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Abstract

Theories in concept learning predict that interleaving instances
of different concepts is especially beneficial if the concepts are
highly similar to each other, whereas blocking instances be-
longing to the same concept provides an advantage for learning
low-similarity concept structures. This suggests that the per-
formance in concept learning tasks can be improved by group-
ing the instances of given concepts based on their similarity.
To explore this hypothesis, we use Physical Bongard Prob-
lems, a rich categorization task with an open feature space,
to analyze the combined effects of comparing dissimilar and
similar instances within and across categories. We manipulate
the within- and between-category similarity of instances pre-
sented close to each other in blocked, interleaved and simulta-
neous presentation schedules. The results show that grouping
instances to promote dissimilar within- and similar between-
category comparisons improves the learning results, to a de-
gree depending on the strategy used by the learner.

Keywords: category learning; order effects; similarity

Introduction
In inductive learning, one abstracts from trained examples
to derive a more general characterization that can lead to
both seeing the familiar in new and the new in familiar
situations. One particularly powerful technique for induc-
tive learning of difficult, relational concepts is the compar-
ison of multiple cases (Kurtz, Boukrina, & Gentner, 2013;
Loewenstein & Gentner, 2005; Gick & Holyoak, 1983).
The benefit of comparison goes beyond establishing simi-
larities between the inputs, it frequently promotes noticing
the commonalities and differences between the compared in-
stances, which helps constructing useful generalizations and
can change one’s representation and understanding of what is
compared (Hofstadter, 1996; Medin, Goldstone, & Gentner,
1993; Mitchell, 1993). In this paper, we look into how the
type and order comparisons influences category learning.

In a category learning setting in which category labels are
provided, two important types of comparisons are possible:
comparisons between instances from the same concept and
comparisons of instances from different concepts. The exist-
ing research literature does not only suggest different roles
for those two types of comparisons, but also makes different
predictions as to the factors that influence their effectiveness.

Since comparing instances of the same concept can serve
to highlight commonalities between them, it may be benefi-
cial to compare instances that share as few features that are
irrelevant for the characterization of the concept as possible.

This notion, called “conservative generalization” by Medin
and Ross (1989), is that people will generalize as minimally
as possible, preserving shared details unless there is com-
pelling reason to discard them. As within-category objects
become more similar, their superficial similarities might be
mistaken as defining ones and might lead to too narrow a cat-
egory representation, for example when learning to discrim-
inate pairs of similar-sounding words (Rost & McMurray,
2009), or when learning about which methods to use in ex-
ploratory data analysis (Chang, Koedinger, & Lovett, 2003).
By varying the irrelevant features possessed by examples with
a single category, the relatively stable, deep commonalities
stand out and can make hard learning tasks like learning rela-
tional syntax rules from examples feasible (Gómez, 2002).

All of the studies mentioned above find advantages of low
similarity for learning a concept using within comparisons.
Kotovsky and Gentner (1996) add an important constraint to
this. They argue that a meaningful comparison of structured
instances requires first successfully aligning them and this
can be too difficult a task for instances that are very different
on the surface. Using the notion of “progressive alignment,”
they demonstrate that especially at the beginning of a learn-
ing process, comparing high-similarity instances of the same
category can be essential (Gentner, 2010).

For the case of comparing instances between categories,
the predictions of the influence of similarity on the learning
progress are more univocal. In order to learn how to tell two
categories apart, one should best compare the most similar
instances of the two categories with each other, or, more pre-
cisely, the instances that have the smallest number of non-
discriminative differences. This has the advantage of decreas-
ing the likelihood of spurious differences being chosen as the
basis for discriminating the categories, as Winston (1970) de-
scribed using the notion of “near misses.” An additional ad-
vantage of high similarity for between-category comparisons
is the observation that when learning to distinguish between
several similar concepts, one major difficulty lies in iden-
tifying the subtle differences between them. One proposal
is that interleaving similar categories results in increased
between-category contrast and discriminability, which in turn
enhances learning (Carvalho & Goldstone, 2013; Birnbaum,
Kornell, Bjork, & Bjork, 2012; Kornell & Bjork, 2008; Kang
& Pashler, 2012).

