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ABSTRACT OF THE DISSERTATION

Coupling, Conservation, and Performance in Numerical Simulations

by

Ounan Ding

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2019

Dr. Craig Schroeder, Chairperson

This thesis considers three aspects of the numerical simulations, which are coupling,

conservation, and performance. We conduct a project and address one challenge from each

of these aspects.

We propose a novel penalty force to enforce contacts with accurate Coulomb fric-

tion. The force is compatible with fully-implicit time integration and the use of optimization-

based integration. In addition to processing collisions between deformable objects, the force

can be used to couple rigid bodies to deformable objects or the material point method. The

force naturally leads to stable stacking without drift over time, even when solvers are not

run to convergence. The force leads to an asymmetrical system, and we provide a practical

solution for handling these.

Next we present a new technique for transferring momentum and velocity between

particles and MAC grids based on the Affine-Particle-In-Cell (APIC) framework [93, 94]

previously developed for co-located grids. We extend the original APIC paper [93] and show

vii



that the proposed transfers preserve linear and angular momentum and also satisfy all of

the original APIC properties.

Early indications in [93] suggested that APIC might be suitable for simulating

high Reynolds fluids due to favorable retention of vortices, but these properties were not

studied further. We use two dimensional Fourier analysis to investigate dissipation in the

limit ∆t = 0. We investigate dissipation and vortex retention numerically to quantify the

effectiveness of APIC compared with other transfer algorithms.

Finally we present an efficient solver for problems typically seen in microfluidic

applications. Microfluidic “lab on a chip” devices are small devices that operate on small

length scales on small volumes of fluid. Designs for microfluidic chips are generally com-

posed of standardized and often repeated components connected by long, thin, straight fluid

channels. We propose a novel discretization algorithm for simulating the Stokes equations

on geometry with these features, which produces sparse linear systems with many repeated

matrix blocks. The discretization is formally third order accurate for velocity and second

order accurate for pressure in the L∞ norm. We also propose a novel linear system solver

based on cyclic reduction, reordered sparse Gaussian elimination, and operation caching

that is designed to efficiently solve systems with repeated matrix blocks.
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Chapter 1

Introduction

Numerical simulations have found applications in many fields, such as film mak-

ing, engineering, and computer-aided design (CAD). In these applications, we are especially

interested in three important aspects of the numerical simulation, which are coupling, con-

servation, and performance. The interaction between objects with the same or different

materials plays an essential role in the physically based animation; without the coupled

behavior, the animation would be dull. The conservation laws determine how dynamics

work in the real world. Numerical simulations should respect it. Finally, we want to run

simulations as fast as possible, which is especially desired in CAD applications; with faster

simulations, designers can get rapid feedback on their designs and revise them responsively.

In this thesis, three projects will be presented, and each of them will focus on one aspect of

numerical simulation.

We consider the coupling between objects in Chapter 2. One major problem we

solve is to enforce the Coulomb friction accurately, which is important to provide visually
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plausible simulations. One typical example is the stable stack (see Figure 2.12), where

friction force is vital in supporting this stack. Failure to compute the friction force accurately

would lead to small but unrecoverable drift at each time step, and make the stack collapsed

eventually. However, this problem is difficult due to the non-linearity of the friction force.

In Chapter 2 we propose a contact model based on penalty force that enforces Coulomb

friction accurately. This proposed force model is general enough to be used to couple rigid

bodies to deformable objects or the material point method. We also provide an implicit

Newton-based solver to solve the system equations that results from backward Euler. This

chapter is based on published work [47].

Another key factor in numerical simulations is conservation. In Chapter 3 we

will discuss this topic in the background of the hybrid method, which uses both particles

and Eulerian grid in the simulation. Because there are two different representations in the

simulation, we will need a transfer algorithm to convert between them. Due to the mismatch

of the number of particle and grid degrees of freedom, this transfer is not generally exact.

In the traditional Particle-In-Cell (PIC) method [79], directly interpolating the velocities

between particle and grids introduces excessive numerical dissipation. On the other hand,

in Fluid Implicit Particle (FLIP) [26, 25], letting the particle velocity bypass the transfer

and only transferring the velocity changes from the grid to particle reduces the numerical

dissipation, but introduces noise. In Chapter 3 we propose a new transfer algorithm, which

is based on the Affine-Particle-In-Cell (APIC) framework [93, 94] was originally developed

for co-located grids. Our proposed algorithm transfers velocity and momentum between

particles and MAC grids. It preserves angular momentum and also satisfies the original
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properties of co-located APIC. We also propose a tool based on 2D Fourier Transform to

analyze the numerical dissipations in our transfer algorithm. Based on this tool, we study

the dissipation level of our method and compare it with other existing transfer algorithms.

The last project is about the performance of the numerical simulation. It comes

from a CAD background. Nowadays, engineers design their products using computers and

verify their functions with numerical simulations before actual manufacturing. The simu-

lation speeds up the workflow a lot. In Chapter 4 we consider a specific application in the

design of the microfluidics Lab-on-Chip (LoC) system, where the common laboratory func-

tions of chemistry and biology are integrated on a small chip. This LoC system typically

consists of many long and thin pipes connected by joints. Researchers layout these pipes

and joints so that the chip satisfies some desired properties, such as a linear velocity gradient

should show up in a place, or two reagents are mixed sufficiently. Many general purpose

tools or software packages exist for simulating this kind of flow. However, microfluidics chip

designers still have to spend several hours in simulation with these numerical simulators.

We observe that the unique geometry in the microfluidics LoC system leads to many du-

plicate computations, and this observations provides us a large room for improvement in

performance. In Chapter 4 we take a closer look at the domain and propose an efficient

solver by exploiting the duplicate and independent computations. The proposed method

can solve the problem with 1 million degrees of freedom in 1 second using 16 threads on a

typical workstation.
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Chapter 2

Penalty force for coupling materials

with Coulomb friction

Accurately computing the friction force between contacting objects is difficult.

One reason is that friction force is nonlinear; the type of the Coulomb friction has to be

determined first, and then the magnitude of the friction can be computed. Another reason

is that friction force at different collision positions works together to achieve a balance. For

example, in the stable stack test (see Figure 2.12), the friction force resulted from three

contacts collaborates to support the top object in the stack. The simulation should be

aware of this nonlinear and coupled nature of friction force. In this chapter, we will present

a method that couples materials with Coulomb friction accurately.
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2.1 Introduction

Collisions between objects are a very important visual phenomenon, and the prob-

lem of resolving them has been explored extensively within computer graphics. Methods

for resolving collisions can be classified broadly into three categories: Constraint-based ap-

proaches, penalty methods, and impulse-based methods.

Constraint-based approaches formulate contacts as algebraic constraints. These

methods come in a wide variety, based on how the constraints are formulated, how friction

is treated, the type of numerical problem that results, and how that problem is solved. The

simplest formulations ignore friction during contact resolution, treating collisions as simple

constraints [15, 60] and applying friction as a post-process. These methods are attractive

because they yield problems that can be solved efficiently. Coevoet et al. [37] used a fric-

tionless formulation with linearized finite element forces to achieve real time simulations of

soft robots. Including friction in the formulation complicates the formulation significantly,

resulting in linear or nonlinear complementarity problems (LCP or NCP) [13, 38, 158, 8].

This approach is particularly popular for rigid bodies, which are well-suited to this formu-

lation due to the long-range effects of contacts and collisions in systems and the difficulty of

resolving them simultaneously, but formulations with deformable objects are also possible

[136]. Methods based on LCP or NCP formulations tend to scale poorly with the number

of constraints n, scaling as O(n2) or worse [49]. The difficulty arises because the problem

of resolving contact constraints is combinatorial in nature. Indeed, the general problem of

computing contact forces to satisfy normal and frictional constraints is NP-hard [13]. The

problem may also have no solution, necessitating the use of impulses to guarantee a solution.
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Figure 2.1: Rigid bodies are dropped into a bowl, and sand is poured on top. ©2019 IEEE

When collisions are decoupled from internal forces for deformable objects, implicit forces can

be computed independently per object and in parallel, which can help offset the scaling with

respect to the number of constraints [39].

Penalty formulations instead treat contacts as elastic forces, which are inte-

grated alongside other forces. Due to their simplicity, penalty formulations are quite old

[167, 125, 127, 15]. These methods are attractive because the computational cost of apply-

ing penalty forces scales linearly with the number of constraints, making them a popular

choice for haptics [80]. A major limitation is the need to tune penalty stiffnesses, which

represent a trade-off between performance and accuracy. Penalty methods normally allow

some degree of collision to exist, though a stiff barrier potential is sometimes used to pre-

vent this at additional computational cost. In this paper, we will use a penalty formulation

because of its flexibility and because it allows us to naturally couple contact forces with

elastic forces.

Impulse-based formulations represent a third approach to resolving contact.

These methods work by resolving contacts one by one, iterating until some convergence

criterion is achieved. This strategy is able to include friction and coefficient of restitution

in a simple way. Due to its simplicity, this approach has been widely used, such as for cloth
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Figure 2.2: In this simulation, we throw a cube over a sand box. The cube tumbles through
the sand and comes to rest. ©2019 IEEE

[140, 30] or rigid bodies [76]. Due to the iterative nature, these methods tend to be biased to

some degree on the order in which collisions are processed, though many strategies exist to

limit or avoid this. Impulse-based contacts are generally processed separately from elastic

forces.

2.1.1 Penalty methods

Penalty forces compute contact forces as functions of some measure of penetration

depth or close approach. [90] propose a penalty force model for contact between a robot

and a ground based on linear damper springs. [121] proposed a penalty formulation based

on a nonlinear damper spring, which they construct to avoid force discontinuities when

contacts are created or lost. [181] adapt this nonlinear damping spring to the general contact

problem between polygonal objects. They propose a penalty force model for contacts that

uses damper springs connected to attachment points to enforce frictional contact. Their

attachment points move when dynamic friction is applied, a strategy we also employ. Their

penalty force is designed with the advantages and limitations of explicit time integration

in mind. The characteristics of explicit time integration dictate many of the core design

decisions, including a careful treatment to avoid applying too much dynamic friction, which

could nonphysically flip the tangential sliding direction. The method of [179] adapts the
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penalty force model of [181] to the problem of robustly simulating problems involving large,

time-varying contact areas. They use semi-implicit integration, including contact forces in

their implicit integration but applying frictional forces explicitly.

Implicit friction The explicit friction formulations used by these methods are

quite simple. It would seem tempting to include these models in the nonlinear force com-

putations, as indeed [179] suggests as a possibility. In practice, this is a more difficult

proposition than it may seem. In the case of [179], their implicit formulation solves a lin-

earization of the problem (one step of Newton), followed by explicit (and very nonlinear)

friction. The non-smooth nature of the static-dynamic transition is incompatible with the

linearized nature of such a solver; the choice of static vs dynamic would need to be made

before finding out whether the friction cone would actually be violated, which could result in

non-physical strong sticking, tangential velocity reversal, or energy gain. This problem could

be overcome by using multiple Newton iterations, which would give the solver a chance to

correctly decide between static and dynamic friction. This solution in turn leads to Newton

convergence problems (friction is non-smooth), line searches (or other stabilization tech-

niques), and the need to gracefully handle configurations far from the current one (these

occur occasionally when the trial Newton step is poor, during line searches, etc.). Solving

these impediments to implicit friction is a major contribution of this paper.

An alternative strategy is to formulate the penalty force using an estimate of the

volume of contact [80, 49]. This formulation emerged as an alternative to methods that

computed penalty forces only for the deepest penetrating point, since this leads to significant

artifacts such a chattering. This problem is largely avoided by applying forces to many or
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Figure 2.3: (Left and middle) Analytic friction tests showing MPM/level set (orange),
MPM/rigid body (magenta), rigid/rigid (blue), and rigid/deformable (green) contacts slid-
ing to the left while obeying the analytic solution (silver). (Right) A stack of mixed objects
remains standing indefinitely (rigid: magenta, blue, green; deformable: red, orange). ©2019
IEEE

all penetrating particles, though a degree of resolution-dependence remains. Due to the

complications involved with harmonizing attachment points and contact volume, we pursue

a depth-based formulation and apply forces to all penetrating particles.

The computation of depth for deformable objects is nontrivial and has received

significant attention [56]. Of particular relevance is [166], which used continuous collision

detection to compute colliding point-face and edge-edge pairs. Their algorithm is explicit

and includes Coulomb friction. Once computed, forces are computed along a chosen normal

direction between pairs and persist until the contact is resolved.

2.1.2 Coupling

Part of our motivation for pursuing a penalty force formulation is its ability to

couple different types of solid materials. In this paper, we consider coupling of rigid bodies

to deformable bodies or to the material point method (MPM).

Many methods have been considered for coupling rigid bodies to deformable bodies

[14, 134, 92, 106] to varying degrees. For example, [155, 99] allow rigid bodies and deformable

bodies to exchanges forces and be embedded but do not consider contacts between them.
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The method of [154] treats collisions using a combination of impulse-based methods but also

includes some contact forces in their implicit solves. More recent method [182, 99] achieve

interactive or real-time rates through model simplifications.

Coupling between rigid bodies and MPM has received much less attention. MPM

was original developed by Sulsky [161, 162] as an extension of hybrid PIC/FLIP fluid schemes

to viscoelastic materials. Since its introduction to graphics by [160] as a way to simulate

snow, MPM has become an increasingly popular simulation choice for complex materials,

including sand [100, 40]. The method of [40] was the first to couple MPM with rigid bodies.

Their method couples MPM-based sand to rigid bodies by unifying the internal frictional

contact forces from sand with frictional contact forces with rigid bodies. (Sand was coupled

to rigid bodies originally in [129], but they did not simulate sand with MPM.) Because the

coupling of [40] relies on the sand constitutive model, it is not a general coupling method

and cannot be applied to other MPM-based materials.

2.1.3 Tight coupling

In addition to coupling between materials, we are interested in tight coupling be-

tween elastic and contact forces. For some phenomena, such as stacking objects in a pile

(See Figure 2.12, where a rigid body is stacked on three deformable (Lagrangian or MPM)

objects), the coupling between elastic forces, normal contact forces, and friction plays a crit-

ical role in the resulting dynamics and long-term stack stability. If the bottom objects move

out, then the top object will move down; this downward motion is progress towards collapse

which is physically irreversible due to conservation of energy. A method that treated friction

as a post-process would allow the pile to fall slightly (the correct behavior in the absence of
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Figure 2.4: Our frictional contact force handles rolling friction automatically. The
blue/green sphere rolls due to friction, while the red/orange sphere has a very low fric-
tion coefficient and slides. Note that the orange sphere falls down the incline faster, as
would be expected. ©2019 IEEE

friction) converting the gravitational potential into kinetic energy, which is then dissipated

as friction during the post-process. An iterative method (impulse-based, partitioned) can

leave small residual errors, which will accumulate over time until collapse. Even many ana-

lytic methods for systems with only rigid bodies struggle with long-term pile stability [97].

A similar problem occurs with wedging (see Figure 2.5).

2.1.4 Our contribution

We propose a novel penalty force with the following properties.

• The force accurately enforces Coulomb friction, including both static and dynamic

friction as well as transitions between them. Where this cannot be done, the force

falls back gracefully.

• The force is compatible with use with fully-implicit time integration, including the

special requirements of line-search-based methods (unlike existing penalty methods).

• The force can be used to couple rigid bodies to deformable objects or to the material

point method.
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A B C D E F G

Figure 2.5: Our forces pass wedge tests, where objects are prevented from falling by virtue
of being wedged between two parallel plates with friction. The first three figures shows a
wedged deformable/rigid configuration (A); if friction is reduced, the objects slide (B). The
wedged objects may also be dislodged by other collisions (C). We also demonstrate wedging
with MPM/rigid (D and E) and rigid/rigid (F and G), first in a wedged configuration and
then sliding when friction is reduced. The blue blocks and magenta spheres are rigid. ©2019
IEEE

• The force naturally produces stable stacking with zero drift over time, even if im-

plicit integration is solved only approximately (unlike impulse-based methods or most

existing constraint-based methods).

• We demonstrate a practical implicit stabilized Newton-based solver capable of solving

the system of equations that results from backward Euler. The equations are especially

challenging due to the inclusion of friction and are non-smooth with asymmetrical

derivatives. The solver is also capable of stabilizing elastoplastic simulations, such as

those that arise from the Drucker-Prager constitutive model for sand.

2.2 Penalty force

We propose a penalty friction force to model collisions and contacts between par-

ticles and objects. The flexibility of the proposed force comes from the variety of represen-

tations that can be treated as particles or objects.
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Particles. The particles can be almost anything Lagrangian. In our examples, we

use (1) degrees of freedom from a deformable object simulation, (2) particles from a material

point method (MPM) simulation, and (3) vertices from the surface mesh of a rigid body.

Note that in cases (2) and (3), the particles are distinct from the actual degrees of freedom

on which the integration of forces will occur (grid nodes for MPM, velocity and angular

velocity for rigid bodies). It is sufficient for the velocities (and positions) of these particles

to be computed from the degrees of freedom. Following the principle of virtual work, we use

the transpose of this mapping to apply forces.

Objects. Suitable choices for the objects are a bit more restrictive, since the

formulation of the penalty force must be tailored to properties of the object. We formulate

versions of the penalty force for level sets and triangular surface meshes. Using these, we

demonstrate collisions against fixed objects and boundaries, rigid bodies, and deformable

objects. We use these options to demonstrate a range of capabilities, including deformable

object self-collisions, rigid-rigid collisions and contacts, rigid-deformable coupling, rigid-

MPM coupling, and handling of collisions with fixed objects for all simulation types.

Spring force. We formulate our force as a spring force connecting the particle (at

location Z) with an attachment point on the object (at location X). The attachment point is

able to slide along the surface of the object to a potentially new location Y, a process we will

refer to as relaxation. For the force itself we simply use a zero-length spring, where the force

applied to the particle Z is f = k(Y − Z). If the object is dynamic, an equal and opposite

force is applied at the relaxed attachment location Y. The constant k is the stiffness of the
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penalty force, which we choose as a compromise between the depth of penetration and the

amount of stiffness in the resulting system.

Enforcing friction. The attachment point may be thought of as the place that

the particle should be, and the spring applies a force on the particle to pull it there. The

attachment point behaves as a massless point that collides with the object by exchanging

normal and tangential forces subject to Coulomb friction. This massless point is not solved

for as a degree of freedom; rather, its position is computed by relaxing from its original

location X to a new location Y which satisfies the Coulomb friction cone. This relaxation

step is a nonlinear projection operation (at least approximately), which we will denote as

Y = P(X,Z). Eliminating Y, we get the penalty force f = k(P(X,Z) − Z), where X is

fixed and k is a constant. Note that the projection operator P will depend on the degrees of

freedom of the object, which may itself be dynamic. At the end of the time step, we update

the attachment point (Xn → Xn+1) using Xn+1 = Y = P(Xn,Zn+1). What remains is

to formulate this projection, which takes different forms for different types of objects. We

provide pseudocode in a separate technical document for the force and relaxation routines,

as well as their derivatives. To simplify notation, we will omit superscripts on X, Y, and

Z. The original attachment location X is fixed, the particle position Z is being computed

by a newton solve, and the relaxed attachment location Y is computed when needed from

X and Z.

Representation of attachments. In the case of moving objects, the attachment

point must be fixed to the object in a meaningful way. For rigid bodies, we store the

attachment point in the object space of the rigid body. For deformable objects, we represent
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the attachment by its barycentric coordinates in the triangle that the particle is colliding

with. In this way, attachment points naturally move with the object; when static friction is

being applied, the representations of attachment points are untouched.

Mechanism of stable stacking. The means by which stable stacking is achieved

is worth emphasizing. In constraint-based or impulse-based formulations, small movements

of colliding points across a surface (due to, among other things, convergence error) may

lead to long-term drift of the colliding point over the surface. This may in turn cause

piles or stacks to collapse. Methods that use penalty forces with attachment points behave

quite differently. The colliding particles are still able to move around (in both normal and

tangential directions), but these particles are tethered to an attachment point. As long as

the attachment point is prevented from moving relative to the object (which we accomplish

by storing the attachment in the reference space of the object), no long-term progress towards

collapse is possible. The particle can only move around in a small region near its attachment

point.

2.2.1 Relaxation - properties

Let Y = P(X,Z) be the relaxed (projected) attachment point and f = k(Y − Z)

the resulting force. If n = n(Y) is the local normal direction of the object at the projected

attachment location, then our point should satisfy the following properties.

• Y is on the surface on the object.

• The projection is idempotent: Y = P(Y,Z).

• The friction cone is satisfied: ‖f − (f · n)n‖ ≤ µf · n.
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• The attachment point should not be relaxed further along the surface than necessary

to satisfy the friction cone.

Note that the last requirement is a slightly weakened form of the usual complementary

condition, which is necessary to accommodate a non-smooth object surface. Since the force

is linear in positions, the friction constraint is equivalent to the more convenient geometrical

constraint

‖(Y − Z)− ((Y − Z) · n)n‖ ≤ µ(Y − Z) · n. (2.1)

The choice n = n(Y) was not the only option available for computing a normal direction;

Figure 2.6 motivates the appropriateness of this choice.

Z

n

WX Y

dynamic Z

n

WX

(X = Y)

static Z

n

Y

? Z

n

W
X Y

◦

Figure 2.6: A particle Z as pulled to the surface by an attachment point X. In dynamic
friction, the attachment point X is outside the friction cone (dotted) and relaxes along the
surface to the friction cone Y, resulting in a penalty force that satisfies Coulomb friction.
In static friction, the attachment point X is already inside the friction cone and does not
move (X = Y). In the non-planar case (?), there is not a single constant normal direction.
Intuitively, the attachment at Y should lie on the friction cone for the planar surface as well
as the green and red curved surfaces. That is, friction is a local property that depends on
the surface at only one location. Viewed in 3D (◦), the attachment X is relaxed towards the
closest point on the plane W until it reaches the cone at Y, since the projection of a force
from X to Z onto the surface points in this direction. ©2019 IEEE
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Relaxation with a plane

We begin with the simple case where the object is a plane (See Figure 2.6). If (2.1)

is satisfied with Y = X, then the attachment experiences static friction and does not move.

Otherwise, the attachment X should be moved along the surface by the penalty force f until

(2.1) is satisfied. Let W = Z − φ(Z)n be the closest point on the plane to Z, where φ is

the level set function for the planar object. This force pulls X along the surface towards W

to the point Y = W + s(X −W), where s is the largest scalar 0 ≤ s ≤ 1 satisfying (2.1).

Solving this equation yields

s = µ
‖Z−W‖
‖X−W‖ . (2.2)

Relaxation with level set

If we are colliding a particle with a level set, and that level set represents a plane,

then we have a simple algorithm to compute Y directly. More generally, the level set will

not be flat. Relaxing the attachment based on the local force would amount to solving an

ODE, which is unnecessarily complicated. Instead, we relax the attachment point towards

the closest point W = Z − φ(Z)n(Z) on the surface of the object as we did in the plane

case. Unlike the plane case, a point K = W+ s(X−W) along the segment connecting two

points X and W on the surface need not be on the surface. We project this point to the

surface to compute the desired relaxed point Y = K− φ(K)n(K).
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The attachment point Y(s) is a nonlinear function of a single scalar 0 ≤ s ≤ 1.

Let

g(s) = ((Y − Z) · n(K))2 − µ̄‖Y − Z‖2 µ̄ =
1

µ2 + 1
.

Then g(s) ≥ 0 is equivalent to (2.1). If g(1) ≥ 0 then Y(1) = K = X satisfies (2.1); the

attachment experiences static friction and does not move. Otherwise, g(1) < 0. Observe

that Y(0) = W and n(W) = n(Z) so that g(0) = (1− µ̄)φ(Z)2 ≥ 0. If g(s) is continuous,

a suitable s must exist, and a method such as bisection may be used to compute it. In

practice, g(s) need not be continuous (e.g., at sonic points of the level set), and bisection

may terminate at a discontinuity. In this case, the friction cone is only weakly satisfied.

While differentiating this procedure is manageable, doing so robustly is quite difficult.

Instead, we observe that we are typically only moving points a small distance

during a time step. Locally, the level set should look like a plane. Motivated by this, we

simply compute s using (2.2) rather than by bisection. This approximation gives up the

projection property and means that Coulomb friction is only approximately satisfied, but it

seems to be a good comprise in practice.

Initial attachment location. When a collision first occurs, an attachment loca-

tion X must be chosen. Ideally, one would chose X to be the location on the surface of the

level set where the particle crossed it. To avoid complications for rigid bodies, we simply

use X = Z− φ(Z)n(Z); this contrasts with the CCD case, where a good initial attachment

location is readily available. While this is less accurate than using the point of entry, this

only introduces an error in the time step in which the collision is first encountered. In sub-

18



sequent time steps, the attachment location X will not move relative to the object (static

friction) or will relax across the surface (dynamic friction) according to Coulomb friction.

Note that no friction will be applied when the particle is at the location where the

collision was first detected (or more generally whenever the particle happens to be below the

attachment point). The lack of force under these conditions does not mean the particle is

not being tethered to this attachment location. The particle will feel strong frictional forces

if it ever attempts to leave the vicinity of the attachment point. This is not particularly

surprising; a stationary box on a level surface also experiences zero frictional force. The box

will only experience non-zero frictional forces if one tries to move it.

Limitations of the level set formulation. The primary limitation of the level

set formulation is the discontinuities caused by sonic points. The formulation works well

when the surface has low curvature. This keeps sonic points away from the surface and also

makes the approximate computation of s more accurate.

Relaxation with surface mesh

When colliding against a level set, we can immediately determine whether a colli-

sion is occurring and project to the closest point on the surface. When we are colliding with

a triangulated surface mesh, these operations are more expensive.

Detection. We use continuous collision detection (CCD) to detect when a particle

has penetrated a triangulated surface. This conveniently gives us the barycentric coordinates

for the point of entry as well, which we use to set the initial attachmentX. CCD can normally

only be employed to detect new collisions, and CCD algorithms expend great effort to ensure

that a collision-free state is maintained. This is because CCD will not detect a colliding
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particle if it was already colliding. In our case, a collision-free state is not maintained;

since our force is a penalty force, forces are only applied if a small amount of penetration is

retained. This is not a problem for us, since CCD will correctly flag new collisions without

a collision-free state. We do not need CCD to tell us about existing collisions, since we

keep a record of these interactions anyway (we must store attachment locations for them).

Depending on the implementation, CCD may also detect when a colliding particle exits the

surface; these can be easily detected by checking the triangle normal and may be safely

ignored.

Intuition for relaxation. As intuition for the relaxation process we formulate,

imagine that the attachment point is a block sitting on the surface and connected to the

colliding point Z with an actual spring. The block experiences Coulomb friction against the

surface mesh. Ignoring inertial effects, the attachment point should slide along the surface

of the triangle mesh along the direction it is being pulled by the spring force. This process

terminates when the friction cone is satisfied. At this point, we check to see if Z is pulling

Y into the surface or away from the surface. If the latter, we flag the attachment as inactive

and do not apply forces to it.

