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MARKOV LEARNING MODPELS FOR MULTIPERSON SITUATIONS, I. THE THEORY—/

by

Patrick Suppes and Richard C. Atkinson

§1.1 Introduction. The analysis of léarning behavicr as a stochastic

process began only within the last decade. It seems that the first
- serious article in this direction was W.K. Estes' "Towards a sbatistical

theory of learning"” in the 1950 volume of Psychological Review. -Shortly

thereaftér Robert R. Bﬁsh and Frederick Mosteller also began publishing
papers on stochastic ﬁodels for learniﬁgn |
Of slightly older vintage but still quite recent is the development
of game theory. .In spite of early work by Zermelb, Borel and others,
John von Neumann's paper of 19Q8_is the first real landmark in the
subject. The publication.by von Neumann and Oskar Morgenstern in 1943

of their treatise Theory of Games and Economic Behavior introduced game

theory ﬁo a much wider circle.

The pfesent monograph is partly concerned with the task of bringing
these two disciplines into éloser aiignment; More exactly, our aim has
been to apply learning thedry to gimple two-person and three-person game
situations. The present chapter describes the underlying theory used in

our experiments. The second chaphber is concerned with varicus methods,

f/ This feport is Chapter 1 of a forthcoming monograph. This research
:was supported by the Group Psychology Bramnch of the 0ffice of Naval
Research, the Behavioral Sciences Division of the Ford Foundation,

and the Nstional Science Foundstion.




sbatistical 2nd otherwisey used in the analysis of data. DBecause the
fundamental theory is probabilistig in character, the_canceptual
separation between the first two chapters is not absolutely clear.
- Roughly speaking, We_proceeq a8 follows. Theeretical guantities
which do not depend on observed guantities are derived in the first
chapter; gxamples are asymptotic mean prﬂbabilities of responsé and
associated.varianqesf Quantities which do depend on observed data
ére,derived.in the second-cﬁapterg a typical instance is the deriva-
tion of the maximum likelihood estimate_of the lesrning parameter.
The remaining chapters are devoted to detailed presentation of

the experiments. .Chapter 3 is concerned with some simple zére—sum,_
two-person games, agd Chapter k with soﬁe non-zZerc-~sum, two=person
games. Chapter 5 degls with the analysis of gamentheoretiéal informa-
tien from the standpoiut of what learning theorists call diserimination
theory. More particularly, in this chapter we study the effegt.of
showing one player the responses or choices of the other player.
Chaptgru6 considers experiments concerned with a thrge-person, é;mplg
m@jority.game. Chapter 7 dgscribeg some experiments in which,the
subjects were told various things about the pay-off matrix. Chapter 8
analyzes the effeets_of monetary payeoffs,

| It is pertinent to remark why, before we embarked on our empirical
invgstigations, we thought learning theory woulq predict the actual
behavior of.individuéls in game situations. -To begin with, we endorse
the general characterization of learning given by Bush and Mesteller in.

the opening pages of their back [8, p.j]:
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"We consider any systematic change in behavior to be learning

whether or not the change is adaptive, desirable for certain

purposes, or .in accordance with any other such criﬁeria‘

© .We consider learniﬁg to be 'complete' when certain kinds of

stability——not.necessarily stereotypy--obtain,"”
The general character~of our.experiments is to bring a péir of subjects
into an intersction or gome situation without telling them everything
about the game. (The degreé of information given them varies from
experiment_to experiment.) This restriection of informstion immediately'
mskes subjects learners as much as players of a'game. A subject's
behavior naturally changes systematically as infermation accrues to him.

' Readers orlented toward game theory might well wonder what was the
point of restricting information so severely as not to show the subjects
the payoff matrix, and even in some,experimeﬁts {Chapter 3) not .to fell
subjects they were interacting at all.'-We chose this approach-because
statistical learning theory had alreédy'beén tested'sucéessfully in é
number of experimental studies, Our a priori confidence in learning
theory was mainly based on the excellent guantitative resulté of many
of these studies. Game theory, in contraét, was not originally formu-
lated to predict bebavior, but'rather to recommend it. That is, as a
theory it has been normative through and through. Yet many people
familiar‘with_game“thEOry'have hoped it might describe actual behavior
of uninstructed but intelligent‘persons under certain stable and

restricted conditions. Initially we tended to think of our experiments




as a kind of competition between geme theory and learning theory in

their relative abllity to predict behavior. ‘However, when we turned
to the actual design of experiments, it sgeme@lobvious that the only
reasonable thing to do was‘tq begin by staying close to some thoroughly
investigated learhing setup and_not WworTy ghout fidelity tolthe game -
theoretic notion of a game. Sd.our "competition" between theoretical
approa¢hes turned into the more construgtive program of seeing how far
learning theory can be extended to predict behavior in éituations whiéh
correspond ever more closely to real-games. As we shall see in
Chapters 7 and 8, problems arise,whenrthis correspondence becomes very
close, |