In summary, the two lines of arguments described above
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predict that between-category comparisons should best be
made using similar instances, while within-category compar-
isons should be made using dissimilar instances, as long as
the instances are still similar enough to allow for meaningful
alignment. Both types of comparisons are potentially impor-
tant in learning concepts and the best weighting between them
will be different across learning situations, depending on the
specific task, context, experience of the learner, and structure
of concepts (Goldstone, 1996).

In previous research, we pitted the predicted influences of
similarity in within- vs. between-comparisons against each
other by grouping all instances by similarity or by dissimilar-
ity (Weitnauer, Carvalho, Goldstone, & Ritter, 2013). The
choice to use a single similarity factor to manipulate both
within and between similarities made it difficult to draw
strong conclusions from the results. We now present two
new experiments that shed more light on how similarity ef-
fects the efficiency of comparisons. The first experiment is
a replication of the one in our previous paper, but with the
within and between similarities disentangled. The second ex-
periment extends the paradigm to a more natural way of pre-
sentation, in which instead of showing a sequence of instance
pairs, all instances are available to the learner at once.

In the experiments, we use Physical Bongard Problems
(PBPs), which were recently introduced by Weitnauer and
Ritter (2012), as our problem domain. Each PBP consists
of two sets of 2D physical scenes representing two concepts
that must be identified. The scenes of the first concept are
on the left side, the scenes of the second concept are on the
right. Figure 1 shows two example problems. What makes
PBPs particularly interesting as a domain for concept learn-
ing is their open-ended feature space. People do not know
in advance which features a solution might be based on (or
indeed what the features are), and while some of the prob-
lems rely on features that are readily available such as shape
or stability, others rely on relationships between the objects
or require the construction of features as a difficult part of the
solution (e.g., the time an object is airborne or the direction
a particular object in the scene is moving in). This intricate
situation in which both features and concepts have to be iden-
tified at the same time is quite common in real life and people
deal with it impressively well, while it is still considered a
very hard problem in the Artificial Intelligence community.

Experiment 1
In this experiment, we analyze the effects of within-category
and between-category comparisons of similar and dissimilar
PBP scenes. Participants are presented with a sequence of
screens, where on each screen exactly two of the PBP scenes
are visible while all other scenes are covered. Their task is
to derive the concept the scenes on the left belong to and the
concept the scenes on the right belong to. We vary the order
in which the scenes are shown and which scenes are shown
together. This allows us to a) manipulate the within similarity,
which is the average similarity of scenes from one category

(a) PBP 08 (b) PBP 33

Figure 1: The task in Physical Bongard Problems is to identify the
two concepts A and B. The concepts labels are not shown during a
study. See the end of the paper for the solution.

that are shown together, b) manipulate the between similar-
ity, which is the average similarity of scenes from different
categories that are shown together, and finally c) promote ei-
ther within- or between-category comparisons by showing the
scenes using one of two presentation schedules.

In the first presentation schedule, the blocking schedule,
scenes that are shown simultaneously are taken from the same
category (AA-BB-AA-BB-AA-BB-AA-BB). In the second,
the interleaved schedule, simultaneously show scenes are
taken from different categories (AB-AB-AB-AB-AB-AB-
AB-AB). See Figure 4 for a graphical explanation. In this de-
sign, the blocked condition facilitates within-category com-
parisons, while between-category comparisons can still be
made across successive scene pairs, but involve higher mem-
ory demands. Analogously, the interleaved condition en-
hances between-category comparisons but still allows for
within-category comparison across successive scene pairs.

Participants

We conducted the experiment on Amazon Mechanical Turk1.
One hundred and eighty-eight participants, all US-citizens,
took part in the experiment in return for monetary compensa-
tion. Of these, we excluded 90 who did not finish all problems
or did not get at least one solution correct across the entire
task. Most of the excluded participants finished less than 4
problems. The data from the remaining 98 participants was
used in the following analysis.

Material

We are using 22 PBPs, each with 20 scenes organized in five
groups of four similar scenes. Scenes across different groups
are relatively dissimilar to each other. We use 16 scenes from
four of the five groups as training scenes, which allowed for
the highest contrast in the similarity of close scenes between
the different conditions (see Figure 3). The remaining four
scenes of each problem were used as test scenes together with
two randomly selected training scenes.