Convexity consideration. In the case of non-convex objects, one has to make

a choice about when the separation test should be performed, since an attachment may be

pulled away from the object during relaxation, even though the colliding point is in fact

inside the object. One option would be for the attachment to be able to separate from the

surface during relaxation (and possibly re-collide with it). Another option is to delay the

separation test until relaxation has completed. In practice, we found the latter option to
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be simpler to implement, more efficient, and more effective. See the technical document for

details of the separation tests.

Finite state machine.

We implement the resulting relaxation algorithm as a finite state machine (FSM)

with four states: (1) the attachment point is in the interior of a triangle, (2) the attachment

point is on an edge of a triangle, (3) attachment point is on an edge and moves along it, and

(4) the attachment point is at a vertex and tries to leave it via a neighboring primitive. At

each step, we start with an initial attachment Y(k) on the current primitive and compute a

new attachmentY(k+1) location. The algorithm starts in state (1) withY(0) = X. When the

algorithm terminates at step n, we set Y = Y(n). These states are illustrated in Figure 2.8

and Figure 2.9 and described in detail below. The transitions are illustrated in Figure 2.7.

Triangle cases.

Cases (1) and (2) are nearly identical. In both cases, a relaxation Y(k) → X̂ is

performed along the plane of the triangle in the same way as for a planar level set. If the

computed attachment point Ŷ lies inside the triangle, then the algorithm terminates with

case 1
(triangle) done?

case 2
(triangle) done?

re-enter
triangle?

case 3
(edge)done?

case 4
(vertex)

feasible
triangle?

feasible
edge?

exit exit

no no

yes

no

nono

yes

yes

yes
no

yes

yes

Figure 2.7: This figure shows the case transitions for the mesh-based relaxation algorithm.
The algorithm begins at the green node and ends when reaching a red node. ©2019 IEEE

21



Z

n

WY(k)

Y(k+1)(1,2)
Z
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WY(k)
Y(k+1)

(1,2) → (2)
Z

n

W
Y(k)

(2) → (3)

Figure 2.8: In the triangle cases (1,2), the attachment starts at Y(k), which is in the interior
(case (1)) or on the edge (case (2)). The attachment is relaxed within the plane of the
triangle; if the friction cone is reached within the triangle (left), the relaxation terminates.
Otherwise, the attachment relaxes to the location where it leaves the triangle (middle); the
algorithm enters case (2) with the neighboring violet triangle. In case (2), the attachment
starts on an edge; if it is drawn outside the triangle, then the algorithm transitions to case
(3) to relax along the green edge (right). ©2019 IEEE

Y = Y(k+1) = Ŷ. Otherwise, we draw a segment from Y(k) to Ŷ and intersect it with the

triangle’s boundary. The intersection location is Y(k+1). If we are in case (1) or the edge

intersected is not the same one we entered on (so that Y(k) 6= Y(k+1)), then we transition

to state (2). Otherwise, we are stuck on an edge and unable to make progress along either

adjacent triangle. We may still be able to make progress along the edge, and we transition

to state (3). See Figure 2.8.

Edge case. The edge case (3) is similar to case (1), except that the surface pointW

is computed as the closest point on the line containing the edge. If the computed attachment

point Ŷ lies inside the segment, then the algorithm terminates with Y = Y(k+1) = Ŷ.

Otherwise, we transition to case (4). See Figure 2.9.

Vertex case. The vertex case (4) is quite different from the other cases, since the

attachment point does not move. Rather, the goal of this state is merely to find a way to

leave it. First, we check the triangles adjacent to the vertex. If the spring force would pull

the attachment point into the triangle, then we transition to this triangle in state (2) with
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Z
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Y(k)Y(k+1)

(3) Z

W

Y(k) Y(k+1)

(3) → (4) (4) → (2) (4) → (3) (4)

Figure 2.9: In case (3), an attachment starts on an edge Y(k) and relaxes towards the point
W along the edge closest to the particle Z. If the friction cone is reached along the edge,
then the relaxation terminates (left). Otherwise, the attachment relaxes to a vertex and the
algorithm resumes in case (4) by trying to leave the vertex (left middle). Case (4) handles
relaxation through a vertex. This case is reached when an attachment (blue) gets stuck on
an edge (red) and relaxes along it to a vertex (green). Case (4) transitions to case (2) if
progress can be made (violet) in one of the neighboring triangles (middle). Otherwise case
(4) transitions to case (3) if progress can be made (orange) along one of the neighboring
edges (right middle). If no progress can be made, relaxation terminates (right). ©2019
IEEE

Y(k+1) = Y(k). Note that it is not necessary to compute the actual attachment location

in this triangle. If no progress can be made in a triangle, then we must check the adjacent

edges. If the spring force would pull the attachment point along an edge, then we transition

to this edge in state (3) with Y(k+1) = Y(k). Otherwise, the attachment point would not

be pulled from the vertex, and the algorithm terminates with Y = Y(k). See Figure 2.9.

Termination considerations. Observe that if the attachment moves (Y(k) 6=

Y(k+1)) then ‖Y(k+1) − Z‖ < ‖Y(k) − Z‖. That is, the attachment point is being drawn

closer to Z. As as long as the attachment can be prevented from stalling in one spot, one

can prove that primitives are visited at most a finite number of times (see the technical

document for a proof). Assuming the triangle mesh is not degenerate, this can only occur

when the attachment point is at a vertex. This can happen in practice due to round-off

error. This can be easily checked, since the barycentric coordinates of the embedding are

computed during case (2). We make two modifications to the algorithm to address this
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possibility: transition to case (4) if a barycentric weight is larger than 1 − 128ε where ε is

the floating point epsilon, and only transition away from case (4) if the test for progress is

significantly larger than round-off error.

2.2.2 Collision detection

For level-set-based forces we detect collisions using the level set. We accelerate

the search by rasterizing particles and level sets to regular sparse grids. For CCD-based

forces, collisions are detected using CCD without a collision-free state. We use bounding

box hierarchies to accelerate the search. In either case, we maintain hash tables of known

pairs, which we use to avoid repeatedly registering the same pairs. In the case of CCD-based

forces, we perform the hash table check on bounding box candidates before solving the cubic,

since the hash table lookup is significantly cheaper. Once registered, each collision pair is

retained along with its current attachment point until the collision becomes inactive. At

the end of each time step, inactive collision pairs are pruned and attachment points for the

remaining pairs are updated to their newly relaxed locations. Note that this postprocessing

step is merely making permanent the decisions already made during the Newton solver.

Collision pairs that are pruned at the end of the time step were inactive at the end of the

Newton solve and thus were applying no force.
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2.3 Stabilized Newton solver

We discretize our equations of motion using backward Euler, which leads to the

nonlinear problem

M
vn+1 − vn

∆t
= f(xn+1) xn+1 = xn + ∆tvn+1,

where M is the lumped mass matrix and f(x) are our forces (gravity, internal, and collision

forces). Using ∆v = vn+1 − vn as our degrees of freedom, we have g(∆v) = M∆v −

∆tf(xn + ∆tvn + ∆t∆v) = 0. For simplicity, we refer to the solution vector as z, where

z = ∆v. We refer to the accompanying technical document for details on the computation

of g and its derivative.

Our contact formulation produces nonlinear systems that result in asymmetrical

linear systems. We found that stabilizing our Newton solver greatly improved solver relia-

bility. Stabilizing the solver had the added benefit of facilitating debugging, since it allows

convergence problems to be tracked down to a definite source.

When using Newton’s method to solve g(z) = 0, where H = ∇g, we must re-

peatedly solve ∆z = −H−1g to obtain a series of corrections. For our forces, it is easy to

see that H is not symmetric. This implies that g = 0 does not correspond to minimizing

anything, since otherwise H would be a Hessian of this objective and thus symmetric. This

immediately rules out methods such as [60].

One known alternative is to minimize E = 1
2‖g‖2 instead [132]. If g = 0 has a

solution, then clearly this will be a global minimum for E, at which point E = 0. One could
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optimize E directly, but this would involve computing the Hessian of E, which would in

turn require us to compute second derivatives of forces.

Instead, we note that one can actually minimize E while continuing to use the line

search direction ∆z = −H−1g, as was done in [18]. This direction is usually very desirable; it

is the direction we would use if we could not stabilize the solver. To be effective, we need this

direction ∆z to be a downhill direction for our new objective E. Consider that a step will be

taken in some direction u. The directional derivative of E in this direction is∇E ·u = gTHu.

Thus, a direction u is a downhill direction if gTHu < 0. We can immediately see that the

Newton direction is always such a direction, since gTH∆z = −gTHH−1g = −gTg < 0

(unless g = 0, in which case we are done). This is not true of the standard objective, where

this guarantee only holds where H is positive definite. In practice, computing the Newton

direction exactly would be too expensive, and it need not actually exist (for example if H

is singular). Instead, we test to see if it is downhill directly and choose a suitable fallback

if it is not (see its accompanying technical document). Finally, we perform Wolfe condition

line searches on E in the usual way. Our termination condition for Newton’s method is that

min(‖g‖, ‖HTg‖) < τ , where τ is our Newton tolerance. Checking ‖g‖ < τ ensures that

we have an accurate solution to our problem (solve g = 0). The test ‖HTg‖ < τ ensures

that we also have a good solution to the problem of minimizing E, the problem that the

line search is trying to solve. Pseudocode for our solver is provided in the accompanying

technical document.

While this method is only guaranteed to converge to a local optimum, in practice

we have never observed convergence to anything other than an optimal solution. The sonic
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points of level sets cause force discontinuities, which in turn lead to discontinuities along the

line search. This may cause convergence to fail for thin or sharp objects when using level

sets. For this reason, we favor the CCD-based formulation for such objects.

2.4 Results

In our tests deformable objects in tetrahedral volume adopt fixed co-rotated consti-

tutive model [159], with Young’s modulus E = 106 and Poisson’s ratio ν = 0.45. Deformable

objects in MPM material adopts the same model but with Young’s modulus E = 103 and

Poisson’s ratio ν = 0.3. Cloth uses mass-spring model [29], with linear stiffness 1000/(1+
√

2)

and bending stiffness 200/(1 +
√

2). The sand uses the Drucker-Prager model from [100]

with Young’s modulus E = 35.37 × 106 and Poisson’s ratio ν = 0.3. We set tolerance of

Newton’s Method to be 1 by default, and use smaller tolerance in some tests to avoid visual

artifacts. Detail configurations are shown in Table 2.1. The maximum number of Newton

iterations is not limited (we set it to 1000). Based on our measurement the average number

of iterations is 3.1 per time step.

Analytic friction tests. The heart of our MPM-rigid coupling method method

is our penalty force for applying contact and friction. We show that our friction is accurate

by comparing our force against the classical analytic solution for a point mass sliding along

an inclined plane. In Figure 2.3 we slide a block down an inclined plane with a variety of

different object types (MPM, rigid bodies, and deformable objects), shown next to a proxy

for the analytic solution. This demonstrates that we achieve accurate friction regardless of

object representation. In Figure 2.10, we show quantitative agreement with the analytic
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Figure 2.10: In this figure, we compare our simulation of a deformable cube on an inclined
plane (the green cube in Figure 2.3, but with Newton tolerance 10−3) with the analytic
solution. (Left) In this plot, we show computed total normal contact force for the cube over
time. At the beginning of the simulation the forces (•) are variable due to the bouncing of
the cube as it falls from its initial stress-free configuration onto the inclined plane. After the
cube has settled, the cube slides (•) until coming to rest (•). Superimposed are the analytic
( ) and computed ( ) velocity magnitudes for the cube, showing close agreement between
computed and analytic solution. Note that the abrupt change in the velocity magnitude
slope corresponds with the switch from dynamic to static friction. (Middle) Here, we plot
total normal and total tangential contact forces for the cube. During the settling phase
(•), dynamic friction forces are variable but always on the friction cone ( ). Afterwards,
the computed dynamic (•) and static (•) friction forces closely match the analytic solution
(+ and ×) and obey the Coulomb friction cone. (Right) Here, we plot total normal and
total tangential contact forces per simulation vertex. During the settling phase (static •,
dynamic •), friction closely tracks but never violates the friction cone ( ). Once settled,
the cube experiences dynamic (•) followed by static (•) friction. As expected, dynamic
friction lies on the friction cone, and static friction lies below it. Note that the different
vertices of the cube carry different amounts of the cube’s mass, so the per-vertex contact
force magnitudes cluster around different values. Our penalty contact force never violates
the Coulomb friction cone. ©2019 IEEE

solution. This figure also demonstrates an important property of our method, that normal

and frictional forces always obey the Coulomb friction cone. We have run this comparison

with a tighter Newton tolerance to reduce deviations from the analytic solution caused by

solver accuracy. In all of our inclined plane tests, the block is given an initial velocity 0.1m/s

along the inclined plane. Depending on the friction used (see Table 2.1), the block continues

sliding (µ = 0.1) or comes to rest (µ = 0.125). Our method naturally causes rigid bodies to

roll (see Figure 2.4).
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Figure 2.11: Sand is dropped into a pile, and then a heavy sphere is dropped on time,
penetrating into the sand. ©2019 IEEE

Stacking. One of the effects that is difficult to handle correctly when elastic forces,

friction, and contacts are not performed together is stacking. Our method produces stable

stacking (see Figure 2.3). Here we stack five blocks (a mixture of rigid and deformable

objects), which stands stably and never falls (it remained standing for 100,000 frames, by

which time it had come to rest). As long as contacts are in the sticking state, the attachments

will never move. Because of this, the contacts will never drift, even over long periods of time.

In Figure 2.12, we form a pyramid by stacking a rigid ball on deformable or MPM objects.

The stacks are stable and do not drift over time. This is a difficult test for many methods

to pass. If elastic forces are evolved without friction, the objects at the base will slide

out slightly, and the sphere will make some progress downward. This progress will not be

corrected when friction is applied to the base objects. If the sphere is able to make downward

progress or the base objects are able to make outward progress, the pyramid will eventually

collapse. We tested the pyramid stack using the method of [154] and verified that it does

indeed creep to collapse (see video).

Wedging tests. Another test that is difficult to pass without coupling between

elastic forces, contact, and friction is the wedging test. In this test, two objects are squeezed
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Figure 2.12: Our method maintains stable stacks in configurations that rely on force balance
between elastic forces, contact, and friction. Stable stacking is shown with rigid/deformable
(left) and MPM/rigid (left middle). If friction is reduced, the stack collapses as expected
(right two). ©2019 IEEE

by two fixed parallel vertical walls (see Figure 2.5), and gravity is applied. Initially the

objects overlap with the walls a little bit. This small penetration generates penalty forces.

With adequate friction, the objects should be able to jam in place and never slide down the

wall. As with the pyramid stack, the key to long term stability in this case is preventing

the objects from making downward progress once they have become jammed. This jamming

depends on the interaction of all three types of forces. We demonstrate jamming at higher

friction and that sliding is recovered if friction is lowered.

Coupling with complex materials. Like [40], we are able to couple rigid bodies

with sand. In Figure 2.2, we throw a cube over a sand box. In Figure 2.11, we roll a sphere

down a sand pile. In Figure 2.16, demonstrate that pouring sand on a sphere causes that

sphere to roll, thereby demonstrating the frictional forces between them. In Figure 2.13,

demonstrate that we are able to couple to complex MPM materials other than sand. In

Figure 2.1, we demonstrate that we can scale to large numbers of objects.

General tests. Our method handles dynamic scenes, non-convex objects, and

interactions between different materials. In Figure 2.14, we demonstrate compatibility with
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Figure 2.13: A complex MPM material interacts with a rigid sphere. ©2019 IEEE

cloth. In Figure 2.15, we demonstrate that deformable-deformable and deformable-rigid

contacts also work correctly with non-convex objects.

To judge the relative cost of our collision handling in comparison to other parts

of the algorithm, we computed a breakdown of the runtime cost for three representative

examples: MPM “sand_on_sphere” (Figure 2.16), non-convex rigid/deformable “torus_dr”

(Figure 2.15), and rigid/deformable/cloth “cloth” (Figure 2.14). For the MPM example,

collision-related steps added only minor cost (4.0% for CCD, 0.6% for computing collision

forces). The significant majority of the time was spend computing and applying internal

sand forces (90.3%), with the remaining steps taking about 5% of the total time. The low

cost of collisions in this example is due to three factors: the large number of particles involved

in the sand, the relatively low number of particles close enough to collision objects to be

involved in collision processing, and the cost of particle/grid transfers. For the non-MPM

tests, continuous collision detection is a major part of the total cost (torus: 43.5%, cloth:

54.0%). In both cases, calculating collision forces, computing and applying collision force

derivatives, and performing relaxation are minor (less than 2%). Computing and applying

internal forces and other solver-related steps contribute most of the rest (torus: 55.4%, cloth:

44.0%).
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Figure 2.14: Two deformable and two rigid bodies are dropped onto a piece of cloth. ©2019
IEEE

To evaluate the convergence of the relaxation procedure, we consider the break-

down of states encountered during the non-convex example Figure 2.15. The relaxation

nearly always terminates at the starting state (approximately 99.77% of the time). Thus

for performance purposes, the algorithm completes in one step, and the history that must

be stored for derivatives is of constant size (see the technical document for details). For

robustness, however, the remaining 0.23% cases must still be handled reliably. An single

extra step (case 1 → 2) was taken in nearly all of the remaining cases (0.21%). The other

case transitions that were observed in this example were (in order from most to least fre-

quent): 1 → 2 → 3, 1 → 2 → 2, 1 → 2 → 2 → 2, and finally 1 → 2 → 3 → 4 → 2 (which

occurred three times in this simulation). No relaxation terminated in more than 5 steps for

this example. This example illustrates that it is possible for the attachment to relax across

multiple triangles in a single time step (up to four triangles in this example).

The constant k determines the stiffness of the penalty forces and is an important

parameter in any penalty force model. Reducing k results in deep penetration, which pro-

duces observable artifacts and must be avoided. Increasing k produces linear systems with

poorer conditioning, which makes solvers less accurate and slower to converge. Reduced

accuracy from the linear solver is not a major concern in our case, since these errors will be
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Figure 2.15: Two tori (magenta is deformable, blue is rigid) are dropped to the ground,
demonstrating the ability to handle non-convex objects, including self-collisions. ©2019
IEEE

corrected in the next Newton iteration. However, the slower convergence is a major concern,

and careful tuning of parameters (both penalty stiffnesses and other solver parameters) can

improve solver performance significantly. We observed that acceptable results can be ob-

tained with only very crude parameter tuning. Indeed, most of our tunable parameters are

simply powers of ten (See Table 2.1).

We run the test “torus_dr” with a range of coefficients of friction (0.1, 0.2, 0.5,

0.6, 1.0 and 10) and a range of stiffness (10, 102, 103 and 104). The method is able to

accurately simulate dynamics at any coefficient of friction. The performance is not sensitive

to the coefficient of friction. The simulations are stable and convergent in all cases, though

convergence problems are observed for the highest stiffness (k = 104). Performance is

strongly dependent on the stiffness, and a reasonable choice of stiffness is important for

practical applications.

To understand the performance of our method compared to other penalty-based

methods, we test our contact algorithm against that of [181]. Direct and fair comparison

is complicated by the fact that [181] is a fully explicit method (Runge Kutta and a con-

tact/friction postprocess). We have implemented the contact and friction forces of [181]
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Name dt Time
frame (s) CCD? µ k grid #p† Tol

stack 0.01 0.12 Y 0.3 106 432 1
prmd_rd 0.01 0.10 Y 0.3 103 507 0.1
prmd_rm 0.01 4.28 Y 0.3 102 323 11k 1

prmd_rm slip 0.01 1.02 Y 0.05 102 323 11k 1
prmd_dd 0.002 0.53 Y 0.2 103 676 0.1

prmd_dd_lag 0.002 0.56 Y 0.2 103 676 0.1
prmd_dd_lagfr 0.002 0.58 Y 0.2 103 676 0.1
plane_r slide 0.001 0.20 N 0.1 103 1
plane_r stick 0.001 0.07 N 0.125 103 1
plane_d slide 0.001 0.05 N 0.1 102 8 1
plane_d stick 0.001 0.01 N 0.125 102 8 0.1
iplane_m slide 0.005 6.30 N 0.1 1 323 1.3k 1
iplane_m stick 0.005 1.34 N 0.125 1 323 1.3k 1
plane_m slide 0.005 1.44 N 0.1 1 323 1.3k 1
plane_m stick 0.005 2.16 N 0.125 1 323 1.3k 1

wdg_rm 0.01 0.30 N 0.25 102 323 1.5k 1
wdg_rm fall 0.01 0.18 N 0.1 102 323 1.5k 1
wdg_dr 0.002 0.62 N 0.05 103 169 0.1

wdg_dr fall 0.002 8.41 N 0.002 103 169 0.1
wdg_rr 0.01 0.05 N 0.08 10 1

wdg_rr fall 0.01 0.03 N 0.03 10 1
wdg_dr_r 0.01 1.26 N 0.03 103 169 0.1

plane_sph roll 0.005 0.05 Y 0.3 10 1
plane_sph slip 0.005 0.04 Y 0.01 10 1

torus_dr 0.002 2.17 Y 0.6 102 2.6k 0.01
cloth 0.005 6.73 Y 0.3 500 3.8k 1

sandbox_cube 0.001 242+ Y 0.3 105 643 0.4m 1
sandbox_sph 0.001 7095+ N 0.9 25000 1283 0.9m 0.1
sand_on_sph 0.001 597 Y 0.9 104 963 64k 1
goo_on_sph 0.001 147+ Y 0.3 104 963 120k 1

bowl 0.001 632 Y 0.3 105 963 31k 0.01

Table 2.1: Simulation Parameters and Timings for All of Our Simulations. † Number of
particles used in a test. + The timing information is measured using 8 threads. ©2019
IEEE

using our implicit integration and CCD-based collision detection (which conveniently gives

us robust normals automatically). We implemented two variants of their algorithm: (1)

explicit contact and friction (“prmd_dd_lag”) and (2) implicit normal contact followed by

explicit friction (“prmd_dd_lagfr”). The discontinuous nature of the dynamic/static friction

transition prevents us from implementing a fully-implicit version of their friction force. We
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compare with our own with implicit contact and friction (“prmd_dd”). We use a pyramid

stack of four deformable objects (like Figure 2.12 but with all four objects deformable).

From this test, we observed that neither (1) nor (2) leads to stable stacks; both eventu-

ally collapse (see the supplementary video). This is not particularly surprising; indeed, our

method will also not get stable stacks if friction is not treated implicitly. In particular, it is

not sufficient for a penalty method to use attachments to achieve stable stacking.

We also examined the runtime of the two approaches, noting that we are running

[181] under conditions for which it was never intended (implicit integration) and with a

collision detection scheme that is likely less efficient than the non-CCD library that the

original method used. Neither version was optimized. We observe that version (2) is slightly

slower than our version. Since (2) uses implicit normal contact, CCD is performed in each

Newton iteration as it is with our method. Since the actual force computations are negligible

for both methods, we would expect the two to run at about the same pace, and indeed the

performance is very close (see Table 2.1). There is a slight extra cost to (2), however, and

it is caused by degradation in the performance of the Newton solver. In our simulation, our

stack settles down, which allows the Newton solver to converge somewhat quicker. Lagging

contact and/or friction means contact and elasticity are always fighting, which slows down

the Newton solver. The comparison of (1) with our method is somewhat more surprising. In

this case, contact and friction are both explicit, and CCD is performed only once per time

step. This reduces the cost of CCD (from 32% for our method to 5% for (1)). This savings,

however, comes at a cost. The fighting between elastic and contact forces is now much

worse (before elastic forces only fought with friction). The resulting slower convergence
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Figure 2.16: We pour sand over a sphere; friction between the sand and the sphere causes
the sphere to be pulled into the sand column. ©2019 IEEE

in Newton’s method is greater than the savings from CCD, and (1) ends up also running

slower than our scheme. We note, however, that the performance differences are very slight,

and which version is faster will depend strongly on the example setup, collision detection

scheme chosen, level of code optimization, and a large number of other factors. Our contact

algorithm is not intended as a way to make contact faster; rather, this comparison merely

shows that it is competitive with existing methods and not too slow to be practical.

2.5 Conclusions and Future Work

We have demonstrated that we are able to simultaneously apply general elastic

forces and frictional contact between different types of objects through the use of a novel

frictional contact penalty force. We have demonstrated that this force allows us to achieve

MPM-rigid and deformable-rigid coupling. Our force enables us to enforce frictional bound-

ary conditions against the particles of an MPM simulation rather than being limited to

processing these contacts on grid nodes, which prevents particle drift or bunching at colli-

sion objects.

Although the method is quite versatile, it has several important limitations. Be-

cause contact is enforced with a penalty force, it adds extra stiffness to the system and does
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not completely prevent penetration between objects. As is normally the case for penalty

forces, our penalty force does not model restitution. One promising avenue for extending our

method to include a coefficient of restitution is through the use of a nonlinear damped spring

[121]. Our implementation assumes isotropic friction; we see no reason that anisotropic fric-

tion could not be implemented by looking up local friction parameters (at the attachment

location) and then replacing the circular cone with an elliptical cone in the yield criterion.

When colliding triangle meshes, we only process point-triangle pairs. In particular,

we do not consider edge-edge pairs. We made this compromise for practical reasons. Using

an edge in place of a particle introduces many complications. For example, would the edge

be connected to an attachment point or an attachment edge? Is the attachment at the

original barycentric collision location, or can the spring force slide along the edge? If it

slides to the edge, does it become a point collision again?

The linear systems that result are asymmetrical, and we must solve them with

GMRES. Although the memory requirements and computational load of GMRES scale

quadratically with the number of iterations, our stabilization of the Newton solve safely

allows us to limit the number of iterations (we use 20). If our Newton step was not computed

accurately, we can rely on the line search.

Another limitation is that we can only hope to converge to a local minimum of

our objective E. Unlike more standard optimization formulations, a local minimum for

our objective does not lead to a solution to Newton’s second law, though we have never

observed it to converge to a non-global minimum. Our line searches are also more sensitive

to the force derivatives than normal, since the derivatives used by the Wolfe line search
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involve the force derivatives; only forces are involved in the standard formulation. The level

set formulation is limited to smooth objects due to the presence of sonic points; the CCD

formulation is smoother and does not have sonic points. The CCD formulation presented is

not free from kinks and discontinuities, however, and we have observed Newton’s method to

fail to converge for the CCD formulation. This normally occurs when the system is nearly

converged (so that the objective slope is low) and when the penalty stiffness is high (so that

any kinks or discontinuities that may be present are amplified). Since the system is usually

near convergence anyway, we simply continue the simulation with the incompletely converged

result. We leave the problem of developing a more kink-resistant solver formulation for future

work.

Our method is not as efficient as less strongly coupled formulations (such as ones

that lag friction) due to the extra stiffness and asymmetric problem. Timing results and

parameters for all of our simulations are given in Table 2.1.
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Chapter 3

Affine particle in cell method for

MAC grids and fluid simulation

In this chapter, we switch our topic to incompressible fluid simulation. A typical

source of artifacts in fluid simulation is dissipation, which violates the conservation laws.

The simulated fluid would appear excessive viscous and behave like glue or honey even we

intend to simulate water. We will discuss this conservation topic under the context of hybrid

simulation in this chapter.