Begause statistical learning theory provides the theoretical back-
ground of our work, we would_like‘to make certain general remsrks about
thﬁ status of this theory before entering into technical details. i
Although the thgory is of recent origin, thé concepts-on_which it is
based have been current for a longlperiod of time, and are the basic
concepts of associatipn and. reinforcement psychologyﬁ These concepts

are only three in nuwber: sgtimulus, response and reinforcement. The

great service, to this theoretical orientation, of earlier behavioristic
psychoiogists like Watson, Thqrndike, Guthrie, Tolman‘anﬁ Hull is to have
developed such concepts in.a scientific‘context, cleanly pruning away
from them the tangled notions of common sense and of earlier philo-

sophical psychology.
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At this stage it would be & mistake to 6#erémphasize”£ﬁé.histor-
ical importance of statistical léarninghﬁhedfy;'for it is-téo-eafly-ﬁo
evaluate its permanent signifiéanée.r But it is possible to draw a
~ historical Qnalogy te the develapmeﬁt of classical mechanics by Newton;
and his successors in the eighteenth céntﬁry (Euler, Lagrange, LaPlace
and others). The qualitative, cdnceptual.work of Descartes vas a
neceséary preliminéry'for Newton;'-The viftue of Descartes was to view
the world_mechaﬁicallyrand thus %o éweep aside the subtle diéﬁinctions
of the Scholastics. |

Descartes insisted that the'physical world is nbthing but matter

in motion. In hie Principia Philosophiae he explains everything and

yet explains‘nothing. By this we mean he provides a way of'looking at
the world that is sound, but his explanatiéns of any particular
physical phenomena are hopelessly inadeduaﬁe. To a certain extent the
game is true of the earlier association psychologisﬁs, ﬁithough they.

are definitely more empirically oriented than Descartes.—/

f/'  However, it may be said in defense'of Descartes that he was not as

-rationalistic as contemporary opinion would have him. Pafts I and
II of the Principia are a priori and independent of experience,

ﬁﬁt Partg III and IV, in which he states his vortex hypothesis for
'explaining empirical detalls of the physiéal world, are regarded
by him as hypothetical and in need of empirical. support. Descartes
is a worthy methodological predecessor to those'bsychologists
{Freud, Tolman and Hull, for instence) who have advanced all-

encompassing theories of behaviox.



”The cogtributionrof statisticalrlearning theory is to use the
conceptg'of asso¢iatién psyghology to‘develop_a genuine qpantitative
theoryrof behavior; AEarliér.attempts at guantitative theory, notably
Hullis; did not lead to-g_theory‘that-wasum@thematically viable.

Thatris to say, in Hu;lks‘ﬁheory it is impossible to make non-trivial
derivations leading,tﬁ new predictions of_behavior5 Our contention_is_
that In statisﬁicai leq:niné theory we have a theory.which has the same
gort of "feei" about ,it_,thé,t theories in physics _havé. Non-trivial
quﬁntitative prédictiens can be made. Once we make an experimental
identification of stimuli and reinforeing eventﬁ, it is usually clear
how'ﬁo derive Predictions:about regponses in & manner that is not ad hoc
and ié ﬁathematicall&.exact, | |

To a psychologist.notrfamiliar with game theory, it might seem more
meaningful te say that we_ha{g been qoncerned.with phe application.of
1earning:theory to situations‘involving.social interaction. From this
gtandpeint a_disfinguishing fe#ture of our work has heen o ignore
concepts like those of frien&liness, cohesiveness, group pressure,
opinion discrepanqy, whigh have been lmportant in reéent invéstigations:
by many soclal psychologists, ‘we have attempted.instéad to expléin.the
detailed features of soclal intersction situations in terms of condition-
ing'cobcépts!.”fhe e#éhange éf informatigh beﬁweén ﬁlayefs in ﬁ_géme, for
ipsténce, can be successfully-anaiyzed in terms of an organism’s ability
to discriminate between stimuli, the important point being that this

information mey be treatéd‘in terms of fthe notion of stlmulus in-éxactly
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thé same way that perceptusl stimuli in a one-person situation ére
handled. The Social.situation, qua secial, does not.require.the intro=-
duction of new concepts. We do not ciaim that our experiments on highiy
structured game situations Justify the inference that no new fundamental
concepts are required to explsin any soecial behaﬁioru Bﬁt we think it
is important to demonstfate in empirical detail and with quantitative
accuracy that no new concepts are needed for a.subétantial class of
soclal situations.

In the stimuluos éampling theory of léarning outlined in the next
section, as in many otherrlearning theories, an experiment consists of
a sequence.bf trialé, .Independent of particular théorefical gssumptions,
the éourse of events for a givéﬁ.subjeci on & triai may be roughly
described as follows: (i) a set of stimuli is presented; (ii) é response
is made by the subject; (iii) & reiﬁfofcement ocecurs. However, the em-
pirical specification of what is meant by sbimuli, responses and
reinforcements is not a simpie_matterq The high dégree.of invdriance
in the identification of résponses and reinforcemeﬁts in the experiments
reported in subseqﬁent.chapters arises from the fact that all of our |
experiments were performed with very similar appafatus and_ﬁnder rela-
tively.homogeneous conditions.

