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Abstract
We used an eye-tracker to investigate the allocation of overt 
attention during feedback on a categorization task.  Results 
suggest several conclusions: (1) Participants spend a 
significant amount of time attending to stimuli re-presented 
during feedback, indicating that this re-presentation may play 
an important role in  learning.  (2) Participants spend more 
time attending to the stimulus during feedback on incorrect 
trials than on correct trials, indicating that  incorrect trials may 
be more important than correct  ones.  (3) Attentional 
allocation to the re-presented stimulus during incorrect trials 
is  predictive of subjects’  ability to learn the task, even as few 
as ten trials into the experiment.  This study shows that 
eyetracking studies  of feedback are a promising new method 
of investigating learning processes.

Keywords: feedback;  error processing; learning; 
categorization; eye-tracking

Introduction
When learning new skills it often helps to be told what 

you are doing right and wrong.  Some kinds of learning are 
simply impossible without feedback (e.g., Ashby & 
O’Brien, 2007), and in other cases unsupervised learning 
can be slower and less successful than learning with 
feedback (Wulf, McConnel, Gärtner & Schwarz, 2002).  
Understanding how and why feedback works, then, is 
crucial if we want to understand learning in general. This 
goal has broad importance for educational theory, and also 
for the development of efficient experimental paradigms 
where more participants learn the assigned task. 

Feedback has been studied in the context of sports and 
motor skill learning (e.g., Wulf et al., 2002), human resource 
management (e.g., Herold & Fedor, 2003), educational 
instruction (e.g.,  Bangert-Drowns, Kulik, Kulik,  & Morgan,
1991), language learning (e.g., Pashler, Cepeda, Wixted, & 
Rohrer, 2005), categorization (e.g.,  Ashby et al., 2002), and 
neuroscience (e.g., Holroyd & Krigolson,  2007; Seger, in 
press).  A number of studies have compared the 
effectiveness of different kinds of feedback. Because of the 
wide variety of learning situations being investigated in 
these studies it is not clear that their conclusions apply 
across the board, but it is nevertheless worth briefly 
considering some results.

In motor learning, feedback that draws attention to the 
external results of a movement is more beneficial than 

feedback that pertains to aspects of the movement itself 
(Wulf et al.,  2002).  Furthermore, it seems that giving sparse 
feedback every few trials is more effective than giving 
feedback every trial.  Wulf et al. suggest that this is because 
overuse of external feedback causes subjects to become 
dependent on it and to ignore the internal feedback from 
their own body.

In many paradigms, however, internal feedback is not 
particularly useful, at least not initially, because participants 
have no idea what constitutes satisfactory performance.   In 
these situations, external feedback on the accuracy of 
responses is often crucial to learning.  There have been a 
number of neurophysiological studies on the role of 
feedback in such cases, which typically focus on where and 
how error signals influence neural connectivity. One 
important recent finding is that neural components 
associated with feedback may be coding differences 
between outcomes and expectations, rather than errors per 
se (Holroyd & Krigolson, 2007; Oliveira, McDonald, & 
Goodman, 2007). Studies also include efforts to localize 
error processing to specific brain regions for specific tasks 
(e.g., Seger, 2007) . 

Error signals and violations of expectancy are clearly 
important, but there are other aspects to feedback.  On 
information integration categorization tasks, for example, 
learning is hampered when feedback is not given on correct 
trials (Ashby & O’Brien, 2007).  Positive reinforcement, 
then, can also be an important part of learning.

Another source of information during feedback is the 
stimulus itself.  In many real-life situations and 
experimental paradigms stimuli are visible during feedback, 
and evidence shows that participants are doing something 
with the stimuli during this time.  Bourne, Guy, Dodd and 
Justesen (1965) showed that participants in a categorization 
task who were shown stimuli during feedback made fewer 
errors than participants who were not.   Furthermore, when 
the length of the feedback phase was increased to 29 
seconds (!) those participants who were shown the stimulus 
during this time continued to improve their performance, 
whereas the performance of other participants was actually 
impaired.   Bourne et al. suggest that these effects are due to 
participants forgetting fewer aspects of a stimulus if it 
remains in view during feedback, which prevents them from 
accidentally forming hypotheses that are incompatible with 
this stimulus.
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 Halff (1975) found a similar effect to Bourne et al.
(1965), and further found similar effects of stimulus 
presentation during feedback in a categorization experiment. 
He also investigated whether these effects it was correlated 
with participants' accuracies on each trial the trials they 
were receiving feedback for.  Participants who viewed the 
stimulus during feedback only on correct trials did not learn 
faster than those who did not view the stimulus during 
feedback at all (unlike in Ashby & O’Brien 2007).  
Participants who viewed the stimulus during feedback on 
incorrect trials only, as well as those who viewed the 
stimulus during every feedback phase regardless of 
accuracy, had significantly higher learning rates, but these 
rates were not significantly different from each other.  Halff 
concludes that participants test different hypotheses during 
learning, that these are only modified after error, and that re-
presenting the stimulus during feedback aids in preserving 
memory for the stimulus.  Like Bourne et al. (1965), he 
suggests that better memory for the stimulus allows for 
improved efficiency of hypothesis revision.

