two set CaMKII IC and varied PP1 ICs for the monostable
model.
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presence of the influx term results in an open system for AMPAR mass conservation since

the total number of receptors in the simulation can change because of external sources.

The dynamics of bound AMPAR are given by

(7.3)
dAbound

dt
= (kbind[PSD95][Amem])− krelease[ABound])︸ ︷︷ ︸

scaffolding

,

which describes the binding and unbinding of free AMPAR and PSD95, a scaffolding

molecule, to form bound AMPAR. We assume that there is a pool of free PSD95 ready to

bind membrane AMPAR.

Using this framework, we asked how the different trafficking conditions impact

bound AMPAR. In what follows, we compare all the parameter variations to a control,

which is defined as the simulation in which all forms of trafficking (PP1-dependent endocy-

tosis, CaMKII-dependent exocytosis, and a CaMKII-dependent influx source of AMPAR)

are present (Figure 7.4a, bottom row for bistable and (Figure 7.4c, bottom row for monos-

table). Recall that, for the control cases, bound AMPAR reached a maximum of 1802 per

square micron for the bistable case versus 1229 per square micron for the monostable case.

We considered the steady state value (value at 500 s) of all AMPAR species for two

in silico knockout trafficking conditions - no CaMKII-mediated influx (Figure 7.5a) and

no endocytosis/exocytosis (Figure 7.5b) for different CaMKII and PP1 ICs. Temporal

dynamics of bound AMPAR with different CaMKII and PP1 initial conditions for the

various trafficking knockout cases can be found in Figure B.3 and heatmaps showing PSD95

steady state dynamics for different CaMKII and PP1 initial conditions for the various

trafficking cases are in Figure B.5.

We first asked what happens if influx is removed as a source of AMPAR but endo-

cytosis and exocytosis are retained? We found that the contribution of endocytosis and

exocytosis were smaller compared to the influx from extrasynaptic regions (Figure 7.5a).

The bistable model shows dependence on both CaMKII/PP1 IC, while the monostable
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case leads to homogeneous results for all species (Figure 7.5a).Thus, in the absence of

influx but in the presence of endocytosis and exocytosis, we find that bound AMPAR

readout mimics the upstream signaling pathway. The steady state for both Amem and

bound AMPAR was lower in the monostable case versus the bistable case, highlighting

how the elevated CaMKII levels in the bistable case contribute to both free and bound

AMPAR pools even in the absence of endo and exocytosis. However, if we retain influx

but turn off endocytosis/exocytosis, internal AMPAR cannot be trafficked onto the mem-

brane, so there is no change in Aint concentration for either choice of upstream signaling

(Figure 7.5b, first column). Additionally, there is a coupled dependence on IC for Amem

and bound AMPAR for the bistable case but only CaMKII IC dependence for Amem

and bound AMPAR for the monostable case (Figure 7.5b). Because there was no direct

impact of PP1 and CaMKII on Amem levels through endocytosis and exocytosis, the cou-

pled PP1/CaMKII effect in the bistable model is due to the upstream interactions between

CaMKII and PP1 that then influence steady state CaMKII levels that mediate AMPAR

influx. In the parameter space of varying CaMKII and PP1 ICs, in the bistable model,

we observe a smooth dependence of Amem and bound AMPAR; this is different from the

case without influx but with endo/exocytosis where the bound AMPAR demonstrate a

step-like response. This suggests that influx of AMPAR term takes a bistable cascade as

an input and produces a proportional mapping as an output.

Is it possible that the conclusion that influx of AMPAR is a dominant contributor

to bound AMPAR dynamics is a result of the choice of parameters for the endo/exocytosis

terms (obtained from [126])? And can we investigate the endocytosis and exocytosis

contributions separately as suggested by [7]? Recall that the exocytosis and endocytosis

term is given as

(7.4)Jexo/endo = (c1[CaMKIIp] + c3)[Aint]n︸ ︷︷ ︸
Basal and CaMKII-dependent exocytosis

− (c2[PP1] + c4)[Amem]︸ ︷︷ ︸
Basal and PP1-dependent endocytosis

,
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where both exocytosis and endocytosis have a species dependent component and a basal

contribution. To answer the questions raised above, we varied the relative contributions

of CaMKII-mediated exocytosis and PP1-mediated endocytosis in two different ways. In

the first method, we scale the c1 and c2 terms, such that

(7.5)Jexo/endo = (c1Exo[CaMKIIp] + c3)[Aint]n︸ ︷︷ ︸
Basal and CaMKII-dependent exocytosis

− (c2Endo[PP1] + c4)[Amem]︸ ︷︷ ︸
Basal and PP1-dependent endocytosis

,

where Exo and Endo are scaling factors that range from 0 to 500 and essentially modify

the rate of activity-dependent endocytosis or exocytosis and can be attributed to other

biophysical factors that affect trafficking [149, 170]. A maximum value of 500 was chosen

to ensure that given the control initial conditions of CaMKII and PP1, the endocytosis

term could achieve the same magnitude as the original exocytosis term (Figure 7.6a and

c). In this case, the stimulus was applied at t = 0, since the system was already at steady

state.

In the second method, we scale the entire exocytosis and endocytosis terms, such

that

(7.6)Jexo/endo = Exo(c1[CaMKIIp] + c3)[Aint]n︸ ︷︷ ︸
Basal and CaMKII-dependent exocytosis

− Endo(c2[PP1] + c4)[Amem]︸ ︷︷ ︸
Basal and PP1-dependent endocytosis

,

where Exo and Endo are scaling factors that range from 0 to 1 and modify the cumulative

rate of endocytosis or exocytosis. This scaling essentially alters the steady state of the

system in the absence of stimulus and so we first simulated the system to steady state and

then added the stimulus at t = 500 s (gray dashed line in Figure 7.6b and d).

We considered four different cases for both the bistable and monostable models,

Figure 7.6. First we considered the models with and without influx (Figure 7.6, top

and bottom rows, respectively). Second we considered two different initial conditions for

CaMKII, 10 and 20 µM, but only one IC for PP1 (0.25 µM). Recall that for the bistable

model, the first condition (10 µM CaMKII and 0.25µM PP1) leads to an elevated PP1

concentration, while the second condition (20 µM CaMKII and 0.25 µM PP1) leads to
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an elevated CaMKII concentration. We plot bound AMPAR over time for four different

endocytosis (En) and exocytosis (Ex) scaling sets (En 0, Ex 0; En 0, Ex Max; En Max,

Ex 0; En Max, Ex Max) for both scaling methods, Figure 7.6. For temporal plots of

bound AMPAR for each of these various conditions, see Figure B.8. For a closer analysis

of AMPAR dynamics for the c1 and c2 approach, see Figure B.7. For steady state values

of bound AMPAR for both approaches, see Figure B.6.

In the absence of influx of AMPAR, we find that bound AMPAR can achieve a new

steady state after stimulus if there is a constant elevated concentration for CaMKII or PP1

that drives either endocytosis or exocytosis, Figure 7.6a,b. The monostable case does not

have sustained CaMKII and PP1 activation (Figure 7.2f,i) and therefore, in all variations

the monostable model returns bound AMPAR to its initial condition. In contrast, the

bistable model has elevated PP1 for the 10 µMCaMKII IC, and elevated CaMKII for the 20

µM CaMKII IC; depending on the dominant contribution between active endocytosis and

exocytosis, bound AMPAR can attain a new increased or decreased steady state. When

the entire terms are scaled, for the case when the relative contribution of endocytosis

is maximized for both values of CaMKII IC, bound AMPAR steady state even before

stimulus goes to zero (Figure 7.6b; red lines). This suggests that in the absence of influx,

even for situations where CaMKII is active at high concentrations at steady state, it is

possible to get low bound AMPAR because of the contributions of trafficking.

When AMPAR influx is present, bound AMPAR demonstrates a dose-dependence

on CaMKII as opposed to a switch-like response, Figure 7.6c,d. When the entire trafficking

terms are scaled and endocytosis is maximized for either CaMKII IC, we see that with

an influx the system has a transient increase in bound AMPAR after stimulation at t =

500 s before it returns back to its previous zero steady state (Figure 7.6d,red lines). Thus,

we find that even when influx is present, a balance between endocytosis and exocytosis is
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Figure 7.5: Effect of CaMKII and PP1 initial condition on trafficking mechanisms.
a) Species value at 500 s for internal AMPAR (Aint), membrane AMPAR (Amem), and
bound AMPAR for the bistable (top row) and monostable (bottom row) models in the
trafficking case without an external AMPAR source for different CaMKII and PP1 ICs.
b) Species value at 500 s for the bistable (top row) and monostable (bottom row) models
in the trafficking case without endocytosis and exocytosis for different CaMKII and PP1
ICs.

necessary to elevate bound AMPAR on the membrane.

Bound AMPAR as a function of time-dependent stimuli

Thus far, we have focused on model choices and variations for a single stimu-

lus, see Figure 7.2a, inset. In reality, dendritic spines receive a sequence of stimuli in a

frequency-dependent manner [105, 116, 123]. Here we consider the effect of a train of ele-

vated Ca2+CaM activity at different spiking frequencies (0.5 Hz, 0.1 Hz, 0.05 Hz, [171]),

for two different stimulus strengths and two different CaMKII ICs, see Figure 7.7a. Pre-
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Figure 7.6: Variation of different trafficking conditions on bound AMPAR. Temporal
dynamics of bound AMPAR without AMPAR influx for two different CaMKII initial
conditions (10 µM and 20 µM), different contributions of endocytosis and exocytosis, for
the bistable and monostable models, for the scaling method that scales c1 and c2 (a) and the
whole endocytosis and exocytosis terms (b). Temporal dynamics of bound AMPAR with
AMPAR influx for two different CaMKII initial conditions (10 µM and 20 µM), different
contributions of endocytosis and exocytosis, for the bistable and monostable models, for
the scaling method that scales c1 and c2 (c) and the whole endocytosis and exocytosis
terms (d). Endocytosis and exocytosis were varied in two different ways: a,c) (c1 and c2):
the species dependent rates of c1 and c2 were scaled; and b,d) (Whole term): the entire
exocytosis and endocytosis term was scaled (c1, c3 and c2, c4). The dashed gray line in
b and d indicates when the stimulus was applied to the system at t = 500 s. Gray inset:
Legend where general color corresponds to a predetermined endocytosis (En)/exocytosis
(Ex) scaling in this order (En 0, Ex 0; En 0, Ex Max; En Max, Ex 0; En Max, Ex Max),
solid and dashed lines indicate the 10 µM and 20 µM CaMKII IC, respectively; and the
lighter colors indicate the monostable model and dark colors indicate the bistable model.
Note Max is 500 for a and c, and 1 for b and d.
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vious studies have shown that CaMKII can integrate calcium/calmodulin activity as a

leaky integrator [109, 137], so we consider how stimulus magnitude and frequency affect

CaMKII and bound AMPAR dynamics. We note that for the bistable model, there was no

noticeable difference in CaMKII and bound AMPAR dynamics for the different combina-

tions of conditions, see Figure B.9. This is because the activation of CaMKII and bound

AMPAR is already maxed out due to the first activation spike so subsequent spikes have

no effect. In the case of the monostable model, we observe that CaMKII behaves as a

leaky integrator as the stimulus frequency increases (Figure 7.7b) and the peak values are

proportional to the CaMKII IC. Bound AMPAR correspondingly shows a frequency and

CaMKII IC-dependent response (Figure 7.7c). When we look at the steady state values of

bound AMPAR, we observe that for 1X stimulus, the value of bound AMPAR decreases

as the frequency increases for both values of CaMKII IC (Figure 7.7d). When we increase

the stimulus amplitude by 10-fold (blue line in Figure 7.7a), the monostable model shows

similar temporal dependencies for CaMKII (Figure 7.7e) with the peak values maxing

out the available CaMKII. Bound AMPAR integrates these temporal dynamics and shows

higher values than the 1x stimulus (Figure 7.7f). The value of bound AMPAR, in this case

of 10X stimulus, increases as the stimulus frequency increases for both values of CaMKII

IC (Figure 7.7g).

Discussion

The choice of model formulation is critical for the interpretation of results in com-

putational and systems biophysics. In the case of synaptic plasticity and learning models,

the idea that CaMKII can act as a molecular marker for learning and that a bistable model

could be interpreted as a molecular switch has received a lot of attention [150]. Indeed,

the idea of a bistable switch has the appeal of making direct associations with LTP and
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Figure 7.7: Effect of multiple active Calmodulin spikes on CaMKII and bound AMPAR
dynamics in the monostable model. a) Multiple spikes of active CaM were input into
the different model systems at different frequencies (0.5 Hz, 0.1 Hz, 0.05 Hz; left, middle,
and right, respectively) at two different amplitudes (large - blue, small - red). The large
stimulus is 10 times the smaller stimulus. Active CaMKII (b) and bound AMPAR (c)

temporal dynamics for the monostable model for the small Ca2+CaM stimulus for all
three frequencies and both CaMKII IC. d) Steady state bound AMPAR for the small
stimulus for each frequency and CaMKII IC. Active CaMKII (e) and bound AMPAR (f)

temporal dynamics for the monostable model for the large Ca2+CaM stimulus for all three
frequencies and both CaMKII IC. g) Steady state bound AMPAR for the large stimulus
for each frequency and CaMKII IC.
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Figure 7.8: Synaptic consequences of coupling between AMPAR signaling and traf-
ficking. a) Signaling and trafficking components interact to determine changes in synap-
tic plasticity, whether LTD, NC, LTP, or disease states. b) Dysfunction within either
the AMPAR signaling or trafficking mechanisms can lead to various disease states, in-
cluding Parkinson’s disease, Huntington’s disease, addiction, and stress. Figure made in
Biorender.com.

LTD – high stable CaMKII can be interpreted as LTP and low stable CaMKII can be

interpreted as LTD [14]. There are two scenarios that complicate this simple picture.

First, detailed kinetic models of CaMKII monomers and holoenzymes and experiments

have not shown evidence of CaMKII bistability [109, 122, 129]. Second, in recent years,

it has become clearer that the increase of AMPAR density at the PSD is perhaps a bet-

ter molecular marker for learning [26, 172–174] and the net increase in AMPAR depends

on various trafficking modalities which in turn depend on upstream signaling pathways.

Therefore, here, we chose to investigate how the model choice for upstream signaling could

affect the predictions of the model for bound AMPAR, Figure 7.8a. Additionally, many

neurological disorders and diseases include a component of AMPAR dysregulation, Fig-

ure 7.8b. For example, Huntington’s disease involves a disruption in the binding between

AMPAR and scaffolding molecules such as PSD-95; both Alzheimer’s Disease and Parkin-

son’s Disease related dementia involve an increase in AMPAR endocytosis in response to

Aβ oligomers, while Parkinson’s Disease also involves an impairment in scaffold binding

and AMPAR endocytosis; and mental stress is believed to cause increases in AMPAR
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lateral diffusion [175]. Therefore, it is clear that the regulation and dynamics of AMPAR

have significant neurological consequences. By considering two different signaling model

candidates and performing signaling and trafficking variations Figure 7.1, we can provide

the following predictive insights from our model.

The first insight is that bound AMPAR mimics the dynamics of the upstream

model (bistable or monostable) with respect to endo/exocytosis rates as well as ICs in

the absence of AMPAR influx. We found that the different signaling models (Figure 7.2)

translated to different AMPAR timescales (Figure 7.3), primarily through their CaMKII

dynamics which informed the influx of AMPAR. Indeed, variations of different parameters

and coupling within each model showed that by construction, the bistable model had a

stronger coupling between bound AMPAR and upstream signaling than the monostable

model at steady state, Figure 7.4. These pattern held when considering each signaling

model with endocytosis and exocytosis or with the AMPAR influx, separately, Figure 7.5.

Thus, careful dissection of the upstream signaling pathways and crosstalk is necessary for

building predictive models.

Second, by changing the relative contributions of trafficking, we predict that effects

of trafficking can dominate the signaling effects. Specifically, our model predicts that

influx of AMPAR from the extrasynaptic space serves to partially override the impact of

upstream signaling and trafficking, Figure 7.6. In some cases but not all, where endocytosis

dominates, where one would expect LTD-like behavior, influx of receptors allows for bound

AMPAR to either increase or remain unchanged, thereby preventing LTD. Additionally

in Figure 7.6d, when bound AMPAR started at zero but had an AMPAR influx, bound

AMPAR transiently increased due to this AMPAR influx but the large endocytosis term

drove the system back to zero steady state, (Figure 7.6d, red lines). This is the only

condition that does not show an increase in bound AMPAR steady state when there is
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an influx term, and could be representative of a disease state where the spine remains

silent despite AMPAR influx [7]. Coupling of trafficking with signaling is critical to build

mechanochemical models of complex biological processes. Even though we use simple

rate representations of trafficking, these rates can be interpreted as factors outside of the

signaling pathway such as membrane tension [27, 176, 177], lipid composition [178], and

other mechanical factors [23, 179]. The third prediction, related to the previous insight,

is that in high CaMKII conditions, the system can lose dependence on endo/exocytosis

levels because CaMKII can determine the AMPAR outcome through its influence on the

influx term or maxing out the exocytosis term, demonstrating how signaling can drive

overall dynamics, as seen in the bistable model with high CaMKII IC (see Figure B.6a,

left column).

The fourth prediction from the models is that for bound AMPAR to achieve a new

steady state value, it requires one of two things. Option 1 – seen best through the with

influx cases in Figure 7.6 – is an increase in the total AMPAR in the system (increased

membrane AMPAR through a source term, an open system). Option 2 – The presence of

a constantly driving term in the endo/exocytosis rates - either elevated PP1 or elevated

CaMKII. These can be seen through the difference in bistable and monostable model

behavior in Figure 7.6. The monostable model showed no dependence on endo/exocytosis

when there was no influx; instead, it needed an influx of membrane AMPAR to shift the

system to a new steady state value. This is why the bistable case can achieve new steady

state values despite no influx, while the monostable case cannot.

Finally, we found that the monostable and bistable models had different effects on

integrating time-dependent Ca2+ influx (Figure 7.7). For example, the bistable model was

not very sensitive to temporal changes to the stimulus (Figure B.9). This is because once

CaMKII reached a high steady state, it remained at that value. The monostable model
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on the other hand demonstrated the ability to (a) integrate input frequency and filter out

the high frequency effects while retaining sensitivity and (b) show a stimulus-dependent

bound AMPAR response. Thus, we predict that while bistable models of CaMKII have

appeal in terms of ‘on’ and ‘off’ switches, a monostable model has a distinct advantage

of being able to respond proportionally to time-dependent input. This is a desirable trait

in synaptic plasticity since frequency dependence is a huge part of learning and memory

formation [180]. It has been known that frequency of stimulation can play important

roles in CaMKII activation and induction of different synaptic plasticity forms [123, 181].