1See Mason and Suri (2012) for an introduction to using Me-
chanical Turk as a platform for research.
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Design
We used a 2 × 2 × 2 factorial design. The study
condition presentation schedule∈{blocked, interleaved} ×
within-category similarity∈{similar, dissimilar} × between-
category similarity∈{similar, dissimilar} was randomly
chosen for each problem in a within-subject manner and was
balanced for each subject.

Procedure
The participants were first presented with a short introduc-
tion to the domain of PBPs and how they work, together with
a solved example problem. They then had to solve a series of
22 PBPs presented in an order which was designed to mini-
mize context effects between consecutive problems. For each
problem, the participants were presented a sequence of scene
pairs through which they could cycle in their own pace and as
often as they wanted. This is essential to enable reinterpreting
old scenes in the light of a new solution hypothesis (Finks,
Pinker, & Farah, 1989). Which scenes were paired was de-
termined by the presentation schedule and the two similarity
conditions, see Figures 3 and 4 for details. When the par-
ticipants had seen all scenes at least once, a button appeared
on the screen that gave them the option to finish the train-
ing for the current problem whenever they liked. The button
took them to a page where they had to classify six test scenes,
one at a time, as belonging to the left or the right category.
The participants were then prompted to type in a free text
description of what defined both concepts. After submitting
their solution and before continuing with the next problem,
they were shown the current problem with all scenes at once
and its correct solution. The original experiment is available
online at http://goo.gl/0TrVtB.

Results
The written solutions of all participants were categorized as
correct or incorrect by two trained coders blind to the experi-
mental hypothesis. Cases in which the description of the left
and right side was swapped as well as cases with a valid so-
lution different from the official one were counted as correct
(Cronbach’s α = 0.87). All cases of disagreement were re-
solved by a third trained coder, also blind to the experimental
hypothesis.

We applied a 2 × 2 × 2 repeated measures ANOVA with
schedule condition, within similarity condition and between
similarity condition as factors and the proportion of correct
answers (accuracy) as the dependent variable. This revealed a
significant effect of presentation schedule, F(1,97) = 16.78,
p < .001, and of between-category similarity, F(1,97) =
11.05, p = .001, as well as an interaction between the two
factors, F(1,97) = 19.70, p < .001. There were no other sig-
nificant effects (p > .05).

A second repeated measures ANOVA with the number of
scene pairs cycled through as the dependent measure was ap-
plied. We chose the number of scene pairs a participant cy-
cled through over the total training time, since it is less af-
fected by participants taking a short break during an experi-

ment. The analysis revealed a significant main effect of be-
tween similarity, F(1,414) = 14.93, p < 0.001, and a signif-
icant interaction between presentation schedule and between
similarity, F(1,414) = 7.28, p < 0.01. See Figure 2b. All
other effects were not reliable (p > .05).

To rule out the varying difficulty of PBPs as a potential
confound, we included the average accuracy per problem as a
covariate in an additional analysis of Experiment 1 and 2. All
ANOVA’s yielded the same qualitative results.
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Figure 2: Top: Significantly more correct solutions in conditions
with interleaved presentation and high between-category similarity.
Bottom: For solved problems, participants looked at more scene
pairs during blocked presentation and low between-category simi-
larity. Error bars represent standard errors.

Discussion
The results above and an inspection of Figure 2a shows that
it is the combination of the interleaved schedule and the high
between similarity that is correlated with a higher rate of cor-
rect answers. This is in line with our predictions: The com-
parison of similar exemplars from different categories, which
is by far easiest to do during interleaved presentation of high
between-category similarity pairs, leads to significantly better
learning results.

Despite the expected benefits of low within-category sim-
ilarity for generalization, we did not find an effect of low
within-category similarity, even for the blocked schedule.
One possible explanation is that the necessary alignment of
the scenes in each pair was too difficult to do for dissimi-
lar scenes. A second possible explanation is that although the
blocked presentation introduced a strong bias towards within-
category comparisons, the participant might still have tried
to build an interrelated characterization of the categories and
therefore focused on discriminating between the categories
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by looking for differences between successive scene pairs.
The pattern in the number of scene views for solved prob-
lems in blocked schedule supports this hypothesis: There was
a significant benefit of between-, but no influence of within-
category similarity.