The benefits of stimulus presentation during feedback do 
not only apply to humans performing categorization tasks.  
Strength and Zentall (1991) found that pigeons' learning 
rates also improve when stimuli are re-presented during 
error feedback on matching-to-sample and oddity-from-
sample tasks.  Martin and Zentall (2005) confirmed these 
results and eliminated some other possible confounds.  Both 
studies conclude that pigeons benefit from the chance to 
review the trial stimuli after errors.  Neither investigated 
whether similar effects result from viewing stimuli during 
feedback to correct trials.

Bourne et al. (1965), Halff (1975), Strength and Zentall 
(1991), and Martin and Zentall (2005) are the only works 
we have been able to find that investigate the role of 
stimulus re-presentation during feedback.  It is somewhat 
surprising that studies of re-presentation appear to be 
published at a rate of less than once a decade, given how 
ubiquitous it is in experimental work.  Further investigation 
is clearly warranted.

The present studies were intended to explore participants' 
use of feedback in categorization tasks.  We used a standard 
categorization paradigm with consecutive trials of stimulus-
response-feedback sequences. Our primary interests were in 
understanding how participants allocate their attention to 
different aspects of feedback, how this changes throughout 
learning, and what this might indicate that they are trying to 
do with the information they access. 

We used an eye-tracker to measure participants’  overt 
attentional allocation, which allowed us to record its 
development throughout feedback.  This is an improvement 
over the previous practice of inferring attentional allocation 
based on participants’  responses, a method that is indirect 
and gives no fine-grained temporal information.  To our 
knowledge, eyetrackers have not previously been used to 
study attention during feedback processing. We use mean 
total fixation durations to response feedback and to features 
of the re-presented stimulus as our primary data.  We will 
investigate how these factors change throughout learning 
and how they change during feedback on correct or 
incorrect trials. 

Experiment 1

Method

Participants. Participants were 20 students at Simon Fraser 
University who received course credit or pay for their 
participation.  All had normal or corrected-to-normal vision. 
Two participants were excluded from the analysis for failing 
to meet the learning criterion (described below).

Stimuli. The stimuli were designed to resemble micro-
organisms with three lobules (see Figure 1).  Each lobule 
contained a different type of feature, designed to resemble 
an organelle.  These features were presented in the same 
location throughout the experiment for each subject. Each 
feature had two subtly differing possible states, allowing for 
a total of eight different combinations (see Figure 2).  
Images were 25.4 cm in diameter,  subtending approximately 
19.2° of visual angle. Features subtended 1.5°-3.0° and were 
located 9.2° apart. Variations of the micro-organism’s 
background ensured that subjects would see a unique 
stimulus on every trial. 

Not all features were diagnostic of each category (see 
Figure 2).  Category A was defined solely by a particular 
value of feature 1, Category B by values of features 1 and 2, 
and Categories C and D were defined by particular values of 
all three features.  The location of each feature and its 
mapping onto the category structure was counterbalanced to 
the extent possible given the number of subjects.

Procedure. The experiment consisted of a series of trials in 
which a stimulus was displayed, participants identified it as 
belonging to one of the four categories, and response 
feedback was given. During piloting we found that 
participants more often fixated features that were nearest the 
response buttons.   To prevent this, response buttons were 
not displayed during initial stimulus presentation. Trials 
began with a fixation cross in the center of a black screen.  
Subjects clicked on the fixation cross and the stimulus 

Figure 1:  A picture of the feedback screen. This 
stimulus is an ‘A’, but the participant incorrectly 

responded ‘B’.
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appeared.  Subjects viewed the stimulus until they were 
ready to respond and then clicked the mouse button.  The 
stimulus disappeared and the four response buttons appeared 
in the corners of the screen, randomly ordered. Once the 
subject responded, the stimulus was re-presented along with 
response feedback. On incorrect trials the button that the 
subject pressed turned red, and on all trials the correct 
response button turned green. Participants were free to view 
feedback as long as they wished, and clicked the mouse 
button to move on to the next trial. 