Historically, many models of synaptic plasticity have relied on the integration of fast

variables by slower parameters [92,102,103,105,181]. Therefore, we found that integration

of fast parameters by slow species in synaptic plasticity is actually model dependent. This

indicates that there can be more nuance to synaptic plasticity depending on its underlying

signaling network dynamics [181]. Therefore, a key takeaway from these results is that the

underlying parameters and model architecture can influence not just synaptic plasticity

readouts but their dependence on upstream signaling.

Here we used a simplified signaling network to investigate a complex biological

process, a method that has successfully explained complex signaling dynamics in dendritic

spines before [182]. We acknowledge that our model has many simplifying assumptions

and adding biochemical details at various levels is required to build more confidence in

these approaches. In addition to biochemical complexity, we will also need to consider

other factors that are known to affect synaptic plasticity into the computational models.

For instance, signaling nanodomains exist within dendritic spines [183]. Often driven by

Ca2+ influx, these regions of activation can trigger localized events and it is hypothesized

that CaMKII could behave differently in localized domains versus whole dendritic spines

[133, 184]. The PSD region also acts as a protein dense, membraneless compartment that
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can localize signaling processes due to enriched protein concentrations [185]. The effects of

this localization and crowding are not clear; for example, while PP1 is enriched in the PSD,

it is possible that crowding and additional molecular binding partners can shield CaMKII

from dephosphorylation from PP1 in this region [139, 152]. Neurogranin (Ng) plays a

seemingly contradictory role in dendritic spines in that despite binding CaM and thus

reducing the amount of free CaM available in the system, its presence is known to lower the

threshold of LTP through the NMDAR/CaMKII pathway [159, 186]. This contradiction

has been explained as follows – Ng-mediated CaM sequestration in the dendritic spine

effectively increases the available CaM during spine activation [109, 159]. Specifically Ng

can localize CaM close to the plasma membrane of spines to enhance CaMKII activation

over CaN activation, leading to enhanced synaptic strength [109, 159, 186]. Additionally,

PSD95 itself gets phosphorylated and that affects accumulation at the PSD, but this

signaling occurs through a different pathway [145] compared to the signaling considered in

this model; therefore, we do not include PSD95 phosphorylation in this study. However,

activation and localization of PSD95 and other important scaffolding species could play

important roles in AMPAR dynamics at the PSD. Therefore, the localization of these

subdomains can play key roles in regulating synaptic plasticity and can actually help

explain some of the conflicting experimental evidence on CaMKII dynamics [187].

Trafficking also complicates matters for signaling as both PP1 and CaMKII are re-

cruited into the spine in response to NMDAR activity [15,139]. While we have considered

some trafficking of AMPAR into the synapse through either CaMKII-mediated membrane

influx or endocytosis and exocytosis, there is spatial complexity associated with trafficking

of AMPAR because of lateral membrane diffusion of AMPAR from the perisynaptic region

and from extrasynaptic pools both in the spine and on the dendrite, because of cytosolic

influx of endosomes outside of the spine, and because of specific locations of endocyto-
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sis/exocytosis [16, 188, 189]. A complication of AMPAR trafficking is that dendritic spine

geometry has been found to alter AMPAR diffusion into dendritic spines, making spine

geometry another important factor to investigate [114]. An important assumption in this

work is that in increase in AMPAR is from AMPAR on the membrane diffusing laterally

into the spine or PSD. This analysis would be different if the influx term instead affect

internal AMPAR (Aint) which can only become bound AMPAR by exocytosing onto the

membrane; or if there was a combination of influx through endosomes in the cytosol and

laterally diffusing membrane AMPAR. Thus, spatial models that take these effects into

account would be important to fully explore these details.

In summary, we have demonstrated how two different simple biochemical signaling

pathways of CaMKII and PP1 can lead to different AMPAR dynamics downstream, Fig-

ure 7.8a. From a signaling perspective, our results highlight the importance of network ar-

chitecture, the strength of molecular interactions, and the reaction dynamics. With regards

to synaptic plasticity, our results highlight the nuances to LTP induction and how mod-

eling efforts of LTP need to be cognizant of the many dependencies of synaptic plasticity

(e.g. stimulus magnitude and frequency, upstream signaling dynamics and concentrations,

signaling nanodomains, geometric considerations, etc). Both of the CaMKII/PP1 mod-

els investigated in this work are possible candidates for what occurs in dendritic spines

and from our results, both probably exist as the monostable model acts as a CaMKII

leaky integrator [109, 137] but CaMKII is known to autophosphorylate as in the bistable

model [121]. The two different signaling dynamics might be differentiated between spa-

tially in nanodomains of activity where conditions favor one versus the other, or they

might have different triggers [190]. Nonetheless, these results indicate that the induc-

tion and regulation of synaptic plasticity, in this case LTP, might be much more nuanced

than previously assumed, and will require a more thorough investigation to parse out the
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different signaling, spatial, and temporal influences behind synaptic plasticity.
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Chapter 8

Mechanochemical modeling of

AMPAR trafficking

Introduction

Dendritic spines are small protrusions along dendrites that serve as signaling sub-

compartments and have characteristic shapes associated with their development state,

learning, memory formation, and disease states [6, 191]. Most excitatory synapses are

housed in dendritic spines and regulate the strength of their connections through bio-

chemical and structural modifications in a process called synaptic plasticity. In partic-

ular, the number of AMPARs, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid re-

ceptors, at the postsynaptic density (PSD) at the synapse modulates the sensitivity of

the synapse to presynaptic glutamate release, effectively tuning the synaptic connection

strength [172,173]. Since AMPAR density is an important indicator of synaptic plasticity,

specifically long-term potentiation (LTP) and long-term depression (LTD), it is vital to

understand the role played by different factors that regulate AMPAR density [192,193].

The factors that influence AMPAR can be classified into biophysical and biochem-
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ical features. Key among these factors are the (a) upstream signaling network [103], (b)

trafficking mechanisms and their location specificity [154,155,189], (c) lateral diffusion in

the plane of the spine membrane [16, 194], and (d) size and shape of the spine [195]. We

briefly summarize the key experimental observations and open questions in the literature

with respect to AMPAR dynamics at the PSD with a specific focus on LTP.

• AMPAR density increases during LTP

AMPAR interacts with a variety of membrane bound and cytosolic proteins [118].

In particular, it binds to PSD-95 (SAP90) at the PSD where it colocalizes into

clusters [161,196–198]. AMPAR density at the PSD is used as a readout for synaptic

plasticity, with long term potentiation (LTP) associated with an increase in AMPAR

bound to PSD95 at the synapse [156]. During LTP induction, AMPAR density is

expected to increase up to 200% at the PSD within a few minutes [6, 142,154,199].

• Role of CaMKII in AMPAR dynamics in LTP

CaMKII is an abundant, vital protein that interacts with AMPAR, along with a

plethora of other proteins, molecules, and species in dendritic spines. CaMKII is

implicated in controlling the level of AMPAR in spines through exocytosis rates

[141], various binding/signaling interactions [200], and by triggering AMPAR influx

into the spine [144, 149]. While CaMKII is known to autophosphorylate, its exact

dynamics after phosphorylation have been debated as either a bistable switch with

sustained elevated activity (bistable model) [135] or a transient increase followed by

exponential decay (monostable model) [122, 137]. Since CaMKII is a key signaling

species underlying synaptic plasticity, its spatiotemporal dynamics are of particular

interest as they can significantly influence downstream AMPAR dynamics [15, 121,

152,180,201].
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• Role of spine size and shape

Dendritic spines have characteristic shapes and sizes related to their developmental

stage, activation history, and function [19, 20]. Spines are typically categorized into

four subtypes - filopodial, stubby, thin, and mushroom. Thin and mushroom spines

tend to be more prevalent in the adult brain, where mushroom spines tend to be larger

and more stable compared to the smaller and more adaptive thin spines [65, 202].

It has been experimentally observed that PSD size correlates to spine volume [203],

and that AMPAR number at the PSD is proportional to synaptic area and spine

head volume [21, 164, 204]. However, more recent analysis have brought these exact

relationships under question [205]. Furthermore, dendritic spines’ shapes and sizes

are known to influence signaling [70,102,115], but it is unknown how spine geometry

couples with trafficking mechanisms and signaling to regulate AMPAR dynamics at

the PSD.

• Role of trafficking

AMPARs are packaged in endosomes inside the cytoplasm which can exchange with

the membrane via endocytosis and exocytosis [154, 155]. Kinase and phosphatase

activity appear to influence these rates, with CaMKII and PP1 dynamics leading

to exocytosis and endocytosis, respectively [110, 118, 206]. The exact location of

endo/exocytosis remains unclear with evidence indicating near the PSD [154, 207],

on the dendrite [199], or at various sites regulated by synaptic activity [24,208].

• Role of lateral diffusion and extrasynaptic pool

AMPAR undergoes lateral membrane diffusion at different rates in various regions

of the spine membrane, depending on its biochemical interactions [16, 26, 194, 209].

Extrasynaptic pools of AMPAR on the membrane have been observed on dendritic
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spines and along the dendrite [25]. It has been proposed that CaMKII signaling

can influence the trafficking of AMPAR from these pools into activated dendritic

spines [141,144,200].

While these different aspects have been studied experimentally [24,25,93,111,196,

210] and computationally [103, 110, 113, 124, 193, 201], a comprehensive spatiotemporal

model that accounts for these different factors is missing in the literature. In partic-

ular, the spatial localization of these biochemical interactions and the role of dendritic

spine morphology in these processes are not well-known. Dendritic spines are extremely

small (femtoliter volumes) and remain challenging to probe experimentally. Therefore, we

strive to address some of the open questions mentioned above through a spatial model in

which we can systematically vary biophysical features and components such as spine size

and shape, trafficking, and localization of membrane boundary fluxes. Here we present

a computational model linking dendritic spine morphology, LTP signaling networks, AM-

PAR trafficking, and synaptic plasticity. Using a spatial, deterministic reaction-diffusion

model, we sought to answer the following fundamental questions: How does spine morphol-

ogy influence different underlying biochemical signaling pathways that determine AMPAR

dynamics? What role do different trafficking modalities play in determining AMPAR

dynamics? And finally, how do signaling dynamics, spine morphology, and trafficking

modalities couple to regulate AMPAR density at the PSD in realistic spine geometries?

Given the multiple aspects of AMPAR regulation as noted above, we use a com-

putational model in idealized and realistic geometries to predict the effects of biochemical

and biophysical factors on AMPAR dynamics during LTP. We investigate the dynamics of

two biochemical CaMKII models – a bistable model and a monostable model – on CaMKII

and AMPAR behavior. We find that i) both CaMKII models produce elevated but dif-

ferent steady states for AMPAR levels with the monostable model capable of acting as a
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Figure 8.1: a) A combination of geometric, biochemical, and transport phenomenon fac-
tors influence AMPAR dynamics at the PSD during LTP. A biochemical network triggered
by calcium influx into the spine head leads to changes in AMPAR density at the PSD.
Various mechanisms govern AMPAR trafficking to the PSD, including CaMKII mediated
exocytosis, PP1 mediated endocytosis, lateral membrane diffusion, and an extrasynaptic
pool of AMPAR located at the base of the spine neck. Endo/exocytosis can take place any-
where on the plasma membrane. PSD95 binds AMPAR in the PSD region to form bound
AMPAR. Grey inset: Biochemical signaling involves the mutual activation of CaMKII and
phosphatases that compete to influence AMPAR. Bottom inset: Idealized dendritic spines
represent thin (left) and mushroom (right) spines.

leaky integrator, ii) the different trafficking factors modulate AMPAR steady state values

and AMPAR temporal dynamics at three key timescales, and iii) both idealized and real

spine geometries show a positive correlation between total receptor number at the PSD

and spine volume to surface area ratio, while exhibiting a size dependent resetting of per-

cent change in AMPAR at the PSD which could act to optimize resources and prevent

excessive synaptic plasticity in spines of certain sizes.
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Model Development

To investigate AMPAR spatiotemporal dynamics, we construct a simplified bio-

chemical signaling network describing AMPAR dynamics on the timescale of minutes in

hippocampal pyramidal CA1 neurons with deterministic reaction diffusion equations, see

Fig. 8.1a. Here we list various model assumptions, describe the key steps in the bio-

chemical signaling cascade, provide the general governing equations, and characterize the

idealized and realistic spine morphologies.

Model assumptions

• Geometries: We utilize both idealized and realistic geometries of thin and mush-

room spines. Idealized geometries were taken from [27] and scaled to different vol-

umes representative of average dendritic spine volumes [115, 146]. Realistic geome-

tries were meshed from EM image stacks of a hippocampal dendritic segment [29,148].

• Timescales: We focus on AMPAR dynamics on the 5 minute timescale.

• Reaction types: The majority of the signaling reactions are either mass action

or enzymatic Hill functions. Some reactions are custom and have explicit time de-

pendent components such as the equations for Ca2+ influx through NMDAR and

VSCC, and CaMKII-mediated AMPAR influx. The CaMKII-mediated AMPAR in-

flux through the spine neck base is a flux boundary condition so there is not mass

conservation for AMPAR in the system with influx. The model reactions are the

same as those presented in [201] but translated to a spatial reaction-diffusion sys-

tems from a compartmental model.

• Kinetic parameters: Reaction rates are taken from previous studies or approxi-

mated from experimental data when possible.
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• Boundary conditions: The stimulus to the system involves a Ca2+ influx through

the plasma membrane as a membrane boundary condition [115]. Cytosolic AMPAR

can be exchanged with membrane AMPAR through a flux boundary condition on the

whole plasma membrane except the bottom of the spine neck. All other volumetric

species have no flux boundary conditions on the plasma membrane. All membrane

species have no flux boundary conditions at the base of the spine neck except for

membrane AMPAR which has a Dirichlet boundary condition that is dependent on

both active CaMKII concentration and time. Therefore, there is no mass conserva-

tion for the AMPAR species when there is a boundary flux at the spine neck base

representing influx from an extrasynaptic pool of AMPAR. This AMPAR influx at

the spine neck is dependent on the concentration of active CaMKII at that location

and is time dependent, with a decaying exponential that acts to deactivate the term

to prevent constant influx. See supplemental material for more information.

Modular construction of biochemical signaling network

To investigate AMPAR spatiotemporal dynamics, we construct a simplified bio-

chemical signaling network describing AMPAR dynamics on the timescale of minutes in

hippocampal pyramidal CA1 neurons with deterministic reaction diffusion equations, see

Fig. 8.1a. We highlight the key signaling components below.

• Model stimulus and Ca2+ Module: The dendritic spine is activated by a voltage

depolarization at the membrane that represents an excitatory postsynaptic potential

(EPSP) and a backpropagating action potential (BPAP) offset by 2 ms. This voltage

spike activates NMDAR localized at the PSD, and VSCC across the whole dendritic

spine membrane. Ca2+ is then pumped out of the spine through PMCA and NCX

pumps or is bound to other signaling species. All calcium influx and efflux reactions
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are taken from [115].

• Calmodulin Module: Ca2+ activates calmodulin (CaM) to form a Ca2+/CaM

complex [124]. We model this binding as a single mass action reaction. Free CaM

can also bind to Neurogranin (Ng), so Ng acts as a CaM sink in this system.

• CaMKII and phosphatase Module: To investigate the controversy surrounding

CaMKII dynamics [110, 137], we consider two different CaMKII and PP1 models

(orange and green in Fig. 8.1).

– Bistable model: The bistable CaMKII model is designed to show bistable be-

havior dependent on the level of calcium influx and the relative concentrations of

CaMKII and PP1 [124]. CaMKII is activated by the Ca2+/CaM complex, can

autophosphorylate itself, and is deactivated by active PP1. For the phosphatase

cascade, calneurin (CaN) is activated by the Ca2+/CaM complex, and subse-

quently activates inhibitory-1 (I1), which then activates protein phosphatase 1

(PP1) that can autoactivate itself. All the phosphatases are deactivated by ac-

tive CaMKII. For our selected calcium influx and initial conditions of CaMKII

and PP1, we expect a sustained high concentration of activated CaMKII fol-

lowing activation for this bistable model.

– Monostable model: The monostable model is designed to show exponential

decay of both CaMKII and PP1, due to their rate change being linearly depen-

dent on their own concentration. In this way, CaMKII exhibits transient activa-

tion and always has a single steady state of zero concentration. Both CaMKII

and PP1 are directly activated by Ca2+/CaM. We fit CaMKII and PP1 decay

dynamics to both experimental and other modeling results [116,136,137].

• AMPAR signaling and trafficking Module: The last module (blue in Fig. 8.1)
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captures AMPAR dynamics. Free AMPAR is modeled on the whole plasma mem-

brane and can be bound by PSD95 in the PSD region to become bound AMPAR

with a slower diffusion coefficient. Thus, bound AMPAR is localized to the prescribed

PSD membrane. Endocytosis and exocytosis can occur throughout the whole plasma

membrane as boundary conditions that exchange membrane AMPAR and cytosolic

AMPAR through CaMKII mediated exocytosis and PP1 mediated endocytosis [110].

We note that this is an important assumption since existing literature predicts that

there is limited or no exocytosis and endocytosis in the PSD region due to the

crowded environment [154, 207]. Active CaMKII also mediates the influx of mem-

brane AMPAR from an extrasynaptic pool modeled as a membrane flux at the base

of the spine neck [141,200].

The signaling networks used in this model can be found in [201] and are described in more

detail in the Supplemental Material.