3.1 Introduction

Hybrid particle/grid methods have been used for decades to simulate many differ-

ent physical phenomena, including compressible flow, incompressible flow, plasma physics,

computational solids, granular materials, and many more [72]. The original hybrid scheme

was Particle In Cell (PIC) [79], which was originally devised for fluids. PIC worked by map-
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ping particle state to a fixed Eulerian grid, on which forces are computed. The updated grid

state is then mapped back to particles. In the original method, these mapping steps were

done using linear interpolation and nearest-point interpolation. These low-order interpola-

tion strategies were critical to the original method, since using smoother interpolation for

both transfers produces excessive dissipation. However, smoother interpolation strategies

are important for eliminating cell-crossing instabilities [16] and avoiding discontinuities in

the flow map derivatives [157]. As a result, the original PIC method was not widely adopted.

A major improvement came with the introduction of Fluid Implicit Particle (FLIP)

[26, 25], which mapped changes in velocities from the grid to the particles. This broke the

cycle of repeated velocity interpolation, allowing smoother interpolation kernels to be used

while avoiding excessive dissipation. This has led to a number of new interpolation kernels,

including GIMP [16, 128], CPDI [149, 131]. B-spline interpolation has also been shown to

work well [157].

This also greatly improved the angular momentum conservation properties of the

particle/grid transfers [31, 27]. Indeed, FLIP transfers can be used to implement schemes

that conserve momentum, angular momentum, and total energy [116, 115]. Another ma-

jor advance in hybrid methods came with the introduction of the Material Point Method

(MPM), which extended hybrid methods to handle viscoelastic solids [161, 162].

Although most hybrid methods today are based on FLIP transfers, such schemes

are known to suffer from noise caused by numerical instabilities. While all hybrid particle-

grid approaches suffer to some degree from the finite grid instability [104, 135] (or the ringing

instability [24, 75]), these errors are quite prominent when FLIP transfers are used. This
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is particularly true when using MPM [161, 162] for simulating history dependent materials.

The finite grid instability may be understood as a mismatch between the modes that can

be represented on particles and the modes that can be represented on the mesh.

Some explanation and intuition for the causes of these instabilities, as well as ideas

for reducing them, may also be gleaned by examining the way transfers interact with grid

forces. In a PIC-like scheme, particle velocities are transferred (interpolated) to the grid,

then transferred (interpolated) back to particles at the end of the time step. The effect of this

repeated interpolation is significant dissipation. If noise is added to the particle velocities,

the noise is filtered out during the interpolations and also to some degree by the physics

and grid-based numerical scheme. This makes PIC-like schemes very stable. FLIP transfers

back velocity differences instead, which avoids the dissipation. If no changes are made to

the grid velocities, then the particle velocities are unmodified. However, this also makes

the scheme respond differently to particle noise. If the particle-to-grid transfer operator has

a nullspace, then any noise in the nullspace would not be transferred to the grid. Since

this noise component will not be damped on the grid, no corresponding correction will be

transferred back to the particles. The noise component is not damped. Typically there are

many more particles than grid nodes, which means the transfer operator must have a large

nullspace in which particle noise may persist without damping. Failing to efficiently damp

errors introduced during integration leads to numerical instability.

When using FLIP transfers, the particle velocities are not used to move the particle

positions; rather, particle positions are directly interpolated from the grid. This is equivalent

to using an interpolated, PIC velocity for position updates. This greatly limits the negative
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i

4a vn,1i = rvni

4b vn,ki =
r − k + 1

k

∑
p

∑
j

mpw
n
ipw

n
jp

mn
i

vn,k−1
j

4c vn∗i =

r∑
k=1

(−1)k+1vn,ki

4d vn+1
p =

∑
i

wnip(v
n∗
i + ṽn+1

i − vni ) vn+1
p =

∑
i

wnipṽ
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Figure 3.1: Time integration scheme for XPIC of order r. XPIC(1) is equivalent to PIC
except for the more accurate grid and particle position update. Step 4b is repeated for
2 ≤ k ≤ r.

impact of the spurious particle velocities. This also means it is possible for a simulation to

come to rest with nonzero velocities (See Figure 3.19). As long as the final velocity field is

in the transfer operator’s nullspace, the grid velocity will be zero and the particles will not

move. Despite these issues, FLIP transfers are still most commonly used, particularly for

MPM. Blends between PIC and FLIP transfers are also a viable alternative [186, 28, 160],

using a small amount of the PIC solution to dissipate noise that might otherwise accumulate

in the FLIP solution.

Recently, a new transfer called Affine Particle In Cell (APIC) was developed as a

PIC-like alternative to FLIP [93, 94]. These transfers interpolate information from particles

to grid and also from grid to particles, as in the original PIC (See Figure 3.2). To reduce
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dissipation, the rowspace of the transfer operator is enriched by storing velocities and a

measure of velocity gradients on particles. (It is worth pointing out that [169] did something

similar in the context of FLIP transfers, but the benefit in this case was noticeable but

relatively modest. FLIP is already not very dissipative, and the modifications to the transfers

do not reduce the finite grid instability.) In doing so, fewer velocity modes are filtered out

by the transfers, dramatically reducing dissipation. In particular, it is possible to develop

APIC schemes that conserve both linear and angular momentum in the case of co-located

grids [94].

Since the development of APIC, another scheme called XPIC [78] was developed as

another compromise between the dissipation of PIC and the noise of FLIP. XPIC is a family

of schemes that is in many ways a blend of PIC and FLIP (and includes PIC as a member).

XPIC uses PIC transfers to filter out noise from the FLIP solution, unlike a simple blend

which merely damps it. XPIC significantly reduces FLIP-style noise, but unlike APIC does

not eliminate it. In the special case of XPIC(1), the transfer of velocity from grid to particle

is equivalent to PIC method, but XPIC(1) differs in the position update (See Figure 3.1).

XPIC(1) may be considered as an improved PIC. Other regularization strategies have also

been employed to mitigate the noise caused by FLIP [53].

Another transfer strategy is moving least squares (MLS) [53], which computes a

polynomial best fit to transfer velocity information to particles. MLS is capable of high

order accuracy but is rather expensive due to the need to solve a system of equations per

particle for the transfers. Indeed, some variants of APIC may be formulated as a PIC-style

MLS with polynomial degree one [57, 88].
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Although the focus on APIC transfers has mostly been in the context of MPM, [93]

also explored a limited extension to MAC grids. In this work, we show that an APIC scheme

can be developed for MAC grids that also conserves both linear and angular momentum.

Being a new method, there are many questions about the behavior and utility of

APIC that have not been explored. In the context of fluids, one important concern is the

suitability of PIC for high Reynolds number flows. Shedding light on this question in the

primary goal of this work.

We show how a two dimensional Fourier transform can be used to study the dis-

sipation of transfers for MAC-grid-based incompressible fluids, in a similar way to how one

dimensional Fourier transforms are currently being used for one dimensional MPM. We also

show that two dimensional Fourier transform can be used to study the interaction between

transfers and pressure projection. This makes it possible to compare APIC, PIC, FLIP and

XPIC in terms of dissipation of two dimensional incompressible flows.

3.2 Numerical method

3.2.1 Notation

In this document, we use notation to give hints as to the meaning of symbols. As

a general rule, bold lowercase symbols (xnp , pP,n, ea) are vectors, bold uppercase symbols

(Dn
pa, I) are matrices, and non-bold symbols (wnipa, mp, ∆t, ṽn+1

ia ) are scalars. We follow the

convention that all vector quantities are considered to be column vectors unless explicitly

transposed. Thus, quantities like ∇p will be treated as column vectors.
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Many symbols use a combination of subscripts and superscripts. Subscripts are

used to index grid nodes (i, j), particles (p), and spatial dimensions (a, b). We index MAC

faces by treating each axis direction as a regular grid, which is indexed with ia. The axis

direction is denoted as ea. Quantities associated with both grid and particle indices have

both indices (wnipa). A superscript of n indicates a quantity near the beginning of the time

step (before forces are applied), and a superscript of n+1 indicates a quantity computed later

in the time step. Other adornments are used to distinguish quantities that would otherwise

get the same name (x̃n+1
ia vs xn+1

ia ) or to denote intermediates (v∗ia). The superscripts P

and G indicate global particle-based or grid-based quantities (P,n,G,n). To avoid confusion,

we will never use the summation convention in this document; all summation is specified

explicitly.

Note that the indices can be used to unambiguously distinguish quantities on MAC

grids (wnipa) from those on co-located grids (wnip). Such quantities have the same meaning

and differ only in the grid layout chosen.

3.2.2 Weights

Hybrid schemes are notable for requiring information to be transferred between

particles and a grid. These transfers are defined using an interpolating kernel, which is

assumed to satisfy the partition of unity and interpolation properties

∑
i

N(xnp − xni ) = 1
∑
i

xni N(x− xni ) = x (3.1)
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for any x. The kernel N(x) is used to define interpolation weights and weight gradients as

wnip = N(xnp −xni ) and ∇wnip = ∇N(xnp −xni ). The properties of N(x) lead to properties for

wnip and ∇wnip:

∑
i

wnip = 1
∑
i

wnipx
n
i = xnp

∑
i

wnip(x
n
i − xnp ) = 0

∑
i

xni (∇wnip)T = I. (3.2)

In the case of MAC grids and the proposed time integration, weights are defined

independently for each axis with w̄nipa = N(xnp − xnia) and wnipa = N(xn+1
p − xnia). In our

discretization we advance positions before transferring particle information to the grid, and

the algorithm needs two sets of weights when using FLIP or XPIC. We use w̄nipa to denote

weights before moving particles and wnipa to denote weights after. It is not actually necessary

to compute two sets of weights, since wnipa = w̄n+1
ipa .

The x, y, and z faces form regular Cartesian grids that are offset from one another.

The same properties hold independently per axis:

∑
i

wnipa = 1
∑
i

wnipax
n
ia = xn+1

p

∑
i

wnipa(x
n
ia − xn+1

p ) = 0
∑
i

xnia(∇wnipa)T = I. (3.3)

For completeness, the linear, quadratic, and cubic splines we investigate for the

kernel N̂(x) are:
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linear quadratic cubic


1− |x| 0 ≤ |x| < 1

0 1 ≤ |x|
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3
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2
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2(3
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2
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2 ≤ |x|
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2
3 − 1

2x
2(2− |x|) 0 ≤ |x| < 1

1
6(2− |x|)3 1 ≤ |x| < 2

0 2 ≤ |x|

From this, N(x) = N̂(x)N̂(y) in 2D and N(x) = N̂(x)N̂(y)N̂(z) in 3D.

3.2.3 Overview of co-located transfers

General outlines for a sample algorithm for PIC, FLIP, and APIC with a co-located

grid are provided in Figure 3.2. A corresponding outline for XPIC is provided in Figure 3.1.

In each case, the time step begins by transferring particle mass mp and momentum mpv
n
p

to the grid to produce mass mn
i and momentum mn

i v
n
i on the grid (steps 1-2). Velocity

is computed by dividing the mass from the momentum. This velocity is updated on the

grid in some way, such as by applying MPM finite element forces (step 3). This results in

an updated grid velocity ṽn+1
i , which is then transferred back to particles, resulting in the

new particle velocity vn+1
p (step 4). Finally, particles are updated to new locations xn+1

p by

interpolating them from moving grid positions x̃n+1
i (steps 5-6). Additional steps may be

required depending on the specifics of the grid evolution algorithm, such as maintaining a

deformation gradient (Fnp → Fn+1
p ).

This simple outline is flexible, and many variations have been considered. For ex-

ample, steps 4-6 may be moved to the beginning of the time step; in this case, the transfers

may be interpreted as a type of semi-Lagrangian advection for an Eulerian algorithm [23].
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Figure 3.2: Representative time integration schemes for PIC, FLIP, and APIC. Details of
the grid evolution are identical for each. Note that the transfers are very similar, though
APIC includes a few extra steps related to the additional particle state. Subscripts indicate
where quantities like (vi is velocity on the grid; vp is velocity on particles).

PIC and FLIP differ only in step 4a, and a PIC/FLIP blend may be constructed by inter-

polating these two velocity updates [186]. A more general form for steps 4b and 6 in APIC

is considered in [94], which allows them to do midpoint rule for their time integration and

achieve conservation of angular momentum. Viewed as an advection scheme, APIC may be

compared to [180], which also stores derivative information to reduce diffusion.

3.2.4 APIC for MAC grids

We begin our treatment of the MAC case by laying out the full time integration

scheme. Since we will be using our MAC grid for fluids, we discretized the Navier-Stokes

equations. We implement a projection method, as is typically done with FLIP [186, 23].
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Advection

In a standard standard MPM discretization, particle positions are updated at the

end of the time step. If this is done with Chorin splitting, a pressure projection will be used

to make the fluid velocity divergence-free, after which this velocity will be transferred to

particles and moved. The resulting particle velocities are not divergence free, and we have

observed convergence problems in the resulting scheme.

Instead, we note that [186] moves particles at the beginning of the time step. This

is in line with Chorin splitting, which projects the advected velocity field, resulting in a

divergence-free velocity field at the end of the time step. To implement this, we delay the

position update until the beginning of the next time step but otherwise compute the update

in exactly the same way.

xn+1
p =

∑
ia

w̄nipaeae
T
a x̃

n
ia = xnp + ∆tvnp . (3.4)

Here we use w̄nipa = N(xnp − xnia) to denote the weights before moving particles, reserving

wnipa = N(xn+1
p − xnia) for the weights after moving particles. ea are axis directions. Note

that x̃nia is the quantity x̃n+1
ia from the previous time step. In the case of APIC (or PIC),

the second equality holds, and the particles can be moved using particle velocities without

referencing w̄nipa. Although the XPIC position update is more accurate than the PIC update,

its use would prevent our APIC transfers from satisfying the APIC properties. Generalized

APIC transfers [94] could likely be adapted to MAC grids to achieve similar benefits. Since

these are more complex than the original transfers, we base our transfers on the original

APIC transfers and use PIC position updates.
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In the case of FLIP and XPIC, we store ṽn+1
ia from the previous time step, which

allows us to compute new positions using the summation. Since this information in not

available for the first frame, we perform a particle-to-grid transfer to obtain initial velocities

for ṽn+1
ia . The PIC/APIC update could be used for the first time step instead.

Particle to grid

The next step is transferring particle mass mp, velocity vnp , and information about

velocity derivatives bnpa from particles to the grid.

mn
ia =

∑
p

wnipamp (3.5)

Dn
pa =

∑
i

wnipa(x
n
ia − xn+1

p )(xnia − xn+1
p )T (3.6)

mn
iav

n
ia =

∑
p

wnipampe
T
a v

n
p +

∑
p

wnipamp(b
n
pa)

T (Dn
pa)
−1(xnia − xn+1

p ) (3.7)

This looks very similar to the co-located case, but there are some subtle differences. There

is one matrix Dn
pa defined per axis, and bnpa is a vector per axis. These vectors may be

interpreted as the columns of the matrix Bn
p that is used in the co-located case. Being a

MAC layout, velocities are staggered, and the scalar components of velocity vnia are stored

at separate locations. Recall that wnipa is computed using the new particle positions, which

explains the unexpected use of xn+1
p in these equations.
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Grid evolution

We split the grid evolution step into two parts: gravity and pressure. Gravity

is applied explicitly: v∗ia = vnia + ∆tga. We use finite differences to discretize the Poisson

equation and perform a velocity projection on a MAC grid layout to obtain an incompressible

velocity field v∗ia → ṽn+1
ia . We assume a constant density ρ for the pressure discretization.

These steps are performed in exactly the same way as for an Eulerian MAC discretization.

We assume inviscid Euler, so we do not apply viscosity. Although we have masses on the

grid, we do not use them for the pressure projection, since doing so causes boiling in the

fluid. That is, an initially stationary pool of water would develop currents in it.

3.2.5 Grid to particle

After updating grid velocities, we update our final particle data following essentially

the same algorithm as in the co-located case.

vn+1
p =

∑
ia

wnipaṽ
n+1
ia ea (3.8)

bn+1
pa =

∑
i

wnipaṽ
n+1
ia (xnia − xn+1

p ) (3.9)

x̃n+1
ia = xnia + ∆tṽn+1

ia ea (3.10)

Unlike the co-located algorithm, we do not advance positions; we delay this step until the

beginning of the next time step. In Chapter A we show that these transfers satisfy the

original APIC properties.
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3.3 Fourier analysis of transfers

We use Fourier analysis to characterize the dissipation of APIC transfers compared

to PIC, FLIP, and XPIC transfers. There are two main settings in which this can be

explored. The first is by considering a round trip from grid to particle and then back to

grid. In between these transfers, particles are moved, and this step must be ignored to

retain linearity. This approach is relatively simple, but it is unable to analyze methods like

FLIP, which retain information on particles between time steps. The second approach is to

consider transfers from particles to grid and then back to particles. In this case, other grid

steps (pressure projection in our case) lie between these two transfers. Since these steps are

in general linear, they can be included in the analysis. This analysis approach is compatible

with FLIP and XPIC, and we use it to draw a strong contrast between FLIP and APIC.

To facilitate Fourier analysis, we must add two assumptions: (a) the domain is

periodic and (b) all cells have the same particle distribution. Note that (b) does not imply

that the particle distribution is regular. Particles may be positioned quite irregularly within

a cell, but that irregular layout must be the same for all cells. Because of (a), it is convenient

to treat grid indices as periodic.

3.3.1 Grid to particle to grid

Linear transfer matrix While the transfers themselves are linear (as functions of veloci-

ties), the advection step is nonlinear due to the movement of the particles and corresponding

changes in interpolation weights. For the purposes of analysis, we can eliminate the non-

linearity by considering the limit ∆t → 0. This corresponds to transferring from grid to
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particles and immediately back to the grid and approximates the dissipation that results

when small time steps are taken. We can then express the grid-to-particle-to-grid transfer

as a matrix vn+1
ia =

∑
jbMia,jbṽ

n+1
jb .

Axis-independence Inspecting the definition of the transfers carefully, we see that the

axis components decouple. We can instead write vn+1
ia =

∑
jM

a
ij ṽ

n+1
ja , where Mia,jb =

Ma
ijδab. That is, each face axis has its own separate transfer matrix, but faces in different

direction do not affect each other. This is not surprising; an object translating in the x

direction should not begin moving in the y direction. Since each dimension is independent,

we can focus on one axis arbitrarily and drop the axis indices. The grid layout is now just

a regular grid. As such, the analysis in this section applies equally to transfers with a MAC

layout and transfers with a collocated layout. We can now write vn+1
i =

∑
jMij ṽ

n+1
j , where

Mij is a matrix with as many rows and columns as grid nodes.

Analyzing dissipation with eigenvalues When we analyze the dissipation of the trans-

fers, it is helpful to isolate the dissipation caused by transfers from the dissipation caused

by other parts of the evolution, such as the pressure projection. For this reason, we con-

sider the consequences of repeating these transfers. The eigenvalues λ of Mij tell us how

dissipative the transfers are. Eigenvectors corresponding to λ = 1 are preserved across the

transfer without dissipation. Velocity eigenvectors with 0 < λ < 1 decay due to dissipation.

Eigenvectors with λ = 0 are eliminated entirely. |λ| > 1 would indicate instability. Within

this periodic setup, we observe that Mij is symmetric (each cell affects its left neighbor by

the same amount as its right neighbor), which leads to real eigenvalues. In practice, we also
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observe that 0 ≤ λ ≤ 1 for all of the schemes we consider. λ ≈ 1 is ideal. A velocity mode

corresponding an eigenvector with eigenvalue λ decays by factor λk, where the exponent k

is the number of grid-to-particle-to-grid transfers.

Fourier analysis

Circulant With the periodicity assumptions, the transfer matrix Mij will be tensor prod-

uct circulant. That is, if i = (r, s) and j = (u, v) are grid indices in 2D, then M(r,s),(u,v) =

M(r+k,s+m),(u+k,v+m) for any k and m, where we make use of the convention of treating the

indices as periodic. This just says that the transfer operator appears the same for all cells,

which is expected since all cells are indistinguishable. From this, we conclude that Mij has

the special structure M(r,s),(u,v) = cr−u,s−v, where ci is the 0th column of Mij . This is the

multidimensional analog of a circulant matrix.

Eigenvalues from Fourier transform A tensor product circulant matrix is diagonalized

by a multidimensional Fourier transform in exactly the same way that a circulant matrix

is diagonalized by a Fourier transform. The eigenvalues of Mij can be computed as the

multidimensional Fourier transform of its column ci. The Fourier transform conveniently

identifies one eigenvalue λi with each grid node i, which provides a convenient visual rep-

resentation of the eigenvalues in 2D. This is the basis for Figure 3.3. Fourier analysis has

been used to analyze hybrid schemes before in 1D (e.g., in [78]), but as far as we are aware

we are the first to adopt it as a tool in higher dimensions. This generalization is important,

since incompressible flow is trivial in 1D and vortices do not exist in 1D.
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Figure 3.3: Eigenvalue images for PIC and APIC using 4 particles per cell and linear,
quadratic, or cubic splines.

Computing ci While it is possible to work out ci and Mij analytically (and we have

done so in a few cases), the results are not enlightening. Instead, we compute ci numeri-

cally by performing the transfers on a velocity field containing a single nonzero entry. The

multidimensional Fourier transform of the result gives us the eigenvalues.

Eigenvalue images

Sparsity of ci The next useful observation is that ci is very sparse; the nonzero entries

in ci are at most a few cells away from the nonzero entry in the velocity field. That is,

ci = crs = 0 for |r| > w or |s| > w, where w here is the width of the stencil. Note that
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we are using crs = c(r,s) as a convenient shorthand. w ≤ 3 for all of our splines (linear,

quadratic, cubic) and transfers (APIC, FLIP, PIC, XPIC).

Resolution-independence of ci Next, we observe that the nonzero entries of ci do not

depend on the resolution provided the grid size m×n is large enough (m,n ≥ 2w+ 1). The

transfers are local, so the nonzero entries of ci cannot depend on the number of grid cells.

Since ∆x has units of length but the entries of ci are dimensionless, the entries of ci must

be independent of ∆x. This resolution-independence means that high-resolution images are

cheap to compute, since they only require a moderate number of very low resolution transfers

to deduce ci followed by a full-resolution multidimensional Fourier transform.

Explicit form of eigenvalues The eigenvalues λi = λrs are given by the Fourier trans-

form

λrs =
m∑
u=0

n∑
v=0

cuve
2πiru
m e

2πisv
n =

w∑
u=−w

w∑
v=−w

cuve
2πiru
m e

2πisv
n (3.11)

This gives us the eigenvalues for any size grid. If we index λ(x, y) instead with rational

numbers in the range −1
2 ≤ x, y < 1

2 , where x = r
m and y = s

n .

λ(x, y) =
w∑

u=−w

w∑
v=−w

cuve
2πixue2πiyv (3.12)

Observe that this does not depend on the resolution m×n of the grid. Indeed, we can treat

this as a continuous function for eigenvalues. The eigenvalues for any finite resolution are

obtained by sampling the appropriate location within the continuous map. The map is sym-
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metric, with λ(x, y) = λ(−x, y) = λ(x,−y) = λ(−x,−y). The constant mode corresponds

to λ(0, 0) and lies in the middle of the image. This is how the images shown in Figures 3.3

are constructed.

Numerical study - regular seeding

In the first study, we compute eigenvalue images corresponding to a range of param-

eters. We test PIC and APIC transfers using linear, quadratic, and cubic splines (Figure 3.3).

In each ease, we seed with 4 particles per cell using either regular seeding (particles seeding

in a regular grid pattern) or irregular seeding (4 particles in a blue noise pattern, with all

cells having the same arrangement of particles). In each case, low-frequency modes lie in the

center of the image. Dark red modes are near 1, and black modes are near zero, with colors

assigned on a logarithmic scale according to the color bars shown with the images. (All of the

eigenvalue images are shown with the same color scale, which is repeated for convenience.)

Images with larger red regions near the middle are less dissipative. From the images, we

see that APIC is dramatically less dissipative than PIC. Comparing across splines, we see

that dissipation increases with spline order. This is not particularly surprising, since higher

order splines interpolate over a larger range. The difference between cubic and quadratic

splines is quite modest, and we do not see a strong motivation to prefer one over the other

on grounds of dissipation.

To make the differences between the methods easier to see, 1D cross sections from

these eigenvalue images are shown in Figures 3.4. The location of the cross sections are

illustrated in Figure 3.6a. For reference, the results are shown for linear splines with 4, 9,

and 64 particles per cell to illustrate the sampling dependence for linear splines. Quadratic
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Figure 3.4: Eigenvalues for PIC (P) and APIC (A), with 4, 9, or 64 particles per cell and
linear (L), quadratic (Q), and cubic (C) interpolation splines. Only the 4 particles per cell
case is shown for quadratic and cubic splines; the others are indistinguishable. The most
important part of the plot is the top left near (0, 1), which corresponds to scale factor for
larger scale vortices. For reference, λ(0.10, 0.10) is the decay factor for a vortex 5 grid
cells in diameter. λ(0.05, 0.05) is the decay factor for a vortex 10 grid cells in diameter.
Values closer to one are dissipated less. In the right plot, the region near (x, λ) = (0, 1)
is magnified with and (x, 1 − λ) plotted using logarithmic scales. In this plot, the order of
falloff in dissipation as a function of vortex size manifests as the slope of the curve. For
reference, lines with slopes 2 and 4 are included in the plot. Note that the orders are 2 for
PIC and 4 for APIC, consistent with the analysis in Section 3.3.1.

and cubic splines are not sensitive to sampling density. The curves for these splines at

higher sampling density have been omitted since they overlap the corresponding curve at 4

particles per cell. Note that λ(x, 0) = λ(0, x) due to symmetry of the particle distribution.

The difference in damping is especially visible in the zoomed-in versions of these plots.

Observe that APIC remains very close to 1 for much larger x than PIC due to the extra

zero derivatives at the origin.
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Figure 3.5: Eigenvalues for APIC and PIC, with linear, quadratic, and cubic splines and
one particle per cell. The curve colors indicate the location of the particle in a cell, which
are shown in Figure 3.6b. The particle position dependence decreases as the interpolation
order increases, and this dependence is somewhat more pronounced for APIC.

Numerical study - irregular seeding

Our second eigenvalue image study shows the sensitivity of transfers to particle

positioning within a cell. In these tests, we use one particle per cell placed in one of the

positions shown in Figure 3.6b. The center (black) point corresponds to putting the particle

at the grid degree of freedom location. The red location corresponds to offsetting half a grid

cell diagonally away from the degrees of freedom. Because of symmetry, we can restrict our

samples to half of one quadrant. Each cell has one particle in the same location. Results

are shown in Figure 3.5. As one might expect, one generally observes that particle position

dependence decreases as interpolation order increases. Consistent with the above analysis,

eigenvalues are larger for APIC than PIC, reflecting its reduced dissipation. One may

regard these curves as representing (approximately) the range of possible eigenvalues that
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Figure 3.6: Guides for Figures 3.4 and 3.5. The particle seed locations indicate where the
particles were located for Figure 3.5. The center black dot corresponds to placing the particle
at the location of the grid degree of freedom.

may result from a particular type of transfer (PIC, APIC) with a particular interpolation

kernel (linear, quadratic, cubic). The eigenvalue plots for multiple particles are an average

of the plots for each particle individually. Thus, it is possible to place bounds on how much

dissipation is possible independent of the particle distribution. Of course, the distribution is

still the same in each cell, so this should be taken as a guide rather than as a hard bound.