 The number of trials varied across subjects.  If 
participants reached a learning criterion of 24 consecutive 
errorless trials then the experiment continued for a further 
72 trials. If they did not reach this criterion by 200 trials the 
experiment ended. 

A Tobii X50 eye tracker sampling at 50hz was used to 
record gaze data. Fixations were identified using a modified 
dispersion threshold algorithm and thresholds of 1° and 
75ms fixation duration (Salvucci &  Goldberg, 2000).

Results and Discussion
  We segregated the fixations to the feedback buttons and to 
the stimulus features. We also split the pre-criterion trials in 
half,  reasoning that the beginning of the session may include 
strategies that would change once participants became more 
familiar with the task.  Note that this means that the number 
of trials in the analysis varies widely between participants. 
We conducted a 2x2x2 analysis of variance (ANOVA) using 
Stage (first half, last half), Trial Accuracy (correct, 
incorrect) and Fixation Location (buttons, stimulus features) 
as within-subjects variables and mean total fixation duration 
as the dependent measure. Because this measure was non-
normal, we rank transformed the data before the analysis. 

Results show main effect of accuracy, F(1,15) = 110.548, 
p<.001, ηp2 = .881, MSE = 256.196; Location,  F(1,15) = 
467.680,  p < .001, ηp2 = .969, MSE = 178.404 and Stage, 
F(1,15) = 87.639, p < .001, ηp2 = .854, MSE = 109.241; an 
Accuracy x Stage interaction, F(1,15) = 11.820, p < .01, ηp2 
= .441, MSE = 98.991 all qualified by a significant 3-way 
interaction, F(1,15) = 4.812, p < .05, ηp2 = .243, MSE = 
68.224 a significant three-way interaction, F(1,17)=4.81, 
p<.05 ηp2 = .24, MSE = 68.22. Results are similar to those 
shown for Experiment 2 in Figure 3. Overall, participants 

spend less time inspecting feedback in Stage 2 of learning 
than in Stage 1. Participants also spent more time on 
incorrect trials than on correct trials. This accords with the 
common sense notion that people do not need to spend as 
much time processing stimuli that they already know how to 
categorize. Finally, participants spend more time fixating on 
stimulus features than they do on response feedback. The 
importance of stimulus processing is suggested by other 
research (e.g.,  Bourne et al., 1965; Halff, 1975), and our 
results confirm this: during feedback before criterion, 
participants spend about 7 times as long fixating on stimulus 
features as they do response buttons.

The three way interaction may be easiest to explain as an 
effect in the processing of stimulus features. When 
participants go from early learning (Stage 1) to late learning 
(Stage 2), there is a larger drop in the amount of time spent 
processing stimuli on correct trials than on incorrect trials.  
This effect reflects the different roles that correct and 
incorrect trials play in learning. Early on, when the 
participant is still learning the relevant stimulus dimensions 
and the values they can take, re-inspecting the stimuli may 
be important on all trials,  not just incorrect ones.  As the 
participant gets the feel of the task the focus may shift to 
error-reduction and hypothesis testing and thus to an 
emphasis on stimulus reprocessing during incorrect trials. 
While the average time spent fixating to response buttons 
during feedback does drop throughout the experiment, the 
drop is roughly equal for both correct and incorrect trials.

Experiment 2
  We wanted to replicate the results of Experiment 1 and 
investigate several new issues to extend our findings.  We 
ran a similar study, but altered the category structure (see 
Figure 2) to confirm that our results were not due to some 
peculiarity of the structure used in Experiment 1.  We also 
wanted to make the category structure more difficult in 
order to produce a greater number of non-learners, which 
would allow us to investigate differences between learners 
and non-learners.  We reasoned that the new structure would 
be more difficult because each category is defined by a 
combination of two feature values, unlike in Experiment 1 
where Category A was defined by feature 1 alone (see 
Figure 2).  Finally, we removed feedback after the learning 
criterion was reached to investigate self-supervised error 
correction. 

Method

Participants. Participants were 32 students at Simon Fraser 
University who received course credit or pay for their 
participation. All had normal or corrected-to-normal vision. 

Stimuli & Procedure
The experiment was identical to Experiment 1 in all but 

two respects.  First, Categories A1 and A2 were defined by 
particular values of features 1 and 2, categories B1 and B2 
by values of features 1 and 3 (see Figure 2).   Second, if the 
learning criterion of 24 consecutive errorless trials was 
reached, no feedback about response accuracy was given on 
subsequent trials.  The stimulus reappeared after response 

Figure 2: Category structures for Experiment 1 (left) 
and Experiment 2 (right). Features in gray are irrelevant.
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selection,  but the only feedback consisted of whatever 
button the subject had pressed turning pink.  Subjects were 
explicitly informed that this did not relate to their accuracy.