Governing equations

We construct a system of partial differential equations representing the reaction-

diffusion dynamics of signaling species in three different spatial compartments. The spatial

regions include the cytoplasm (3D volume), plasma membrane (2D surface), and the PSD

membrane (a subset of the plasma membrane, 2D surface). The reaction diffusion dynam-

ics of each signaling species, ci, are given by

∂ci
∂t

= Dci∇2ci +Ri, (8.1)

with the boundary condition given as
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−Dci(n · ∇ci)|∂Ω= Ji. (8.2)

Ri is the reactions for species ci in its respective compartment. Ji is the boundary

condition for species ci on boundary ∂Ω. For a volumetric species, its reaction diffusion

dynamics occur within the 3D volume and boundary conditions are on its encompassing

2D surface. For a membrane species, its reaction diffusion dynamics occur on its 2D

surface and boundary conditions are on any encompassing 1D line. All signaling species

can diffuse unless specifically stated, such as in the trafficking knockout case with no

diffusion for membrane AMPAR. All volumetric species have no flux boundary conditions

except for Ca2+, and cytosolic AMPAR (Aint) which exchanges with membrane AMPAR

(Amem). All volumetric species have a no flux boundary condition at the bottom of the

spine neck. For the membrane bound species, PSD95 and bound AMPAR are localized to

the PSD and have no flux boundary conditions along the PSD perimeter, while Amem is

on the whole plasma membrane and has a flux boundary condition at the perimeter of the

spine neck base. All species have homogeneous initial conditions within their respective

compartments. Ca2+ influx acts as the stimulus to the signaling cascade and involves

localized membrane fluxes at the PSD and along the plasma membrane.

The specific equations, boundary conditions, initial conditions, and parameters can

be found in the Supplemental Material.

Spine model geometry

We modeled both 2D axisymmetric idealized spines and 3D realistic spines recon-

structed from EM images [29], as isolated compartments. Idealized spines were modeled

after characteristic thin and mushroom spines, see inset in Fig. 8.1 and [27], and realistic

spines were selected from the dendritic segment shown in Fig. 8.6a. A range of spine sizes
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were explored for both idealized and realistic geometries, with care taken to select a variety

of realistic spine morphologies. The plasma membrane was modeled as the whole spine

surface except for the bottom base of the spine neck, and the PSD regions were labelled at

the top of the spine head for idealized geometries and as denoted during segmentation for

the realistic spines. We quantify the various spine morphologies in terms of their volumes

(vol) and their volume to surface area (SA) ratio (VSA ratio).

Simulation variations

To investigate the role of biochemical signaling, we consider two different biochemi-

cal signaling networks for CaMKII and PP1 - the bistable and monostable models described

above. We also consider different trafficking knockout conditions. Specifically, we vary the

presence of endocytosis and exocytosis, an extrasynaptic AMPAR influx, and membrane

diffusion of free membrane AMPAR. Computationally, this involves turning on and off the

terms for these various components. We also consider stimulus frequency by using active

Calmodulin pulses directly as input into the system. For the realistic spine geometries,

a simplified model was utilized with the temporal dynamics of active CaMKII and active

PP1 acting as the stimulus for a reduced biochemical network of Aint, Amem, PSD95, and

bound AMPAR. Due to geometric complexity and thus numerical complexity, endocytosis

and exocytosis were localized to the PSD for the realistic spine simulations.

Numerical methods

All simulations were run in COMSOL Multiphysics, a commercial finite-element

software. The general form and boundary partial differential equations (PDEs) interface

was used. For the various simulations, a COMSOL generated mesh of “extra fine” or “ex-

tremely fine” elements was selected with several boundary layers added to the membrane.
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Figure 8.2: Temporal dynamics of key species in both biochemical models

in a control thin spine. Temporal dynamics of the early timescale species Ca2+ (a),

active calmodulin (Ca2+/CaM; b), and CaM bound Neurogranin (CaMNg; c). Temporal
dynamics of medium timescale species active CaMKII (d), CaN (e), I1 (f), and PP1
(g). Temporal dynamics of late timescale species cytosolic AMPAR (Aint; h), membrane
AMPAR (Amem; i), PSD95 (j), and bound AMPAR plotted as density and total receptor
number (k).

Boundary layers were added due to the complex boundary conditions and geometry in the

simulations. The absolute tolerance was lowered to 0.0001 for all simulations.

Analysis and plotting were performed in MATLAB.

Results

We develop two separate models of CaMKII and PP1 dynamics to explore both

bistable dynamics that lead to elevated activated CaMKII concentration and monostable

dynamics that lead to transient CaMKII dynamics, see Figure 8.2 for both CaMKII and

PP1 temporal dynamics. We consider bound AMPAR dynamics at the PSD as both a

receptor density and total receptor number as the readout of the model. Total receptor
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Figure 8.3: Bound AMPAR dynamics for thin and mushroom spines of differ-
ent sizes. Temporal dynamics of bound AMPAR for both the bistable and monostable
models (blue and red lines, respectively) for a control thin spine (a) and for a control
mushroom spine (b). Each simulation is run to its steady state in the absence of a stim-
ulus. Initial conditions of bound AMPAR for each spine is given as a density (c) and
total receptor number (d). Blue points denote the thin spines and red points denote the
mushroom spines. We consider the steady state of bound AMPAR at 300 s for each spine
for both the bistable and monostable models versus volume and volume to SA ratio as a
receptor density (e-h), total receptor number (i-l), and percent change from steady state
(m-p). We plot the temporal dynamics of bound AMPAR at the top of the PSD for each
size of spine for the thin (q) and mushroom (r) spines for the bistable model and the thin
(s) and mushroom (t) spines for the monostable model.
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Figure 8.4: Temporal dynamics of monostable model in a thin control spine

for Ca2+CaM pulses of different frequencies. a) Ca2+CaM temporal dynamics at
three different frequencies (0.5, 0.1, and 0.05 Hz) at the top of the PSD region for the
monostable model. Temporal dynamics of active CaMKII (b), active PP1 (c), cytosolic
AMPAR (d), membrane AMPAR (e), and bound AMPAR (f) for three different frequencies
for the monostable model.

number is obtained by integrating receptor density over the PSD membrane area. We in-

vestigate three different trafficking mechanisms as shown in Fig. 8.1a - a CaMKII-mediated

influx of membrane AMPAR from extrasynaptic pool of membrane-bound AMPAR at the

base of the spine neck (influx term), lateral membrane diffusion of AMPAR, and CaMKII

and PP1 mediated exocytosis and endocytosis of AMPAR, respectively. We vary these

trafficking conditions in five cases - 1. a control case with all trafficking conditions, 2. no

influx at the spine neck base (no influx), 3. no influx and no endo/exocytosis of AMPAR

(only diffusion), 4. no endocytosis/exocytosis (no En/Ex), and 5. no lateral membrane

diffusion of AMPAR (no diffusion).
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Figure 8.5: Bound AMPAR dynamics and steady state behavior for different
trafficking knockout conditions. Temporal dynamics of bound AMPAR at the top of
the PSD for the thin control spine for different trafficking knockout cases for the bistable
(a) and monostable (b) models. Temporal dynamics of bound AMPAR at the top of the
PSD for the mushroom control spine for different trafficking knockout cases for the bistable
(c) and monostable (d) models. Percent change in bound AMPAR steady state from initial
condition for all spine volumes for the different trafficking knockout cases for the bistable
(e) and monostable (f) models. Percent change in bound AMPAR steady state from initial
condition for all spine volume to SA ratios for the different trafficking knockout cases for
the bistable (g) and monostable (h) models.
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Figure 8.6: Bound AMPAR dynamics and steady state behavior for the
bistable model in realistic geometries. a) Dendritic segment reconstructed from EM
data stacks in [29]. We conduct simulations for the bistable model in all the numbered
spines, shown below the segment. Scale bars next to each individual spine correspond to
100 nm. PSDs are denoted by black lines on the dendritic segment and light grey lines
on the individual spines. b) Geometric parameters including volume, surface area, PSD
surface area, and volume to surface area ratio for the various realistic spines. c) Temporal
dynamics of bound AMPAR at the top of a PSD for the 7 different realistic spines. Percent
change in bound AMPAR steady state at 300s for idealized and realistic spines versus spine
volume (d) and volume to SA ratio (e). The thin spines are in blue, mushroom spines are
in red, and realistic spines are in yellow. Steady state at 300s of total number of bound
AMPAR at the PSD for idealized and realistic spines versus spine volume (f) and volume
to SA ratio (g).
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Temporal dynamics are primarily homogeneous except for AM-

PAR species

We consider the temporal dynamics of key species for a thin spine of average volume,

Figure 8.2. The temporal dynamics of key species show similar dynamics to our previous

compartmental ODE model [201]. Most species showed homogeneous spatial dynamics

due to homogeneous initial conditions for all species and fast Ca2+ diffusion. Ca2+ acts

on a fast timescale to activate downstream species such as calmodulin (CaM), to produce

Ca2+CaM. Calmodulin also activates Neurogranin (Ng) which acts as a CaM sink. Both

models show similar early timescale dynamics (Figure 8.2a-c) but the different CaMKII and

phosphatase models translate to very different medium timescale events (Figure 8.2d-g).

In the bistable model, CaMKII remains elevated while CaMKII in the monostable model

activates and decays exponentially. For both models, PP1 activates and decreases, with the

bistable model showing a delayed activation due to the temporal delay in the phosphatase

cascade. AMPAR dynamics in the cytosol (Aint) and on the membrane (Amem) show

spatial heterogeneity during early timescales but eventually reach a homogeneous steady

state, Figure 8.2h-i. Both models show elevated Amem at the base of the spine neck (light

and dark green lines) due to the Amem boundary condition that is dependent on active

CaMKII activity. Cytosolic AMPAR initially rapidly decreases for both models but then

increases for both at the neck base as membrane AMPAR is endocytosed due to its high

density. PSD95 and bound AMPAR dynamics show opposite decreasing and increasing

dynamics as expected, since PSD95 binds to membrane AMPAR to form bound AMPAR,

Figure 8.2j-k. The bistable model produces a higher steady state of bound AMPAR

and membrane AMPAR compared to the monostable model, but the monostable model

has higher cytosolic AMPAR compared to the bistable steady state. Interestingly, the

monostable model actually increases its cytosolic store of AMPAR after activation.
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Bound AMPAR shows clear trends across both spine size and

shape

We consider an idealized thin spine and mushroom spine with volumes represen-

tative of average thin and mushroom spines, respectively. Typically thin spines tend to

be smaller in volume than mushroom spines, so the control thin spine is approximately 7

times smaller than the control mushroom spine. The thin spine and mushroom spine show

similar temporal dynamics for both the monostable and bistable models, Figure 8.3a,b.

We note that while the bound AMPAR densities are within similar ranges, these densities

translate to larger total number of receptors for the mushroom spine as it has a larger

PSD surface area. We vary the control thin and mushroom spines volume by increasing

and decreasing them by 50% to explore the dendritic spine size space. As noted above,

each simulation is run to steady state before applying the model stimulus, resulting in

slightly different bound AMPAR steady states for each spine geometry. We plot the ini-

tial conditions for bound AMPAR for all spine geometries as a receptor density and total

receptor number (Figure 8.3c-d) and we see that while the thin spines tend to have higher

initial receptor densities, those densities translate to much smaller total receptor numbers

compared to the mushroom spines.

We run simulations in these various spine geometries and consider the steady state

value for bound AMPAR as a receptor density, total receptor number, and percent change

from steady state, and plot them against both volume and volume to surface area ratio

for the different spines geometries and two different biochemical models Figure 8.3e-p. For

the bistable model, plots of bound AMPAR density and percent change versus volume

and volume to surface area ratio showed similar trends; as the thin spines (smaller, blue

dots) and mushroom spines (larger, red dots) increase in volume or vol to SA ratio within

their shape group, the steady state bound AMPAR density increases Figure 8.3e-f; m-n.
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However, when transitioning from the thin spines to the larger mushroom spines, the bound

AMPAR density (or percent change) drops, resetting to a lower density (or percent change)

that then increases as the mushroom spines gets larger. For the monostable model, plots of

bound AMPAR density and percent change versus volume and volume to surface area ratio

show a similar reset between the thin and mushroom spines (Figure 8.3g-h; o-p); however

within the mushroom spines (red dots), there is a nonmonotonic change in receptor density

and percent change as the volume (or vol/SA) increases. When considering total receptor

number (Figure 8.3i-l), both the bistable and monostable models show similar trends with

increasing receptor numbers for increasing vol (and vol/SA) which is to be expected from

the initial conditions. There is a discontinuity of the trend between the different spine

shapes which is accentuated in the volume to SA ratio plots.

To get a better understand of the range of values accessed by changing spine vol-

ume, we plot the temporal dynamics of each spine shape for the two different models

(Figure 8.3q-t). We clearly see that for both shapes in the bistable model and for the thin

spine in the monostable model, a larger spine leads to a larger increase in bound AM-

PAR; while in contrast, the mushroom spine with the monostable model shows a maximal

increase in bound AMPAR for the control volume spine.

Considering all these various metrics, there is a resetting of the bound AMPAR

density (or percent change in bound AMPAR) between the two spine shapes seen across

spine volume (and vol to SA ratio). This trend matches the pattern found for synaptic

weight updates based on Ca2+ influx into dendritic spines of different sizes and geometries

[211]. Thin spines are able to increase the density of bound AMPAR more rapidly for

increases in their volume; while in comparison, mushroom spines have a slower increase in

density with respect to volume. This supports previous reports that thin spines are more

adaptive compared to mushroom spines [65, 202]. This resetting of bound AMPAR for
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larger mushroom spines can act to optimize biochemical resources, preventing excessive

bound AMPAR density increases for larger spines which would translate to much higher

total receptor numbers.

It is important to note that each geometry started with the same initial conditions

but was run to steady state in the absence of stimulus. The only species that reached

new steady states were the AMPAR species and PSD95. The new bound AMPAR initial

conditions range approximately 30 (#/µm2) across the different sized spines. Therefore,

to verify that the stimulus causes the trend in bound AMPAR within each spine shape, we

consider a variety of metrics for AMPAR. Clearly, the trend in bound AMPAR density still

holds within each spine shape for different spine sizes when we factor in each simulations’

initial conditions by considering percent change. However, when considering change in

bound AMPAR in terms of total receptor number, we see a discontinuity in the transition

between thin and mushroom spines as the spine vol (or vol/SA ratio) increases, Figure 8.3i-

l.

Therefore, when factoring in the differences between initial steady state values

across spine sizes and shapes, the difference between the thin and mushroom spines is

emphasized. It appears that transitioning between a thin spine and a mushroom spine

serves as a beneficial means to reduce the increase in AMPAR density as the same increase

for a larger spine would correspond to a larger total number of receptors, which could strain

dendritic spine resources.

The biochemical models also show important differences with the bistable model

leading to much larger percent increases in bound AMPAR compared to the monostable

model (∼ 55% increase vs ∼ 14 % increase, respectively). Additionally, the mushroom

spines with the monostable model show the only dynamics that are not a monotonic

increase in bound AMPAR density or percent change (Figure 8.3h,p,t). It is possible that
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as the mushroom spines increased in volume, there was a trade off between how quickly

AMPAR could flood into the spine due to the CaMKII-dependent influx and subsequently

diffuse to the PSD, versus how far the AMPAR must travel and how quickly CaMKII

deactivates in the monostable model.

The monostable model integrates calmodulin stimulus as a leaky

integrator

We next consider how stimulus frequency can influence bound AMPAR readout. We

applied active CaM pulses at different frequencies throughout the whole spine as the model

stimulus instead of calcium influx, Figure 8.4a. We note that we use a much smaller active

calmodulin magnitude for these pulses compared to our model (see Figure 8.2b) to prevent

rapid activation of CaMKII which would prevent us from seeing any temporal nuances. The

bistable model shows no dependence on frequency, with all stimulus activating CaMKII

to its maximum concentration and bound AMPAR showing similar dynamics, Figure C.1.

For the monostable model, CaMKII acts as a leaky integrator for all frequencies and this

integration behavior translates into bound AMPAR dynamics for the 0.1 Hz and 0.05 Hz

stimulus that show the integration effects, Figure 8.4b-f. Free AMPAR (Amem) show

location dependent behavior as the influx at the spine neck base is dependent on active

CaMKII, Figure 8.4e.

Trafficking knockout cases mimic trends in the control trafficking

cases

We next considered the contributions of different trafficking mechanisms by sys-

tematically knocking out various terms. Specifically, we consider five different cases - 1.

a control case with all trafficking conditions (all), 2. a case with no influx at the spine
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neck base (no influx), 3. a case with no influx and no endo/exocytosis of AMPAR (only

diffusion), 4. a case with no endocytosis/exocytosis (no EnEx), and 5. a case with no

lateral membrane diffusion of AMPAR (no diffusion). We consider the temporal dynam-

ics of the thin and mushroom control spines for the bistable and monostable model for

these various trafficking variations, Figure 8.5a-d. Both spine shapes show similar bound

AMPAR temporal dynamics within each biochemical model.

We will review the bistable model temporal behavior first, Figure 8.5a,c. Bound

AMPAR in the all trafficking (all, blue) condition increases quickly and plateaus gradually

as the CaMKII-mediated influx continues since CaMKII remains activated in the bistable

model for these initial conditions. When there is no influx (red), we see a similar rapid

increase like the control case but then a quick plateau to a lower steady state value. In

the only diffusion case (yellow), there is no change in bound AMPAR, verifying that the

system begins at steady state. In the no endo/exocytosis case (purple), we see a clear

temporal delay in bound AMPAR increase before it plateaus in the same manner as the

control case but at a slightly reduced steady state. In the no membrane diffusion case

(green), we see a fast initial increase but then slower increase dynamics before the system

eventually reaches the same steady state as the control case.

The monostable model leads to different behavior compared to the bistable model,

Figure 8.5b,d. The control case (blue) rapidly increases to a peak, slightly decreases and

then plateaus to a steady state that is significantly lower than the bistable model. This is

due to the transient CaMKII dynamics which means that there is a significantly smaller

influx of extrasynaptic AMPAR at the spine neck for the monostable model. The no

influx case transiently increases and then returns to its initial steady state (red). This

supports the concept that bound AMPAR requires a consistent forcing term (sustained

elevated CaMKII to force exocytosis) or a change in available AMPAR to reach a new
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steady state [201]. Similar to the bistable model, the only diffusion case (yellow) shows

no change from initial condition. The no endocytosis/exocytosis case (purple) shows a

delayed increase in bound AMPAR but smoothly reaches a new steady state value that

exceeds the steady state for the control case. In the no membrane diffusion case (green),

similar to the bistable model, we get an initial increase like the control case but then a

slower gradual increase to the same level as the control case.

Interestingly, the no endocytosis/exocytosis case in the monostable model has a

higher steady state than the control case. In the control case, the monostable model has

an increase in internal AMPAR following stimulus, with Aint steady state increasing from

its initial condition (compared to the bistable model decreasing from its initial condition).

Without the ability to undergo endocytosis, the system has more available membrane

AMPAR to convert to bound AMPAR, leading to the elevated steady state compared to

the control case.