This approach to analyzing the effects irregular seeding, though informative, is

still quite limited. Every cell has the same number of particles in the same locations, so

the overall particle distribution is still very regular. Indeed, Fourier analysis is only possible

because of this overall regularity. A globally irregular seeding may still yield eigenvalues

(and thus produce dissipation) that is different from what is seen in this analysis. Tiling the

particle distribution over a larger block size (for example, having a fixed irregular particle

distribution within each 2×2 block of grid cells) would provide a tradeoff between sampling

a more irregular particle distribution and the ability to apply Fourier analysis. This would
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produce 8 eigenvalue images with half the resolution of the original since Fourier analysis

must now be performed over blocks. We do not purse this strategy here.

Taylor-Green vortex

In this analysis, we are particularly interested in understanding the tendency for

transfers to damp out vorticity. Our model for a vortex is the Taylor-Green vortex, which

has a convenient representation in terms of Fourier basis modes. They are also an ana-

lytic solution to the Navier-Stokes equations. This makes it an ideal model for studying

dissipation.

Let the physical dimensions of our domain be [−π, π] × [−π, π] and assume that

the resolution is square, with m = n. The Taylor-Green vortex is given by

v(x, y) = 〈− sin(ax) cos(ay), cos(ax) sin(ay)〉, (3.13)

where a is an integer that determines the scale of the vortex. This represents a 2a × 2a

checkerboard pattern of vortices which alternate between rotating clockwise and counter-

clockwise. An example of a Taylor-Green vortex is shown in Figure 3.7a. Larger a correspond

to larger numbers of smaller vortices. Stretched vortices may also be considered,

v(x, y) = 〈− sin(ax) cos(by), cos(ax) sin(by)〉, (3.14)

with different scales on x and y, but these are not solutions to the Navier-Stokes equations.

They are, however, conveniently expressed in Fourier modes.
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Location of Taylor-Green eigenvalues in image The Fourier mode with wavenumber

(k1, k2) is e2πixk1e2πiyk2 . Observe that the Taylor-Green vortex v(x, y) is a linear combina-

tion of the four modes (±a,±a). The corresponding eigenvalues are λ(x, y) = λ(± a
m ,± a

n).

The location of Taylor-Green modes is shown in Figure 3.7b for a few sample values of a

and resolutions.

Scaling of Taylor-Green Due to symmetry, these four eigenvalues are all equal. Thus,

the Taylor-Green vortex is transferred into a scaled copy of itself. The factor by which it is

reduced is λ( am ,
a
n). Note that as the resolution m×n is increased, ( am ,

a
n)→ (0, 0). The key

to understanding the behavior of vortices under refinement is thus understood by examining

the behavior of λ(x, y) near (0, 0). We will use the differentiability of λ(x, y) to characterize

λ(x, y) near (0, 0) in Section 3.3.1.

On the other hand, a Taylor-Green vortex of a fixed resolution (e.g., 8 grid cells

across) corresponds to a fixed place in the eigenvalue image (λ(± 1
16 ,± 1

16) in this case). The

eigenvalue image thus gives a direct indication of the number of pixels required to resolve

a Taylor-Green vortex with a specified amount of dissipation. This is not surprising, since

the local dissipation of a vortex should not depend on how large the overall computational

domain is. Some Fourier modes corresponding to Taylor-Green vortices are shown in Fig-

ure 3.7b.

Dissipation under refinement

In this section, we analyze how the dissipation of Taylor-Green vortices (and

stretched vortices) changes under refinement. Fix an initial resolution m×n and a stretched
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Figure 3.7: Taylor-Green vortex and its Fourier modes. In the right part, the location and
color of the dots indicate the size (8 pixels: white, 16 pixels: black, 32 pixels: green) of
Taylor-Green vortex.

Taylor-Green vortex (a, b). Each round trip transfer scales this vortex by λ( am ,
b
n). Next,

lets scale the resolution to qm × qn. As noted in Section 3.3.1, for λ( a
qn ,

a
qn) → λ(0, 0)

as q → ∞. Since all of the transfers under consideration preserve constant velocity fields,

λ(0, 0) = 1. Approximating λ(x, y) by a Taylor series and noting 0 ≤ λ ≤ 1, we have

λ( a
qn ,

a
qn) ≈ 1 − cq−γ . This approximation corresponds to the first γ − 1 mixed partial

derivatives of λ(x, y) vanishing at (0, 0). It can be shown that γ = 2 for PIC and 3 ≤ γ ≤ 4

for APIC. APIC achieves γ = 4 for quadratic and cubic splines due to the special proper-

ties of those splines. The constant c depends on many things, including the layout of the

particles.

Under spatial refinement (as q →∞), we must take more time steps. Assume that

∆t = c2∆xκ, where likely values include κ ∈ {1, 3
2 , 2}. Thus, even though dissipation is less

at higher resolution, the transfers must be repeated more often. The net dissipation λ is
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thus

λ ≈ (1− cq−γ)Tq
κ ≈ 1− c3q

κ−γ = 1− c4∆xγ−κ. (3.15)

Thus, for first order convergence, we must have γ ≥ κ+ 1, since otherwise dissipation alone

creates an error greater than first order. For PIC, this limits us to κ = 1. This rules out

explicit surface tension (κ = 3
2). On the other other extreme, APIC with quadratic or cubic

splines gives 4−κ, which is compatible with third order accuracy with ∆t = O(∆x) and with

second order accuracy with ∆t = O(∆x2). An interesting consequence of this appears to be

that APIC cannot be the basis of a method that is higher than third order accurate in space.

The predicted dissipation orders of 2 for PIC and 4 for APIC are observed numerically in

Figure 3.4.

3.3.2 Particle to grid to particle

Limitations of grid-particle-grid The grid-particle-grid view of transfers is convenient

since its results are concisely described by a single image. This image tells us how dissipative

transfers are in the limit ∆t→ 0. Unfortunately, the grid-particle-grid path is not linear for

FLIP, since new particle velocities ultimately depend on old particle velocities.

Particle-grid-particle An alternative way to examine dissipation is to start with infor-

mation on particles and simulate the steps that occur until we transfer velocities back to

particles. Since none of the methods store state on the grid, this avoids the problem with

the grid-particle-grid view for FLIP. The particle-grid-particle view, however, is quite a bit
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more complicated. This path includes the pressure projection step, which mixes velocity

components in different directions. When each cell gets the same particle distribution, all

cells are indistinguishable; the particles within a cell will all be distinguishable unless the

particle distribution within a cell is highly symmetrical. In the case of APIC, the Bn
p matri-

ces must also be considered as degrees of freedom. In 2D with p particles per cell, each cell

will contribute d = 2p degrees of freedom for PIC an FLIP but d = 6p for APIC. Rather

than a transfer operator Mij that is a scalar per grid node, we must consider our operator

to be M(ia)(jb), where a and b run over the d degrees of freedom per cell.

Pressure step is required If we ignore the complications introduced by pressure pro-

jection and just do the transfers as we did before, then we run into a different problem. If

we make no changes to the grid velocity before transferring back to particles, then FLIP

will map back a zero difference. The resulting particle-grid-particle map is an identity map,

which does not tell us anything interesting about the transfers. To get any useful insight

into FLIP, we must include pressures.

Including pressure We note that pressure projection is linear and is also conveniently

diagonalized by the Fourier transform. These properties make it compatible with our anal-

ysis. (Viscosity also shares these properties, and one could include it in the analysis. Since

our interest is in the inviscid case, we do not do this.) The pressure projection introduces

another complication: the particle-grid-particle map is no longer sparse. This simply means

the transfers and Poisson solve must be done at the resolution of the final image, which

is not a significant problem. Although pressure projection is very convenient to perform
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directly in Fourier space, we apply pressure using the same central difference discretization

we use for simulation.

Analysis procedure

Block tensor product circulant In the grid-particle-grid case, we were able to reduce the

problem to one degree of freedom per cell. The resulting transferMij was tensor product cir-

culant and could be diagonalized with a multidimensional Fourier transform. The situation

is now more complicated, since each cell has d degrees of freedom associated with it. The ma-

trixM(ia)(jb) is still block tensor product circulant in the indices i, j, but not in a, b. That is, if

i = (r, s) and j = (u, v) are grid indices in 2D, then M(r,s,a),(u,v,b) = M(r+k,s+m,a),(u+k,v+m,b)

for any k and m. Rather than diagonalizing the matrix, the Fourier transform will bring

the matrix into a block-diagonal structure.

Constructing and representing the operator The first column of this operator no

longer suffices to represent the entire operator, but the first d columns do. That is,

M(r,s,a),(u,v,b) = cr−u,s−v,a,b. The columns ciab are obtained by initializing all particle ve-

locity degrees of freedom to zero, except particle velocity degree of freedom b in the first

grid cell. This is repeated for each of the d degrees of freedom b in the first cell.

Diagonalization procedure Although the matrix M(ia)(jb) is no longer fully diagonaliz-

able by Fourier transforms, Fourier transforms can still be used to render it block diagonal
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with d× d blocks. By computing d2 multidimensional Fourier transforms, we have

βrsab =
m∑
u=0

n∑
v=0

cuvabe
2πiru
m e

2πisv
n (3.16)

The βrsab are the diagonal blocks. It associates to every grid cell i = (r, s) a matrix Nab =

βrsab. The eigenvalues of the d× d matrices Nab are the eigenvalues of M(ia)(jb). Since d is

relatively small, we simply compute the eigenvalues of these blocks directly. This procedure

computes the m×n× d eigenvalues of M(ia)(jb) and conveniently associates d eigenvalues to

every cell based on frequency.

Visualization In the grid-particle-grid case, we had a single eigenvalue per grid cell, which

we were able to plot conveniently as an image. In the particle-grid-particle case, we now

have d eigenvalues with no particular ordering. We sort the d eigenvalues in each cell by

magnitude and construct d images. The smallest eigenvalue in each cell corresponds to the

first image, the second smallest eigenvalues correspond to the second image, and so on. The

visualizations of the results for all methods are shown in Figure 3.8.

Analysis results - PIC and APIC

The results that are obtained for PIC and APIC are quite simple and easily under-

stood. The image formed from the largest eigenvalue is the same image that is constructed

in the grid-particle-grid case. The image formed from the second-largest eigenvalue is 1 in

the center and zero elsewhere. All of the remaining images are zero.
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To see why this is the case, lets consider the three steps involved in the construction

of the operator M = APB, where B is the transfer from particle to grid, P is the pressure

projection, and A is the transfer from grid to particle. We can transform this into Fourier

space, in which case we can write M̂ = ÂP̂ B̂, where hats represent the individual operators

in Fourier space. Observe that each of these operators is block-diagonal, with one block per

grid cell. Each block Â is d×2, P̂ is 2×2, and B̂ is 2×d. Thus,M has rank at most 2. This

explains why only two images are nonzero; the d − 2 zero images correspond to nullspace

modes of the particle to grid transfer.

Next, we turn to the first two images. Observe that M̂ = ÂP̂ B̂ and N̂ = B̂ÂP̂

have the same nonzero eigenvalues with the same multiplicity. (Indeed, if u is a vector

with nonzero eigenvalue λ, then λu = M̂u = ÂP̂ B̂. v = B̂u is an eigenvector of N̂ , since

N̂v = B̂ÂP̂ B̂u = λB̂u = λv. Observe that λ 6= 0 implies v 6= 0. It is also easy to see that

distinct eigenvectors of M̂ for the same nonzero eigenvalue map to distinct eigenvectors of

N̂ .)

The operator N̂ = B̂ÂP̂ is composed of two pieces. Recall that BA is the grid-

particle-grid transfer operator. The blocks of B̂Â, which I denote using subscripts as

(B̂Â)i = B̂iÂi must be of the form λiI, where λi was the eigenvalue computed for that

cell in the grid-particle-grid case. Thus, N̂i = λiP̂i.

For i = (0, 0), P̂i = P̂(0,0) = I, since the constant translation modes are divergence

free. Since constant translation is preserved by PIC and APIC, λ(0,0) = 1. This explains

why the middle pixel of both images corresponds to eigenvalue 1.

68



For any other i 6= (0, 0), P̂i = I − iiT

iT i
is a rank-one projection operator with

eigenvalues 0 and 1. The eigenvalues of N̂i are 0 and λi. Since the largest eigenvalue is

always λi, the image of maximum eigenvalues is the same as the grid-particle-grid case. The

second eigenvalue of P̂i being 1 for the middle and 0 elsewhere explains the image for the

second-to-largest eigenvalue. Although the projection was actually performed with the finite

difference stencil, the images look the same.

Analysis results - FLIP

The results for FLIP are very different. In this case, all images but one are iden-

tically 1. The only nontrivial image is filled with the smallest eigenvalues and is shown in

the last row of Figure 3.8.

The explanation for the images with eigenvalue 1 everywhere is similar to the reason

for the trivial images for PIC and APIC. One of the trivial images corresponds to the modes

that are transferred to the grid, resulting in nonzero divergence-free velocity fields that are

unaffected by the pressure projection. Since no grid velocity change occurs, FLIP behaves

as the identity map on these modes. The other trivial images correspond to null modes

of the particle to grid transfer. These produce a zero grid velocity, which is unchanged by

pressure. In the case of FLIP, however, the grid velocity difference (zero) is mapped back,

resulting in no change. The operator behaves as the identity map on these modes.

That leaves the nontrivial mode. This appears qualitatively similar to the nontrivial

modes observe for PIC, except that it is inverted and has a single pixel corresponding to

eigenvalue 1 in the middle. (Compare with Figure 3.5.) This is the mode corresponding to
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Figure 3.8: Eigenvalues for particle-grid-particle transfers, with 4 particles per cell and
quadratic splines. Some trivial eigenvalue images are omitted. Images with a “?” have
a red dot in the center of the image (constant velocity mode). The dissipation of APIC
is approximately between XPIC(2) and XPIC(3). The dissipation of XPIC(m) improves
significantly with order. In exchange, XPIC(m) lets through some undesirable modes (second
column), which is minimal for low orders but grows steadily with m. The general behavior
of FLIP is radically different from XPIC(m) or APIC; it lets through almost everything.
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the pressure projection. The eigenvalue 1 in the middle corresponds to the constant velocity

being divergence free. In the case of PIC and APIC, the rest of the image would be black,

since all other divergent modes should be projected out. In the case of FLIP, however, this

is not so. For low-frequency modes, the image appears black, and these divergent modes are

projected well. Higher frequency modes, however, do not readily survive the transfer to the

grid. Since only a relatively small portion of the high-frequency velocity modes survive to

the grid, only that small amount of velocity can be projected out by the pressure solve. Since

only a small grid change was made, only a small change is made to the particle. The result

is that high-frequency divergent velocity modes on particles are not efficiently projected.

This goes some way towards explaining why updating FLIP particle positions with particle

velocities produces very bad results; in addition to the particle velocities being noisy, the

velocity field on the particles is not even divergence free.

3.3.3 Analysis results - XPIC

In XPIC, all but two eigenvalues are all zero; this is related to the nullspace of

XPIC transfer. This is an immediate improvement from FLIP, since the amount of noise

that can survive on particles is already drastically reduced. In this way, XPIC is far more

like PIC or APIC than it is like FLIP. The largest of the nontrivial eigenvalues is similar

to APIC, and the eigenvalue improves as the XPIC order increases. XPIC(1) matches

PIC, since the schemes are the same. The dissipation of APIC lies somewhere between

XPIC(2) and XPIC(3). For higher orders, XPIC is significantly less dissipative than APIC.

In practice, XPIC is typically run at XPIC(2) or XPIC(5), with the latter being significantly

less dissipative than APIC.

71



When we start looking at the second largest eigenvalue, we see that the reduced

dissipation of XPIC comes at a minor cost in the effectiveness of projection. Because XPIC

performs particle-to-grid and grid-to-particle transfers repeatedly without projecting diver-

gent modes, these divergent modes can be present in the particle velocity. These modes are

not removed by pressure projection and their frequency response appear as “halo” in the

other nontrivial eigenvalue (see the XPIC rows in Figure 3.8). Even by XPIC(3), some of

these halo eigenvalue are already larger than 0.4. Practically, this means that particle diver-

gence may persist for several time steps, but it cannot accumulate over time. It should be

noted that XPIC was not constructed as a transfer scheme for incompressible fluids, so the

interplay between transfers and projection was not a consideration during its development.

3.4 Implementation notes

3.4.1 Extrapolation

When a boundary is not periodic, transfers will require information from outside

the fluid domain. We handle this by extrapolating information into the ghost region. For

all transfer algorithms, extrapolation happens before the grid-to-particle transfer and after

the particle-to-grid transfer.

Reflected particles Consider two physical scenarios. In the first we have particles that

are moving towards a solid wall, which causes them to stop moving normal to the wall

and slide tangentially along it. In the second scenario, the wall is missing but instead a

mirror image of the particles is added on the other side of the wall. The particles will move
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xpxp
xia = xia

xia xia

xia xia

Figure 3.9: Grid or particle attributes (solid) and their reflected counterparts (hollow). Faces
on the boundary are their own reflections. The hatched sides indicate the inside domain.

towards the plane where the wall was and collide with each other, resulting in them sliding

tangentially along where the wall was. The results is these two cases are the same. We can

therefore mimic the effects of colliding with a wall by simply mirroring the particles on the

other side. We do not actually create extra particles outside; we simply perform a touch up

after doing particle-to-grid transfers so that they behave as if there were reflected particles.

The corrections depend on the type of boundary condition and are simple modifications that

are applied to the grid in a thin layer near the boundary. These take the form of adding

data that was transferred into the ghost region to the reflected location inside, possibly with

a change of sign.

We use a bar over a quantity to denote its corresponding reflected counterpart

across the grid boundary. For example, xia and xp are the locations of reflected grid faces

and particles. For contrast, xia and xp are the reflected locations of a grid face and a

particle. Since we only perform this reflection across grid faces, reflecting the location of one

face always results in the location of another face. We are thus justified in defining xia = xia

and xp = xp. Note that the particle represented by p is only conceptual and for derivation

purposes; we do not actually construct these particles.
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They are shown in Figure 3.9. Since the basis functions are invariant to reflections,

the weight generated from reflected particle to the inside domain index, wipa = N(xia−xp) =

N(xia − xp) = N(xia − xp) = wipa. Similarly we also have wipa = wipa. Consider a general

grid attribute qia (which could be mass or a component of velocity, momentum, or force)

inside the domain consists of contributions from internal particles and reflected particles.

We want the reflected value to be qp = bqp + cp, where b = ±1 and cp depend on the type

of attribute and boundary conditions (See Figure 3.10). Assuming for simplicity a PIC

transfer,

qia =
∑
p

wipaqp +
∑
p

wipaqp =
∑
p

wipaqp +
∑
p

wipa(bqp + cp)

qia =
∑
p

wipaqp +
∑
p

wipaqp =
∑
p

wipaqp +
∑
p

wipa(bqp + cp)

bqia =
∑
p

wipabqp +
∑
p

wipa(qp + bcp) = qia −
∑
p

wipacp + b
∑
p

wipacp

Compare these with the grid values q̂ia that would be if no reflected particles were used.

q̂ia =
∑
p

wipaqp q̂ia =
∑
p

wipaqp

In the case b = 1 and cp = 0, these rules amount to qia = qia = q̂ia+ q̂ia. That is, simply copy

the ghost values into the interior, and then copy these values back into the ghost region. In

the case b = −1 and cp = 0, qia = −qia = q̂ia − q̂ia. This is implemented by subtracting

ghost values from the inside values, then copying the inside data to the ghost region with
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a sign flip. Notice that these rules are very simple grid-based fixes that only need to be

applied near the boundary.

The case cp 6= 0 is only needed for inhomogeneous boundary conditions, which are

only relevant for velocities. In this case, we would be enforcing v = vbc at the boundary.

However, we actually transfer momentum from particles to grid, not velocity directly. Thus,

we must reflect about the desired value of momentum for the particles, cp = 2vbcmp. Applied

to the transfer rules, we see

qia =
∑
p

wipaqp +
∑
p

wipa(bqp + cp) = q̂ia + bq̂ia +
∑
p

wipa2vbcmp = q̂ia + bq̂ia + 2miavbc

bqia = qia −
∑
p

wipa2vbcmp + b
∑
p

2wipavbcmp = qia + 2(bm̂ia − m̂ia)vbc,

where m̂ia also refers to velocity before the boundary condition treatment has been applied.

The same correction rules can be obtained for APIC transfers by defining bpa appropriately.

We use b = 1 and cp = 0 for (1) masses, (2) free surface momentum transfers,

and (3) the tangential components of momentum transfers for slip boundary conditions. We

use b = −1 and cp = 0 for (1) no-slip boundary conditions and (2) normal components

of momentum transfers for slip boundary conditions. See Figure 3.10. We use cp 6= 0 for

inhomogeneous velocity boundary conditions. We perform this kind of extrapolation for

mass and momentum after the particle-to-grid transfer.

We also perform extrapolation after forces are applied. Ideally, velocities should

continue to satisfy appropriate boundary conditions after forces have been applied. This is

accomplished by extrapolating forces using the homogeneous version of the same boundary

75



(a) Slip (b) No-Slip (c) Free surface

Figure 3.10: Reflecting velocities across the boundary in different ways mimics different
types of boundary conditions. The hatched side indicates the inside domain. The hollow
circles are reflected particles.

condition applied to velocities. For our analytic body force, no modifications should be made

to the for inside region, since these forces are analytic and thus correct. We do, however,

extrapolate the inside values to the ghost region.

There is another extrapolation performed after grid evolution, since the grid-to-

particle transfers will read from the ghost region. As with analytical forces, we leave the

interior values alone (the pressure projection boundary conditions ensure that the interior

values already satisfying the boundary conditions) but extrapolate the interior values to the

ghost regions according to the boundary condition type. This step is especially important

with FLIP transfers, since FLIP will compute the velocity difference based on current and

previous velocity, which has been already extrapolated.

We also note that there will be overlapped access at the corners of ghost region. The

extrapolation rules for each direction are compatible with each other, this is just a matter

of correct implementation. Accumulate ghost data into the interior first, then extrapolate

it back to the ghost region as a second pass.
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Figure 3.11: Cut-cell layout for our degrees of freedom. Red nodes are inside the fluid. Blue
cell centers contain pressure degrees of freedom during the pressure projection. The green
triangles are MAC faces where fluid velocities are being projected.

3.4.2 Cut-cell formulation

Some of our tests include irregular objects. For these tests we use the more accurate

pressure projection formulation of [130]. The objects are represented by a level set on grid

nodes. Nodes not in an object are in fluid. MAC faces hold valid velocity degrees of freedom

if any of their nodes are in fluid. MAC cells hold valid pressures if any of their nodes are

in fluid. Note that if a MAC face is valid then both neighboring cells are also valid. See

Figure 3.11. This discretization is just the regular central differencing stencil away from

objects. Since our objects do not touch the domain walls, we handle domain wall boundary

conditions as in the finite differencing discretization.

Three concerns must be addressed for this layout to be valid. (1) Valid velocities

must be available at all MAC faces being projected. Each valid face has at least one valid

node. Provided the geometry is adequately resolved on the grid, this valid node will have

a cell that is entirely inside fluid; reseeding will guarantee that this cell has particles. All
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of these particles will contribute to the velocity on the face being considered provided the

transfer stencil is at least as wide as the quadratic stencil. (2) Valid faces must have valid

pressures on either side (except at the domain walls) so that the pressure gradient can be

applied. Our discretization has this property as noted above. (3) We must have enough

valid grid velocities to transfer back to particles. This is not normally true for us, and the

way we handle this determines the type of boundary condition we enforce. If the object has

no-slip boundary conditions, then we set the invalid velocities inside the object with the

object’s velocity. If the object has no-slip boundary conditions, then we do moving least

squares transfers as described below.

3.4.3 Moving least squares

APIC transfers may be formulated as Moving Least Squares (MLS) [57, 88] by

expressing the transfers as a least squares optimization. If there is only one particle p and

we were doing co-located APIC transfers, then a grid-to-particle-to-grid (ṽn+1
i → vn+1

i )

with ∆t = 0 (so that wn+1
ip = wnip and xn+1

p = xnp ) can be expressed as

vn+1
p =

∑
i

wnipṽ
n+1
i Bn+1

p =
∑
i

wnipṽ
n+1
i (xni − xnp )T

Dn+1
p =

∑
i

wnip(x
n
i − xnp )(xni − xnp )T mn+1

i = wnipmp

Cn+1
p = Bn+1

p (Dn+1
p )−1 mn+1

i vn+1
i = wnipmp(v

n+1
p + Cn+1

p (xni − xnp ))
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The same vn+1
p andCn+1

p are obtained by choosing vn+1
p andCn+1

p to minimize the objective

E =
∑
i

wnip
∥∥vn+1

i − ṽn+1
i

∥∥2
=
∑
i

wnip
∥∥vn+1

p + Cn+1
p (xni − xnp )− ṽn+1

i

∥∥2
.

That is, the particle data is chosen so that the round trip transfer preserves the grid velocity

field in a weighted least squares sense. The nice part about this formulation is that it makes

sense when some data is invalid. Let si = 1 for valid nodes and si = 0 for invalid nodes.

Then, vn+1
p and Cn+1

p can be chosen to minimize

E =
∑
i

siw
n
ip

∥∥vn+1
p + Cn+1

p (xni − xnp )− ṽn+1
i

∥∥2
.

If Bn+1
p is used for state, then it can be computed with

Dn+1
p =

∑
i

siw
n
ip(x

n
i − xnp )(xni − xnp )T Bn+1

p = Cn+1
p Dn+1

p

For MAC transfers, a similar minimization problem can be formulated as

E =
∑
ia

siaw
n
ipa

(
eTa v

n+1
p + (cn+1

pa )T (xnia − xnp )− ṽn+1
ia

)2
,

This leads to the following algorithm. First, compute the intermediates

qpa =
∑
i

siaw
n
ipa gpa =

∑
i

siaw
n
ipa(x

n
ia − xnp ) Dn+1

pa =
∑
i

siaw
n
ipa(x

n
ia − xnp )(xnia − xnp )T

upa =
∑
ia

siaw
n
ipaṽ

n+1
ia hpa =

∑
ia

siaw
n
ipa(x

n
ia − xnp )ṽn+1

ia
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Then, solve a linear system and compute bn+1
pa and vn+1

p .

qpa gTpa

gpa Dn+1
pa


 ypa

cn+1
pa

 =

upa
hpa

 bn+1
pa = Dn+1

pa cn+1
pa vn+1

p =
∑
a

ypaea.