Results and Discussion
The first analysis was a replication of the analysis of 

Experiment 1.   Using only the data from the 18 participants 
who met the learning criterion of 24 consecutive error-free 
trials, we conducted a 2x2x2 ANOVA with Stage (first half, 
last half), Trial Accuracy (correct,  incorrect) and Fixation 
Location (buttons, stimulus features) as within-subjects 
variables, again using log total fixation duration during the 
feedback phase of each trial as the dependent variable. 

Results revealed that most of the results from Experiment 1 
were replicated with the new category structure in 
Experiment 2 (see Figure 3).  Significant effects included 
main effects of Accuracy, F(1,19) = 118.13, p < .001, ηp2 = .
86, MSE = 577.55; Location, F(1,19) = 307.73,  p < .001, ηp2  
= .94, MSE = 555.11; Stage, F(1,19) = 611.02, p < .01, ηp2 
= .367,  MSE = 716.81; the Accuracy x Stage interaction, 
F(1,19) = 8.93, p < .01, ηp2 = .43, MSE = 216.28; the 
Location x Stage interaction, F(1,19) = 14.13, p < .01, ηp2 
= .426, MSE = 103.64; all qualified by a three-way 
interaction, F(1,19) = 8.77, p < .01, ηp2 = .32, MSE = 48.16.  
As in Experiment 1 the three-way interaction seems to stem 
from the steeper drop in time spent processing stimulus 
features on correct trials relative to incorrect trials as 
participants moved from early learning to later learning. 

Another of the motivations behind Experiment 2 was to 
investigate differences between participants who were 
successful in mastering the categories and those who were 
not. Increasing the difficulty of the categories had the 
desired effect: there were 18 learners and 14 non-learners.  
All non-learners had completed exactly 200 trials, but 
learners completed 72 trials more than it took them to reach 
criterion, which varied across subjects.  Any comparison 
across groups such as these involves a measure of 
arbitrariness, but we reasoned that the two groups would be 
in the most qualitatively similar circumstances at the 
beginning of learning. 

We conducted a 2x2 mixed ANOVA on data from the first 
ten trials only, using Learner (learner, non-learner) as the 
between-subjects variable, Trial Accuracy (incorrect, 
correct) as the within-subjects variable and mean total 
fixation time to stimulus features as the dependent measure.  
There were two subjects who did not make any correct 
responses in the first ten trials, so we did a least-squares 
regression substitution for this missing data.   A mixed 
ANOVA with the substituted data revealed a significant 
accuracy x learner interaction effect, F(1,34) = 4.46, p < .05, 
MSE = 1423507.97, ηp2 = .12.

As shown in Figure 4, though learners and non-learners 
spend the same amount of time on correct trials, non-
learners spend only about 65% of the time that learners 
spend inspecting the stimuli on incorrect trials, even in the 
first 10 trials of the experiment.  From the very start of the 
experiment, then, learners were spending much more time 
processing the stimuli during feedback on incorrect trials 
than during feedback on correct trials, whereas non-learners 
were not.  This effect is robust enough to allow reasonably 
accurate prediction of learning success from the first ten 
trials alone,  based on nothing more than fixations to 
stimulus features during feedback to incorrect trials. 70% of 
learners have mean fixation durations of over 1990 ms, 
while 60% of non-learners are below this mark.

Finally, we investigated stimulus feature fixations after 
learners had reached criterion in both experiments.  We 
found that very few errors are made post-criterion (range = 
0 to 3), but that the mean time spent fixating on stimulus 
features on those incorrect trials (M=997, SD=867) is 
significantly longer (t=2.85, p<.05) than on correct trials (M 
= 267 ms, SD = 266) in Experiment 1.  In Experiment 2, this 
effect was also significant (correct: M = 165, SD = 54; 

Figure 3:  Mean total fixation duration of learners to 
the feedback buttons (top panel), and the stimulus 

features (bottom panel) from Experiment 2. Error bars 
represent standard error. 
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incorrect: M=538, SD= 375; t=3.127, p<.05). These  
differences in time spent on incorrect and correct trials in 
Experiment 2 may be indicative of participants having 
learned to generate their own error signal, as there is no 
external feedback post-criterion, and so no way for 
participants to know they have made an error.  This effect 
will have to be studied more carefully in future research. 