Therefore considering these knockout cases, we conclude that the initial rapid in-

crease in bound AMPAR is due to endocytosis and exocytosis. We also predict that the

rate of increase of bound AMPAR after approximately 25 seconds is membrane diffusion

dependent and therefore modifications to AMPAR membrane diffusion could modulate the

later stage dynamics of AMPAR increase. Additionally, the steady state of bound AMPAR

depends on the total amount of AMPAR available to the system, including membrane AM-

PAR from the influx and cytosolic AMPAR from exocytosis and endocytosis. Assuming

available endocytosis and exocytosis locations, even without membrane diffusion, bound

AMPAR can increase to the same steady state as the control case.

Next, we want to understand how changing spine size can affect these trafficking

trends. We consider the percent change in bound AMPAR steady state versus both volume

and vol to SA ratio for spines of different sizes for all trafficking cases, Figure 8.5e-h. We
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find that the patterns versus vol and vol to SA ratio observed previously for the control case

hold for the various knockout cases. In particular, the no influx case showed no change from

initial density for the monostable model but marginal increases in the bistable model (red

dots). The only diffusion case showed no change in bound AMPAR for both models and

all geometries (yellow dots). The no endo/exocytosis case mimicked trends with respect

to geometry found in the control case, but with a slight decrease in the bistable model and

slight increase in the monostable case (purple dots). The no diffusion case had the same

changes in bound AMPAR steady states as the control case (green dots that overlap the

blue dots). Therefore, it is important to consider both temporal and steady state dynamics

of bound AMPAR to fully understand the consequences of trafficking mechanisms.

Realistic spines show a similar trend as idealized spines for the

bistable model

We next want to consider if these geometric trends held for realistic spines which

have much more variability and complexity to their morphologies [18]. We used spine

geometries reconstructed from EM images [29] and meshed to a sufficient quality to run

simulations [148]. However, due to the complexity of the geometries and thus numerical

complexity, we considered a simplified model setup. Specifically, due to the spatial homo-

geneity of upstream signaling species, we only simulate the AMPAR species and PSD95,

with a temporal input of spatially homogeneous active CaMKII and PP1 dynamics taken

from the thin control spine simulation results. We also localize AMPAR endocytosis and

exocytosis to the PSD membrane, which should act to delay the rise to steady state but

we predict should achieve similar steady state as if endocytosis and exocytosis existed

everywhere. We acknowledge that experimental evidence suggests that endocytosis and

exocytosis is most likely localized at the perisynaptic membrane adjacent to the PSD
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rather than at the PSD itself [154, 207], but we make this computational assumption be-

cause we are focusing on steady state as opposed to spatiotemporal dynamics for this

specific analysis.

We consider the bistable model in these realistic spine geometries because the ideal-

ized bistable model spines showed fairly large percent increases and clear trends, Figure 8.3.

We pick seven reconstructed spines of different volumes from a single dendritic segment,

Figure 8.6a. The different spines had a variety of morphologies with different volumes,

surface areas, and PSD surface areas, Figure 8.6b. The various realistic spines were run to

an initial steady state, and with the CaMKII and PP1 stimulus all show increasing bound

AMPAR dynamics, Figure 8.6c.

We compare the percent increase to bound AMPAR steady state in the realistic

spines to the ideal thin and mushroom spines, and observe a noisier trend Figure 8.6d-e.

Specifically, when plotted against volume or volume to SA ratio, in the smaller vol (or vol

to SA) regime, there was an faster increase in percent increase as the spines increased in

volume (or vol/SA). The percent increase then reset around a particular value for volume

or vol/SA, before increasing again for larger volumes (or vol/SA). Therefore, it appears

that realistic spines follow a similar trend to the idealized spines; within a smaller volume

(or vol to SA ratio) regime (below 0.1 µm3 or 0.07 µm), percent increase in bound AMPAR

increases quickly as the geometric parameter increases. There is then some resetting regime

where the percent change falls, and then the percent change increases with increasing

geometric parameter again but at a slower rate. However the realistic spines have a less

clean trend and instead show more variability. For example, comparing realistic spines 3,

4, and 5, these spines have different morphologies and volumes, but almost exactly the

same volume to surface area ratio. Therefore, what geometric parameter we consider will

show a different trend for bound AMPAR increase Figure 8.6d-e.
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We last consider the total receptor number by integrating receptor density across

PSD surface area for the realistic spines and idealized spines versus volume and volume

to SA ratio, Figure 8.6f-g. We see that similar to the idealized spines, the realistic spines

show an increasing trend in total receptor number versus both volume and volume to SA

ratio.

Discussion

AMPAR dynamics are vital for synaptic plasticity, synaptic transmission, and

proper neuronal function. The importance of AMPAR in LTP is well established and

much work has been done to investigate the signaling pathways and trafficking modalities

related to AMPAR behavior. However, how all these various factors interact to modulate

AMPAR dynamics remains unknown. In this work, we propose that AMPAR dynam-

ics depend on a combination of trafficking modalities and a complex interplay between

spine morphology and signaling networks. We investigated these dynamics by considering

two different biochemical models for the underlying kinase and phosphatase interactions

(bistable and monostable) in idealized spines of two different shapes (thin and mushroom).

We systematically varied the volumes of these two idealized shapes to explore the geometric

parameter regime (Figure 8.3) and varied the biochemical stimulus frequencies to consider

biochemical filtering (Figure 8.4). We then performed knockout simulations of the differ-

ent trafficking mechanisms in the idealized spines of different volumes, Figure 8.5. Finally,

we compared our predictions for the bistable model in idealized spines with realistic spine

morphologies, Figure 8.6. We found several predictions based on these simulations which

we will discuss below.

The first insight is that upstream cytosolic signaling species show homogeneous

spatial dynamics at these extended timescales (Figure 8.2) and mimic the dynamics seen
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in our previous compartmental model results [201]. This is due to the homogeneous initial

conditions for all cytosolic species and the fast diffusion of Ca2+ that activates the system,

such that Ca2+ itself achieves a uniform spatial distribution within seconds of its influx.

However, we did see spatial heterogeneity in the membrane bound species. For the AMPAR

species, we found that the influx of membrane AMPAR at the spine neck leads to a

transient elevation in cytosolic and membrane AMPAR at that location, but given enough

time, both species return to a single steady state Figure 8.2h-i. However, if more specific

localization of cytosolic species is considered, the role of cytosolic nanodomains might come

into play.

The second insight is that, similar to the previous compartmental model results,

the monostable model exhibits leaky integrator dynamics in a full spatial system while the

bistable model did not, see Figure 8.4 and Figure C.1; compare to compartmental model

in [201]. In this spatial system, there are more distinct integration steps with the lower

frequency pulses compared to previous ODE model results, which could be attributed to

diffusive effects as the system has to equilibrate across the whole spine geometry. The time

needed to spatially equilibrate can also been seen in the overlap between the 0.1 Hz and

0.05 Hz cases, where the the lower frequency cases causes a higher delayed peak of bound

AMPAR that is comparable to the 0.1 Hz case, but then drops to a lower steady state.

Both these first two insights show the importance of spatial modeling where reaction-

diffusion coupling and localization of membrane fluxes and boundary conditions can alter

signaling dynamics.

The third insight is that idealized and realistic spines showed clear trends in regards

to geometric parameters for both models, with a reset regime where percent increase drops,

Figure 8.3. Both the bistable and monostable models displayed this resetting dynamics,

and the trend held in both idealized and realistic spines. There were however model de-
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pendent trends with receptor density and percent change within idealized spine shape,

volume, and vol to SA ratio. The bistable model showed increasing percent change within

idealized shapes as the spine size got larger; however the monostable model showed an in-

creasing trend for the small thin spines but a nonmonotonic trend for the larger mushroom

spines. Additionally, the percent changes in the bistable model are much larger than the

percent changes in the monostable model, which is consistent with previous studies of the

system [201]. The realistic morphologies emphasized the resetting between smaller and

larger spines but did not show as clear trends within those volume regimes, Figure 8.6.

Therefore, the bound AMPAR response can be thought of as three geometric regimes; the

first at small volumes (or vol to SA ratio) shows large percent increases in bound AMPAR,

the intermediate regime shows a suppressed response, and the large vol (vol to SA ratio)

regime shows increases but at a slower rate. It is still unclear why these resetting behavior

occurs at these particular volume or vol to SA ratio regime, and further investigation is

needed to pinpoint the significance of those regimes.

These complex realistic spines also demonstrate how spine morphologies have var-

ious geometric parameters that can modulate their dynamics and it is still unclear what

parameters matter and how they affect the system dynamics. It is important to note that

we consider percent increase in bound AMPAR because bound AMPAR can be read as

a density or in terms of total receptors at the PSD. It is highly likely that it is impor-

tant to consider both readouts since density could capture what the local environment

at the spine experiences while total receptor number can capture the importance of the

synapse to the overall neural system. This is particularly important because small thin

spines showed a larger biochemical increase in bound AMPAR and therefore an ability

to dynamically adapt; while large mushroom spines showed a smaller percent increase in

bound AMPAR but represent more receptors at their PSDs, which shows their biochem-
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ical stability. Therefore, we hypothesize that dendritic spines utilize different geometric

parameters to modulate their responses during synaptic plasticity. In particular, we be-

lieve the division between smaller and larger spines serves to optimize resources where the

geometric features of larger spines lead them to be biochemically conservative or stable

compared to smaller spines. Additionally, it might be advantageous to prevent excessive

bound AMPAR increase in some intermediate spine volume regime to prevent too many

medium sized spines from utilizing too many resources. This supports the idea of resource

optimization amongst spine clusters, where important large spines must have enough re-

sources to uphold the neural network architecture and fundamental communication, while

smaller spines need resources to form new connections; which leads to medium spines re-

stricting their synaptic response [87]. It is highly likely that additional geometric features,

such as PSD area, PSD number, spine neck geometry, and internal ultrastructure such

as spine apparatus could also serve to tune the synaptic response, as has been hypoth-

esized by others [205]. Therefore, the control of these morphological features effectively

tunes the response of a spine during structural plasticity, highlighting the importance of

structure-function feedback.

Finally, the fourth insight is that different trafficking modalities impact different as-

pects of the bound AMPAR response. In particular, breaking the AMPAR response at the

PSD down into three temporal regimes, the fast timescale dynamics (0-20s) appear to be

due to endocytosis and exocytosis, the intermediate timescale dynamics (20-200s) appear

to be due to diffusion, and finally the late timescale steady state dynamics are governed

by the availability of total AMPAR (cytosolic, membrane bound, bound to PSD95, and

influx from extrasynaptic pools), Figure 8.5. Similar to previous findings [201], the system

needs either a constant forcing term (such as elevated CaMKII or PP1) or AMPAR influx

to change steady state bound AMPAR. There various trafficking trends held for different
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spine geometries.

While we have been able to couple biochemical signaling, trafficking, and spine

morphology, there are limitations to this model and many extensions to this work. Below,

we discuss some next steps based on key findings in our work.

We found that endocytosis and exocytosis of AMPAR play key roles in short

timescale AMPAR dynamics; however, we do not account for the timescales of the physical

mechanisms of endosome fusion or fission, or the physical obstacles that could impede en-

dosome movement within the spine. In particular, the PSD region is extremely dense and it

has been hypothesized that endo/exocytosis would be hindered in this region [189,207,212].

In our model, we allowed AMPAR endo/exocytosis along the whole plasma membrane,

including the PSD area; therefore, it would be valuable to investigate the consequences

of restricted endocytosis and exocytosis. Regarding timescales, the discovery of ultrafast

endocytosis provides optimism that AMPAR exocytosis could potentially occur over the

short timescales that we propose here [177].

AMPAR is also known to form distinct clusters with a variety of different proteins

and scaffolding molecules [14,16,161], and the dynamics of cluster formation and stability

remains debated [197, 213]. We treat the PSD as a single large homogeneous cluster,

so the consequences of these clusters have not been investigated. We found that the

role of endo/exocytosis, membrane lateral diffusion, and extrasynaptic pools all appear

to play important but temporally segregated roles in AMPAR increase at the PSD. This

might suggest that these various AMPAR trafficking mechanisms act as duplicate pathways

for AMPAR increase. Closer examination of the locations of both endo/exocytosis and

extrasynaptic pools, and clarification on cytosolic and membrane diffusion rates would

provide valuable insight into this prediction.

Varying spine size shows an interesting trade-off between signal resilience and max-
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imum increases for bound AMPAR density. Smaller thin spines, that also tend to have

smaller volume to surface area ratio, show a wider range in AMPAR density increase

compared to the larger mushroom spines, which was also seen in the realistic spines (Fig-

ure 8.3 and Figure 8.6). This suggests that thin spines have more variability and can

access a wider range of AMPAR density values, perhaps tying into their higher instabil-

ity [86]. Conversely, mushroom spines have a more constant range of AMPAR density

values, perhaps emphasizing their stability [86]. This observation is complicated by an

inversion of this relationship with regards to total AMPAR number, where smaller spines

show a smaller range in total AMPAR number compared to larger spines. It is exper-

imentally observed that total AMPAR number is correlated to spine head volume and

synaptic area [21,164,204], but since AMPAR dynamics depend on its local environment,

we do believe that considering AMPAR density is a valuable metric. Further investigation

into the significance of AMPAR density versus total receptor number would be extremely

insightful.

The presence of an extrasynaptic pool of membrane AMPAR, which was modeled

as a source at the base of the spine neck, complicated the system as there was no longer

mass balance for AMPAR. With an extrasynaptic pool, the bistable models took much

longer to reach steady state than the monostable models, since active CaMKII remained

elevated in the bistable model versus transient in the monostable model. Therefore, it is

important to consider the role of the dendritic spine as an isolated subcompartment, but

we also need to consider its role within a spine cluster along a dendrite [87].

While we observe the same trends for AMPAR density and total AMPAR for the

realistic spines as seen for the idealized spines (Figure 8.6), the trend is not as clean which

emphasizes the nuances of spine morphologies, particularly how trying to classify spines via

a single morphological feature, in this case volume or volume to surface area ratio, is not
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sufficient to fully explain the consequential AMPAR dynamics. Furthermore, the averaging

of observed dendritic spine geometries, which are often used to construct idealized spines,

could eliminate important outlier cases with significant biological purposes [18]. Therefore,

considering realistic spine morphologies provides insight into these unique geometric cases

that would otherwise be overlooked.

Thus, there remain many opportunities to expand on this work to address the

complexity found within dendritic spines biochemically and geometrically.

Dendritic spine geometry is known to be important for synaptic function, yet the

exact consequences of spine morphology on synaptic plasticity remain unknown. Using a

systems-biology approach, we have investigated various components that influence AM-

PAR increase at the PSD during LTP. We find that two different CaMKII models both

produce stable increases in AMPAR levels, but display different steady state values and

temporal dynamics. We show that AMPAR endo/exocytosis, membrane diffusion, and

extrasynaptic pools affect different aspects of AMPAR increase; endo/exocytosis modu-

late the initial increase in bound AMPAR; membrane diffusion influences intermediate

timescale effects and can alter the time to achieve steady state; and steady state val-

ues depend on the total amount of accessible AMPAR through both endo/exocytosis and

the extrasynaptic pool. We identified different geometric regimes that displayed different

trends in bound AMPAR increase with smaller spines showing higher percent increases,

an intermediate regime of low response, and then a moderate percent increase at larger

spines. We predict that these regimes act to optimize resource usage while supporting

a dendrite’s ability to maintain large, resource-intensive spines while investing in small,

adaptive spines needed for future connections. Lastly, comparisons between ideal and real

spines highlight how morphological complexity prevents correlations to a single geometric

factor.
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Although we have focused specifically on AMPAR dynamics in excitatory synapses

on dendritic spines, we believe that this model combination of signaling dynamics and

realistic cellular geometries along with knockout trafficking cases is a powerful tool to

explore biochemical and morphological coupling in general. Well-mixed models and com-

partmental models can provide great insight into the signaling dynamics within dendritic

spines [103,124], but cannot address the inherently spatial questions associated with pro-

tein trafficking and spine geometry. As imaging techniques, image segmentation, and

meshing technologies advance [148], the ability to computationally model realistic cellu-

lar geometries improves, providing more insight into the consequences of complex cellular

structure and ultrastructure. Our results highlight the need to consider more biological

complexity in terms of spatial modeling both by considering realistic spine morpholo-

gies [18,214] and by considering the localization of proteins and microenvironments [102].

We hypothesize that AMPAR dynamics depend on a combination of trafficking mecha-

nisms to provide robust responses to synaptic stimuli. However, more complex models will

be needed to investigate this hypothesis and test when these various trafficking mechanisms

could fail. In addition, additional work is needed to consider a variety of other biochemical

signaling interactions, particularly in microenvironments like the PSD, and other biophys-

ical interactions, such as crowding, confinement, and liquid liquid phase separation, that

could influence AMPAR dynamics during LTP.
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Chapter 9

Concluding remarks and future

directions

9.1 Summary and future work

Structural plasticity is a clear example of the coupling between structure and func-

tion. Neurons must be able to adapt at dendritic spines to modify their synaptic strength

to ensure proper neural function. At synapses, embedded feedback loops cause biochemical

signaling to constantly update determinents of future signaling dynamics, including bio-

chemical and structural factors. Additionally, morphology can influence signaling dynam-

ics, closing the structure-function feedback loop. Improvements in biosensor development

and imaging techniques continue to shed light on the complex inner workings of dendritic

spines and the process of structural plasticity. However, it remains challenging to exper-

imentally parse out the exact roles, dynamics, and contributions of individual signaling

motifs and species, and biophysical features such as morphology and ultrastructure.

In this dissertation, we construct and utilize mathematical and computational mod-

els (Chapter 2, [1]) to investigate the coupling between structure and function underlying
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synaptic and structural plasticity. We propose (i) a mechanochemical model which cap-

tures extreme structural plasticity in neurites (Chapter 3, [2]), (ii) an attempt to rectify

membrane voltage propagation as ion flux and diffusion in dendritic spines and dendrites

(Chapter 4), (iii) an investigation of the influence of spine morphology and ultrastructure

on fast Ca2+ dynamics in deterministic and stochastic systems (Chapters 5 and 6, [3,4]),

and (iv) a model of how coupling between biochemical signaling at different timescales,

receptor trafficking, and spine morphology governs synaptic plasticity (Chapters 7 and

8, [5]). In the remaining chapter, I will summarize the contributions of this dissertation

and address some future directions to build on these findings.