This linear system is symmetric positive semidefinite but may be singular if insufficient

valid data is available; it should be solved in the minimum norm least squares sense. The

linear system is only 4× 4 in 3D, so this algorithm is quite efficient. One may see that this

algorithm decays into the usual transfers when all velocities are valid (sia = 1). In this case,

qpa = 1, g = 0, upa = ypa = eTa v
n+1
p , and hpa = bn+1

pa .

3.4.4 Reseeding

To correct the particle coverage, we reseed the particles in a similar way to [23].

For each cell the number of particles are counted and if it is below 2 we randomly sample

new particles in the cell so that the number of particles meet the minimum requirement. The

velocities for the new particles are interpolated from the grid. For a cell which is partially

occupied by an object, we reject the sample positions that are inside the object. If the

number of particles in a cell exceeds 2d+1 where d is the dimension, we randomly select

particles for removal. We perform a particle-to-grid transfer if any new particles are added

to ensure consistency between particles and grid. This extra transfer is only necessary for

XPIC, but we perform it for all transfers to keep the evolution as similar as possible.
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3.4.5 Grid forces

We use the body force in the Navier-Stokes equations as a forcing term to make

chosen velocity and pressure fields into analytic solutions. This is done by substituting the

velocity and pressure (assuming zero viscosity) into the equations:

f =
∂v

∂t
+∇v · v +

1

ρ
∇p.

3.5 Numerical examples

3.5.1 Convergence

To demonstrate the correctness of the APIC transfers, as well as the correctness

of the PIC and FLIP versions of the scheme used for comparison, we perform some simple

convergence tests. All velocity errors are reported using the grid velocity at the end of the

time step ṽn+1
ia as well as using the particle velocities at the end of the time step vn+1

p . For

each test, we report the L∞ and L2 errors calculated according to the formulas

L∞G = max
ia

∣∣ṽn+1
ia − v(x̃n+1

ia , tn+1) · ea
∣∣ L2

G =

√
1

NG

∑
ia

(
ṽn+1
ia − v(x̃n+1

ia , tn+1
)
· ea)2

L∞P = max
p

∥∥vn+1
p − v(xn+1

p , tn+1)
∥∥
∞ L2

P =

√
1

NP

∑
p

∥∥vn+1
p − v(xn+1

p , tn+1)
∥∥2

2

where NG =
∑
ia

1, NP =
∑
p

1 are the numbers of simulated grid faces and particles and

v(x, t) is the analytic velocity field.
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Figure 3.12: Convergence tests with three different transfers for each of the four error
measures. The markers are the actual error computed, and the lines are least squares
regression lines used to calculate the convergence order. Convergence orders are listed in
the legends. Resolution is the number of cells in each direction of the grid.

Taylor Green

For this test, we verify the convergence of a Taylor-Green vortex. We use a [−π, π]2

domain with initial velocity field v0 = 〈− sin(ax) cos(ay), cos(ax) sin(ay)〉. The fluid has

physical properties ρ = 3 and µ = 0. The analytic solution is v(x, t) = v0(x)e−2a2νt, where

ν = µ
ρ . All of the tests were run with ∆x = 2π

N and ∆t = 1
N to a final time of T = 1, where

N is the number of grid cells in each direction. The same test was run with PIC, APIC, and

FLIP transfers. The same particle distribution is used for each test, which was computed as
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blue noise by Poisson disk sampling. In particular, the particle distribution is never the same

per cell (and thus the transfer matrices are not circulant). Convergence plots are shown in

the first row of Figure 3.12. A few observations stand out immediately from the convergence

plots. PIC converges convincingly at first order with close agreement between particle and

grid states. APIC converges cleanly at first order, but here the particles have some error

relative to grids; this is because the extra velocity contribution on particles (due to bn+1
pa )

was not taken into account during the error analysis; the significance of this difference

diminishes under refinement. The most striking observation is with respect to FLIP. When

errors are measured on the grid, first order convergence is observed. On particles, however,

the convergence is weaker than first order. The reason for the reduced convergence order on

FLIP is unknown, but it is suspected to be related to the accumulation of error in transfer

null modes on particles (indeed, this error does not seem to affect grid convergence, though

one may wonder for how long this situation can persist).

“Square”

For this test, we verify the convergence of an analytic velocity field with slip bound-

ary conditions. First we make two stream functions φ1(x, y) = f(x)f(y) and φ2(x, y) =

g(x)f(y), where f(x) = x(1−x)(x2−x−1) and g(x) = x(1−x)(x+1)(3x2−7). Then the ana-

lytic velocity field constructed from these stream functions as v = 〈−∂φ1
∂y ,

∂φ1
∂x 〉+t〈−

∂φ2
∂y ,

∂φ2
∂x 〉

on domain [0, 1]2. This velocity field is divergence free. The stream functions are chosen

such that the normal directional derivative of tangential velocity vanishes on the boundary.

Thus it is compatible with the slip boundary conditions. The analytic pressure is chosen as

p(x, y, t) = xy(1−x)(1− y)(x−xy+ y2 + t), so that p = 0 at the boundaries. The fluid has
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physical properties ρ = 3 and µ = 0. All of the tests were run with ∆x = 1
N and ∆t = 1

4N to

a final time of T = 1. The chosen analytic velocity field has a larger peak speed, so we use a

smaller ∆t for this simulation, and the convection would not affect out results. Convergence

plots are shown in the second row of Figure 3.12. With the help of extrapolation, we get

linear order convergence except L∞P error of FLIP. This is due to the same reason as in the

Taylor-Green convergence test.

“Circle”

For this test, we verify the convergence of a velocity field with object boundaries

that are not aligned with the grid. We use a [−2, 2]2 domain but exclude a circle of radius

1 at the origin. All boundaries are slip. We construct a divergence-free velocity from the

stream function S defined by

S =
1

177500000
(y − 2)(y + 2)(x− 2)(x+ 2)(x2 + y2 − 1)

× (1775x6y4 + 1775x4y6 − 14585x6y2 − 31229x4y4 − 14585x2y6 + 36100x6 + 158486x4y2

+ 158486x2y4 + 36100y6 − 248104x4 − 538625x2y2 − 248104y4

+ 384500x2 + 384500y2 − 213392)

This field is chosen so that the normal velocities and the normal derivative of tangential

velocity are 0 at all boundaries. The analytic pressure is chosen as p(x, y, t) = x−xy+y2 +t.

The fluid has physical properties ρ = 3 and µ = 0. All of the tests were run on an N×N grid

with ∆x = 4
N and ∆t = 4

N to a final time of T = 1. Cut-cell discretization is used to handle

the curved circle boundary, moving least squares are used for transfers, and reseeding is used
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to maintain particle coverage. Convergence plots are shown in the last row of Figure 3.12.

In all tests the particle and grid error measured in L2 norm reach the first order convergence.

The convergence of L∞P error also approximately reach the first order but some outliers are

observed in APIC. This occurred because particles were seeded so close to the boundary

edge that some of their weights were near roundoff error. Since a quadratic spline is used,

only one row of velocities is available, which is insufficient to reconstruct the full velocity.

The MLS system in this situation is singular, which leads to an inaccurate transfer. We

note that when transferred back to the grid, this particle will accurately interpolate velocity

to the faces that are well-supported. The velocity interpolated to the nearly unsupported

faces is inaccurate, but the weights are so small that this is irrelevant. This is why the grid

velocity is clean. This problem could be avoided in a number of ways, including simply

preventing particles from being so close to the domain boundaries.

Vortex shedding

In this test we simulate a constant velocity field 〈1, 0〉 passing a circle. We use a

[−2, 14]× [−4, 4] domain, with slip boundary conditions on its y = ±2 sides, inflow (u = 1)

at x = −2, and free surface on the x = 14 side. The circle is centered at 〈0, 0〉 with radius

0.25. The fluid has physical properties ρ = 1 and µ = 0. Initially particles are sampled by

blue noise in the domain. New particles are created to fill the vacancy as existing particles

move in the +x direction. Cut-cell discretization and reseeding are used for this test. The

same test was run with APIC and XPIC(2,3,5) transfers. We run the tests to a cyclical

state and then examine the frequency of vortex shedding. To extract the vortex signal, we
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(a) APIC (b) XPIC(2)

(c) XPIC(3) (d) XPIC(5)

Figure 3.13: Vortex shedding simulation with APIC and XPIC transfers. The red bars above
and below the images indicate the range where vorticity is computed to extract vortex signal.

compute vorticity inside a chosen window. This total vorticity ranges from positive (when a

vortex with positive vorticity is centered in the window) to negative (when a vortex spinning

the opposite way passes). This curve is oscillatory, and we compute its frequency using a

Fourier transform. We show the simulation results in Figure 3.13. APIC sheds at frequency

0.49 Hz, and XPIC family sheds at frequency 0.39 Hz (XPIC(2)), 0.42 Hz (XPIC(3)), and

0.41 Hz (XPIC(5)). The corresponding Strouhal numbers are between 0.19 and 0.24. This

is consistent with fluid flow over a range of higher Reynolds numbers (300− 106).
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3.5.2 Dissipation and noise

Taylor Green vortex

Measuring vorticity

One of the main objectives of this work is to analyze how well vorticity is preserved

under different transfers. To do this, we need useful measures of how well vorticity is

preserved. We use two scalar measures

Evel =

∫
Ω
‖u‖2 dV Evort =

∫
Ω
‖∇ × u‖2 dV,

which measure the kinetic energy and magnitude of vorticity. We omit density and constants

from the measures for convenience. We compute these on the grid from ṽn+1
ia and discretize

them as

Evel =
1

NG

∑
ia

(ṽn+1
ia )2 Evort =

1

NC

∑
cαβ

((
∂uα
∂xβ

)
c

−
(
∂uβ
∂xα

)
c

)2

NC =
∑
c

1,

where NC is the number of cells; the index c runs over all cells that have sufficient neigh-

boring information to compute the vorticity measure. The indices α, β run over the spatial

dimensions. We normalize the discretized measures so that they do not depend on the
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resolution. The partial derivatives are approximated with central differences:

(
∂u1

∂x2

)
(i,j)

=
1

2

 ṽn+1
i− 1

2
,j+1
− ṽn+1

i− 1
2
,j−1

2∆y
+
ṽn+1
i+ 1

2
,j+1
− ṽn+1

i+ 1
2
,j−1

2∆y


(
∂u2

∂x1

)
(i,j)

=
1

2

 ṽn+1
i+1,j− 1

2

− ṽn+1
i−1,j− 1

2

2∆x
+
ṽn+1
i+1,j+ 1

2

− ṽn+1
i−1,j+ 1

2

2∆x



The same four-point central-differenced and central-averaged stencil is also used in 3D.

For this example, we begin with the basic setup from Section 3.5.1. For this section,

we fix µ = 0 and N = 64. We also use a later final time T = 10 to observe the longer-term

behavior. In this test, we are interested in studying (a) dissipation of energy, (b) transfer of

energy into incorrect velocity modes, (c) loss of vorticity, (d) the effects of particle seeding,

and (e) the effects of spline choice (quadratic or cubic).

We test APIC, FLIP and XPIC (order 2 and 5) using Poisson disk seeding (4

particles per cell on average) and regular seeding (2×2 particles per grid cell). PIC is omitted

from this test since it dissipates energy too rapidly to draw an interesting comparison. The

results are shown in Figure 3.14. In the figure, the measures Evel, Evort, and Etaylor are

normalized by their values after the first transfer from particles to grid. The measure Etaylor

is like Evel, except only contributions from the Taylor-Green Fourier modes are included.

There are a few interesting observations to be made from the results. FLIP trans-

fers are not affected much by the choice of spline order, but it is sensitive to the particle

distribution. APIC is relatively insensitive to the spline and seeding, though the higher-

order spline and irregular seeding both increase dissipation very slightly. APIC and FLIP
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(a) Poisson disk blue noise; quadratic spline
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(b) Regular seeding; quadratic spline
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(c) Poisson disk blue noise; cubic spline
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(d) Regular seeding; cubic spline
APIC Evel APIC Evort APIC Etaylor FLIP Evel FLIP Evort FLIP Etaylor

XPIC(2) Evel XPIC(2) Evort XPIC(2) Etaylor XPIC(5) Evel XPIC(5) Evort XPIC(5) Etaylor

Figure 3.14: Loss in energy (solid lines) and vorticity (dashed lines) for a Taylor-Green
vortex over time using FLIP, APIC and XPIC transfers. The dotted lines show the amount
of energy in the Fourier modes corresponding to the Taylor-Green vortex. All curves are
normalized relative to the values obtained after transferring from the particles to the grid
in the first time step.

have similar levels of dissipation. XPIC is also sensitive to the particle distribution as FLIP,

and the XPIC transfer with lower order shows relatively larger dissipation.

Noting the analysis of the prior sections, we perform an FFT on the velocity field

and report the magnitudes of the velocity modes as a colored image as we did for the

transfer modes. In Figure 3.15, we look at the bleeding of the vortex into other Fourier
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Figure 3.15: Energy leakage into other Fourier modes, at times t = 0, 2, 4, 6, 8, with 4
particles per cell. The first image is immediately after the initial particle to grid transfer.
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modes. From this we can see that APIC is bleeding mostly into nearby low-frequency

velocity modes (near the center of the image), wheres FLIP and XPIC transfer energy into

higher frequency modes. The error visible after the very first transfer for FLIP and XPIC

with irregular seeding is caused by trying to represent the velocity field on particles; if the

APIC particles are initialized with b0
pa = 0, the same errors are observed.

In Figure 3.15, significant portion of the velocity field can be found in incorrect

high-frequency Fourier modes (modes on the order of a few percent). The quantity Evel −

Etaylor for Figure 3.14 reflects the amount of kinetic energy that has been transferred to

incorrect Fourier modes, and here the difference appears negligible. Because kinetic energy

measures the squares of velocity, modest velocity errors (e.g., on the order of 5%) in modes

that should be zero make only a very small difference in energy (around 0.25%). Since

positions are updated using velocities (not their square), these errors are still significant.

We observe that regular seeding and irregular seeding produce noticeably different

results on this test. Regular seeding introduces leakage that is several times higher than for

irregular seeding. (Green pixels are observed well away from the middle of the image when

regular seeding is used, indicating energy leakage into high-frequency Fourier modes. For

irregular seeding, only shades of blue are observed away from the low-frequency modes in

the middle.) A highly regular particle distribution appears to exacerbate this bleeding.

Inlet

In this test we use a [0, 1]d domain, where d = 2 for 2D and d = 3 for 3D. All

boundaries are slip except some portions of the y = 0 boundary, where we place sources

(fixed inflow velocity v = 0.2) and sinks (outflow, p = 0). The layouts are shown in
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Figure 3.16: Inlet test configurations for 2D and 3D. The simulation domain is [0, 1]d where
d = 2 or d = 3. The red dotted or hatched areas are free surfaces, the blue areas are sources
with a normal velocity v = 0.2, and all other boundaries are slip and have 0 normal velocity.

Figure 3.16. At time T = 80 s we turn off the source and sinks (enforcing slip boundary

conditions everywhere) and observe how energy is dissipated until time T = 200 s.

We compute kinetic energy for particles and grid. The kinetic for grid is discretized

as

KEG =
∑
ia

1

2
mia(ṽ

n+1
ia )2

where the indices run through all internal faces with non-zero mass. The kinetic energy for

particles are discretized as

KEP =
∑
p

1

2
mp‖vnp‖2 +

∑
pa

1

2
mp(b

n
pa · (Dn

pa)
−1bnpa)

92



A
P
IC

P
IC

F
L
IP

T=80 s T=90 s T=100 s T=150 s

Figure 3.17: Snapshots of inlet tests. Streamline colors indicate fluid velocity magnitude,
with black indicating slow fluid and yellow representing the fastest flow. The first column
of frames (T = 80 s) captures the last moment before we seal the boundary. The source and
sinks are marked by solid blue and dotted red as same as Figure 3.16. After that vortices
evolve without any input.

The extra contribution to kinetic energy is an estimate to the affine contributions; it is

omitted for non-APIC transfers. The vorticity energy is computed as

V =
∑
p

1

2
mp

∥∥∥∥∥∑
ia

∇wnip × vniaea
∥∥∥∥∥

2

.

Snapshots of 2D simulations are shown in Figure 3.17. After the sources are turned

off (T > 80), two vortices are formed in APIC and FLIP. In Figures 3.18 and 3.19 we plot
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the vorticity and kinetic energy as a function of time. Observe that the particle and grid

energy closely track each other in 2D for all versions as well as in 3D for PIC and APIC. In

the 3D FLIP simulation, we can observe a significant difference between the grid and particle

kinetic energy. The particle energy grows while the inlet is open even though the grid energy

remains stable. Although grid velocities decay for all 3D simulations, the particle energy

and particle-based vorticity does not decay to zero for the 3D FLIP simulation. Even when

the particles come effectively to rest, the particles carry non-negligible velocities.

3.6 Conclusions

We have presented a new MAC-grid-based APIC transfer that preserves linear and

angular momentum and also satisfies the original APIC properties. The full scheme is not

conservative, since we perform the pressure solve using constant density as a compromise to

avoid boiling artefacts.

We used 2D Fourier transforms to understand the numerical properties of the trans-

fer. Compared with the 1D Fourier transform currently being used to analyze transforms,

Fourier transforms in 2D give us some advantages. The first advantage is that we are able

to analyze the Taylor-Green vortex, which gives us a way of studying dissipation of vortices.

The second advantage is that it allows us to include pressure projection in the analysis,

which extends the analysis meaningfully to include FLIP transfers. Studying in two dimen-

sions also lets us studying the transfers’ sensitivity to different particle distributions rather

than merely irregularities in particle spacing.
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Figure 3.18: Vorticity and kinetic energy of 2D inlet test. Fluid is pumped through the
domain until time 80 s, at which point the domain boundary is sealed and the fluid continues
to circulate. For PIC, little energy is accumulated, and the circulation decays rapidly. For
both FLIP and APIC, the circulation drops off quickly but then levels off. The grid and
particle kinetic energy track each other closely for all three methods, which suggests that
FLIP is quite stable on this example. FLIP retains more energy throughout the simulation.

Compared with direct computation of the eigenvalues of the transfer matrix, the

2D Fourier transform lets us efficiently compute and intuitively understand the eigenvalues

of transfers. It arranges the eigenvalues by giving us a meaningful image rather than a long

list of eigenvalues. From these images we can tell how a vortex of a spatial scale dissipates

for example. Finally the Fourier transform in 2D provides us images for various transfers so

we can compare them conveniently and visually.

In terms of dissipation, the comparison between APIC and PIC is not a surprise;

PIC is very dissipative. The comparison with XPIC is instructive, as this is the first direct

comparison between the two transfers as far as we are aware. The level of dissipation in

APIC lies between XPIC with order 2 and 3. XPIC becomes less dissipative with higher

order. In this spectrum, FLIP has zero dissipation. The opposite side of dissipation is noise,

where modes survive on particles but should not. On this side, APIC and PIC are effectively
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Figure 3.19: Vorticity and kinetic energy of 3D inlet test. Fluid is pumped through the
domain until time 80 s, at which point the domain boundary is sealed and the fluid continues
to circulate. The grid-based kinetic energy for all three methods decay to zero. For PIC
and APIC, particle energy tracks the grid energy, and the particle-based vorticity decays to
zero. The behavior of FLIP is very different. Particle energy is significantly greater than
grid energy throughout the simulation. At its peak, about 1/3 of the particle energy does
not transfer to the grid. During the pumped phase, energy accumulates on particles but not
on the grid. As the grid energy decays away to zero, a significant amount of particle energy
remains. The particle-based vorticity measure decays more than the energy, but it also stops
short of zero. Since the vorticity measure is most sensitive to changes on the length scale of
one grid cell, this suggests that the particles end with velocity modes whose wavelength is
significantly less than the cell size.

perfect. XPIC is not too bad at lower orders, but it does tend to retain divergent velocity

modes on particles over short time scales (See Figure 3.8). Like FLIP, it also tends to transfer

low-frequency velocity modes into higher-frequency velocity modes (See Figure 3.15).

3.6.1 Limitations

The analysis presented in this paper provides intuition for how transfers behave; it

does not fully characterize the transfers. The use of Fourier analysis limits the analysis to

using a globally regular particle arrangement, which may skew the analysis. Truly irregular

particle configurations may behave somewhat differently, and they may be more or less
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dissipative than the tiled case. Nevertheless, the analysis presented provides useful insight

into the methods involved.

The APIC transfers introduced are linear and angular momentum conserving, but

the overall algorithm is not. This is because we found it necessary to use a constant-density

pressure projection to avoid boiling artefacts in the simulations, where areas with thinner

particle coverage appear less dense and rise under gravity. We postpone the problem of

achieving full conservation of linear and angular momentum for future work. For related

reasons, we postpone consideration of free surface flows for future work.

The desirable properties of the APIC transfers are tied to position update em-

ployed. As with co-located transfers, a generalized version of the transfers [94] may signifi-

cantly broaden the range of positional updates over which good transfer properties may be

obtained. In particular, a version of the transfers compatible with the XPIC position update

(likely a MAC version of [94]) would be desirable.

The algorithm presented is not observed to work well with free surfaces. There are

two reasons for this. The first is that our pressure projection is performed with constant

density. Isolated particles command a larger volume on the grid than particles in the bulk,

which causes problems when escaped particles land on the fluid surface. Particle-deficient

pockets are created when fluid regions merge. This is a well-known problem with MPM,

and some approaches have been proposed to address it [165, 59].
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Chapter 4

Cached Gaussian elimination for

simulating Stokes flow on domains

with repetitive geometry

In this chapter, we still consider the fluid simulation, but this time we focus on the

performance. The major part of the run time spent in a simulation is usually from linear

solving, and the structure of the linear system dramatically affects the performance. With

careful discretization, we find that the simulation domains with thin and long channels lead

us to a sparse linear system with many duplicate block matrices, which in turn produce

many reusable and independent computations if we solve the system by elimination. There

will be an enormous gain of performance if we cache the reusable results and perform the

independent computations in parallel. The discretization method, and also the linear solver

are present in this chapter.
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4.1 Introduction

Fluid simulation plays an important role in engineering. These applications vary

greatly in the type of fluid being considered, the shape and size of the fluid domain, the

number of phases, and in many other ways. This has lead to the development of a wide

variety of methods that try to be as flexible and general as possible, maximizing their ap-

plicability to a wide range of applications. This flexibility comes at a cost, as such methods

are unable to take advantage of specific application-specific properties. In this work, we de-

velop a method for simulating fluids through channel-based microfluidic devices. The fluid

domains for these devices generally consist of simple components connected by long, thin

pipes. In this paper, we specifically develop a discretization algorithm that converts the

Stokes flow problem into a linear algebra problem that is of a form that can be efficiently

solved, and we propose an algorithm to solve these linear algebra problems very efficiently.

The discretization is formally third order accurate in L∞ for velocity and second order ac-

curate in L∞ for pressure. We demonstrate that the proposed algorithm achieves significant

speedups on such problems at practical resolutions.

Existing methods for microfluidics simulation Numerical simulation of microfluidic

devices presents few fundamental problems for existing methods, and software packages

suitable for microfluidics applications are readily available. Indeed, numerical studies are

typically carried out using an off-the-shelf software package such as OpenFOAM [84], COM-

SOL [117, 185], CFD-ACE+ [34], or Fluent [35] (See [177, 67] for an overview of existing

tools). Although some of these software packages often have support specifically for mi-
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crofluidic applications, the operate using general-purpose numerical methods and do not

take advantage of the special properties of these devices. The computational cost of these

methods has led to significant interest in application-specific numerical methods. A particu-

larly popular model is the one-dimensional analysis model, which approximates the full fluid

equations based on an analogy between flow of fluid through tubes and the flow of current

through wires [73, 171, 68, 69]. See also [74] for a thorough introduction to these techniques.

We take a different approach to obtaining faster simulation results. Rather than relying on

properties of these devices to approximate the physics, we instead use these properties to

accelerate the solution of the full fluid equations.

Properties of microfluidic devices Microfluidic devices are devices that operate on

fluids on small (microliter or nanoliter) scales to perform a variety of tasks, such as common

laboratory tests. Microfluidic chips are generally constructed by laying out components that

perform specific operations on fluid volumes. Examples of common microfluidic operations

are merging (combining different reagents together), mixing (forcing fluids through a ser-

pentine flow to encourage the fluid to mix through molecular diffusion), delaying (holding

fluid for a designated period of time to allow chemical reactions to complete), or forking

(dividing a fluid flow among multiple directions for separate uses). These components are

then connected with thin fluid channels to route fluid from one component to the next. A

natural result of the way these devices are designed and constructed is that the geometry

contains many duplicated copies of a relatively small number of distinct components. A rel-

atively large fraction of the fluid domain consists of thin, straight (or occasionally circular)

fluid channels. The global topology of the device is typically quite simple, usually planar
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and sometimes even lacking loops. Although the proposed algorithm is a general-purpose

algorithm for single-phase Stokes flow, it is specifically designed and optimized around the

particular features of the geometry of the fluid domain. Though developed specifically for

Stokes flow, it can be readily adapted to a variety of PDEs, including Navier-Stokes, the

Poisson equation, and the heat equation.

4.1.1 Meshing strategies

In this paper, we discretize the Stoke equations using the finite element method

with tetrahedral (triangular) elements. Constructing finite element meshes has been studied

extensively. Most commonly used triangular/tetrahedral methods fall into one of three

broad categories: mesh-based, Delaunay, and advancing front. Mesh-based methods begin

by laying down a regular grid and using this grid to define a regular pattern of well-shaped

elements in the interior; the region between the boundary and the regular portion is filled

in some other way. Cartesian grids (or octree for local refinement) [183, 151] and BCC grids

[126, 102] are both popular. Delaunay-based methods are based on the optimal triangle

quality provided by the Delaunay triangulation (and tetrahedral analogue) [105, 172, 12, 63].

The Delaunay triangulation only defines a triangle mesh given vertices, which must be placed

by another algorithm. Popular approaches for vertex placement are initial regular seeding

or by point insertion [173, 152, 143, 22]. Additional mesh modifications may be required to

force the Delaunay triangulation to conform to the boundary [63, 87, 95]. Advancing front

methods construct elements along an advancing front, which is initially the boundary. New

locations are selected (or existing vertices reused) based on element quality and lack of self

intersections [114, 113, 112, 111]. Advancing front methods may also be combined with the
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Delaunay criterion [120]. The problem of generating quadrilateral or hexahedral meshes has

also received significant attention; since we do not generate such meshes, we instead refer

the reader to an excellent review on the topic [137].

The effectiveness of the proposed algorithm relies on our meshes having special

properties. The meshing of repeated components needs to be identical, and the mesh within

pipes needs to be highly repetitive. We also require a few simple additional properties of

the mesh. These are fairly unusual properties to request from a general-purpose meshing

algorithm, and we are aware of no algorithms that satisfy them. For these reasons, we

construct our own simple application-specific meshing algorithm. Our input geometry is

assumed to be broken into components of known types. This allows us to naturally follow

a decomposition/template-matching approach [164, 33, 133].

4.1.2 Existing sparse linear system solvers

The most significant contribution of the proposed method is the special structure

of the linear algebra problem and our algorithm for solving it. The linear algebra problem

is symmetric, indefinite, and sparse. Methods for solving these problems fall generally into

direct and indirect methods.