Experiment 2
The first experiment provided insight into the effect that dif-
ferent types of comparisons and the similarity of the com-
pared scenes have on learning performance. We promoted
either within-category or between-category comparisons by
showing a sequence of pairs of specifically selected scenes.
We now use a more natural way of presentation in which all
scenes of the PBP are shown simultaneously. We still ma-
nipulate the similarity structure of comparisons – in a slightly
more indirect way – by arranging the scenes differently across
conditions.

In order to allow a direct comparison to the previous se-
quential scene presentation, we included the best condition
from Experiment 1 additionally to four similarity conditions
in the new simultaneous presentation schedule.

Participants
We conducted the experiment on Amazon Mechanical Turk.
One hundred forty-three participants, all US-citizens, took
part in the experiment in return for monetary compensation.
Of these, we excluded 52 who did not finish all problems or
did not get at least one solution correct across the entire task.
The data from the remaining 91 participants was used in the
following analyses. On average, participants solved 11.5 out
of the 22 problems presented.

Material
We used the same problems in the same order as in Experi-
ment 1. All training scenes were shown at the same time in
one of four spatial arrangements, according to the condition.
The scenes were aligned so that for the high within-category
similarity condition, similar scenes of the same category were
placed spatially close to each other, while for the low within-
category similarity condition, they were placed far from each
other. Analogously, adjacent scenes of different categories
were similar for the high between-category similarity condi-
tion and dissimilar for the low between-category similarity
condition. The different spatial alignments are shown ex-
emplarily for PBP 24 in Figure 3. There was a fifth condi-
tion that replicated exactly the best condition of the previous
experiment, “interleaved-sim-sim”, in order to allow a direct
comparison of performance for simultaneous versus sequen-
tial scene presentation. See Figure 4 for the timing of train-
ing scene display in both the simultaneous and the sequential
presentation schedule. The test scenes were selected and pre-
sented as in Experiment 1.

Design
We used a 2 × 2 factorial design for the simultaneous sched-
ule plus one additional sequential condition. One of these

(a) within: sim, between: sim (b) within: dis, between: sim

(c) within: sim, between: dis (d) within: dis, between: dis

Figure 3: Arrangement of scenes of PBP 24 for the simultaneous
presentation schedule. Each arrangement varies on how similar the
scenes close to each other are.

Figure 4: Presentation schedules. The positions and timing at which
the scenes are shown for blocked (top), interleaved (center) and
simultaneous (bottom) presentation. For the first two, the partic-
ipants proceed manually through the eight states as often as they
want. White squares represent visible, gray squares represent hid-
den scenes.

five conditions was chosen for each problem presented to a
subject in a balanced and within-subject manner.

Procedure
The course of the experiment was identical to that of Exper-
iment 1, except that for the simultaneous presentation sched-
ule, participants could not cycle through scenes pairs but were
rather shown all scenes at once and could directly proceed to
the next stage. The original experiment is available online at
http://goo.gl/066U59.

Results
The written solutions were coded as in Experiment 1. (Cron-
bach’s α = 0.79.)

We applied a 2× 2 repeated measures ANOVA on all prob-
lem instances presented with the simultaneous schedule to
analyze the effect of the factors within similarity condition
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and between similarity condition on the proportion of correct
answers (accuracy). We found a significant effect of within-
category similarity F(1,90) = 8.07, p < .01. The between-
category similarity had no significant effect and there was no
significant interaction. In a separate ANOVA, we found no
significant effects of the similarity conditions on the reaction
time (p > .05).

We used four planned t-tests to compare the accuracy
in the interleaved condition with the performances in each
of the four simultaneous conditions. For the condition
“simultaneous-sim-dis”, which is the most difficult of the
simultaneous conditions, we got a significant difference
t(90) = 3.1, p = 0.01, where p was corrected using the Bon-
ferroni method to correct of multiple comparisons. There was
no significant difference in reaction times between the inter-
leaved and the simultaneous presentation schedules (p> .05).
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Figure 5: There were significantly more correct solutions for low vs.
high within-category similarity for simultaneous presentation. Error
bars represent standard errors.

Discussion
This experiment resulted in two important findings. First,
for the simultaneous presentation, low within-category sim-
ilarity was correlated with better classification performance,
which is in line with the body of research that shows variance
(low similarity) to be beneficial for category learning. We did
not find the expected positive effect of high between-category
similarity, though. This is different but complementary to the
results of Experiment 1 and we will look into an explanation
for this in the general discussion below.