9.1.1 Thesis summary

Biochemical signaling influences morphology

Structural plasticity refers to a synapse’s ability to morphologically change in re-

sponse to a biochemical stimulus. Therefore, signaling dynamics clearly can trigger me-

chanical and morphological changes in synapses. This is a hallmark of dendritic spines

and neurons. However, we considered an example of structural plasticity that involved an

extreme form of neuronal remodeling. In Chapter 3, we investigated how a biochemical

stimulus could trigger the rupture and retraction of neurites on PC12 cells [2]. Based on

a series of experimental investigations by our collaborators, we constructed a biochemical

signaling pathway that we hypothesized to be activated following acetylcholine applica-

tion. We then coupled the signaling network as the input to a mechanics model of neurite

retraction based on actin dynamics and membrane tension. With this framework, we could

then predict neurite retraction rates during different overexpression experiments on actin

modifying proteins. We found that the Gαq/PLCβ /PI(4,5)P2 pathway couples calcium

responses to neurite remodeling and ultimately neural plasticity.
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Morphology influences biochemical signaling

It is known that structure can influence function, but the exact manner in which

neuronal morphology across different lengthscales and timescales influences biochemical

signaling during synaptic plasticity is not well understood. We sought to investigate this

coupling between morphology and signaling through a series of computational models. In

Chapter 4, we investigated how dendritic spine and dendrite morphology influences volt-

age propagation by considering membrane depolarization as ion influx and diffusion. We

found that while this was a realistic interpretation of membrane voltage as ion movement,

our current model lacks either fundamental physics components such as electrodiffusion

or our numerical algorithms and meshes require more intensive considerations for these

computations. In Chapters 5 and 6, we considered both deterministic and stochastic

simulations of calcium influx into spines of different geometries and ultrastructures [3, 4].

Using this systematic approach, we highlighted how even at these fast timescales, spine

ultrastructure and size can influence calcium readouts. Additionally, we utilized historical

synaptic weight calculations to correlate calcium dynamics to synaptic weight updates and

found size and shape dependent trends. In Chapters 7 and 8, we more closely considered

the relationships between CaMKII and AMPAR, and biochemistry and trafficking, using

both compartmental and spatial models [5]. We found that model architecture filtered

upstream signaling dynamics and trafficking effects, and spine morphology showed volume

dependent sensitivity to bound AMPAR steady state behavior in both idealized and real-

istic geometries. We concluded that neuronal morphology is a feature that can be tuned

to control synaptic response, and various geometric aspects act as additional degrees of

freedom to modify synaptic strength.
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9.1.2 Future directions

Although these various modeling efforts have shed light on various aspects of struc-

tural plasticity, there are many open questions remaining. Additionally, our models contain

many assumptions and potential limitations. It is be beneficial to consider the implications

of those limitations and what remains to be explored.

Below we summarize some considerations that we think are important in models of

synaptic and structural plasticity moving forward.

• Many of the signaling networks we investigated focused on key signaling species.

However, biochemical signaling networks are notoriously complex and convoluted

[103]; we must continue to discern between what signaling interactions can be ab-

stracted to more simple interactions or grouped by timescale, versus what signaling

interactions are key for model complexity. The line between justified simplification

and loss of information is thin and requires some combination of understanding of

the system, extensive data, and clever guesswork.

• Structural plasticity acts as a structure-function feedback loop. Here, we have only

touched the surface on how dendritic spine morphology influence biochemical sig-

naling. Future models need to complete the feedback loop and consider how bio-

chemical signaling triggers morphological changes in dendritic spines. These mor-

phological changes involve complex interplay between actin dynamics and membrane

tension [23]. While we have investigated how actin and membrane dynamics could

lead to characteristic dendritic spine shapes [27], we have not yet linked those dy-

namics to signaling triggers.

• Alongside spatial complexity, spatial localization is an important factor to con-

sider for signaling dynamics. We touched on localization of membrane fluxes [3],
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but many additional species localize their behavior to membrane regions or cytoso-

lic nanodomains, and can experience activity dependent translocation between do-

mains. For instance, it is hypothesized that calcineurin and CaMKII are preferen-

tially localized at different distances to calcium microdomains to induce either LTP

or LTD [187]. Thus, localization is another key feature that can tune the dynamics

of synaptic plasticity.

• As a specific example of spatial localization, AMPAR is known to form clusters at the

PSD which have acute spatial alignment with exocytosis regions in the active zone

on the presynaptic terminal [215]. This alignment acts as another regulatory factor

that affects synaptic transmission efficiency. However, we do not fully understand

how these clusters are formed through membrane or protein interactions, or the

biochemical consequences of these clusters on calcium and other species dynamics at

the synapse.

• At a larger lengthscale, dendritic spines are seen to form clusters with resource

specific characteristics during synaptic and structural plasticity [87]. Therefore, these

spine clusters form another plasticity unit that integrates effects of synaptic plasticity

on individual spines into a larger synaptic transmission readout.

We highlight the last two particularly interesting next steps below.

Formation and consequences of AMPAR clusters during synaptic plasticity

Ionotropic glutamateric receptors, such as NMDAR and AMPAR, are critical for

proper synaptic transmission and function in neurons. They are known to form clusters

with different distribution profiles at the postsynaptic membrane of dendritic spines. It has

been shown that NMDAR and AMPAR localization relative to presynaptic release sites
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can modulate synaptic transmission efficiency and subsequent postsynaptic potentials and

signaling dynamics [215].

While both NMDAR and AMPAR conductances and localization are important for

dendritic spine activation, AMPAR dynamics are of particular interest due to their role

in synaptic plasticity. AMPAR density and cluster numbers play a vital part in plasticity

by dynamically increasing or decreasing in response to various biochemical and electrical

factors, thus modulating the sensitivity of the synapse to presynaptic stimuli. It is known

that AMPAR trafficking involves a plethora of biochemical interactions and a combination

of endocytosis and exocytosis, and lateral membrane diffusion. The relative contributions

of each of these trafficking mechanisms remains debated, but there is wide consensus that

AMPAR within the clusters at the postsynaptic density undergo constant exchange and

interact with a host of membrane, membrane-bound, and cytosolic species.

The PSD is a protein rich region in the cytoplasm adjourning the postsynaptic

membrane.Dendritic spines typically house one to two synapses and have characteristic

shapes associated with spine stability, disease states, and aging. While it is known that

spine size and shape somehow correlate to spine function and AMPAR density also cor-

relates to spine function, it is not well known how dendritic spine morphology influences

AMPAR dynamics at the PSD. In particular, the mechanism of AMPAR clustering and the

potential influence of spine morphology are not well understood. Current literature sug-

gests AMPAR cluster through a variety of mechanisms including protein crowding [213],

and direct molecular interactions between AMPAR and some binding partner [197]. To

investigate these potential mechanisms and the role of spine geometry on AMPAR cluster

formation and maintenance, future models should consider membrane-protein dynamics

that incorporate protein-protein aggregation, crowding, receptor exchange, and interaction

energies with binding partners. This type of model could be used to address the follow-
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ing questions: i) Which clustering mechanisms can produce stable AMPAR clusters? ii)

What role does spine morphology play in cluster dynamics? iii) How do the energetics

of membrane-protein and protein-protein interactions regarding AMPAR govern synaptic

strength?

Biochemical integration of synaptic plasticity across clusters of dendritic spines

While we discussed dendritic spines as isolated subcompartments, it is true that

they do interact with each other and their collective dynamics determine integrated calcium

behavior at the dendrite. Synaptic clusters have been shown to be computational units of

learning and memory, and are associated with clustered plasticity – the idea that localized

biochemical activity supports memory formation [216]. Recently, [87] presented the idea

of resource-rich and resource-poor spine clusters, which are regions of dendritic spines

confined by asynaptic regions. These regions showed characteristic behavior depending on

resource allocation. Specifically, regions with smooth ER (SER) and larger, more mature

spines had higher spine density and preserved smaller spines during LTP, as compared to

resource-poor spine clusters. Therefore, spine clustering serves as a means to distribute

resources and balance synaptic enlargement, and the localized spine environment influences

the collective dendrite dynamics. Therefore, there appear to be regions along the dendrite

of known length that have specific spine behavior. Within these spine clusters, there must

be collective biochemical decision-making and information integration. Recently, a study

showed that individual dendrites can perform logic gating behavior [217], and previous

studies have shown that dendritic integration of calcium and other biochemistry can be

quite complex [218]. Potentially by combining these various factors, we can create a model

of dendritic information processing and decision-making by considering the integrated

effects of calcium dynamics within dendritic clusters. Through this model, we could begin
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to elucidate the biophysical factors that determine the collective decision-making behavior.

9.1.3 Final thoughts

The brain is a fascinating organ. From a biological perspective, it is a energy hungry

lump of fat and proteins. From a processing perspective, it is a sophisticated, hierarchi-

cal network that can integrate and process information across multiple lengthscales and

timescales. Attempts to mimic the brain’s amazing processing ability have lead to great

advances in neural networks, machine learning, and artificial intelligence; but these fields

often abstract out much of the biological complexity of the brain. We still have much to

learn about how the brain holds information and what factors matter for its processing

ability. As someone with a physics and engineering background, I have greatly enjoyed

the process of investigating the brain, and specifically dendritic spines, with a biologically

naive viewpoint. I do not know what biological aspects of dendritic spines matter, which

makes anything a possibility. Therefore, it is beneficial to have multidisciplinary collabo-

rations to investigate these intricate biological processes. Biology is complex and we need

to know what biological components do, but we also need to consider everything from

a function and circuit perspective. Essentially we need to consider the small and large

pictures at the same time. Through collaborations and multidisciplinary efforts, we can

start to filter through the different roles of various biochemical and structural features

of dendritic spines and neurons. Modeling helps see across those scales, and I hope this

collection of work has made inroads into parsing out the structure-function relationship

in neurons and some small impact in the large, ambitious goal of understanding how the

brain works.
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Appendix A

Supplemental material of Stochastic

simulations reveal that dendritic

spine morphology regulates synaptic

plasticity in a deterministic manner

A.1 Appendix for Stochastic simulations reveal that

dendritic spine morphology regulates synaptic plas-

ticity in a deterministic manner

We developed a stochastic reaction diffusion model in MCell [80]. The reactions

are obtained from Bartol et al. [71] and Bell et al. [3] and are discussed in detail below.
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A.1.1 Simulation Information and Parameters

Simulations were run for a total simulation time of 35ms with a 500 ns time step.

Each geometry is simulated in MCell over 50 distinct seeds to generate an appropriate

sample size of results, and we use a write-out frequency of once per iteration to allow for

reproducibility of results. At the beginning of each simulation, membrane proteins are

distributed randomly over specified regions of the spine geometry surface area according

to an assigned count or concentration. The reaction rates for all components in the model

system were adjusted in [71] to reflect a system temperature between 34 °C and 37 °C.

A.1.2 A Note About the Treatment of Extracellular Calcium

Extracellular calcium was not explicitly modeled for ease of computational tractabil-

ity. We assumed a constant extracellular calcium concentration that is negligibly impacted

by the calcium influx to and efflux from the spine cytoplasm. The dynamics of Ca2+ are

explicitly modeled once they enter the cell through channels located on the PM, and cease

to be explicitly represented once they are pumped out of the cell.

A.1.3 Dynamics of calcium ions in the spine volume

We summarize the main reactions for Ca2+ in the volume. The values for the

reaction rates and other important model parameters are located in Table A.1. In the

spine volume, calcium decay took the form given below where kd sets a decay time scale,

Ca2+
kd−−→ ∅ · (A.1)

The value of kd is taken as 50 s−1 based on [3]. We note that this is significantly smaller

than the decay rate constant determined in the results. This is expected as this cytosolic
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calcium decay is just one means of calcium clearing from the cytoplasm, along with the

various pumps, and mobile and fixed buffers.

In the volume, calcium binds with fixed and mobile buffers in the cytoplasm, mod-

eled here generically with Bm to represent mobile calcium buffers, and Bf to represent

fixed buffers. Calcium-buffer binding is modeled in MCell with the reactions

Ca2+ + Bf
kBf,on−−−−−⇀↽−−−−−
kBf,off

Ca ·Bf , (A.2)

and

Ca2+ + Bm
kBm,on−−−−−−⇀↽−−−−−−
kBm,off

Ca ·Bm. (A.3)

Reaction rates for the mobile and fixed buffers are found in Table A.1.

Table A.1: Parameters used in the model for volume.

Variable Value Units Reference

Init. [Ca2+]cyto 1e-7 M [71, 157]

Init. [Ca2+]ER 6e-5 M [71]

Init. [Ca2+]ECS 2 mM [219]

kd 50 s−1 [3]

DCa2+ 2.2e-6 cm2 s−1 [44, 220]

kBf ,on 1e6 M−1 s−1 [71]

kBf ,off 2 s−1 [71]

kBm,on 1e6 M−1 s−1 [221]

kBm,off 1 s−1 [221]

DBm 2e-7 cm2 s−1 [44]

DCa · Bm 2e-7 cm2 s−1 [44]

Init. [Bf ] 2e-5 M [221]

Init. [Bm] 4791 molecule µm−2 [71]
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A.1.4 Plasma Membrane

The primary influx of calcium through the plasma membrane occurs through NM-

DARs and VSCCs, and calcium is pumped out of the cell via two kinds of pumps: PMCA,

and NCX. In this model, NMDARs are both voltage and glutamate dependent and are

localized to the PSD region. VSCCs are voltage dependent and located throughout the

plasma membrane surface. PMCA and NCX are calcium-dependent pumps and are also

located throughout the plasma membrane surface.

NMDA receptors

NMDAR are localized to the PSD area with areal density 150molecule µm−2 [71].

The activation of NMDAR is modeled with an asymmetric trapping block kinetic scheme

as proposed by Ref. [222]. The activation of NMDAR is dependent on the diffusion of

glutamate through the synaptic cleft, and its binding to inactive receptors. In this study,

a surface identical to the top of the spine head is displaced 2µm above the head, approx-

imating the synaptic cleft. At time t = 0 in each simulation, 500molecules of glutamate

are released at the center of this synaptic cleft at the beginning of simulation, and sub-

sequently diffuse through the space at a rate of 2.2×10−6 cm2 s−1, where they bind to

membrane-bound proteins. On the postsynaptic membrane, NMDARs compete with the

glutamate receptor AMPAR for glutamate; thus, AMPARs are also included in the simu-

lation to model this competition but they do not play a role in calcium influx. AMPAR is

also localized to the PSD area. The binding of glutamate to AMPAR is modeled according

to the kinetic scheme proposed by Ref. [223].

Calcium flux through open NMDARs is modeled in MCell with a simple monomolec-

ular reaction.
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NMDAR
kCa−−→ NMDAR+ Ca2+cyto (A.4)

where the rate of calcium influx is given by

kCa(V ) = γNMDAR · V − Vr
2 · 1.6× 10−19

. (A.5)

V is the membrane potential, and Vr is the reversal potential for NMDAR. The parameters

for the NMDAR reactions are the same as given in [222] and the parameters for the AMPAR

reactions are the same as given in Ref. [223].

Calcium influx through voltage-sensitive calcium channels

The influx of Ca2+ through an open VSCC is given by the reaction:

VSCC
kVSCC−−−−−→ VSCC + Ca2+cyto (A.6)

where the rate of calcium influx is given by

kVSCC =
γV (t)NA[0.393− exp(−V (t)

80.36
)]

2F [1− exp( V (t)
80.36

)]
. (A.7)

The influx of Ca2+ through VSCCs is also dependent on the activation kinetics of

VSCCs. The initial conditions for all the VSCCs is the closed state, and the activation

of the channels is modeled here with a five state kinetic scheme as used in Ref. [71]. The

parameters for Ca2+ influx through VSCCs are the same as in Ref. [71]. VSCCs were

located on the PM with a density of 2moleculeµm−2.
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Voltage calculations in the model

Since the transmembrane potential is time-varying and the rate constants for NM-

DAR and VSCC are voltage-dependent, the values of these rate constants at each simu-

lation step were pre-computed and passed into MCell. The voltage stimulus representing

a single EPSP starting at time t = 0, followed by a single BPAP occurring at an offset of

10ms was obtained from Ref. [71]. Note that this time offset is within the typical window

for Spike-Timing Dependent Plasticity (STDP) to inducing LTP [44,71].

PMCA and NCX

PMCA and NCX are located on the plasma membrane with areal density

998molecule µm−2 and 142molecule µm−2 respectively [71], forcing an efflux of calcium out

of the cell. These pumps are modeled using the set of elementary reactions and reaction

rates from Ref. [71].

Spine Apparatus

Calcium enters the spine apparatus via SERCA pumps, and exits by leakage.

SERCA pumps are calcium dependent and located throughout the spine apparatus mem-

brane at 1000molecule µm−2. SERCA influx is modeled as a series of elementary reactions

with rates from Ref. [71]. Calcium leakage from the spine apparatus into the cytosol is

modeled by the reaction

Ca2+ER
kleak−−−→ Ca2+cyto, (A.8)

where kleak is 0.1608 s−1 from Ref. [3].
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A.1.5 Synaptic weight change

We considered the effects of a single instance of spine activation on cytosolic calcium

dynamics and subsequent synaptic weight change. Therefore, we can interpret this synaptic

weight change as an early indicator of longer synaptic weight changes. We modeled changes

in synaptic weight, w, due to cytosolic calcium as a phenomenological relationship, inspired

by [13,100]. Synaptic weight change is given by

dw

dt
=

Ωw − w

τw
, (A.9)

where τw is a learning rate given as

τw = k1 +
k2

k3 + 2Ca2+cyto(t)/(θD + θP )
, (A.10)

and Ωw describes calcium dependence in the regimes of LTP and LTD as

Ωw =
1

1 + exp(−βP (Ca2+cyto(t)− θP ))
− 0.5

1 + exp(−βD(Ca2+cyto(t)− θD))
. (A.11)

Cytosolic calcium, Ca2+cyto(t), is input as total ions in the spine in the above equation. The

differential equation for synaptic weight, w, is solved in MATLAB 2018b using ode23s, with

an initial synaptic weight value of 0 so synaptic weight change and synaptic weight are

the same value for this single stimulation event. Synaptic weight parameters are given in

Table A.2.