Direct solvers

Direct methods for solving sparse linear systems of equations have been extensively

studied [45]. These methods are mostly variations on Gaussian elimination and related

factorizations: LU, Cholesky, LDLT . Simply applying the corresponding direct method for

dense systems to sparse systems tends to quickly result in large amounts of fill-in. Effective
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direct solvers for sparse systems seek to strike a balance between reducing fill-in, utilizing

available computational resources (SIMD, parallelism), and controlling memory usage. Our

algorithm is a block-elimination algorithm that is designed around the specific properties of

our fluid domains. It is designed to exploit commodity manycore hardware with significant

SIMD processing resources. Our elimination algorithm is divided into four distinct stages

and draws on ideas borrowed from a variety of other direct methods.

Elimination ordering Fill-in can be reduced by choosing a suitable elimination ordering

[110], and many ordering strategies have been evaluated. Of these, two strategies are most

relevant to our method. The first of these is the COLAMD algorithm [44], which is an

approximation of the minimum degree ordering [62, 66]. Variations on the minimum degree

ordering have been popular throughout the history of the development of sparse direct

solvers, and we use the COLAMD ordering in the final stage of our elimination algorithm.

Nested dissection [61, 178, 108] has also received significant attention. Nested dissection is a

recursive divide-and-conquer strategy where the domain is first divided in half by inserting

a separators; this divides the domain into two independent problems, which may be solved

in parallel. In a final step, the separators are eliminated. Separators play a similar role

in our algorithm, where we use them for isolation, to expose parallelism, and to expose

redundancy. Unlike with more general problems, where eliminating the final separator is

often the most expensive step in the entire algorithm, our special domain-specific geometry

means that separators are generally very small and can be eliminated relatively efficiently.
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Multifrontal methods Permuting the rows and columns of the matrix before perform-

ing factorization suffices to reduce fill-in, but the straightforward algorithm is not able to

effectively utilize SIMD performance. This lead to the development of frontal methods

[91, 86, 109], which perform the elimination steps on a dense frontal matrix, which allows

dense linear algebra (and efficient BLAS routines) to be used. These methods were replaced

with multifrontal methods, which are based on the observation that elimination dependen-

cies take the form of an elimination tree, and a new independent elimination front can be

started from each leaf of the tree [52]. Since these fronts are independent, they may be

eliminated in parallel [50, 51, 7, 5]. A process of amalgamation (also called supernodes) is

used to eliminate multiple rows with similar sparsity patterns at the same time to exploit

more efficient level-3 BLAS operations [52, 10, 36]. Publicly available libraries implementing

the multifrontal method are readily available, including MUMPS [5, 6, 4] and UMFPACK

[43, 41, 42]. We compare the performance of the proposed method against both libraries in

Section 4.6.6.

Cyclic reduction The proposed algorithm utilizes the idea of cyclic reduction, a varia-

tion on Gaussian elimination for tridiagonal systems where all odd rows are eliminated in

parallel to expose opportunities for parallelism [85, 32]. This reduces the problem size by

approximately half; it produces another tridiagonal system so the process can be repeated.

As a serial algorithm, cyclic reduction requires about 2.7 times as many operations as the

usual Gaussian elimination [89, 9]. The benefit of this method is that it exposes large num-

bers of operations that can be performed efficiently in parallel on a variety of architectures

[70], especially on GPUs [184]. Cyclic reduction may also be formulated as a divide-and-
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conquer algorithm, with separate subproblems for even and odd variables [58]. Although

our domains may have complex topology and do not lead to tridiagonal systems, many of

the decisions that we make during discretization are designed to produce a tridiagonal block

structure over significant portions of the matrix. This allows us to take advantage of cyclic

reduction during a portion of our elimination phase.

Domain decomposition Domain decomposition methods divide the domain into regions

which can be inverted in parallel. This reduces the problem to a smaller Schur compliment

system, which contains only degrees of freedom along the interfaces between domains [141,

142]. The independent domains expose ample opportunities for parallelism [145, 55, 2]. Due

to the size and density of the Schur compliment, it is common to invert this system using

an iterative solver like PCG [98]. (As noted below, domain decomposition is also a popular

preconditioner for PCG.) The mortar method divides the domain into separate regions,

which are stitched together with Lagrange multipliers; as with other domain decomposition

methods, the independent domains may be inverted independently [119, 176].

Relation to the proposed method Although our method is neither a multifrontal

method nor cyclic reduction, it has many similarities to these methods. Our block-elimination

may be considered as an amalgamation strategy to increase opportunities for level 3 BLAS

use. We plan out our computations during a planning stage, and we also make critical use

of the ability to begin elimination from many blocks in parallel. Since our blocks are large

enough to make effective use of vector resources, we do not assemble fronts in the proposed

method. This effectively breaks up large frontal calculations into similarly-sized pieces as
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was done in [6]. As in cyclic reduction, we have a tridiagonal block structure for signifi-

cant portions of our matrix, and we eliminate them using a recursive even-odd strategy to

maximize parallelism and (when possible) caching opportunities.

4.1.3 Iterative methods

Some of the most efficient algorithms known for solving large sparse linear systems

are iterative. Of these, the Krylov methods are perhaps the most popular with the conjugate

gradient (CG) algorithm being the earliest, best known, and most understood [83, 153].

CG assumes that the matrix is sparse and symmetric positive definite, but other Krylov

schemes such as MINRES [138] or GMRES [148] may be used instead when the system is

symmetric but indefinite. The convergence of Krylov methods depends on the conditioning

of the system [96, 168], and a preconditioner is often required for rapid convergence [71]. One

important class of efficient preconditioners is based on domain decomposition [156, 48], which

splits the domain into subdomains. The smaller (and cheaper) sub-problems provide rapid

local convergence, and a coarsened problem is solved to improve global convergence. The

most efficient preconditioners, however, are multigrid methods, which also use a coarsened

problem to improve low-frequency convergence but use a smoother instead for high-frequency

convergence; this coarsening process is repeated in a hierarchy for optimal O(n) convergence.

Multigrid methods have become the standard for efficient large-scale precondition-

ers, especially for the Poisson equation [139, 81, 174], though they can also be applied to the

Stokes [175], Navier-Stokes [124, 65, 123], Euler equations [122], and fluid-structure interac-

tion [118]. Multigrid parallelizes well and is well-suited to GPU implementation [21, 77] and

heterogeneous environments [107]. Although multigrid is asymptotically optimal for large
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problems (even scaling to billions of degrees of freedom [101]), it is generally not the most

efficient choice at medium or low resolutions, especially in domains with the small features

typical of microfluidics designs. This work thus fills two important roles. (1) The proposed

algorithm allows the Stokes equations to be solved more efficiently on microfluidics problems

at small and medium resolutions. (2) At high resolution, multigrid methods require a sep-

arate solver to solve the system at the coarsest resolution; the proposed algorithm is ideally

suited for this purpose.

Contributions and novelty In this paper, we make the following novel contributions.

• We propose a special solver for sparse symmetric indefinite systems of linear equations

that have many repeated matrix blocks. This solver uses a combination of caching,

cyclic reduction, and general sparse solver techniques to solve these linear systems very

rapidly.

• We propose a discretization algorithm for the Stokes equations that produces linear

systems in a form suitable for our new rapid solver. The discretization is formally third

order accurate in velocity and second order accurate in pressure in the L∞ norm.

• We evaluate the algorithm across resolutions, cores, and with existing solvers. The

full Stokes algorithm is significantly faster than existing solvers at medium resolutions

(around 1M degrees of freedom) on the types of geometry that typically occur in

designs for microfluidic devices. The algorithm scales well to many cores.
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4.2 Overview of algorithm

4.2.1 Stokes equation

Microfluidic devices operate at small length scales (feature width < 0.1mm) on

small volumes of fluid (< 1µL) traveling at slow speeds (< 1 cms−1). At these scales, the

Reynolds number is low (� 1), and Stokes flow becomes a good approximation for the fluid

flow (though not always [46]). Within the Stokes regime, the dynamics are dominated by

incompressibility and a balance of viscous and pressure forces. The momentum equations

reduce to

∇ · σ = 0, ∇ · u = 0, σ = µ(∇u +∇uT )− pI,

where σ is the fluid stress, u is the fluid velocity, µ is the dynamic viscosity, and p is

the pressure. We consider a mixture of velocity (u = a) or traction (σn = b) boundary

conditions, where n is the normal direction. The resulting discretization is a symmetric and

indefinite sparse linear system of equations.

Although we will limit our discussion and discretization to the Stokes equations,

most of the ideas are not specific to the Stokes equations. In particular, the proposed

algorithm can be readily adapted to solve the Poisson equation, heat equation, and Navier-

Stokes equations.
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Figure 4.1: Any row of a system can be eliminated, provided the diagonal block can be
inverted. Elimination preserves system symmetry; the matrices Ai and Si are symmetric.
Each step of the elimination process requires a primitive linear algebra operation, which
may be considered as a task. Even on this very small example, opportunities for computing
tasks in parallel emerge rapidly.

4.2.2 Properties of microfluidic devices

Although fluid domains may be very irregular and complex, this is not the case in

some important domains. For example the plumbing in a typical building is composed almost

entirely from pipes with standardized diameters, which meet at a relatively small number

of standardized junctions (tee, elbow, cross, reducer, plug, valve, etc.). The advantages of

designing the plumbing in buildings in this way are obvious; the standardized parts can be

cheaply mass produced and are readily available in hardware stores. As long as these pipes

and standardized junctions are discretized in exactly the same way each time they occur,

they will produce identical matrix blocks in the final system.

Although microfluidic devices are fabricated entirely differently (typically by a

process like CNC milling), in practice the designs of these devices tend to closely resemble

plumbing. These designs are dominated by standardized components (joints, mixers, delays)

connected by straight (or less commonly circular) fixed-width channels. A typical chip is

designed by first determining which components are required to perform the desired fluidic
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Figure 4.2: Eliminating similar but independent rows benefits greatly from caching. In this
case, the first elimination (red) generates 13 tasks, of which 6 are O(n3) matrix operations.
The second elimination (blue) generates only 6 tasks, all of which are much cheaper O(n2)
operations. Additional parallelism is introduced, including in the backsolve phase.

operations (combine two input fluids, mix them together thoroughly, let them react for a

specified amount of time, etc.). Then, the components are connected by channels to route

fluids from component to component in the proper sequence. The result is that, as with the

plumbing example, one may discretize the fluid domain so that the final matrix contains

many identical matrix blocks.

4.2.3 Elimination

Gaussian elimination classically precedes by eliminating rows from a matrix one by

one in a serial algorithm. One may begin by eliminating any row or block of rows (ignoring

stability concerns) as shown in Figure 4.1. This effectively modifies neighboring rows of the

matrix based on the sparsity pattern. The eliminated row may be removed from the system,

though its entries will be required during the backsolve phase. This is equivalent to forming

the Schur complement. If the original matrix is symmetric and the diagonal block is chosen

as the pivot, the new matrix will also be symmetric.
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Observe that only the row being eliminated and its neighboring rows (based on the

matrix sparsity pattern) are modified; rows that are not neighbors can thus be eliminated

independently and in parallel. These are key observation that underlie the success of mul-

tifrontal methods [52]. If the two independent rows being eliminated have identical matrix

blocks, many of the calculations required to eliminate one of the rows can be reused when

eliminating the other row (See Figure 4.2).

These observations suggest that significant performance improvements may be pos-

sible if one is able to create duplicated matrix blocks in the system matrix. Under general

circumstances of irregular problem domains and irregular meshing, one would not expect

duplicated matrix blocks to occur. The ability to benefit from caching relies on repeated

geometry and discretization that takes advantage of it. As noted earlier, the geometry of

microfluidics devices tends to be redundant; we just need to be careful to discretize these

redundancies consistently.

4.2.4 Pipes

Long and thin channels (which we will generally refer to as pipes) are common in

microfluidics devices; indeed, a significant fraction of the fluid domain may consist of pipes.

Pipes are special for our purposes because they are very efficient to eliminate. Consider a

long thin pipe, which is broken up into fixed-width slices. Each slice has identical geometry

and is discretized identically. The resulting system matrix will be block tridiagonal. All of

the blocks along the diagonal are identical, and all of the off-diagonal blocks are identical

(up to transpose). The matrix follows the same pattern as in Figure 4.2.
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Observe that all odd rows may be eliminated independently for nearly the same

cost as eliminating just one of the rows. The only calculations that cannot be reused are

the (much less expensive) vector operations that occur as part of the forward and backward

triangular solves. Further, most of the matrices that are left behind after eliminating all of

the odd rows are again identical (they all follow the (MT
3 ,S6,M3) pattern observed in the

middle row at end end of Figure 4.2). Thus, the process can be repeated. This recursive

even-odd elimination pattern is just cyclic reduction [58]. Ignoring vector operations, each

recursive step requires a constant number of matrix operations. Since the number of recursive

steps is logarithmic in the number of slices in the pipe, long pipes can be eliminated very

efficiently. Moreover, caching is possible between pipes even when they have different lengths,

as long as the pipe diameters and slice widths are the same. In practice, there are additional

complications relating to scaling and orientation; these will be addressed in Section 4.3.9.

4.2.5 Cross sections as blocks

The process of discretizing our geometry into our linear system begins with a

geometric definition of a block. These blocks divide the fluid domain into small regions

whose discretizations will eventually become matrix blocks. Blocks should be redundant

where possible to facilitate the formation of repeated matrix blocks; the choice of blocks will

have significant performance implications.

We have seen that tridiagonal block matrix structure can be eliminated very effi-

ciently and without fill-in using cyclic reduction. This suggests that the geometry should

be sliced into cross sections that have only two neighboring cross sections, as we do for the

pipe. This definition works for geometry that is topologically a pipe. For more irregular
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Figure 4.3: Eliminating components will not fill-in past separators. On the left we show
an example domain, which consists of four components (three arms and one joint) and is
split into blocks marked by different colors. In (A) we show its corresponding system, where
block matrices for separators are marked by squares (� � �), and other block matrices on
the diagonal are marked by circles (• • • • • •). Non-zero off-diagonal block matrices for
connections are marked by *, colored by the connection’s parent block. In (B) we eliminate
the bottom and top block (• •) inside the joint. This introduces fill-ins (red circles •) but
they are all confined in the separators. In (C), we eliminate the remaining middle block (•)
inside the joint. Finally we eliminate all non-separators (• • •) to reach a system in (D).
Note that before (D), eliminating a component does not fill-in any other components.

geometry like a tee junction, some blocks must have more than two neighbors, and some

degree of fill-in is unavoidable. Instead, we seek to limit the propagation of fill-in through

the matrix. We do this by inserting separators around irregular components. We eliminate

the separators after all other blocks, effectively dividing the system into isolated matrices.

Fill-in from any component is localized to the component itself and the separator blocks that

bound it (See Figure 4.3). We can then define a (non-separator) block to be a cross section

of geometry that has at most two neighboring non-separator blocks. In this way, we can

use cyclic reduction to efficiently eliminate the blocks within components, which comprise

the significant majority of blocks. At this point, only a relatively small number of separator

blocks remain. They are eliminated last; fill-in during this stage may be significant, but it

is limited by both the small number of blocks involved and the planar connectivity typically

found in microfluidic devices.
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4.2.6 Reusable component

Separators isolate components from each other, allowing them to be discretized

independently. Duplicated components need only be divided into blocks and discretized

once. In addition to saving time and space, this also ensures that duplicated components

lead to duplicated blocks and duplicated block matrices. Reuse of computations occurs at

the level of blocks, not components per se. For example, pipes of different lengths should

be divided into blocks that are the same width so that calculations may be reused.

Transforms can change the block matrices of a component, preventing immediate

reuse. We can nevertheless reuse components by discretizing them in a canonical coordinate

system and then assembling matrix blocks in the local coordinate system. This can be

accomplished through row an column scaling on the final system, as we show in Section 4.3.9.

4.2.7 Algorithm steps

We close this overview with the algorithmic tasks that must be completed for the

proposed algorithm along with forward references to the discussion of each step.

1. Identify canonical components 4.3.3

2. Construct geometry blocks and identify canonical blocks 4.3.4

3. Construct canonical block meshes 4.3.5

4. Assign degrees of freedom to canonical blocks 4.3.6

5. Assemble canonical matrices 4.3.6

6. Assign global degrees of freedom 4.3.7
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7. Assemble the system matrix blocks4.3.8

8. Transform the right hand side 4.3.9

9. Plan block elimination 4.4.1

10. Execute jobs 4.4.2

11. Transform the solution 4.3.9

4.3 Discretization

We are interested in discretizing the Stokes equations over thin and repetitive

geometry. We adopt a standard finite element treatment and basis pair for the Stokes

equations, which we summarize here for completeness.

4.3.1 Finite element formulation

Our finite element discretization follows [11, 150]. We start directly with ∇·σ+f =

0, where σ = µ(∇u + ∇uT ) − pI, rather than simplifying to µ∇2u + f = ∇p using the

incompressibility condition. While this reduces the sparseness of our system, it simplifies

the treatment of traction boundary conditions σn = b. We assume a single fluid phase, so

that µ is constant.
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Let w be a test function chosen from the same function space as velocity u. Then,

the weak form of the momentum equation may be written as

0 =

∫
Ω
w · (∇ · σ + f) dV =

∫
Ω
∇ · (w · σ)−∇w : σ + w · f dV

=

∫
∂Ω

w · σn dA−
∫

Ω
∇w : σ dV +

∫
Ω
w · f dV

−
∫
∂Ω

w · σn dA+

∫
Ω
∇w : σ dV =

∫
Ω
w · f dV

−
∫
∂Ω

w · σn dA+

∫
Ω
∇w :

(
µ(∇u +∇uT )− pI

)
dV =

∫
Ω
w · f dV,

where f is the external force. Letting Ni and Pi be bases for velocity and pressure,

u =
∑
i

Niui w =
∑
i

Niwi p =
∑
i

Pipi φ =
∑
i

Piqi.

Then the integrals can be written as

∫
Ω
µ∇w : (∇u +∇uT ) dV =

∑
ij

wT
i uj µ

∫
Ω

(
∂Ni

∂x

)T Nj

∂x
dV︸ ︷︷ ︸

tr(Dij)

(4.1)

+
∑
ij

wT
i

(
µ

∫
Ω

∂Ni

∂x

(
∂Nj

∂x

)T
dV

)
︸ ︷︷ ︸

Dij

uj (4.2)

=
∑
ij

wT
i (tr(Dij)I + Dij)︸ ︷︷ ︸

Aij

uj =
∑
ij

wT
i Aijuj (4.3)

∫
Ω
∇w : pI dV =

∫
Ω
∇ ·wp dV =

∑
ij

wT
i pj

∫
Ω

∂Ni

∂x
Pj dV︸ ︷︷ ︸

−gij

= −
∑
ij

wT
i gijpj (4.4)
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∫
Ω
w · f dV =

∑
i

wT
i fj

∫
Ω
NiNj dV︸ ︷︷ ︸
kij

(4.5)

∫
∂Ω

w · σn dA =

∫
∂Ωn

w · b dA =
∑
i

wT
i bj

∫
∂Ωn

NiNj dA︸ ︷︷ ︸
mij

. (4.6)

For the incompressibility equation, we begin with ∇ · u = −l, where l is a source

term that we include to simplify analytic testing. Physically, l = 0, but we allow l 6= 0 to

simplify testing (See Section 4.6.2). Let φ be a test function chosen from the same function

spaces as pressure p. Then, the weak form of the incompressibility equation is just

−
∫

Ω
φ∇ · u dV =

∫
Ω
φl dV.

Substituting in our basis produces the integrals

∫
Ω
φ∇ · u dV =

∑
ij

qi

(∫
Ω
Pi
∂Nj

∂x
dV

)
︸ ︷︷ ︸

−gTji

uj

∫
Ω
φl dV =

∑
i

qi

∫
Ω
Pil dV︸ ︷︷ ︸
ci

.

Let A, G, K, and M denote block matrices whose blocks are given by Aij , gij , kij , and

mij . Similarly, let u, p, b, c, and f be block vectors whose blocks are given by ui, pi, bi,

ci, and fi. Then, we can express the full system as

 A G

GT 0


u

p

 =

Mb + Kf + d

c

, (4.7)
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Figure 4.4: (P2,P1) Taylor-Hood elements for 2D and 3D. The filled circles (•) are velocity
degrees of freedom and hollowed circles (◦) are pressure degrees of freedom.

where d is a vector of velocity boundary conditions. This vector is obtained by eliminating

velocity dofs associated with velocity boundary conditions from the system and moving them

to the right hand side.

4.3.2 Taylor-Hood element

The choice of basis functions Ni and Pi play an important role in the numerical

stability of a discretization; the Stokes equations require a stable finite element pair to

avoid serious numerical problems [19]. We adopt the (P2,P1) Taylor-Hood element (See

Figure 4.4), which is known to be a stable pair for the Stokes equations [54]. This choice

is not essential, and other elements may be preferred [20]. We have found this choice to

provide a favorable tradeoff between discretization accuracy, implementation complexity,

and numerical stability.

4.3.3 Component construction

For the purposes of this work, we assume that the input geometry is already broken

into labeled components. That is, we know what portions of the fluid domain are pipes,

joints of various connectivities (bends, tees, crosses), mixers, etc. This design decision greatly
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simplifies the implementation of the algorithm, and it reflects the way in which these devices

are constructed in practice.

The first step in our discretization process is to transform each component into a

canonical coordinate system (with respect to translations, rotations, and optionally scale).

We refer to these as canonical components. This facilitates the identification of reused com-

ponents; components are equivalent when their canonical components are the same. Only

unique canonical components are represented. Components are represented as a pointer to a

canonical component, a transformation, and connectivity information. The transformations

will be used for assembling matrix blocks and transforming the right hand side and solution

vectors, as described in Section 4.3.9. Only canonical components are passed forward to

the later stages of the discretization process (block construction, meshing, and integration).

Connectivity information will be used to assemble the final matrix blocks and global system.

The connectivity between components is important for matrix construction, since

connections correspond to off-diagonal matrix blocks in the final system. We do this in terms

of connections. Components have sockets, which are places along their boundary where they

connect to neighboring components. A pipe has a socket at each end; a tee-junction has

three sockets. Connections have a well-defined cross-sectional shape, which may differ from

connection to connection; these are also canonicalized. Connections consist of (a) the two

components that are being connected, (b) which socket of each component is involved, and

(c) the canonicalized cross section shape.

We will use the canonical cross section shapes later to ensure consistent mesh dis-

cretization between components an blocks. In our implementation, we assume rectangular
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cross sections between components with fixed depth but potentially different widths. This

is consistent with how many microfluidic devices are manufactured, but other cross section

shapes may be more appropriate in other contexts (e.g., circular for plumbing). The algo-

rithm is not sensitive to the shapes of cross sections; our use of rectangular cross sections is

purely for convenience.

4.3.4 Block construction

The block construction phase has three primary goals: (a) divide canonical com-

ponents into geometry blocks, (b) identify duplicated geometry blocks, and (c) construct

a block-level connectivity graph from the component-level connectivity graph. Geometry

blocks are small geometric regions of the fluid domain that will be discretized and will

correspond to block matrices in the final global system. Geometry blocks are the level of

granularity at which meshing and finite element integration are performed. Ideally, the do-

main will be divided in to large numbers of small blocks, most of which are identical and

have few neighbors.

In our implementation, we used simple rules to divide components into blocks.

Pipes are divided into cross sections (geometry blocks) of a fixed characteristic width h (the

triangle edge length). Since pipes may have any length, the last geometry block in a pipe

may have an irregular, which we limit to the range [h2 ,
3h
2 ]. This simple strategy ensures

that all but one geometry block within each pipe will be identical, and these blocks will

also be identical to the geometry blocks of other pipes with the same cross section. We

divide irregular canonical components into strips of width approximately equal to h; strips

may run parallel or perpendicular to the pipe direction. Geometry blocks are constructed
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in a canonical frame to identify duplicates. As with canonical components, we perform all

per-block operations on these canonical blocks. Each physical block stores a transform and

a pointer to its canonical block.

Once canonical components and divide into geometry blocks, we must update our

connectivity graph. Nodes of the graph are blocks, which store a transform and point

to a canonical block. Edges of the graph represent connections between blocks. These

connections store the same information as their component-wise counterparts: the blocks

being connected, the socket of each block being connected, and the canonical cross section.

Note that connections may involve many blocks.

The interiors of geometry blocks are disjoint (they do not overlap). When the

boundaries of two geometry blocks intersect, we call the blocks neighbors. Based on this,

we divide geometry blocks into three types: regular blocks, irregular blocks, and separator

blocks. Separator blocks occur at the boundaries of components; one of blocks adjacent to

each connection is designated as a separator block. In practice, one of these components

will be a pipe (or at least pipe-like); we designate the outermost blocks of these pipes as

the separator blocks. As many of the remaining blocks are classified as regular as possible,

subject to the rule that regular blocks may have at most two neighboring regular blocks. The

remaining blocks are classified as irregular blocks. We illustrate different types of geometry

blocks in Figure 4.5. The three types of geometry blocks will be treated differently during

the elimination stage of the algorithm.
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Figure 4.5: Illustration of terminology. In A and B we show two example domains, where
components are enclosed in dotted lines. Components are divided into smaller pieces called
geometry blocks; most steps of the algorithm function at this level of granularity. Geometry
blocks are classified by their connectivity. Geometry blocks that are on the end of a pipe
and touch another component are designated as separator blocks, or separators (�). Non-
separator geometry blocks with at most two non-separator neighbor blocks are called regular
blocks (�). All remaining geometry blocks have three or more non-separator neighbor blocks
and are called irregular blocks (�). Between geometry blocks we might have full (�) or
partial (�) connections, shown in B and illustrated separately in C and D. We call the block
adjacent to a connection either a full block or an edge-on block based on the connection
type, as shown in C and D. In B, we identify blocks with unique shapes as canonical blocks
(�). Then we triangulate the canonical blocks and assign the degrees of freedom. When two
geometry blocks are next to each other, their canonical degrees of freedom will be duplicated
on their boundary, as shown in E. We resolve these to get the global degrees of freedom in
F.

4.3.5 Canonical mesh construction

Once we have divided our geometry into geometry blocks, we need to construct

meshes on those blocks. We use tetrahedral meshes (triangle meshes in 2D). We divide the

algorithm into two stages.

Canonical cross section meshing The first stage is to mesh the connections between

blocks. We independently mesh each canonical cross section. Although the meshing of these
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cross sections can be performed arbitrarily, special considerations are needed to make sure

that the final meshes will be consistent. We achieve this by choosing an interface mesh that

is reversible. That is to say that the interface mesh looks the same when viewed from either

side.

Canonical block meshing Meshing the interfaces between blocks first based on canonical

cross sections gives us a number of important benefits. The interface between blocks is fixed,

so we can construct meshes for each block independently. The mesh for the geometry block

must conform to the interface mesh, but its generation is otherwise flexible. Since canonical

blocks share the same geometry and the same canonical cross sections (and thus the same

interface meshes), we can also give them the same mesh. This allows us to construct meshes

independently per canonical block. Since the number of canonical blocks is typically much

less than the number of geometry blocks, we typically only need to construct and store a

mesh for a small fraction of the total fluid domain. We refer to the meshes constructed for

canonical blocks as canonical meshes.