General Discussion
 The present studies take some first steps toward 
understanding what participants do when they are 
processing feedback in a categorization task.  The use of 
eyetracking allowed us to record aspects of stimulus 
processing that have never before been investigated. There 
were several findings of note. 

First, during the feedback phase of our categorization 
trials, participants spend more time looking at the stimulus 
features than the feedback itself on both correct and 
incorrect trials in all stages of the experiment.  This result 
suggests, in accordance with studies showing that this re-
presentation is beneficial to learning (e.g. Bourne et al. 
1965; Halff,1975), that subjects find the re-presented 
stimulus important.

What is it that further inspecting the stimulus does? There 
are several non-exclusive plausible possibilities. It may 
provide a further chance to associate the stimulus with the 
correct category, since the only time that both the stimulus 
and the correct category labels are on the screen 
simultaneously is during the feedback stage. Also, it may 
provide an opportunity to re-encode the stimulus, either to 
correct for errors in the initial encoding, or to inspect areas 
that were not well encoded initially. Alternatively, it may 
simply prevent the initial encoding of the stimulus from 

degrading during feedback.  The latter two possibilities are 
consistent with Bourne et al. (1965) and Halff’s (1975) 
explanations of their results.

Another interesting point is that the mean total fixation 
time to the stimulus is larger on incorrect than on correct 
trials. This ratio differed from early to late learning, such 
that the relative importance of the stimulus on incorrect vs. 
correct trials was greater in the later learning trials. This 
suggests that feedback on incorrect trials is more important 
to learning than feedback on correct trials, in accordance 
with most previous work.  However, during the initial stage 
of Experiment 2 learners spend an average of almost two 
seconds fixating on stimulus features during feedback to 
correct trials.  This suggests that, from the participant’s 
perspective at least, this feedback was far from irrelevant, 
particularly at the beginning of learning.

Finally, in Experiment 2,  as we expected, many subjects 
do not reach the learning criterion.  Learning this task 
appears to be strongly correlated with the amount of 
attention paid to the stimulus during feedback on incorrect 
trials.  This effect is present throughout learning, even in as 
few as ten trials.

The exact reason why some participants do not learn is 
unclear. Individual differences in learning are, of course, 
nothing new. Wide differences in learning success have been 
documented in similar types of categorization tasks (e.g., 
Blair & Homa,  2001; 2005). More broadly the educational 
instruction literature identifies differences in feedback 
propensities (Herold & Fedor, 2003) and motivation/self 
regulatory skills (Kanfer & Heggestad, 1997) that influence 
learning. A flurry of recent studies suggest that differences 
in error processing are identifiable at the neural level. Error 
processing appears to be impaired in patients with 
schizophrenia compared to healthy controls in behavioural 
tasks (Prentice et al.,  2007), and patients with schizophrenia 
also show a decreased amplitude feedback negativity 
(Morris et al.,  2007). Similarly,  there is evidence for a 
reduced amplitude feedback negativity in the elderly 
compared to younger controls (Eppinger,  Kray, Mecklinger 
& John, 2007). It is unclear at this early stage how any of 
the neural, behavioural or dispositional variables might 
relate to our finding of a heightened importance of error 
trials in learners, but sorting out some of these individual 
and group differences is obviously an important goal with 
implications for many fields of research.

How well will our results generalize to other 
categorization tasks?  The categories used in the present 
studies are complex and differ in several ways from the 
rule-based and information integration categories that have 
been previously studied (Ashby & O’Brien, 2007). First, 
which features are relevant for categorization changes for 
different categories. This elicits stimulus-dependent 
attentional shifting from participants and means that 
stimulus encoding is uneven across stimulus features and 
categories (Blair,  Watson, Maj & Walshe, 2007). It seems 
likely that such categories encourage the kind of intensive 
reviewing of stimuli during feedback that we find, perhaps 
more so than categories with fewer dimensions or categories 
for which all dimensions are equally important. Another 
important factor may be the realism of the stimuli used in 

Figure 4: Mean total fixation durations to stimulus 
features on the first 10 trials of Experiment 2.
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the present study. Simpler stimuli and simpler categories 
may lead to less stimulus re-inspection.

Given the diversity of learning situations involving 
different types of feedback, both in the laboratory and in the 
real world, it would be optimistic to believe that our results 
will generalize to all circumstances. Nevertheless, the 
various analyses and general approach taken in the present 
study hold promise for providing a solid set of data that will 
improve our understanding of how feedback operates in 
complex cognitive tasks. Further, we would be pleased if 
these data encouraged more cognitive scientists to concern 
themselves with what happens on the other side of the 
response.
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