Because we are working with a stochastic model and are considering Ca2+ in terms

of ions, we converted the parameters in the synaptic weight equations from units involving

concentration to units of molecules, based on average spine volumes and realistic numbers

of calcium ions in dendritic spines. It is important to note that using total Ca2+ ions
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is a global view of the dendritic spine while concentration can be considered as more of

a local measurement. As mentioned, this synaptic weight change is a phenomenological

relationship between Ca2+ and synaptic weight which captures the concept of synaptic

strength change, and it remains unclear if using ions versus concentration is a better ap-

proach for predicting this change. We converted our results into average concentrations

by dividing the calcium transients by the respective spine volume, converting our synaptic

weight parameters into units of concentration, and rerunning our synaptic weight calcu-

lations, Figure A.8. Further investigation is required to understand the considerations

behind these different approaches.

A.1.6 MATLAB Analysis of Ca2+ transients

We used MATLAB version 2018b to analyze the max Ca2+ peak and decay time

constants for the stochastic Ca2+ results. For each realization of the Ca2+ transient, we

used the max() function to find the peak Ca2+ value and corresponding time. We fit the

transient after the peak using the fit() function set to ‘exp1’. The parameters from each

fit, corresponding to a realization from a random seed, and statistics such as the mean and

standard deviations are computed. The standard error of the mean was found by dividing

the standard deviation by the square root of the number of individual trials, in this case

50 trials.

A.1.7 Statistical Analysis

Statistical significance was determined using a two-tailed two-sample t-test assum-

ing equal means and variance (ttest2() function) in MATLAB version 2018b with a

significance cutoff at p = 0.05. Statistical comparisons were made between the distribu-

tions of observables yielded by the 50 simulations of the compared experimental conditions.
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Table A.2: Parameters for Synaptic Weight.

Variable Value Units Reference

Init. w 0 - [100]

k1 1 s [100]

k2 10 s [100]

k3 1e-3 - [100]

θD 100 molecule ∗ [13, 100]

θP 400 molecule ∗ [13, 100]

βD 0.2977 molecule−1 ∗ [13, 100]

βP 0.2977 molecule−1 ∗ [13, 100]

∗ These parameters were converted from concentration units with adjustments for consistency.

Trends in the stochastic results data were fit using all 50 seeds for each of the simulations

being considered in the fit. The reported trend lines are estimated using the data from

all 50 seeds, as opposed to fitting to the means only. Linear fits and exponential fits

were computed in MATLAB using the functions fitlm() and fit(), respectively. We

highlight that we are using the classical approach of null-hypothesis significance testing,

p-values, and statistically significant verbiage, which has been questioned as perilous and

over-simplistic [101]. We have provided the p-values for each result comparison for closer

consideration, Figure A.9. The linear and exponential trend lines shown have a range of

r2 values and are used to show general trends. We emphasize however that in some plots

we are fitting to either very few data points or a small domain. Therefore, we reiterate

that these factors limit the interpretation of the quantitative nature of the fits.

A.2 Geometries

Idealized, axisymmetric geometries are used to represent the structure of dendritic

spines in this study. Three general spine shapes are represented – thin, mushroom, and
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filopodia-shaped – and each shape is further varied in size and, for the thin and mushroom

spines, neck radius.

A.2.1 Geometry generation

The geometries were generated from 2-dimensional ideal spine profiles obtained

from Ref. [27] consisting of a series of points (r, z) which form the outline of the respective

geometry’s rotational cross-section. Using Netgen/NGSolve version 6.2 [224], we revolved

these profiles about the z-axis to yield a rotationally-symmetric 3-dimensional spine ge-

ometry, Figure A.1. In all spine geometries, a circular PSD was centered at the top of

the spine head. The PSD area was set as a function of spine volume according to the

relationship observed in Ref. [225].

A.2.2 Size and neck variations

To further explore the effects of geometric variations on calcium transients and

stochasticity, and to facilitate the comparison of spine geometries of similar volumes and

different shapes, the base geometries of all three shapes are scaled to two additional volumes

beyond the base shapes from [27]. The additional versions of the thin spine, initially smaller

than the other spine shapes, are scaled such that their length measurements are 1.5 and 2

times their original values, resulting in volumes 3.375 and 8 times that of the initial thin

spine, respectively. The base mushroom spine, intermediate in volume, is scaled to 0.66

and 1.33 times its original size, resulting in volumes 0.287 and 2.353 times their original

value, respectively. And the base filopodia-shaped spine, initially the largest in volume, is

scaled to 0.5 and 0.75 times its original size, resulting in volumes 0.125 and 0.422 times

the original volume. This scheme ultimately results in three different sizes for each spine

shape, spanning a similar range of volumes.
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Figure A.1: The 2-dimensional spine profiles and the resultant rotationally-symmetric
spine geometries for a) thin spines, b) mushroom spines, and c) filopodia.

189



The neck radius of the thin and mushroom spines is also varied, with neck length

modified as well to preserve spine volume. To create the different spine sizes, the 2-

dimensional spine profiles are dilated about the origin by a certain scale factor, and the re-

sultant image is rotated about its vertical axis using Netgen/NGSolve to produce a scaled-

up or scaled-down three-dimensional geometry. In the thin and mushroom 2-dimensional

profiles, the x-values of points along the spine neck are scaled by a certain coefficient, and

the length of the neck is then scaled by the squared inverse of the coefficient in order to

maintain an approximately constant volume. A list of all spine geometries used, and their

respective geometric measures, is found in Table A.3.

A.2.3 Spine Apparatus

Some dendritic spines are observed to have a spine apparatus denoted as SpApp, an

extension of the smooth endoplasmic reticulum, extending from the dendrite into the neck

and head of the spine [88]. In this study, the effects of the presence of the SpApp on calcium

transients and stochasticity are investigated; to achieve this, the thin and mushroom spine

geometries are further modified with the addition of a spine apparatus of varying sizes.

For both spine shapes, the control-sized SpApp geometry is constructed by scaling down

the original spine geometry and extending the spine apparatus neck, such that the SpApp

occupies approximately 10% of the spine volume and extends to the base of the spine.

SpApp size is then varied by scaling the SpApp geometry up and down, changing the neck

length such that the SpApp base coincides with the spine base. SpApp is not added to

the filopodia-shaped geometry, as the spine apparatus is not generally found to be present

in such spine shapes [88]. The SpApp-containing geometries are also listed in Table A.4.
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Table A.3: A list of all geometric variations.

Geometry Scale Volume (µm3) Surface Area (µm2) Neck Radius (µm) PSD Area (µm2)

Thin

small x1 0.035 0.611 0.06 0.045

thin neck x1 0.034 0.653 0.04 0.045

thick neck x1 0.035 0.590 0.07 0.045

medium x1.5 0.119 1.378 0.08 0.112

large x2 0.283 2.453 0.11 0.241

Mushroom

small x0.67 0.080 1.140 0.07 0.081

medium x1 0.271 2.567 0.10 0.232

thin neck x1 0.270 2.689 0.08 0.232

thick neck x1 0.272 2.507 0.13 0.232

large x1.33 0.643 4.568 0.13 0.526

filopodia-shaped

small x0.5 0.017 0.717 0.05 0.031

medium x0.75 0.058 1.609 0.08 0.064

large x1 0.138 2.860 0.10 0.127

Table A.4: A list of spine apparatus variations.

Geometry SA size SA Volume (µm3) Cytoplasm Volume (µm3)

Thin

Small 0.00211 0.033

Medium 0.00465 0.030

Large 0.00867 0.026

Mushroom

Small 0.0160 0.255

Medium 0.0358 0.235

Large 0.0676 0.203
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A.2.4 Realistic Geometries

Realistic geometries were chosen from among those on the full dendrite geometry

generated in Ref. [91]. Briefly, the geometric meshes were generated from electron mi-

crographs in Wu et al. [29] using GAMer 2 [226]. Individual spines with labeled PSD

and volumes similar to the idealized geometries were selected from the realistic dendritic

branch.

Table A.5: Table of values for realistic geometries.

Spine Number Shape Volume (µm3) Surface Area (µm2) PSD Area (µm2)

13 Mushroom 0.157 2.457 0.26

17 Filopodia 0.091 1.916 0.06

18 Mushroom 0.243 3.383 0.14

37 Filopodia 0.075 1.756 0.03

39 Thin 0.045 1.078 0.04

41 Thin 0.091 1.710 0.07

A.3 Additional simulation results

A.3.1 Simulation results versus other geometric parameters show

various trends

We plot max Ca2+ peak, decay time constant, and synaptic weight against volume

for all size variations of filopodia-shaped spines, thin spines, mushroom spines, and mush-

room spines with spine apparatus Figure A.2. We see similar trends across volume as we

observe across volume-to-surface area ratio. We plot all results together on the same plot

for max Ca2+ peak, decay time constant, and synaptic weight against volume-to-PSD

area and volume, Figure A.3. We see almost no dependence on volume-to-PSD area for
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any of the readouts. We see similar trend versus volume as we see in volume-to-surface

area ratio.

A.3.2 Spine neck size shows differences in the large mushroom

spines but not the smaller thin spines

The spine neck has long been discussed as a key parameter governing calcium sig-

naling within dendritic spines [72]. We also explored the effects of varying spine length and

radius, while preserving spine volume. We first varied the spine neck on thin spines of the

control volume, Figure A.4a. We saw that while the calcium transients have considerable

overlap, the thin-necked spine shows significant variance at later time points compared

to the other spines, Figure A.4b-c. We see no statistically significant differences between

peak calcium values and only decay differences between the thinnest and thickest necks,

Figure A.4d-e. Synaptic weight changes for the thin spines with different neck geometries

showed no significant differences but were trended towards negative weight changes for

thicker necks, Figure A.4f. We next explored mushroom spines with thinner or thicker

neck geometries but with the same volume as the mushroom control spine, Figure A.5a.

While the mean of the calcium transients appeared quite close, there was significant dif-

ference in variance for the mushroom spine with the thick neck, Figure A.5b-c. We saw

differences in peak calcium only between the thinnest and thickest of the mushroom neck

cases, and no significant difference in decay time constant, Figure A.5d-e. Synaptic weight

calculations show that presence of the thinnest versus thickest neck on a mushroom spine

does lead to statistically significant differences in synaptic weight updates, Fig. A.5f.

This indicates that spine neck morphology might have more implications for these larger

mushroom spines, compared to the smaller thin spines.
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A.3.3 The presence of spine apparatus in thin spines cause no

clear trend in synaptic weight update

We vary the size of spine apparatus in thin control spines with the spine apparatus

acting as a calcium sink with SERCA pumps, Figure A.6a. We see that the presence

of spine apparatus makes the calcium transient response more complex with a double

peak visible in the variance for thin spines, Figure A.6b-c. While we can fit the peak

calcium values and decay time constant trends against both volume (Figure A.6d,e) and

volume-to-surface area ratio (Figure A.6g,h), spine apparatus presence shows no clear

trend in synaptic weight change for thin spines and the differences were not statistically

significant, Figure A.6f.

A.3.4 Our previous deterministic results match the qualitative

trends seen in these results

We previously published a deterministic reaction diffusion model of calcium dy-

namics in dendritic spines of different morphologies [3]. We found trends in the peak

calcium concentration over spine volumes in that work and wanted to directly compare

those results to our findings in this work. Using the results from [3], we integrate calcium

concentration over the spine volume at each time point and find the peak calcium in ions

and fit the decay dynamics of the calcium transient with an exponential decay function,

c · exp(−kt). We compare the peaks and decay time constants over both volume and

volume-to-surface area ratio, and find the same qualitative trends as our findings in this

currents work, Figure A.7.
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A.3.5 Synaptic weight changes depends on calculations with ions

versus concentration

Synaptic weight update equations are typically phenomenological relationships based

on Ca2+. Historically, many mathematical models considering synaptic weight changes

have considered synaptic weight changes in terms of concentration [13, 57, 100]. In this

model, we consider Ca2+ in terms of Ca2+ ions. We want to consider if the use of

ions versus concentration influences the synaptic weight update results. We converted the

synaptic weight equations by converting the parameters from units involving molecules to

concentration by dividing by the average spine volume (0.09 µm3) and converting to µM.

We convert all the Ca2+ transients to µM by dividing by each respective spine geometry

volume and modifying units. We plot the synaptic weight change at 35 ms for all simula-

tions when considering ions versus concentration Figure A.8. We see that synaptic weight

change does change between using ions versus concentration because the concentration

also considers the volume of the spines. Using concentration leads to a decreasing trend

in synaptic weight with increasing volume which is the opposite of the trend seen using

ions. We do however still see protrusion-type specific trends within the overall dynamics.

There are several considerations to make during this comparison. First, as mentioned, the

synaptic weight equations used are phenomenological relationships between Ca2+ and the

concept of synaptic weight which captures the idea of synaptic strengthening which would

actually occur through the insertion of receptors, such as AMPAR, and potentially spine

volume increase. It remains unclear if total ion count, which is a global consideration of the

whole spine, or Ca2+ concentration, which considers the local environment, is the correct

value to consider for synaptic weight calculations. Furthermore, we used average concen-

tration in Figure A.8c-d) but dendritic spines are known to have signaling nanodomains,

so it could be possible that it would be more accurate to consider peak concentration
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instead of average concentration for this calculation. Additionally, it is possible that the

thresholds for LTP versus LTD need to be modified for considering a global reading, such

as total ions in the spine, versus a local measurement, such as local concentration. Should

synaptic weight change depend on the total amount of Ca2+ influx or the local environ-

ment within the spine? This is an ongoing consideration that needs further analysis and

discussion.

A.3.6 Two-tailed t-test results for all stochastic simulations

We conduct two-tailed t-test calculations between all stochastic simulations for both

idealized and real geometries for max Ca2+ peak, decay time constant, and synaptic weight

change. We display both the h and p-value for each comparison, Figure A.9. We use a p

threshold of 0.05 to determine the binary h value. A p-value smaller than 0.05 indicates

that the two results are statistically different and produce a h-value of 1. Reversely, a

p-value larger than 0.05 indicates that the two results are not statistically different and

produce a h-value of 0. p-values have been truncated at two decimal points.
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Figure A.2: Trends across volume are similar to trends across volume-to-surface
area ratio. Peak calcium levels, decay time constant, and synaptic weight updates for size
variations given as volumes for filopodia-shaped spines (a-c), thin spines (d-f), mushroom
spines (g-i), and mushroom spines with spine apparatus (j-l). Peak calcium is fit with a
line with a fixed zero intercept.
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Figure A.3: Trends across volume-to-PSD area ratio and across volume show
different levels of significance. a) All calcium peaks as mean and standard error (n=50)
across volume-to-PSD area ratio show no dependence. We fit the trend in peak values with
a linear function against the volume-to-PSD area ratio; r2 = 0.0152 for the linear fit. b)
We fit the decay dynamics of each calcium transient with c ·exp(−kt) and report the decay
time constant, k, as a mean and standard error (n = 50) against volume-to-PSD area ratio.
We fit the trend in decay time constants as a function of volume-to-PSD area ratio with
an exponential a · exp(−bβ), where β is the volume-to-PSD area ratio; r2 = 0.0091 for the
fit. c) Calculated synaptic weight change mean and standard error (n = 50) at the last
time point for all idealized and realistic spines shows no dependence on volume-to-PSD
area ratio. We fit the trend in synaptic weight change with a linear function against the
volume-to-PSD area ratio; r2 = 0.0060 for the linear fit. d) All calcium peaks as mean
and standard error (n=50) across volume show a clear increasing trend. We fit the trend
in peak values with a linear function against volume; r2 = 0.5666 for the linear fit. e) We
fit the decay dynamics of each calcium transient with c · exp(−kt) and report the decay
time constant, k, as a mean and standard error (n = 50) against volume. We fit the trend
in decay time constants as a function of volume with an exponential a · exp(−bV ), where
V is the volume; r2 = 0.1478 for the fit. f) Calculated synaptic weight change mean and
standard error (n = 50) at the last time point for all idealized and realistic spines shows
an increasing trend. We fit the trend in synaptic weight change with a linear function
against volume; r2 = 0.4635 for the linear fit.
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Figure A.4: Effect of spine neck variation on synaptic plasticity in thin spines.
a) Spatial plots at 15 and 30 ms for thin spines of the same volume with different neck
geometries (neck radius of 0.04, 0.06, 0.07 µm). The number above each spine corresponds
to the number of calcium ions present at that time point. Scale bar: 2µm. Calcium ions
over time (b) and variance (c) for all three thin spines with different neck cases. Shaded
regions in (b) denote standard deviation. d) Peak calcium ion number for each thin spine
with the mean and standard error (n=50) show no statistically significant differences using
a two-tailed t-test. We fit the trend in peak calcium as a linear function of spine neck base
surface area; r2 = 0.0009 for the linear fit. e) We fit the decay portion of each calcium
transient with the exponential decay function c · exp(−kt). The decay time constant mean
and standard error (n=50), k, only shows statistically significant differences between the
thin and thick necks; p*** = 0.0322 from a two-tailed t-test. We fit the trend in decay time
constants as a function of spine neck base surface area with an exponential a · exp(−bψ),
where ψ is the spine neck base surface area; r2 = 0.0256 for the exponential fit. f)
Calculated synaptic weight change at the last time point for all three thin spines shows no
statistically significant difference due to neck size.
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Figure A.5: Effect of spine neck variation on synaptic plasticity in mushroom
spines. a) Spatial plots at 15 and 30 ms for mushroom spines of the same volume with
different neck geometries (neck radius of 0.08, 0.10, 0.13 µm). The number above each
spine corresponds to the number of calcium ions present at that time point. Scale bar:
2 µm. Calcium ions over time (b) and variance (c) for all three mushroom spines with
different neck cases. Shaded regions in (b) denote standard deviation. d) Peak calcium
ion number for each mushroom spine with the mean and standard error (n=50) show
statistically significant differences between the thin and thick spines; p*** = 0.0029 using
a two-tailed t-test. We fit the trend in peak calcium as a linear function of spine neck base
surface area; r2 = 0.0528 for the linear fit. e) We fit the decay portion of each calcium
transient with the exponential decay function c · exp(−kt). The decay time constant mean
and standard error (n=50), k, shows no statistically significant differences from a two-
tailed t-test. We fit the trend in decay time constants as a function of spine neck base
surface area with an exponential a · exp(−bψ), where ψ is the spine neck base surface area;
r2 = 0.0036 for the exponential fit. f) Calculated synaptic weight change at the last time
point for all three mushroom spines only shows a statistically significant difference between
the thin and thick spines, p*** = 0.0244 from two-tailed t-test.
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Figure A.6: Spine apparatus size modulates synaptic weight change in thin
spines. a) Spatial plots at 15 and 30 ms for thin spines with spine apparatus of different
volumes (spine cytosolic volumes of 0.026, 0.030, 0.0.033 µm3). The numbers on top
of the shape indicate the total number of calcium ions at that instant in both the spine
apparatus and cytoplasm. Calcium ions over time as mean and standard deviation (b) and
variance (c) for all three thin spines with different spine apparatus sizes. Shaded regions
in (b) denote standard deviation. d) Peak calcium ion number for each thin spine with a
spine apparatus, with the mean and standard error (n=50), show statistically significant
differences between two of the three paired cases; p* = 0.0461; p*** = 0.0453 from two-
tailed t-test. We fit the trend in peak values with a linear function against the cytoplasm
volume; r2 = 0.0145 for the linear fit. e) We fit the decay dynamics of each calcium
transient with c · exp(−kt) and report the decay time constant, k, as a mean and standard
error (n = 50). We find only find statistically significant differences between the second
and third spines; p* = 0.0289 from a two-tailed t-test. We fit the trend in decay time
constants as a function of cytosolic volume with an exponential a · exp(−bV ), where V
is the cytosolic volume; r2 = 0.0177 for the fit. f) Calculated synaptic weight change at
the last time point for all three thin spines shows no statistically significant difference due
to spine apparatus size. We also plot peak calcium ion number and decay time constant
against the cytosolic volume to surface area ratio, g and h, respectively. g) We fit the trend
in peak values with a linear function against the volume-to-surface area ratio; r2 = 0.0214
for the linear fit. h)We fit the trend in decay time constants as a function of volume-to-
surface area ratio with an exponential a · exp(−bζ), where ζ is the volume-to-surface area
ratio; r2 = 0.0178 for the fit.
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Figure A.7: Previous calcium simulation results match the qualitative trends
in these results. a) We fit the trend in peak values with a linear function against the
cytoplasm volume; r2 = 0.8242 for the linear fit. We fix the y intercept at zero. b) We fit
the decay dynamics of each calcium transient with c · exp(−kt) and report the decay time
constant, k. We fit the trend in decay time constants as a function of cytosolic volume
with an exponential a · exp(−bV ), where V is the cytosolic volume; r2 = 0.4283 for the
fit. c) We fit the trend in peak values with a linear function against the volume-to-surface
area ratio; r2 = 0.8776 for the linear fit. h) We fit the trend in decay time constants as a
function of volume-to-surface area ratio with an exponential a · exp(−bζ), where ζ is the
volume-to-surface area ratio; r2 = 0.9054 for the fit.