Second, the interleaved presentation of PBP scenes in the
high within, high between similarity condition was signifi-
cantly better suited for learning than the simultaneous presen-
tation with high within and low between similarity. Although
we are comparing the best of the sequential conditions with
the worst of the simultaneous conditions, this is still a surpris-
ing result: If not for generating solution hypotheses, then at
least for validating them the simultaneous condition should
provide an advantage over the sequential one, in which one
never gets to see how all pieces fit together. That there nev-
ertheless is a simultaneous condition that is better than a se-
quential one strongly suggests that the process of selecting
which scenes should be compared is a substantial and non-
trivial part of the learning task. Presenting just two scenes

at a time, which are chosen to be beneficial to the learning
when compared, can promote efficient perception and reason-
ing strategies which lead to better learning results.

General Discussion
The two main results presented in this paper are first, the ben-
efit of comparing similar scenes of different categories in Ex-
periment 1 and second, the benefit of comparing dissimilar
scenes of the same category in Experiment 2.

The first result follows naturally from the prediction based
on the notion of discriminative contrast, as discussed in
Carvalho and Goldstone (2013) and Kang and Pashler (2012),
which states that direct comparison of instances from differ-
ent categories highlights their differences, together with the
insight that comparing similar instances is especially effective
since there are fewer superficial differences and the alignment
of instances is easier (see Winston (1970) on “near misses” as
well as Markman and Gentner (1993)).

The second result is predicted by theories like “conserva-
tive generalization” by Medin and Ross (1989) that attribute
the advantage of low similarity within-concept comparisons
to having less superficial similarities that can be mistaken for
the defining similarities.

The question remains of why we did not find both effects
in both experiments. Our answer is based on the insight that
there are different approaches people use when learning con-
cepts. Both Goldstone (1996) and Jones and Ross (2011) ar-
gue that learners might either focus primarily on what a cate-
gory is like (using “inference learning” to build a “positive” or
“isolated characterization”) or focus on how a category is dif-
ferent from other categories (using “classification learning” to
build an “interrelated characterization”). What kind of com-
parisons are most informative depends strongly on which of
these approaches is pursued by the learner. While for build-
ing a positive characterization within-category comparisons
are of central importance, for building an interrelated charac-
terization the between-category comparisons are more useful.

An interpretation of the results consistent with the different
findings across the two experiments is that in Experiment 1,
participants were focusing on between-category comparisons
because they were trying to build an interrelated characteri-
zation of the concepts. Naturally, participants would make
few within-category comparisons, explaining why the within-
similarity condition did not play a significant role. In Exper-
iment 2, subjects might have tried to build a positive char-
acterization instead, and consequently did not pay much at-
tention to between-category comparisons, explaining the ef-
fect of within-category similarity and the lack of an effect of
between-category similarity.

There are a couple of reasons why it is plausible to assume
that participants chose to look for differences in the sequential
presentation and for commonalities in the simultaneous pre-
sentation. In the simultaneous presentation, all instances of
one category were grouped together on one side of the scene,
a layout that allows for quickly scanning all instances to ef-
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ficiently check for reoccurring patterns and shared features.
When presented with just two scenes at a time, however, look-
ing for differences might appear as the more efficient strategy:
due to the open ended feature space of the PBP domain, par-
ticipants had to identify or construct relevant feature dimen-
sions as a major part of the task. Comparing similar scenes
from different concepts highlights such feature dimensions,
an advantage that comparing dissimilar scenes within one
concept does not provide (see also Carvalho & Goldstone,
2013).

In Weitnauer et al. (2013), we introduced the grouping of
instances by similarity as a dimension along which presen-
tation order can be manipulated to optimize learning. The
results of the current experiments provide a deeper insight
into when and how to group instances. For between-concept
comparisons, instances should be similar, while for within-
concepts comparisons it is beneficial to look at dissimilar
cases. How big the influence of the similarity of the compared
scenes on the learning performance is, depends on which kind
of comparisons are favored by the learning strategy that is
used. How this strategy is chosen will depend, among other
factors, on the task, the category structure and the way of pre-
sentation.
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