Meshing restrictions Although the meshing strategies are generally flexible, we do im-

pose a few extra requirements. We require that each element must have at least one edge

that is not on the boundary. Note that an edge that lies in the interior of a cross section

between two blocks is not considered to be a boundary edge. That is, it is on the boundary

of the block but not on the boundary of the full fluid domain mesh. This topology restric-

tion is needed to prevent a numerical nullspace in our final discretization [17]. The second
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requirement that we impose on block meshes is a connectivity requirement based on the

assignment of cross section degrees of freedom to blocks; we address this in Section 4.3.7.

4.3.6 Canonical block matrix assembly

Once we have constructed our canonical meshes, we can begin the process of matrix

assembly. The first step of our matrix assembly process is to compute the finite element

integrals within each canonical mesh. We allocate degrees of freedom according to our

Taylor-Hood finite element basis (See Section 4.3.2). We have a pressure degree of freedom

at each vertex and co-located velocity degrees of freedom at each vertex and each edge of the

mesh (See Figure 4.4). The Stokes equations are assembled into a symmetric indefinite linear

system following the formulation in Section 4.3.1. We refer to these matrices as canonical

block matrices.

Canonical block matrix assembly may be performed independently per canonical

mesh (i.e., per canonical block). Since many blocks often share the same canonical block,

matrix assembly is typically only performed for a subset of blocks. Matrix assembly occurs

in the configuration of the canonical blocks, not in the configuration of the actual blocks. We

represent our canonical block matrices as dense matrices; the number of degrees of freedom

within each block should be kept small. See Section 4.5.2 for a discussion of block size and

the use of dense matrix blocks. In practice, we delay canonical block matrix assembly until

the execution stage. Matrices are assembled when they are first required to improve memory

and cache usage.
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4.3.7 Global degrees of freedom assignment

At this stage of the algorithm, we have a notion of canonical degrees of freedom,

which are defined from the canonical mesh that we have computed for each canonical block.

The canonical block matrices that we have assembled are indexed in terms of the canonical

degrees of freedom. Canonical degrees of freedom do not correspond to physical degrees of

freedom per se; canonical blocks are assembled in a reference coordinate system, and a single

canonical block may correspond to many different geometry blocks within the fluid domain.

Geometry blocks naturally inherit degrees of freedom from their canonical block;

we refer to these degrees of freedom as geometry blocks degrees of freedom. Geometry blocks

degrees of freedom do correspond to physical degrees of freedom, but a single physical degree

of freedom may belong to more than one block. This occurs for all degrees of freedom which

occur along the connections between blocks, as shown in Figure 4.5. Our task is to assign

each physical degree of freedom to one of geometry blocks that contains it. When doing

so, we must be careful to avoid numerical problems later in the algorithm. We will call

these global block degrees of freedom; they exist in one-to-one correspondence with physical

degrees of freedom.

The degree of freedom mapping must be performed on geometry blocks and not

canonical blocks. It is sometimes not possible to assign ownership of degrees of freedom to

all instances of a canonical block in the same way. Blocks that are not indexed the same

way do not produce duplicated matrix blocks in the final system, so it is desirable for the

mapping to be done the same way whenever possible.
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Boundary conditions Boundary conditions affect the assignment of global block degrees

of freedom. Velocity degrees of freedom are not allocated where velocity boundary conditions

are being enforced; these velocity samples are instead moved to the right hand side. Pressure

degrees of freedom are allocated where velocity boundary conditions are being enforced.

Stability restrictions In order to avoid breakdowns during the elimination process, we

divide the degrees of freedom along each connection between two blocks evenly between the

two blocks. The reasons for this are discussed in detail in Section 4.5.1.

Connection types When assigning parent/child at each connection, it is helpful to dis-

tinguish between connections with one block on each side (full connection) and connections

where a single block on one side of the connection touches multiple blocks on the other (par-

tial connection). When a block occupies one entire side of a connection, we call the block

a full block. Otherwise, the block is considered an edge-on block. Full connections have two

full blocks. Partial connections have one full block and many edge-on blocks. We illustrate

these concepts in Figure 4.5.

Ownership convention A simple convention in 2D to resolve ownership of degrees of

freedom on connections is to walk around the perimeter of a geometry block in counter-

clockwise order. When you encounter a connection at which you are a full block, the half of

the connection that you encounter first is the half owned by that block. The degrees of free-

dom on the other half are owned by the block or blocks on the other side of the connection.

With this convention, both full blocks at a full connection agree on which half of the degrees

of freedom are owned by which block. The only ambiguity is the degree of freedom in the
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middle (which may be at a vertex or an edge). We must establish a globally-consistent rule

for the ownership of this middle degree of freedom. We refer to the block that owns the

middle degree of freedom as the parent and the block that does not own it as the child. Note

that a block may (and usually is) a child at one connection and a parent at another. We

employ two rules:

1. At partial connections, the full block is always the parent.

2. Blocks that are full blocks with respect to exactly connections are the parent of one

connection and the child of the other.

When the two rules come into conflict, the first rule wins. The purpose of these rules is to

avoid creating matrix dependencies between non-neighbor blocks (See Section 4.3.7). The

assignment is otherwise arbitrary.

Triple junctions At partial connections (P), there are degrees of freedom shared by three

blocks. One of these blocks (A) is the full block with respect to the partial connection. The

other two are edge-on blocks (B, C) with respect to this connection; they always connect to

each other through a full connection (Q). The partial connection P takes precedence; block

A owns the same degrees of freedom that it would if P were a full connection. If the degree

of freedom is not owned by block A, we decide whether the degree of freedom belongs to

block B or C by looking at connection Q.
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Figure 4.6: Block meshing with different diagonal edge directions. The background colors
indicate the territory of blocks. The colors on edges and vertices indicate which block
owns the degrees of freedom. The filled and hollowed circles are velocities and pressures
respectively. The triangulation on the left is able to separate non-adjacent blocks. However
the diagonal edge in alternate direction will allow the non-adjacent blocks (blue and red
blocks shown on the right) interact. The dashed triangle shows the element containing the
blue and red vertices that would introduce a non-zero matrix entry.

Spurious connectivity

When we constructed geometry blocks, we did so in a way that ensured that most

blocks only touch two neighbors. Geometry blocks were considered neighbors only if their

boundaries intersected. With respect to degrees of freedom, however, the notion of con-

nectivity is somewhat different. Two degrees of freedom are connected if they share an

element; pairs of degrees of freedom belonging to the same element correspond to nonzero

matrix entries. We want to make sure that the matrix notion of connectivity corresponds

to the geometry notion. As shown in Figure 4.6, it may be possible for degrees of freedom

of non-neighboring blocks to be connected if care is not taken. This occurs whenever an

element of a geometry block has vertices belonging to two different blocks. (This also occurs

at triple junctions, but in this case the blocks involved are already neighbors.) In the case

of our simple triangulation strategy, this problem is avoided by (a) choosing the diagonal
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directions carefully and (b) preventing the block from being the child on both connections.

In rare cases, spurious connectivity is still not eliminated; we resolve this by merging blocks.

4.3.8 System assembly

During canonical block matrix assembly, we performed finite element integration

on each canonical block to compute canonical block matrices. This gave us a matrix and

right hand side for each canonical block as in (4.7). We will denote the KKT matrix for

block a as Ba an the right hand side as ba. These quantities are indexed by canonical block

degrees of freedom. Observe that Ba is a symmetric matrix. We will ignore transformations

in this section; we show how to include them Section 4.3.9.

The global system that we must solve has matrix blocks that are indexed with

with global degrees of freedom. Global indices are unique (each degree of freedom belongs

to exactly one global matrix block), while a single degree of freedom may exist within

multiple canonical blocks. This means that integral contributions may have been calculated

for a particular degree of freedom within multiple canonical blocks. These contributions

must be added up while calculating global matrix blocks.

We introduce index mapping matrices Pab to denote the correspondences between

degrees of freedom in global blocks and canonical blocks. We define (Pab)ij = 1 if the

global degree of freedom i within block a corresponds to the same degree of freedom as the

canonical degree of freedom j within block b. (Pab)ij = 0 otherwise. Note that Paa is just

the canonical-to-global index map for block a. Since all dofs in a global block exist inside

the corresponding canonical block, PaaP
T
aa = I.
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Let Eab be the global matrix block corresponding to block-row a and block-column

b. Let the corresponding right hand side blocks be denoted as ha. These blocks can be

computed from canonical matrix blocks as

Eab =
∑
c

PacBcP
T
bc ha =

∑
c

Pacbc,

where c runs over adjacent blocks. If a and c are not neighboring blocks (they do not share

any degrees of freedom), then Pac = 0.

4.3.9 Transforms

To introduce transforms into our matrix blocks, we must first determine how in-

tegrals transform over individual elements. We assume that all transforms are affine (per

block).

Elementwise transforms Consider a single element. A world space coordinate x can be

transformed from its canonical space version x̂ by x = Fx̂+c, where F is a transform matrix

and c is a constant displacement. We also denote J = detF. Then the basis functions in

world space (without a hat) and in canonical space (with a hat) and their derivatives are

related by

Ni(x) = N̂i(x̂) = N̂i(F
−1(x− c)) Pi(x) = P̂i(x̂) = P̂i(F

−1(x− c))

∂Ni

∂x
(x) = F−T

∂N̂i

∂x̂
(F−1(x− c))

∂Pi
∂x

(x) = F−T
∂P̂i
∂x̂

(F−1(x− c)).
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Our canonical matrix blocks Ba consist of viscosity blocks A and gradient blocks G, as in

(4.7). The blocks A are comprised of per-element blocks Aij = tr(Dij)I + Dij , which are

defined in (4.2) and (4.3). The blocks G are comprised of per-element vectors gij , which

are defined in (4.4). These transform as

gij = JF−T ĝij Dij = JF−T D̂ijF
−1.

The matrix Aij , however, does not generally transform in a simple way, unless F−TF−1 =

I tr(F−TF−1). This is true if our transform is comprised of a combination of rotation,

uniform scale, and translation. This restriction is why we were limited to transformations

of this type when computing canonical blocks. With this assumption, we also have

Aij = JF−T ÂijF
−1.

Blockwise transforms Blocks are composed by combining elementwise Aij and gij into

block-wise versions A and G. We can express these in world space and canonical space

matrices (for block a) as

Ba =

 A G

GT 0

 B̂a =

 Â Ĝ

ĜT 0

 Ba = HT
a B̂aHa,
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where Ha is defined as

Ha =
√
J



F−1

. . .

F−1

1

. . .

1



.

Observe that Ha applies the matrix transform F−1 to each co-located velocity degree of

freedom and only scales pressure degrees of freedom. Since both pressure and viscosity

blocks are scaled by J , this scaling is split between the row and column scaling. This allows

us to use the same Ha on both sides. Note that Ha is indexed using canonical indexing.

Note also that the index a refers to the block a of the fluid domain, not a canonical block.

Canonical blocks do not have transformations associated with them. Rather, each block

stores a pointer to a canonical block and the transformation of the block relative to its

canonical block. The matrix Ha is used to transform from the canonical coordinate system

into world space. Although Ha is defined using canonical indexing, we can define a globally-

indexed version by Ha = PaaHaP
T
aa. This matrix has the same form as Ha, but it contains

a different number of dofs.

Global matrix blocks in canonical coordinates We can define a canonical-space ver-

sion Êaa of the world space block Eaa, which is naturally defined according to Eaa =
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H
T
a ÊaaHa or Êaa = Ha

−T
EaaHa

−1. We can extend this to off-diagonal blocks as

Êab = Ha
−T

EabHb
−1
.

Then,

Eab =
∑
c

PacBcP
T
bc

Êab =
∑
c

Ha
−T

PacBcP
T
bcHb

−1

=
∑
c

Ha
−T

PacH
T
c B̂cHcP

T
bcHb

−1

=
∑
c

PacB̂cP
T
bc

Pac = Ha
−T

PacH
T
c .

This directly relates global matrix blocks in canonical coordinates with the canonical block

matrices.

Transformation invariance The matrix Pac maps degrees of freedom (as Pac does) but

also applies a transformation along the way. This transformation is
√
J−1
a JcF

T
aF
−T
c for

co-located velocity degrees of freedom and
√
J−1
a Jc for pressure degrees of freedom. If two

blocks are connected, then the relative orientation between the two blocks is fixed. If one

block is rotated, scaled, or translated, then the connected block must be rotated, scaled,

and translated by the same amount in order to remain connected. This would replace
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Fa → RFa and Fc → RFc, so that FTaF
−T
c → FTaR

TR−TF−Tc = FTaF
−T
c is unchanged.

Similarly, J−1
a Jc = det(FTaF

−T
c )−1 must remain unchanged.

Duplicated matrix blocks Noting that Pac does not depend on block orientation sug-

gests that Êab may be computed once for each canonical block, but this is not the case.

We will have Êab = Êcd if (a) all of the blocks involved in the sum correspond to the same

canonical blocks, (b) are connected through the same sockets, and (c) are indexed the same

way in global indexing. For example, Êaa 6= Êcc if blocks a and c are connected to different

types of blocks, even though a and c have the same canonical block. Requirement (c) is

actually somewhat stronger than is required, since not all indices of the blocks involved may

participate in the computation of Êab. Nevertheless, we use rule (c) since it is easy to check

during global degree of freedom assignment. Identifying copies of Êab that are the same is

critical, as this the only form of redundancy that will be passed to the final linear system

that must be solved.

Transformed system Consider a simple geometry consisting of three blocks (1, 2, and

3) connected in sequence. The world-space global system that must be solved looks like


E11 E12

ET12 E22 E23

ET23 E33




x1

x2

x3

 =


b1

b2

b3

,

Here, xa are the degrees of freedom assigned to block a (including velocity and pressure). In

general, the blocks Eab will vary with the orientations of the blocks. We can replace these
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with canonical-space versions


H
T
1 Ê11H1 H

T
1 Ê12H2

H
T
2 Ê

T
12H1 H

T
2 Ê22H2 H

T
2 Ê23H3

H
T
3 Ê

T
23H2 H

T
3 Ê33H3




x1

x2

x3

 =


b1

b2

b3



Ê11 Ê12

ÊT12 Ê22 Ê23

ÊT23 Ê33




H1x1

H2x2

H3x3

 =


H1
−T

b1

H2
−T

b2

H3
−T

b3

,

This amounts to solving for transformed degrees of freedom ya = Haxa with a canonical-

space matrix and a transformed right hand side. The solution is easily transformed back

into world space with xa = Ha
−1

ya. Solving this canonical-space version of the problem

is preferable since it will normally contain many more duplicate matrices than the global

space version of the problem.

As with canonical block matrix assembly, we delay the assembly of the global

system matrix blocks until the task execution phase. These matrix blocks are assembled

from canonical block matrices as they are needed.

4.4 Elimination algorithm

With our global system fully assembled, our next task is to solve the resulting

linear system. The system is block sparse. Many of the blocks in the system are duplicates

of other matrix blocks, possibly with transpose. The elimination algorithm proceeds in four

phases.
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Regular blocks Regular blocks, by definition, have at most two neighboring regular block.

If all other blocks are removed, the global system decomposes into separate components (each

geometrical component corresponds to a connected component in the resulting matrix). Each

of these connected components is tridiagonal and can be eliminated efficiently with cyclic

reduction. We use this cyclic reduction order to eliminate all regular blocks from the global

system. Note that regular blocks may have more than two neighbors in the global system

due to the presence of irregular blocks and separators. Irregular blocks and separators result

in fill-in during elimination, but they also bound this fill-in by preventing it from spreading

outside of a component. The use of cyclic reduction exposes a large number of tasks that

can be executed in parallel. In the presence of duplicate matrix blocks (especially pipes),

it is also very effective at exposing caching opportunities. The vast majority of blocks are

regular, so relatively few blocks remain after this stage of elimination.

Irregular blocks After regular blocks are eliminated, only irregular blocks and separators

remain. Irregular blocks are eliminated next in arbitrary order. Eliminating irregular blocks

creates fill-in, but separators bound the fill-in by preventing it from spreading to other

components. As long as care is taken to ensure that the order of elimination is the same every

time the blocks in a component are eliminated (start cyclic reduction from the same side,

and eliminate irregular blocks in the same order), nearly all of the computations involved

in eliminating one copy of a component will coincide exactly with the computations needed

to eliminate another copy.
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Separators I Separators are eliminated in two phases. During the first phase, separators

with at most two neighbors are eliminated in arbitrary order. These blocks are easy to

detect, and their elimination never produces fill-in.

Separators II The remaining separators are eliminated from the system. We use CO-

LAMD order [44] to reduce fill-in. This is the only elimination stage where the amount of

fill-in produced is not readily bounded. This is compensated by the fact that only a small

fraction of the original number of blocks remain in the system. (The planar topology if typ-

ical microfluidic devices also tends to limit fill-in.) After this stage, all rows of the system

have been eliminated.

4.4.1 Planning and optimization

Each phase of elimination proceeds by repeated application of block-row elimi-

nation. Each row operation consists of a sequence of basic linear algebra operations (See

Figures 4.1 and 4.2). The elimination stages are treated as planning stages; rather than per-

forming the operations required, we instead treat each operation as a tasks. The dependency

relationships between the tasks form a directed acyclic graph.

Forward and backward substitution The row elimination operation also emits tasks

for both forward and backward substitution. Note that the operations that will be required

for backward substitution are known during elimination stage, even though these tasks would

not be able to execute until after the forward phase.
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Name Resolution Total dofs Blocks Tasks Avg dofs/block
grid20 16 6.0 M 43080 174.0 K 140.2
rgrid0 16 2.0 M 14334 35.5 K 138.0
voronoi-s4 16 1.3 M 9798 34.7 K 136.2
grid20-3d 6 5.8 M 15470 108.0 K 373.3
rgrid0-3d 6 1.9 M 5281 14.9 K 358.5
voronoi-s4-3d 6 1.3 M 3582 13.8 K 354.5

Table 4.1: Statistics of scaling with parallelism tests

Matrix and vector IDs To facilitate handling duplicates, we store a sparse matrix of

matrix IDs. Each essentially unique block matrix is assigned a unique ID. Two matrices are

not considered essentially unique if they differ only by negation or transpose. We reserve a

bit for negation and a bit for transpose to represent matrices that are essentially the same as

another matrix. We reserve two special IDs to indicate a zero matrix and an identity matrix;

since the block row and block column in which the matrix is stored uniquely identifies its

dimensions, it is unnecessary to distinguish special matrices of different sizes. A similar ID

scheme is applied to vectors.

Caching Each task consists of a simple linear algebra operation and produces an interme-

diate matrix or vector as output. Each of these intermediate quantities is assigned an ID.

A simple hashing scheme is used to detect that an intermediate quantity is being computed

twice. The hashing is aware of negation, transpose, associativity, and (for addition) com-

mutativity. We do not include distributivity, as this would make the problem very difficult.

This simple hashing scheme allows us to detect and eliminate duplicate calculations and

simply reuse the results of the earlier computation. This simple idea is the basis for the

majority of the performance benefits observed from the proposed algorithm.
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Operation simplification One benefit of representing identity and zero objects with

special indices is that we are able to simplify or eliminate many operations during the

planning stage. For example, during an elimination step a matrix-vector multiply by a

zero vector simply results in the ID for the zero vector; no task is produced. Similarly,

when a zero matrix is added to another matrix, the ID for the second matrix is returned

without generating a task. These simplifications can be quite dramatic. For many problems,

nearly all initial right hand side vectors are zero, and the vast majority of vector operations

that occur during forward elimination will be optimized away. When it does not prevent

caching opportunities, we merge tasks to correspond to BLAS operations. This allows us,

for example, to merge some sequences of operations (A = B + C, B = −D, C = EF ,

E = GT ) into a single BLAS operation (A = −D + GTF ). This also allows us to use the

same memory location for A andD. We use the Intel MKL-BLAS for our basic linear algebra

and LAPACK for our matrix inverses (and final-block pseudo-inverse when required).

Stability and pseudo-inverse for the last block Our stability considerations ensure

that our elimination procedure does not break down during elimination. That is, we will

never be required to invert a matrix block that is singular. The one exception to this is

the very last block. If the whole system contains a constant pressure nullspace due to the

absence of traction boundary conditions, the last block to be inverted will be singular. We

perform a pseudo-inverse on this singular block. This is done at most once and does not

affect performance.
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4.4.2 Task execution

During the task execution phase, we perform all of the actual computations required

for elimination. In addition, we also assemble the matrices for the global system matrix as

they are required by elimination calculations (See Sections 4.3.6 and 4.3.8). These tasks

are computationally or memory intensive and benefit from the parallelism, load balancing,

and memory management that we perform during task execution. In addition to a core

computation, tasks are also responsible for allocating and assembling finite element matrices

(if required and not already available), allocating space for their output (unless it shares

space with an input), and freeing memory for intermediates that are no longer required.

We assign a priority to each task equal to the length of the longest dependency

chain starting at the task [1, 64, 3]. The time required to complete the most expensive

dependency chain places a lower bound on the time required to complete a set of tasks, even

if unlimited processors are available to complete them. These priorities tend to encourage

long dependency chains to be executed quickly. Indeed, favorable scaling to 16 cores is

observed with the proposed method (See Section 4.6.4).

4.5 Analysis

4.5.1 Stability

Being equivalent to un-pivoted Gaussian elimination on a permuted system [103],

breakdowns (zeros on the diagonal) and entry growth are in general possible [9]. Cyclic

reduction has been extensively studied for the solution of the Poisson equation, which is
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Figure 4.7: Here we show how different placements of degrees of freedom would affect the
elimination. The background colors indicate the territory of blocks. The colors on edges and
vertices indicate which block owns the degrees of freedom. The filled and hollowed circles
are velocities and pressures respectively. The left, bottom, and top sides are with velocity
boundary conditions. On the left eliminating the red block would fail. This is because the
degrees of freedom on the edge (marked by dashed rectangle) are all owned by the green
block, and the elimination of the red block can be regarded as solving a smaller system with
solely velocity boundary conditions (three from the original domain, and right side being
the effective one). The constant pressure nullspace makes the system singular. We solve
this by dividing the degrees of freedom between the adjacent blocks (shown on the right).

symmetric and positive definite. It has been shown that cyclic reduction is stable for diago-

nal dominant and symmetric positive definite systems [58], where off-diagonal entries even

tend to become smaller in subsequent iterations [85, 82]. Since our systems are symmetric

indefinite, we must take care to avoid these problems.

We place a restriction on block meshing (See Section 4.3.4) to avoid numerical

nullspaces and elimination breakdowns. Assignment of global degrees of freedom also plays

an important role in preventing breakdowns. Consider the elimination of an individual

block. As the first step we invert its diagonal block matrix in the system. This block is just

a Stokes flow discretization of the corresponding geometry block with some effective bound-

ary conditions. When the effective boundary conditions correspond to velocity boundary

conditions, this discretization has the constant-pressure nullspace. This situation occurs

when we assign all degrees of freedom to one of neighbor blocks. We illustrate one example
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in Figure 4.7. Our solution to this problem is to split the degrees of freedom between the

neighbor blocks.

4.5.2 Scaling

One of the limitations of the proposed method is its scaling with resolution. In the

absence of caching opportunities, we will have n geometry blocks, each with m degrees of

freedom. Let s be the number of separators (similar to the number of components).

Memory usage Each block is dense and requires O(m2) storage, for O(m2n) overall

storage. The first three phases of elimination create at most a constant amount of fill in, so

total memory use through the end of these phases is O(m2n). This leaves us with s � n

separators. During this phase, fill-in is possible. Based on the planar topology, the number

of operations should grow as O(s1.5), which leads to O(m2s1.5) additional storage. Under

refinement by a factor of k, n→ kn, m→ km (m→ k2m in 3D), and s→ s. This leads to

O(k3) (2D) or O(k5) (3D) scaling in memory usage. In practice, actual memory requirement

is significantly better than these predictions, since many blocks are duplicates and need not

be stored. Nevertheless, this is noticeably worse than the optimal scaling of O(k2) and O(k3)

respectively. Indeed, memory is the limiting factor of our method in 3D, where we start

reaching our memory limitations at around 10M degrees of freedom on realistic geometry.

Computational cost Computational cost closely follows memory usage, except that op-

erations on our blocks scale as O(m3). This gives us O(m3n+m3s1.5) computational cost.

This scales with resolution k as O(k4) in 2D and O(k7) in 3D, which compares poorly with

optimal at O(k2) and O(k3). In practice, this scaling is not observed as long as channel is
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Figure 4.8: Domain of the test case “wide”. The blue dots (•) indicate inflow ports, and
the red dots (•) indicate free surface outflow. On the right we show the mesh inside the red
box at resolution 8. The x and y coordinates of nodes are labeled with “X#” and “Y#”
respectively. Their values can be read from Table 4.4.

not too wide. Over the relevant range of resolutions, our tests suggest 2D scaling of O(ka)

with a between 2.1 and 2.6 on suitable geometry and 3D scaling with a between 5.2 and

5.4. (See Section 4.6.5 for details.) The proposed method is performance competitive with

state-of-the-art methods even at around 1M degrees of freedom in both 2D and 3D. (See

Section 4.6.6 for timing comparisons.)

Impacts of cross section size The proposed method scales poorly with block size. This

suggests that blocks should have as few degrees of freedom as possible while satisfying

connectivity requirements. The detrimental effects of large cross sections may be observed

in the “wide” test case (in 2D and 3D), where a very wide cross section in a portion of the

fluid domain causes global performance deterioration. (See Section 4.6.6.) The isolating

effects of separator blocks and the independence of components means that components

with large cross sections may be eliminated using an alternative sparse direct solver (such as

MUMPS); the sparse LU or LDLT factorization may then be used in lieu of dense blocks for

the component. This would allow the method to overcome the effects of such components

while retaining the benefits in other regions. Observe that the caching benefits are retained;
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“grid20” “rgrid0” “rgrid1”

Figure 4.9: Domains of grid-shaped tests. The blue dots (•) indicate inflow ports, and the
red dots (•) indicate free surface outflow. For simplicity, we draw each pipe as a filled stroke,
by connecting the central vertices at the ends of the pipe. In “grid20” The coordinates for
the bottom left and top right vertices are (0, 0) and (0.95, 0.95) respectively. In tests “rgrid0”
and “rgrid1” The coordinates of vertices are contained in a box with bottom left corner (0, 0)
and top right corner (1.575, 2.025). In all of these tests a uniform cross section of 0.0125 is
used.

if the same large component is repeated in the device’s design, it need only be eliminated

once.

4.6 Numerical results

4.6.1 Sample device geometries

We use six different geometry templates for our numerical tests.

• “wide” is an example of a relatively simple microfluidic device. The device and its

precise geometry are shown in Figure 4.8. This geometry includes a component with

very large cross sections to illustrate the performance degradation that occurs in this

case.