202



Figure A.8: Synaptic weight updates when considering Ca2+ in terms of ions or
concentration. Synaptic weight updates for each stochastic idealized and real geometry
simulation when synaptic weight calculations are in terms of ions (a-b) and concentration
(c-d). We plot the synaptic weight changes against the spine volume for calculations using
ions (b) and concentration (d). We fit the trends using a linear function of volume. We
get r2 = 0.4635 for the ion fit and r2 = 0.1229 for the concentration fit.
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Figure A.9: Two-tailed t-test comparison between all simulations. We conduct
two-tailed t-test between all simulations and display the h value and p-value for max

Ca2+ peaks (a-b), decay rate constant (c-d), and synaptic weight change (e-f). Displayed
p-values are truncated at two decimal points.
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Appendix B

Supplemental material of Crosstalk

between biochemical signaling &

trafficking governs AMPAR

dynamics in synaptic plasticity

B.1 Appendix for Crosstalk between biochemical sig-

naling & trafficking governs AMPAR dynamics

in synaptic plasticity

Equations for Compartmental Model

We constructed a compartmental ordinary differential equation model of signaling

networks describing AMPAR dynamics in response to a single calcium influx event in
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a dendritic spine of a hippocampal pyramidal neuron. The model is comprised of two

compartments - the cytoplasm and the plasma membrane. The dendritic spine plasma

membrane surface area was taken to be 0.8 µm2 which corresponds to an average volume

dendritic spine of approximately 0.06 µm3. The lengthscale conversion between membrane

and volume reactions was taken as 0.1011 µm, which was the averaged volume to surface

area ratio of a realistic dendritic segment of a hippocampal neuron [148]. All reaction

equations, parameters, and initial conditions are presented in the tables in the main text

(Tables 7.1,7.2,7.3,7.4,7.5,7.6). Initial conditions for the cytosolic species were taken from

[115,124], and initial conditions for the membrane species were approximated from [16,24,

161,227]. Various reaction parameters were taken from [110,115,116,124,137].

Calcium influx module

Calcium influx is driven by a voltage depolarization due to a excitatory postsynaptic

potential (EPSP) and back propagating potential (BPAP) separated by 2 ms. Calcium

comes into the spine through NMDAR and VSCC, and is pumped out of the spine through

PMCA and NCX pumps. Additionally there is a correcting leak term. Calcium binds

to CaM to form Ca2+CaM (Ca/CaM complex). The various calcium flux terms are

modified to have volumetric reaction units and are taken directly from [115]. See [115] for

a sensitivity analysis of the different parameters in the calcium influx module.

Calmodulin, Kinases, and Phosphatases Modules

Calcium influx leads to activation of downstream signals such as CaM, CaN, CaMKII,

and PP1. CaM is activated by binding to multiple Ca2+ ions and can be described as

a multistage process where both CaM bound to either 2 or 4 Ca2+ ions can lead to

downstream signaling activation [109, 123]. However, for simplicity, we approximate the
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reaction as a single binding event of CaM binding to 3 Ca2+ ions [124]. CaM also binds to

neurogranin which acts as a CaM sink [228]. CaMKII and the phosphatase cascade have

different equations for the bistable [124,126] versus monostable models [137].

For the bistable model:

The bistable model is termed bistable because the system can produce multiple

steady states for either CaMKII and PP1. CaMKII is activated by the Ca2+CaM complex

and then can autophosphorylate itself. Active CaMKII is deactivated by active PP1 [118,

124, 126]. CaN is activated by Ca2+CaM complex and is deactivated by active CaMKII.

Active CaN then activates I1 which is also deactivated by active CaMKII. This I1 species

can be thought of as a representation of I1 downstream effects rather than the exact

dynamics of I1. I1 inhibits PP1 activity [229], so this species can be thought of as the

result of CaN deactivating I1 which then would trigger an increase in PP1 activity [127].

Therefore, this I1 representative species activates PP1. PP1 will then autoactivate itself

and be deactivated by active CaMKII [124,126].

For the monostable model:

The monostable model has Ca2+CaM complex activate both CaMKII and PP1

directly. Both species then decay exponentially with linear dependence on their own

concentrations [122,129,153].

AMPAR and scaffold module

AMPAR exists in both compartments - Aint in the volume, and Amem and Abound

on the membrane. Aint represents AMPAR in endosomes in the cytoplasm. Amem rep-

resents free AMPAR on the plasma membrane. AMPAR interacts with many different
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proteins in the PSD region, but here we specifically model PSD95 on the PSD mem-

brane where it binds membrane AMPAR and localizes it to the PSD region. PSD95 has

been found to be vital for AMPAR localization to the PSD [14, 161]. Abound represents

membrane AMPAR bound to PSD95.

On the membrane, Amem undergoes endocytosis and exocytosis and has an active

CaMKII-dependent boundary flux at the base of the spine neck. The equation for Amem

is given by

d[Amem]

dt
= ([CaMKIIp]c1 + c3)[Aint]n− (c2[PP1] + c4)[Amem]

−(kbind[PSD95][Amem])− krelease[ABound]) + Pbase/τbaseexp(−t/τdecay)[CaMKIIp],

(B.1)

where Pbase = 0.9069 µm, τbase = 800 s, τdecay = 60 s, and n = 0.1011 µm is the spine

neck base perimeter, timescale of influx, timescale of CaMKII activity, and the lengthscale

conversion factor, respectively. This CaMKII-mediated influx is inspired by [141]. En-

docytosis and exocytosis rates were taken from [110]. Endocytosis and exocytosis affects

both Aint and Amem. The reactions for Aint have units of µM
s
, while the reactions for

Amem has units of moles
µm2·s . Therefore, we use the lengthscale factor n to convert between

units for these reactions.

Trafficking conditions and model variations

We investigate two forms of AMPAR trafficking during LTP - endo/exocytosis and

influx from extrasynaptic pools of membrane AMPAR outside of the spine. We considered

the control case when both trafficking modalities were present, the no endo/exocytosis case

when there was only a CaMKII-mediated influx, and the no influx case when there was

208



only endo/exocytosis. We also varied the initial condition of inactive CaMKII and inactive

PP1 from 0-20 µM and 0-0.5 µM, respectively. We varied contributions to endocytosis

and exocytosis from 0-500 when scaling c1 and c2, and from 0-1 when scaling the whole

endocytosis and exocytosis terms. We also varied the frequency of input to the model by

applying spikes of Ca2+CaM at different frequencies to the model. Therefore, the stimulus

of the simulations in Figure 7.7 and Figure B.9 is Ca2+CaM, instead of the previous Ca2+

influx.

Numerical details

We ran all model results in MATLAB 2018b or 2020b, and conducted the sensitivity

analysis in COPASI. For time to peak and max values of different species, we used the

function max() in MATLAB. For Figure 7.2 and Figure 7.3, steady state was designated

as when the rate of change was below 1 × 10−3 for all cytosolic species except Aint and

the membrane species. We designate steady state for Aint, Amem, PSD95, and Abound

as when the rate is below 1× 10−4, 1× 10−3, 5× 10−3, and 5× 10−3, respectively. If time

to steady state and steady state value is not achieved, then we take the value at the end

of the simulation peak (500 s). For Figure 7.4 and Figure 7.5, steady state is taken as the

value at 500 s.

Sensitivity Analysis

We conducted a sensitivity analysis for both the bistable and monostable models

with respect to the final readout, bound AMPAR. The analysis was run in COPASI with

respect to all model parameters and initial conditions (Figure 7.3f-k). Both models showed

similar sensitivities to parameters and initial conditions. The most sensitivity was shown

toward the PSD95 and AMPAR species initial conditions and parameters, and the AMPAR
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influx terms. By far the most sensitivity was towards the initial condition for bound

AMPAR which is expected. Both models were also sensitive to the reaction rates for

membrane AMPAR binding to PSD95 and AMPAR influx. Lastly, the models showed

sensitivity to the initial condition of inactive CaMKII, which matches our findings.

Supplemental Figures

Variations in CaMKII/PP1 initial conditions alter CaMKII/PP1

and AMPAR dynamics in a model dependent manner

We vary the initial conditions of CaMKII and PP1 for both models to observe the

effects on CaMKII, PP1, and bound AMPAR dynamics, Figure B.1 and Figure B.3. In the

bistable model, CaMKII and PP1 can achieve different steady states depending on IC (ex.

steady states of 12 vs 20 µM and of 12 vs 0 µM for CaMKII, steady states of 0 versus 0.5

µM for PP1; Figure B.2b, left and middle column). Furthermore, for the same CaMKII

IC but different PP1 IC, bound AMPAR increases with the same dynamics initially before

diverging to a lower steady state for the higher PP1 condition. We quantify the peak

values and time to peak values for a range of CaMKII and PP1 initial conditions (0-20 µM

and 0-0.5 µM, respectively) for both the bistable and monostable models in Figure B.2.

For the bistable model, active CaMKII peak value shows no dependence on PP1 IC, while

time to peak value shows dependence for low PP1 IC and low CaMKII IC; this is because

for the zero CaMKII IC, the peak value is taken as time zero. CaMKII peaks rapidly for

all IC for the bistable model (before 500 ms). CaMKII steady state for the bistable model

shows dependence on both CaMKII and PP1 IC and ranges from 0 - 20 µM (Figure 7.4).

In the bistable model, PP1 dynamics and steady states are also different based on both the

CaMKII and PP1 IC (Figure 7.4). The PP1 peak value time does show some variations
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in the CaMKII/PP1 dependence trend with a few regions of slower peak value times for

lower PP1 ICs at both low and high CaMKII IC (ex. CaMKII IC 4 µM and PP1 IC

0.05 µM; Figure B.2a, middle row and right column). PP1 steady states also range across

the whole accessible concentration regime from 0 - 0.5 µM (Figure 7.4). These different

CaMKII and PP1 dynamics translate to different bound AMPAR dynamics in the bistable

model for the different IC combinations; in particular, higher CaMKII IC lead to higher

bound AMPAR peak values that took longer to reach steady state, due to the increased

CaMKII-mediated AMPAR influx. The time to peak value was particularly striking, with

a clear distinction between CaMKII dominance and PP1 dominance (diagonal stepping

line, Figure B.2).

For the monostable model, there was much less coupling between the IC variations

(Figure B.1). CaMKII dynamics for peak value and time to peak value only showed

dependence on CaMKII IC, and PP1 dynamics were likewise dependent on PP1 IC. Both

CaMKII and PP1 peaked very quickly in the monostable model with all peaks by about

300 ms (Figure B.2c). As seen in Figure B.1c-d, the monostable model produces a single

steady state for both CaMKII and PP1 of zero; this is in sharp contrast to the range of

steady states seen in the bistable model. While bound AMPAR peak value and steady

state appears entirely dependent on CaMKII IC, the time to peak value again showed

coupled CaMKII/PP1 IC dependence (Figure B.2c), however with the opposite trend as

the bistable model. For the monostable model, higher PP1 IC lead to a slower time to

peak, while for the bistable model, higher PP1 lead to faster peak time. We note that

the small differences within the longer peak value times of the bound AMPAR in the

monostable model are small numerical differences.

We also considered these IC variations for knockout trafficking conditions, Fig-

ure B.3. The no endo/exocytosis case showed similar bound AMPAR dynamics to the
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Figure B.1: Temporal dynamics for CaMKII and PP1 for both the bistable and monos-
table models for all CaMKII and PP1 IC combinations. Active CaMKII (a) and active
PP1 (b) dynamics for the bistable model show that the coupling between CaMKII and
PP1 allows for a variety of different steady states dependent on IC. Active CaMKII (c) and
active PP1 (d) dynamics for the monostable model show that CaMKII and PP1 dynamics
depend only on their own respective concentration and all species decay back to zero. The
C and P in legend stand for CaMKII and PP1, respectively.

control case, while the no influx case showed bistable bound AMPAR behavior for the

bistable model and a monostable bound AMPAR for the monostable model, fittingly.

Variations in endo/exocytosis rates

We considered four different cases for both the bistable and monostable models. We

considered the model without and with the influx term (with and without mass balance for

membrane AMPAR), and with two different initial conditions for CaMKII, 10 and 20 µM,

but only one IC for PP1 (0.25 µM). We also considered two methods to vary endocytosis

and exocytosis; 1. vary the c1 and c2 activity dependent terms; and 2. vary the whole
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Figure B.2: Variations in initial conditions for inactive CaMKII and PP1 influences
active CaMKII, active PP1, and bound AMPAR dynamics. a) Peak value and time of
peak value (left and right columns respectively) for active CaMKII, active PP1, and bound
AMPAR (top to bottom row, respectively) for the bistable model. b) Temporal dynamics
for active CaMKII, active PP1, and bound AMPAR (left to right columns, respectively)
for a set PP1 IC and varied CaMKII IC (top row) and for a set CaMKII IC and varied
PP1 IC (bottom row) for the bistable model. c) Peak value and time of peak value (left
and right columns respectively) for active CaMKII, active PP1, and bound AMPAR (top
to bottom row, respectively) for the monostable model. d) Temporal dynamics for active
CaMKII, active PP1, and bound AMPAR (left to right columns, respectively) for a set
PP1 IC and varied CaMKII IC (top row) and for a set CaMKII IC and varied PP1 IC
(bottom row) for the monostable model.
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Figure B.3: Temporal dynamics for bound AMPAR for both the bistable and monostable
models for all CaMKII and PP1 IC combinations for the various trafficking cases. The con-
trol case (a), no endo/exocytosis case (b), and no influx case (c) for the bistable model show
coupled dependence on the CaMKII/PP1 IC. The control case (d), no endo/exocytosis case
(e), and no influx case (f) for the monostable model only show dependence on the CaMKII
IC. The C and P in legend stand for CaMKII and PP1, respectively.