• “grid20” is a large regular grid of pipes (See Figure 4.9). This example benefits

heavily from the regularity of the geometry, resulting in lots of caching opportunities;
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Figure 4.10: Domains of tests “voronoi-s4” (left) and “voronoi-s15” (right). The blue dots (•)
indicate inflow ports, and the red dots (•) indicate free surface outflow. The cell centers are
labeled by “A#” and “B#” in “voronoi-s4” and “voronoi-s15” respectively. The coordinates
of cell centers are listed in Table 4.5.

this tends to accelerate the earlier elimination stages. On the other hand, it has a

large number of separator blocks, which makes the final stage of elimination more

expensive. Because of the large number of pipes, this example also has the highest

degree of freedom count relative to the resolution of the pipes.

• “rgrid0” and “rgrid1” were selected from a large database of grid-like automatically

generated microfluidic devices [170]. In that work, this database of devices was very

expensive to compute using a commercial software package. The geometry for these

devices is shown in Figure 4.9.

• “voronoi-s4” and “voronoi-s15” are randomly generated from Voronoi diagrams

clipped to the circle centered at the origin with radius 0.5 (See Figure 4.10). In these

tests all pipes are joined at unique angles; this prevents any blocks (other than the

pipes) from being cached.
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Name Resolution Total dofs Blocks Tasks Avg dofs/block
grid20 18 7.6 M 48602 187.0 K 157.2
grid20 36 30.9 M 98300 305.7 K 314.4
rgrid0 18 2.5 M 16134 42.8 K 154.9
rgrid0 36 10.1 M 32495 78.3 K 311.7
voronoi-s4 18 1.7 M 11041 38.6 K 153.1
voronoi-s4 36 6.8 M 22226 75.9 K 307.7
grid20-3d 4 1.5 M 9948 94.9 K 154.1
grid20-3d 10 29.7 M 26514 134.3 K 1118.4
rgrid0-3d 4 0.5 M 3438 10.1 K 145.2
rgrid0-3d 10 9.7 M 8855 23.3 K 1089.9
voronoi-s4-3d 4 0.3 M 2340 9.8 K 143.3
voronoi-s4-3d 10 6.5 M 6066 22.1 K 1066.4

Table 4.2: Statistics of scaling with refinement tests. Only the smallest and largest resolu-
tions are shown.

In each example, a fixed channel width w is used for all pipes. In 3D tests, we

extrude the domain along the z direction by w, which produces a square cross section for

pipes. We use characteristic block width h = w
r , where r is the resolution. At all inflow

regions, we enforce velocity boundary conditions with a quadratic Poiseuille flow velocity

profile in 2D. In 3D, the input velocity profile is quadratic in both the horizontal and vertical

directions; the velocity is zero at the walls and greatest in the middle. We use flow rates of

0.005m2s−1 (2D) or 0.005m3s−1 (3D) at all inflows on all non-analytic tests.

4.6.2 Analytic convergence tests

We begin by performing convergence tests on all of our devices. Since analytic

solutions to the Stokes equations are known only for simple geometry setups, we instead use

the method of manufactured solutions to perform our analytic tests [144, 147, 146]. This

allows us to choose arbitrary velocity and pressure fields. We choose velocity and pressure

fields that are combinations of trigonometry and polynomials and have oscillations on the

length scale of about 0.4, which is small enough to be well-resolved at all resolutions and

yet high enough to exhibit significant nonlinearity. In all tests, we used the analytic fields
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below.

Field u(x) p(x)

2D

 sin(12x)y + cos(15y) + xy

cos(14x) cos(13y) + sin(16y)x+ x2 − 1

 sin(15x+ 10y + 1)

3D


sin(14x)y + cos(15y)z + xy

cos(14x) cos(16y) + sin(15y)x+ x2 + yz − 1

sin(17z)y + cos(15x)z

 sin(15x+ 14y + 1) + cos(16z)

Note that the velocity fields are not divergence free, do not follow the domain

geometry, and do not satisfy the Stokes equations. Instead, we use a right hand side term

for divergence (See Section 4.3.1), enforce velocity boundary conditions at all inflows and

pipe walls, enforce traction boundary conditions at outflows, and use a forcing term to

make the analytic solution satisfy the Stokes equations. This allows us to do very precise

refinement studies even with our very irregular geometry. We use a viscosity of µ = 1.

We compute L∞ and L2 errors of computed pressures p and velocities u using

L∞p = max
i
|p(xi)− p(xi)| L2

p =

√
1

Np

∑
i

(p(xi)− p(xi))2

L∞u = max
j
‖u(xj)− u(xj)‖∞ L2

u =

√
1

Nu

∑
j

‖u(xj)− u(xj)‖22,

where Np is the total number of pressure degrees of freedom, and Nu is the total number

of vertices and edges with velocity degrees of freedom. We conduct the refinement study by

changing the resolution r, which is the number of elements along the cross section of a pipe.
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Figure 4.11: Analytic convergence tests for L∞ and L2 error measures in 2D. The markers
indicate the computed errors. The solid lines are least square regression lines used to compute
the convergence rates. The convergence rates are shown in the legends. The resolution is the
number of edges in a regular channel. We also run tests on a modified version of “voronoi-s4”,
which contains velocity boundary conditions only. In that case, pseudo-inverse is used to
eliminate the last block. We show L∞ and L2 errors using circles (◦ and ◦ respectively).
These tests are indicated with “pinv.”

The results of the refinement tests are shown in Figure 4.11 for 2D and Figure 4.12

for 3D. In all cases, we observe second order convergence in pressure and third order con-

vergence in velocity in both L∞ and L2. This is the optimal convergence order for the

Taylor-Hood elements that we use in our discretization.

In 3D, memory usage restricts the resolutions to r = 10. At this resolution, simu-

lations contain on the order of 10M degrees of freedom. (See Table 4.2 for precise statistics.)

Nullspace We repeat test “voronoi-s4” in both 2D and 3D with all traction boundary

conditions replaced by velocity boundary conditions. These boundary conditions result in
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Figure 4.12: Analytic convergence tests for L∞ and L2 error measures in 3D. The markers
indicate the computed errors. The solid lines are least square regression lines used to compute
the convergence rates. The convergence rates are shown in the legends. The resolution is the
number of edges in a regular channel. We also run tests on a modified version of “voronoi-s4”,
which contains velocity boundary conditions only. In that case, pseudo-inverse is used to
eliminate the last block. We show L∞ and L2 errors using circles (◦ and ◦ respectively).
These tests are indicated with “pinv.”

a constant pressure nullspace. This nullspace is handled as described in Section 4.4.1. The

convergence results are shown alongside the original boundary conditions in Figures 4.11

and 4.12 and are indicated by “pinv” in the legend. The pressure nullspace has no significant

effect on the accuracy, convergence, or performance of the method.

4.6.3 Convergence tests using real boundary conditions

In the analytic convergence tests, we considered test cases with a smooth velocity

and pressure profiles everywhere. Real flows around sharp corners, however, may have high

velocity gradients in these regions. High velocity gradients are also observed at corners
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Figure 4.13: Convergence tests with real boundary conditions for L∞ and L2 error measures
in 2D. The markers indicate the computed errors. The solid lines are least square regression
lines used to compute the convergence rates. The convergence rates are shown in the legends.
The resolution is the number of edges in a regular channel.

where a Poiseuille flow profile must conform to a traction-free outflow boundary condition.

These gradients reduce the convergence order in L∞, especially with the regular element

sizes used in this study. In all tests, inflow ports have a flow rate of 0.005. The viscosity

is 8.9 × 10−4. We use the solution at a fine resolution (r = 60 for 2D and r = 16) as

our reference to compute the error. The error is normalized by the maximum magnitude

seen in the reference solution. The results of convergence tests for 2D and 3D are shown in

Figure 4.13 and Figure 4.14. We show the distribution of errors and solution gradients in

Figure 4.16.
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Figure 4.14: Convergence tests with real boundary conditions for L∞ and L2 error measures
in 3D. The markers indicate the computed errors. The solid lines are least square regression
lines used to compute the convergence rates. The convergence rates are shown in the legends.
The resolution is the number of edges in a regular channel.

4.6.4 Scaling with parallelism

In this section we run the tests “grid20”, “rgrid0” and “voronoi-s4” at fixed resolution

(r = 16 in 2D, r = 6 in 3D) with different numbers of cores (1-16) to evaluate how well the

method scales with available cores. The physical properties are the same as in Section 4.6.3.

Statistics of the tests are shown in Table 4.1, and results are shown in Figure 4.15. A

speedup of 9-13 times is observed in 3D when increasing cores from 1 to 16. In 2D, a

more modest factor of 5-8 is observed instead. The reduced scaling in 2D is due to the

lower computational cost of tasks in 2D (and thus scheduling overhead is relatively more

expensive). Test “grid20” is more expensive since it is a larger test with more degrees of
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Figure 4.15: The solving time for various number of threads in logarithm scale. We measure
the total run time including meshing, system construction, elimination, and back solve. The
dotted lines are the regression lines of the data. The regression order is also shown above
each of them. The run time for 1 and 16 threads are shown by the left and right vertical
axis.

freedom. The numbers included in the plots are fit line slopes; a slope of s indicates runtime

scaling as O(cs), where c is the number of cores. s = −1 is ideal.

4.6.5 Scaling with refinement

In this section, we evaluate the scaling of the method with resolution. We again

run tests “grid20”, “rgrid0” and “voronoi-s4.” This time, we fix the core count at 16 and

instead vary the resolution. Test statistics are shown in Table 4.2, and results are shown in

Figure 4.18. The numbers in the plots represent the slope of the fit line. A slope of s indicates

runtime O(rs), where r is the resolution. In 2D, observed scaling is O(r2.1) − O(r2.6); this

compares very favorable with ideal O(r2) and is much better than the predicted O(r5). In

3D, observed scaling is O(r5.2)−O(r5.4); this is significantly worse than the optimal O(r3)

but also much better than the predicted O(r7). In each case, observed scaling is far better
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(a) Solution pressure‡ (b) Solution velocity magnitude in L2‡

(c) Pressure gradient in L2† (d) Velocity gradient in Frobenius norm†

(e) Pressure error absolute value† (f) Velocity error in L2†

(g) Pressure gradient† (h) Pressure error† (i) Velocity gradient† (j) Velocity error†
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Figure 4.16: Solutions (first row), gradients (second row) and errors (third row) of test “wide”
at resolution 16. The solutions are in linear scale (‡), and the gradients and errors are in
logarithm scale (†). The solutions and gradients are normalized by the maximum values that
are evaluated at the center of each element. To compute the errors, we compare the results
with the solution at resolution 32. The errors are also normalized by the maximum velocity
or pressure magnitude. The gradients and errors enclosed in the red rectangle are shown in
the fourth row.

than one would predict based on the analysis of the algorithm in Section 4.5.2. Caching is

certainly a major factor in the improved scaling, but this alone can only explain a factor of

O( r
ln r ) improvement. Improved exploitation of parallelism (SIMD, threading) with larger

problem sizes may also contribute to the improved performance. The near perfect scaling

in 2D is quite surprising but very noticeable. The rather poor scaling in 3D is also quite
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Figure 4.17: Solving time of our method (“cached-elim”), our method without caching
(“elim”), MUMPS, and UMFPACK with different number of threads.

clear. The resolutions for which 3D is manageable are adequate to produce results accurate

to 1-3 decimal places (depending on the variable evaluated and the norm chosen), which is

likely adequate for prototyping purposes. At higher resolutions, the method is best used

used as a coarse-grid solver for multigrid. The proposed method effectively performs an LU

factorization; subsequent iterations require only the forward/backward substitution.

4.6.6 Comparison with general direct sparse solvers

In this section we compare our method with two direct solvers used for general

sparse system: MUMPS[6, 4] and UMFPACK[41]. We use test cases “wide”, “grid20”, “rgrid0”

and “voronoi-s4” in both 2D and 3D. We choose a resolution for each test so that there are

around one million degrees of freedom. The statistics are listed in Table 4.3. We compare

the methods based on runtime and also scaling with threads.

154



18 20 22 24 26 28 30 32 34 36

100

101

102

103

4 6 8 10

100

101

102

103

grid20-ours (2.14 5.44) rgrid0-ours (2.17 5.27) voronoi-s4-ours (2.55 5.19)

grid20-mumps (3.54 4.03) rgrid0-mumps (2.62 4.67) voronoi-s4-mumps (2.64 5.03)

grid20-umfpack (2.45 3.73) rgrid0-umfpack (2.29 4.26) voronoi-s4-umfpack (2.40 4.34)

So
lv

in
g

ti
m

e
(s

ec
on

d)

Resolution

Figure 4.18: Scaling with refinement using our method (×), MUMPS (◦), and UMFPACK
(4). Different colors indicate the test cases (“grid20”, “rgrid0”, or “voronoi-s4”). We run
these tests in both 2D (left) and 3D (right). Some data points are missing for MUMPS and
UMFPACK because we run out of memory for those resolutions. The dotted lines are least
square regression lines used to compute the increasing order. The orders for 2D (first entry)
and 3D (second entry) are shown along with the corresponding legend items. An order of s
indicates a complexity of O(ns) as discussed in Section 4.5.2.

MUMPS (version 5.2.1) uses MPI for parallelism. Each instance calls sequential

LAPACK routines. We call MUMPS so that it is aware of that our system is symmetric

indefinite. (MUMPS also supports the shared memory parallelism through OpenMP. We

tried this setup with one MPI instance and let the LAPACK implementation spawn threads.

This was not as efficient as the MPI approach, so we do not show these results here.)

UMFPACK (version 5.7.8) supports threading through a parallel LAPACK im-

plementation. In the setup of UMFPACK, we specify the OpenMP threads number. The

default control switches are used for the UMFPACK solver.

For both MUMPS and UMFPACK, the total solving time is measured for symbolic

analysis, numeric factorization, and final numeric solve steps. For both solvers, we solve the
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Name Resolution Total dofs Blocks Tasks Avg dofs/block
wide 32 1.0 M 3036 16.0 K 314.4
grid20 8 1.5 M 20992 121.3 K 71.9
rgrid0 12 1.1 M 10702 27.2 K 103.9
voronoi-s4 16 1.3 M 9798 34.7 K 136.2
wide-3d 8 0.6 M 714 4.1 K 795.0
grid20-3d 4 1.5 M 9948 94.9 K 154.1
rgrid0-3d 6 1.9 M 5281 14.9 K 358.5
voronoi-s4-3d 6 1.3 M 3582 13.8 K 354.5

Table 4.3: Statistics for comparison tests with MUMPS, UMFPACK, and Krylov solvers.
The resolutions are chosen so that the total number of dofs is around one million.

world space system, thus avoiding the extra transform passes on the solution and right hand

side required for our method. The time required to set up the systems is excluded in all cases;

only linear system solve time is being compared. Results are shown in Figure 4.17. We were

surprised to observe that MUMPS and UMFPACK did not scale well with increasing core

count. Our method is significantly faster on all tests except “wide.” These improvements

are generally the result of caching. The test case “wide” demonstrates a limitation of our

method (See Section 4.7), though even on this example we eventually catch with increasing

numbers of cores.

4.6.7 Comparison with iterative solver

The family of Krylov subspace based solvers is also commonly used for solving

general sparse linear systems. In the case of symmetric indefinite matrices, MINRES is

frequently used. The cost of Krylov solvers varies considerably, with system conditioning and

the preconditioner effectiveness, and preconditioner cost being major factors. Rather than

compare the cost of solving the system with particular choices of preconditioner, we instead

compare the cost of solving the systems with our algorithm with the cost of performing one

iteration of unpreconditioned MINRES. The cost of a MINRES iteration was estimated by
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Figure 4.19: Comparison with Krylov solver. The solving time of our method is converted
to number of Krylov iterations based on the time per iteration observed in our reference
MINRES solver.

running 10 iterations of MINRES on the linear system and taking the average. Our MINRES

implementation uses MKL-BLAS for the vector operations and MKL’s sparse matrix-vector

routines for the matrix-vector multiply. All of the MINRES linear algebra operations are

threaded. We use the same set of tests and setup as in Section 4.6.6.

The test results are shown in Figure 4.19. With the expect of the “wide” test, our

method converges for the price of about 20 (in 2D) or 60 (in 3D) unpreconditioned Krylov

iterations for a Stokes systems with approximately 1M degrees of freedom. On the “wide”

test, our cost is equivalent to a bit less than 300 (in 2D) or 1000 (in 3D) unpreconditioned
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X0 = 0.000 X1 = 0.050 X2 = 0.100 X3 = 0.175
X4 = 0.231 X5 = 0.288 X6 = 0.344 X7 = 0.400
X8 = 0.450 X9 = 0.525 X10 = 0.600 X11 = 0.675
X12 = 0.725 X13 = 0.750 X14 = 0.825 X15 = 0.881
X16 = 0.938 X17 = 0.994 X18 = 1.050 X19 = 1.100
Y0 = 0.088 Y1 = 0.056 Y2 = 0.050 Y3 = 0.000
Y4 = -0.019 Y5 = -0.050 Y6 = -0.056 Y7 = -0.075
Y8 = -0.088 Y9 = -0.131 Y10 = -0.150 Y11 = -0.200

Table 4.4: Coordinates for the test case “wide”.

Krylov iterations. Unpreconditioned MINRES would make little progress on these problems

in 60 iterations and does not even converge in 1000; a preconditioner should always be used

on these problems. Preconditioners compete for time with the rest of the Krylov iteration.

While effective preconditioners exist which can converge in fewer than 60 iterations, doing

so at the cost of 60 iterations would be quite difficult.

4.7 Limitations

Although the proposed method can in principle be applied to arbitrary fluid prob-

lems, in practice it is only efficient for fluid domains that have special geometrical properties.

Irregularities are well-tolerated, provided they are local and do not lead to blocks with ex-

cessive numbers of degrees of freedom. Geometry without repetitions (either in the form

of repeated components or straight pipes) produces no caching opportunities and thus no

speedup over existing solvers. Though sensitive to the geometry, the method is relatively

flexible with respect to PDE (Navier-Stokes, Poisson, heat equation) and other discretization

choices (finite volume, finite difference; triangles vs. quads).
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Due to the need for repetitions in geometry to be passed on to the linear solver,

some amount of special-purpose discretization is required. Pipes must be broken into geom-

etry blocks directly, and canonical components and blocks must still be identified. One is

still free to use existing meshing libraries for non-pipe components and for geometry blocks.

If a component was meshed with a general purpose library, a simple breadth-first-search

traversal of the mesh elements could be used to automatically generate geometry blocks and

canonical meshes. The meshing algorithm employed uses uniformly-sized elements, which

do not accurately capture the large velocity and pressure gradients that occur in isolated

parts of the fluid domain. There is no fundamental reason that an adaptive discretization

could not be employed, and we leave this for future work.

Although our algorithm remains quite efficient at interesting resolutions, the algo-

rithm scales poorly with block matrix size. For high enough resolutions, the algorithm will

eventually become slower than many competing methods, especially iterative methods. The

algorithm, however, only scales poorly with respect to feature width (channel width). It

scales perfectly with respect to channel length. In particular, the algorithm would be very

efficient on enormous devices (one could efficiently simulate an immensely complex chip),

provided the features that comprise the device are all small.

4.8 Conclusions

We have demonstrated a method for discretizing thin and repetitive geometry

into a linear algebra problem with repeated matrix blocks. We have also constructed an

algorithm to efficiently solve matrices with this structure. The algorithm is very efficient
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A0 = (-0.231,0.050) A1 = (0.427,0.156) A2 = (0.142,0.476) A3 = (0.225,0.152)
A4 = (-0.048,0.173) A5 = (0.033,-0.342) A6 = (0.202,-0.363) A7 = (-0.109,0.321)
A8 = (-0.332,0.218) A9 = (-0.077,-0.045) A10 = (-0.377,-0.104) A11 = (0.440,-0.131)
A12 = (0.111,-0.004) A13 = (0.096,0.303) A14 = (-0.155,-0.268) A15 = (-0.471,0.062)
A16 = (0.252,-0.127) A17 = (0.007,-0.493)
B0 = (0.349,0.314) B1 = (0.417,-0.019) B2 = (0.058,0.210) B3 = (0.146,0.022)
B4 = (0.168,0.418) B5 = (-0.115,0.447) B6 = (-0.243,0.302) B7 = (-0.151,0.100)
B8 = (-0.089,-0.124) B9 = (0.278,-0.248) B10 = (-0.403,-0.035) B11 = (0.094,-0.435)
B12 = (-0.135,-0.348) B13 = (-0.314,-0.260) B14 = (0.085,-0.230)

Table 4.5: Coordinates for the test cases “voronoi-s4” and “voronoi-s15”.

up to moderate resolutions and is competitive with existing methods over this range of

resolutions. The proposed method is the most efficient algorithm we are aware of for solving

the Stokes flow equations on microfluidic chips. Discretizations of around 1M degrees of

freedom can be solved in about one second on a workstation.

Future work There are many promising avenues for extending and improving the pro-

posed method. The method may be coupled with multigrid to scale to higher resolutions or

with other direct solvers to handle wide components more efficiently. Our implementation

of the algorithm is quite simple and does not extend naturally to other problem domains be-

sides our specific application, even though other domains exhibit similar geometrical features

(e.g., plumbing). Our extension from 2D to 3D assumes that geometry is simply extruded,

but we do not exploit this, such as by applying FFTs in this direction as is done in the

FACR algorithm [163]. Such a method would improve the 3D scaling almost to the level of

2D scaling both in terms of memory and computational complexity.
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Appendix A

APIC properties

The properties of our MAC APIC transfers are similar to those of the co-located

method [94]. The analysis of the method as presented is notationally complicated compared

to the original since the position update is being delayed until the beginning of the next

time step.

In this section, we demonstrate that the proposed APIC transfers satisfy the same

properties as the original co-located APIC transfers: conservation of linear and angular

momentum, preservation of affine velocity fields, and single particle stability.

The proposed scheme conserves momentum and angular momentum in a local

sense. Total momentum is conserved, and momentum is only transferred to nearby neighbors

(limited by the interpolation stencil size). Due to this interpolation, the transfers will exhibit

a degree of momentum diffusion. Since the proposed transfers are not flux-based, it is

unlikely that they could be used to track shocks. This is not a problem for incompressible

flow (which never exhibits shocks), but this may be a limitation in some applications.
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Figure A.1: The proposed time integration scheme can be divided into four stages: advec-
tion, particle-to-grid transfer, pressure projection, and grid-to-particle transfer. Two full
time steps are shown (first step is green, second step is red). After each stage, the state
(mass, velocity, and position) are represented differently. Corresponding to each state is a
corresponding measure of linear momentum and angular momentum. The transitions shown
with solid arrows are conserved, as proved in Chapter A. The transitions shown with dotted
arrows are conserved under a different definition of momentum and angular momentum.

Linear momentum

We can define particle-based and grid-based measures of momentum in the usual

way.

pP,n = p̃P,n =
∑
p

mpv
n
p pG,n =

∑
ia

mn
iav

n
iaea p̃G,n+1 =

∑
ia

mn
iaṽ

n+1
ia ea (A.1)

With these definitions, momentum is conserved across a particle-to-grid transfer, since

pG,n =
∑
ia

mn
iav

n
iaea =

∑
ia

(∑
p

wnipampe
T
a v

n
p +

∑
p

wnipamp(b
n
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T (Dn
pa)
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)
ea

=
∑
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mpv
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a
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T
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∑
i

wnipa +
∑
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mp(b
n
pa)

T (Dn
pa)
−1ea

∑
i

wnipa(x
n
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p )

=
∑
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mpv
n
p = pP,n
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The transfer from the grid back to the particle also conserves momentum, since

pP,n+1 =
∑
p

mpv
n+1
p =

∑
p

mp

∑
ia

wnipaṽ
n+1
ia ea =

∑
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(∑
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n
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)
ṽn+1
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=
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mn
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ia ea = p̃G,n+1

Angular momentum

We can define the following particle-based and grid-based measures of angular

momentum.

P,n =
∑
p

xnp ×mpv
n
p +

∑
ap

mpb
n
pa × ea

G,n =
∑
ia

xnia ×mn
iav

n
iaea (A.2)

˜P,n =
∑
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n
p +

∑
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n
pa × ea ˜G,n+1 =

∑
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ia ea (A.3)
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With these definitions, angular momentum is conserved across a particle-to-grid transfer,

since

G,n =
∑
ia

xnia ×mn
iav

n
iaea
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∑
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∑
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∑
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∑
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∑
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The transfer from the grid back to the particle also conserves angular momentum, since

P,n+1 =
∑
p

xn+1
p ×mpv

n+1
p +

∑
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n+1
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Affine

The APIC affine property is that an affine velocity field is preserved across transfers

between particles and grid when particles are not moved (∆t = 0). Since ∆t = 0, we have

xia = x̃ia (since nothing is moving). We can also ignore superscripts, since time does not

matter. Let f(x) = Ax + b define an arbitrary affine function. We begin by assuming

that the grid velocity is described by this function (ṽia = eTa (Axia +b)) and transferring to
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particles (ṽia → {vp,bpa}).

vp =
∑
ia

wipaṽiaea =
∑
ia

wipaeae
T
a (Axia + b) =

(∑
a

eae
T
a

)
(Axp + b) = Axp + b
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∑
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T

)
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i

wipa(xia − xp)

)
eTa b = DpA

Tea

From this we can see the corresponding representation of this affine velocity field on particles.

Using these particle values and transferring back to the grid ({vp,bpa} → via) yields.

miavia =
∑
p

wipampe
T
a vp +

∑
p

wipamp(bpa)
T (Dpa)
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=
∑
p

wipampe
T
a (Axp + b) +

∑
p

wipamp(DpA
Tea)

T (Dpa)
−1(xia − xp)

=
∑
p

wipampe
T
a (Axp + b) +

∑
p

wipampe
T
aA(xia − xp)

=
∑
p

wipampe
T
a (Axp + b + Axia −Axp)
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T
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Since via = ṽia, the velocity field obtained by transferring from grid to particles and back

to grid matches the original velocity field.

Stability

The final APIC property is the stability criterion, which requires that a single

particle translating in the absence of forces (ṽn+1
ia = vnia) should translate with no change to
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velocity or affine momentum state (vn+1
p = vnp , bn+1

pa = bnpa, and xn+1
p = xnp + ∆tvnp ). The

translation requirement is trivially satisfied. Starting from particles, we first compute the

grid-based quantities. Note that summation on particles is omitted since there is only one

particle.
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p )

We can see that velocities are unchanged since

∑
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Finally, affine momentum is unchanged since
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∑
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n+1
ia (xnia − xn+1

p ) =
∑
i

wnipav
n
ia(x

n
ia − xn+1

p )

=
∑
i

wnipa(x
n
ia − xn+1

p )
(
eTa v

n
p + (bnpa)

T (Dn
pa)
−1(xnia − xn+1

p )
)

=

(∑
i

wnipa(x
n
ia − xn+1

p )

)
eTa v

n
p +

∑
i

wnipa(x
n
ia − xn+1

p )(bnpa)
T (Dn

pa)
−1(xnia − xn+1

p )

=

(∑
i

wnipa(x
n
ia − xn+1

p )(xnia − xn+1
p )T

)
(Dn

pa)
−1bnpa = Dn

pa(D
n
pa)
−1bnpa = bnpa

This establishes the one-particle stability criterion.
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