Figure B.4: a) Temporal dynamics for PSD95 in the control trafficking case with control
IC of 20 µM for CaMKII and 0.25 µM for PP1. Reaction rates for the different trafficking
contributions that influence AMPAR dynamics for the bistable (b) and monostable (c)
models show similar trends with large rapid PSD95 binding, a smaller endo/exocytosis
activity over similar timescales, and then a sustained smaller contribution due to CaMKII-
mediated influx.
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Figure B.5: Heatmaps of PSD95 at 500s for a variety of CaMKII and PP1 initial
conditions. a) Steady state values for the control trafficking case with all trafficking con-
tributions show dependence on both CaMKII and PP1 IC for the bistable model (top row),
but on only CaMKII IC for the monostable model (bottom row). b) Steady state values
for the no endo/exocytosis show similar trends as the control case for both the bistable
model (top row) and monostable model (bottom row), showing how the CaMKII/PP1
coupling can influence bound AMPAR dynamics despite not directly impacting Amem
through endocytosis and exocytosis. c) Steady state values for the no influx case show
clear dependence on both CaMKII and PP1 IC for the bistable model (top row), but ho-
mogeneous results for the monostable model (bottom row). Without an influx that leads
to an increase in membrane AMPAR, the monostable case has a transient decrease in
PSD95 but then returns to its initial condition.
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endocytosis and exocytosis terms. We considered bound AMPAR for each of these various

conditions, see Figure B.6,Figure B.7, and Figure B.8.
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Figure B.6: Effect of endocytosis and exocytosis, CaMKII initial condition, and AMPAR
influx on bound AMPAR for two different scaling methods. Endocytosis and exocytosis
were varied in two different ways: Left column (c1 and c2): the species dependent rates of c1
and c2 were scaled; and Right column (Whole term): the whole exocytosis and endocytosis
term was scaled. a) Bound AMPAR values at 500 s for the no influx (top row) and with
influx (bottom row) cases for different scaling terms of the exocytosis and endocytosis rates
(c1 and c2, respectively) for the two CaMKII ICs for both the bistable and monostable
model. We consider two different types of exocytosis and endocytosis scaling, scaling just
the c1 and c2 terms versus scaling the whole endocytosis and exocytosis terms. For the
bars that appear vacant, those values are equal to zero (light and dark red bars in the
whole term graphs). Gray inset: Legend for panel a where general color corresponds to
a set endocytosis (En)/exocytosis (Ex) scaling in this order (En 0, Ex 0; En 0, Ex Max;
En Max, Ex 0; En Max, Ex Max), light and dark colors indicate the 10 µM and 20 µM
CaMKII IC, respectively. b) Temporal dynamics of bound AMPAR for the bistable (top
row) and monostable (bottom row) models for two different CaMKII initial conditions
(10 µM and 20 µM), different contributions of endocytosis and exocytosis, and with and
without influx.
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Figure B.7: Effect of endocytosis and exocytosis, CaMKII initial condition, and AMPAR
influx on bound AMPAR when scaling c1 and c2. a) Temporal dynamics of bound AMPAR
for the bistable (top row) and monostable model (bottom row) for two different CaMKII
initial conditions (10 µM, left two columns; 20 µM, right two columns) with and without
the membrane AMPAR influx. b) Minimum and maximum bound AMPAR steady states
for each CaMKII IC, with and without the influx term for both the bistable and monostable
models (top and bottom row, respectively). Gray inset: mathematical representation of
how the exocytosis and endocytosis terms are scaled by Exo and Endo.
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Figure B.8: Effect of endocytosis and exocytosis, CaMKII initial condition, and AMPAR
influx on bound AMPAR temporal dynamics for two different scaling methods. Endocyto-
sis and exocytosis were varied in two different ways: a) (c1 and c2): the species dependent
rates of c1 and c2 were scaled (gray inset: mathematical representation); and b) (Whole
term): the whole exocytosis and endocytosis terms ere scaled (gray inset: mathematical
representation). a) Temporal dynamics of bound AMPAR for the bistable (top row) and
monostable model (bottom row) for two different CaMKII initial conditions (10 µM, left
two columns; 20 µM, right two columns) with and without the membrane AMPAR influx
when varying c1 and c2. b) Temporal dynamics of bound AMPAR for the bistable (top
row) and monostable model (bottom row) for two different CaMKII initial conditions (10
µM, left two columns; 20 µM, right two columns) with and without the membrane AM-
PAR influx when varying the whole endocytosis and exocytosis terms. Middle gray inset:
Legend for panel a. Panel b has the same scaling pattern but the scaling is from 0 to 1 in
steps of 0.1. A general color represents a endocytosis scaling, while gradients within that
color correspond to exocytosis scalings.
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Figure B.9: Effect of multiple active Calmodulin spikes on CaMKII, PP1, and bound
AMPAR dynamics for different stimulus strengths and CaMKII IC. a) Multiple spikes of
active CaM were input into the different model systems at different frequencies (0.5 Hz,
0.1 Hz, 0.05 Hz; left, middle, and right, respectively) at two different amplitudes (large -
blue, small - red). b) Steady state values of bound AMPAR for all conditions shown here
for both the bistable and monostable models. c) Active CaMKII, active PP1, and bound

AMPAR dynamics for both the bistable and monostable model for the large Ca2+CaM
stimulus and CaMKII IC of 10 µM. d) Active CaMKII, active PP1, and bound AMPAR

dynamics for both the bistable and monostable model for the large Ca2+CaM stimulus
and CaMKII IC of 20 µM. e) Active CaMKII, active PP1, and bound AMPAR dynamics

for both the bistable and monostable model for the small Ca2+CaM stimulus and CaMKII
IC of 10 µM. f) Active CaMKII, active PP1, and bound AMPAR dynamics for both the

bistable and monostable model for the small Ca2+CaM stimulus and CaMKII IC of 20
µM.
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Appendix C

Supplemental material of

Mechanochemical modeling of

AMPAR trafficking

C.1 Appendix for Mechanochemical modeling of AM-

PAR trafficking

C.1.1 Spatial model - Reaction Diffusion equations

We construct a spatial model of signaling molecule dynamics both on membrane

and in the volume, where the spatiotemporal dynamics of a species C are given by the

reaction-diffusion equation,

∂C

dt
= DC∇2C − f(C, ...), (C.1)

and boundary conditions are given by membrane flux in the form of
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−DC(n · ∇C)|∂Ω= JC , (C.2)

where JC captures any membrane flux reaction terms for the species C through

specified boundary ∂Ω.

C.1.2 Model Development for simplified AMPAR signaling net-

work

The network of interest spans from calcium influx due to membrane voltage depo-

larization, kinase and phosphatase activation, and finally AMPAR trafficking, see Tables

C.1 and C.2 for the initial conditions and diffusion rates of the various species. We break

the signaling network into three modules.

Calcium influx Module

We take calcium dynamics from [115] with the exception of the cytosolic and mem-

brane bound buffers and SERCA pumps. Calcium influx is due to activation of NMDAR

localized to the PSD region and voltage sensitive calcium channels (VSCC) distributed

across the whole plasma membrane. Calcium efflux is due to PMCA and NCX pumps

across the plasma membrane.

Kinase and Phosphatase Module

Calcium influx activates calmodulin which then activates neurogranin, CaMKII,

and a phosphatase cascade. We include two different models of CaMKII and phosphatase

cascade - termed bistable and monostable to differentiate. In the bistable model, CaMKII

is activated by calmodulin, autophosphorylates, and is dephosphorylated by active PP1.
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The phosphatase cascade in the bistable model starts with calmodulin activating cal-

cineurin which activates phosphatases I1 and PP1 in a cascade. All phosphatases are

deactivated by active CaMKII, and PP1 also autoactivates itself. This model structure

allows CaMKII to be perpetually active depending on the magnitude of calcium influx

and initial conditions for CaMKII and PP1 [124,126]. All reactions and reaction rates are

found in Table C.4.

In the monostable model, CaMKII and PP1 are both directly activated by calmod-

ulin and their rate of decay depends linearly on their own active concentration. This model

structure leads to exponential decay dynamics for both CaMKII and PP1. All reactions

and reaction rates are found in Table C.5.

AMPAR Module

The level of activated CaMKII and PP1 determines the rate of endo/exocytosis of

cytosolic AMPAR (Aint) and membrane bound free AMPAR (Amem), which is modelled

as a boundary condition. Free AMPAR exists on the whole plasma membrane while PSD95

and bound AMPAR (ABound) only exist within the PSD region. Free AMPAR within

the PSD reversibly binds to PSD95 to form bound AMPAR which has a reduced diffusion

coefficient. Free AMPAR enters onto the membrane through a boundary condition at the

base of the spine neck representing a pool of extrasynaptic AMPAR on the dendrite. The

rate of free AMPAR influx is dependent on the concentration of activated CaMKII that

diffuses to the base of the spine neck. All reactions and reaction rates are found in Tables

C.6, C.7, and C.8.
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C.1.3 Trafficking conditions

AMPAR trafficking during LTP is thought to include endo/exocytosis, lateral mem-

brane diffusion, and extrasynaptic pools of AMPAR. We include all three of these sources

with our computational model and systematically turn off these various features to get

five trafficking cases. The first case is the control case that includes all trafficking modal-

ities; the second case has no extrasynaptic pool; the third case has no influx and no

endo/exocytosis; the fourth case has no endo/exocytosis, and finally the fifth case has no

membrane diffusion of free AMPAR. The model changes for these cases are show in Table

C.9.

C.2 Spine geometries

Idealized spines are picked to be representative of thin and mushroom spines and

the outlines are taken from [27] and used as 2D axisymmetric geometries. We varied the

idealized spines to 50% and 150% of the respective control volume, see Table C.10.

Real spines were selected from a curated meshed geometry based on EM image

stacks from [29]. The segmented EM stacks were curated with GAMer in Blender to

produce an exportable mesh to import into COMSOL [148]. It should be noted that a

mesh of appropriate quality is necessary for successful import and for the numerical solver

to run on the geometry. Realistic spine dimensions are shown in Table C.11.
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C.3 Simplified biochemical network for realistic spine

simulations

For the realistic spines, we ran a simplified bistable signaling network. Specifically,

due to the homogeneous dynamics of CaMKII and the phosphatases, the temporal dy-

namics of active CaMKII and PP1 from the thin control spine are taken at the top of

the PSD and used as direct input into the realistic spines. Therefore, the model system

only involves the AMPAR species and PSD95, with active CaMKII and PP1 temporal

dynamics as the model stimulus. Additionally, to reduce model complexity, endocytosis

and exocytosis were only modeled at the PSD region for the realistic spines. Because we

are focusing on steady state dynamics, we do not believe that this simplification has major

consequences on the readout.

C.3.1 Experimental Data Fitting

For the monostable CaMKII model, we fit CaMKII and PP1 decay dynamics to

available experimental and computational dynamics, see [201].

C.3.2 Supplemental Figures
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Table C.1: Species in the cytoplasm

Species Initial condition [µM ] Diffusion rate [µm
2

s
] Ref

Cacyto 0.1 220 [115]

CaM 10 10 [124]

CaCaM 0 10 [124]

Ng 20 10 [124]

CaMNg 0 10 [124]

CaMKIIp 0 0.1 [124]

CaMKII 20 0.1 [124]

CaN 0 10 [124]

CaNp 1 10 [124]

I1 0 10 [124]

I1p 1.8 10 [124]

PP1 0 10 [124]

PP1p 0.27 10 [124]

Aint∗ 0.2628 0.45 [103]

∗ Simulations were started with these initial conditions and run to steady state. See
additional table for individual simulation steady states.

Table C.2: Species on the membrane

Species Initial condition [molecules
µm2 ] Diffusion rate [µm

2

s
] Ref

Amem∗ 12 0.45 [16,24]

PSD95∗ 4000 0.015 [161,227]

ABound∗ 1000 0.0045 [16]

∗ Simulations were started with these initial conditions and run to steady state. See
additional table for individual simulation steady states.
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Table C.3: Idealized Spine initial conditions for different spine volumes

Spine type Aint [µM] Amem [#/µm2] PSD95 [#/µm2] Bound AMPAR [#/µm2]

Thin 0.5 0.1725 7.875 3922.55 1077.45

Thin 0.75 0.1735 7.92 3918 1082.025

Thin 1 0.174 7.95 3914.5 1085

Thin 1.25 0.17485 7.98 3911.5 1088.5

Thin 1.5 0.1755 8.01 3908.1 1091.9

Mushroom 0.5 0.17045 7.78 3933 1067

Mushroom 0.75 0.1715 7.83 3927.8 1072.2

Mushroom 1 0.17233 7.865 3923.8 1076.2

Mushroom 1.25 0.173 7.9 3920.4 1079.6

Mushroom 1.5 0.1736 7.925 3917.5 1082.45

Table C.4: Cytosolic Reactions for bistable system

Reaction Reaction flux Kinetic Parameters Reaction type Ref

Cacyto + CaM ⇀↽ CaCaM kf ∗ Ca3cytoCaM − kr ∗ CaCaM kf = 7.75[ 1
µM3·s ], kr = 1[1

s
] MA [124]

Ng + CaM ⇀↽ CaMNg kf ∗ CaM ∗Ng − kr ∗ CaMNg kf = 5[ 1
µM ·s ], kr = 1[1

s
] MA [124]

CaMKII
CaCaM−−−−→ CaMKIIp kcat∗(CaCaM4)∗CaMKII

(K4
m+CaCaM4)

kcat = 120[1
s
], Km = 4[µM ] MM [124]

CaMKII
CaMKIIp−−−−−−→ CaMKIIp kcat∗(CaMKIIp)∗CaMKII

(Km+CaMKII)
kcat = 1[1

s
], Km = 10[µM ] MM [124]

CaMKIIp
PP1−−→ CaMKII kcat∗(PP1)∗CaMKIIp

(Km+CaMKIIp)
kcat = 15[1

s
], Km = 3[µM ] MM [124]

CaNp
CaCaM−−−−→ CaN kcat∗(CaNp)∗CaCaM4

(K4
m+CaCaM4)

kcat = 127[1
s
], Km= 0.34[µM] MM [124]

CaN
CaMKIIp−−−−−−→ CaNp kcat∗(CaMKIIp)∗CaN

(Km+CaN)
kcat = 0.34[1

s
], Km= 127[µM] MM [124]

I1p
CaN−−→ I1 kcat∗(CaN)∗I1p

(Km+I1p)
kcat = 0.034[1

s
], Km = 4.97[µM ] MM [124]

I1
CaMKIIp−−−−−−→ I1p kcat∗(CaMKIIp)∗I1

(Km+I1)
kcat = 0.0688[1

s
], Km = 127[µM ] MM [124]

PP1p
I1−→ PP1 kcat∗(I1)∗PP1p

(Km+PP1p)
kcat = 50[1

s
], Km = 80[µM ] MM [124]

PP1
CaMKIIp−−−−−−→ PP1p kcat∗(CaMKIIp)∗PP1

(Km+PP1)
kcat = 0.07166[1

s
], Km = 4.97[µM ] MM [124]

PP1p
PP1−−→ PP1 kcat∗(PP1)∗PP1p

(Km+PP1p)
kcat = 2[1

s
], Km = 80[µM ] MM [124]

Table notes: Reaction type refers to either mass action (MA) or Michaelis Menten (MM)
kinetics.
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Table C.5: Cytosolic Reactions for monostable system
Reaction Reaction flux Kinetic Parameters Reaction type Ref

Cacyto + CaM ⇀↽ CaCaM kf ∗ Ca3cytoCaM − kr ∗ CaCaM kf = 7.75[ 1
µM3·s ], kr = 1[1

s
] MA [124]

Ng + CaM ⇀↽ CaMNg kf ∗ CaM ∗Ng − kr ∗ CaMNg kf = 5[ 1
µM ·s ], kr = 1[1

s
] MA [124]

CaMKII
CaCaM−−−−→ CaMKIIp kcat∗(CaCaM4)∗CaMKII

(K4
m+CaCaM4)

kcat = 120[1
s
], Km = 4[µM ] MM [124]

CaMKIIp −→ CaMKII kr ∗ CaMKIIp kr = 0.05[1
s
] MA fitted [137]

PP1p
CaCaM−−−−→ PP1 kcat∗(PP1p)∗CaCaM4

(K4
m+CaCaM4)

kcat = 127[1
s
], Km= 0.34[µM] MM modified from [124]

PP1 −→ PP1p kr ∗ PP1 kr = 0.025[1
s
] MA fitted [116]

Table notes: Reaction type refers to either mass action (MA) or Michaelis Menten (MM)
kinetics.

Table C.6: Membrane Flux Reactions

Reaction Reaction flux Kinetic Parameters Reaction type Ref

CaECS → Cacyto JNMDAR+JVSCC+JLeak see [115] - [115]

Cacyto → CaECS JPMCA+JNCX see [115] - [115]

Aint ⇀↽ Amem
(c1 ∗ CaMKIIp+ c3)Aint ∗ n
− (c2 ∗ PP1 + c4)Amem

c1 = 1[ 1
µM ·s ], c2 = 1[ 1

µM ·s ],c3 = 6[1
s
],c4 = 8[1

s
] MA [110]

Table notes: Reaction type refers to either mass action (MA) or Michaelis Menten (MM)
kinetics.

Table C.7: Membrane surface reactions

Reaction Reaction flux Kinetic Parameters Reaction type Ref

Aint ⇀↽ Amem
(c1 ∗ CaMKIIp+ c3)Aint ∗ n
− (c2 ∗ PP1 + c4)Amem

c1 = 1[ 1
µM ·s ], c2 = 1[ 1

µM ·s ],c3 = 6[1
s
],c4 = 8[1

s
] MA [124]

PSD95 + Amem ⇀↽ ABound
kf ∗ PSD95 ∗ Amem
− kr ∗ ABound

kf = 0.0349[ µm2

molecules·s ], kr = 1[1
s
] MA this work

Table notes: Reaction type refers to either mass action (MA) or Michaelis Menten (MM)
kinetics.

Table C.8: Membrane Surface Boundary Flux
Reaction Reaction flux Kinetic Parameters Ref

Apool → Amem Abase/τbaseexp(−t/τdecay)*[CaMKIIp] Abase = 0.06546 [µm2], τbase=800 [s], τdecay = 60 [s] this work, inspired by [141]

Table C.9: Trafficking variations in terms of mathematical terms

Case Description

No endo/exo rmem = 0

No pool Apool = 0

No membrane diffusion DAm=0
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Table C.10: Idealized Spine geometries

Spine type Volume [µm3] PM Area [µm2] PSD Area [µm2] Base Area [µm2]

Thin 0.5 0.020575 0.43873 0.025332 0.041

Thin 0.75 0.030863 0.57489 0.033195 0.054

Thin 1 0.040655 0.69644 0.040212 0.065

Thin 1.25 0.051438 0.80814 0.046662 0.076

Thin 1.5 0.061726 0.91259 0.051647 0.086

Mushroom 0.5 0.13869 1.6364 0.19236 0.073

Mushroom 0.75 0.20803 2.1443 0.25206 0.096

Mushroom 1 0.27738 2.5976 0.30535 0.116

Mushroom 1.25 0.34672 3.0142 0.35432 0.135

Mushroom 1.5 0.41607 3.4038 0.40012 0.153

Table C.11: Real Spine Geometries

Spine type Volume [µm3] PM Area [µm2] PSD Area [µm2] Base Area [µm2]

1 0.091617 1.6743 0.071662 0.0386

2 0.11693 2.0386 0.033992 0.0295

3 0.041183 0.94775 0.041607 0.0365

4 0.075234 1.7054 0.02253 0.0354

5 0.025315 0.57447 0.040337 0.0142

6 0.46798 5.4388 0.41509 0.0451

7 0.23961 3.2347 0.13887 0.015

Table C.12: Realistic Spine initial conditions

Spine type Aint [µM] Amem [#/µm2] PSD95 [#/µm2] Bound AMPAR [#/µm2]

1 0.1812 8.5 3856.8 1143.2

2 0.21 9.58 3747.3 1252.7

3 0.183 8.355 3871.8 1128.2

4 0.213 9.72 3734.25 1265.75

5 0.1758 8.02 3907 1093

6 0.1791 8.175 3891.8 1109.2

7 0.1891 8.63 3843.4 1156.6
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Figure C.1: Temporal dynamics of bistable model for Ca2+CaM pulses of

different frequencies. a) Ca2+CaM temporal dynamics at three different frequencies
(0.5, 0.1, and 0.05 Hz) at the top of the PSD region for the monostable model. Temporal
dynamics of active CaMKII (b), active PP1 (c), cytosolic AMPAR (d), membrane AMPAR
(e), and bound AMPAR (f) for three different frequencies for the bistable model.
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