Experimental identification of ﬁhe relevant stimuli is more complex.
In faet, it 1is characteristic of maﬁy'learnihg stﬁdiés; including some
of ours, that.direct identification of stimuli is not possible. For

example, in a simple learning situétioh'for'which the physical stimuil




&

are consitant ffom trial to trial, it is not clear how to enumerate the
relevant stimuii and their conditioning_relations. ‘Fioﬁ a méﬁhodol-
oglcal standp01nt the concept of stlmulus would, for these experlments,
seem to be best regarded as a theoretlcal construct which is useful
in derlving experimental predlctlons.

| On the other hand, in disgriminaﬁipn experimeﬁts, identification
of the stiﬁuli is qften nétural, and on the basis of suéh an identifi-
cation successful predicetions of behavior may be made. Nevertheless,
as will be eyident in subsequent chapters (see particularly Chapter 5),
identification of the stimﬁli_does not negessarily imply_direct

identificatioen of the way in which the stimuli are conditioned teo

“responses. In our analysis these relations of conditioning will turn

out to be unobservable states of a Markov process.

As has already been remarked the theory of behavior used in this
book is based on the threg concepts of stimulus, response and reinforce-
ment. Ciearly,‘aﬁ_éxperimenf testing £he theory maylfail for;twol
reasonS‘. the theory 1s wrong or the Wrong experimental identlflcatlon
éf the basic concepts has been made‘ Various philosophers_qf 501ence_
have been fond of emphasizing, particularly in discussions of the general

theory of relativity, that by sufficlent distortion of the natural

experimental interpretation of concepts any theory may be saved from

failure., This viewpoeint is usually discussed as the doctrine of
conventionalism. It is not appropriate here to examine the functional

role of this doctrine in the working practice of scientists, but it is
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~ our view that the issues of conventionalism are not highly relevant to a L

newly developing science. However beautiful the structure of a theory

may be, if stable, non-artificial experimental interpretations'leading'
0 new empirical predictibns cannbt bé found, the theory does not have
significant empirical import. We belleve that thé'interpretations of

stimulus sampling théory of learningugiven in this book do have such a

stable character.

- §1.2 Stimuls Sampling Theory of Learning. The basic theory used in

our experiments is a modification of stimulus sampling theory as_first
formulated by Estes and Burke [9], [11], [7], [10]. The exact way in
which our theory deviates from theirs is iﬁdicated later, but certainly
there is no deviation in basic ideasg:' |

‘We begin'our'diSCussioﬁrof the general thedry by fdrmulating in a
non-technical menner its fundamental axioms or assumptions. An exsact
mathemstical formulation is to be found in Estes and Suppes [13].

The first,group of axioms deals with the conditioning}of sampled
gtimuli, the seeond group with the sampling of stimull, and the tﬁird

with responses.

CONDITIONING AXIOMS

Cl. On every trial each stimulus element is conditioned to exactly

one response.
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CQ, If a stimulus element is sampled on a trial it becomes

conditioned with probability & to the response (if any) which is

reinforced on that trial.

C3. If no relnforcement occurs on a trlal there 18 ne change in

conditioning on that_trlalt

oh. Stimulus elements which are not sampled on a glven trial do

not change their conditlonlng_gn_that trial.

C5. The probability © of a sampled stimulus element belng

ponditioned to a reinforced response is independentngg_the trial number

and the outcome gf preceding trials.

SAMPLING AXTOMS

8l. Exactly cne stimulus element is sampled on each trial.

s2. If on a glven trial it 15 known What stlmull are available

for sampling, then no further knowledge_g£ the subject's past behavior

or of the past pattern of reinforcement will change the probability of

sampling a given element.

RESPONSE AXIOM

Rl. On any trial that response is made to which the sampled

stimulus element is conditioned.

There are a number of remarks we want to make about these axioms,
including comparison with the Estes-Burke theory and modifications of

it which have been proposed by other people.
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To begin with, we may mention that the axioms sssume there is a
fixed number of responses and reinforcements, and a fixed set of stimulus
.elements for any specific experimentsl situation. (The formulation in
[13] makes this obvious.) In all the experiments considered in this book
the number of stimulus elements is asgumed to be small. Because of the
small number of stimulus elements we are able to consider explicitly the
appropriate Markov process derivable from the theory. We return to this
point in detail later. |

Turning now to the first group of axioms, those for conﬁifioning,
we note to begin with that no use of Axfom (3 is made here, because none
of our experiments involves non~-reinforcement on any trisl. -We have
included this axiom for completeness; experimental evaluations are
reported by Anderson and Grant [1], Atkinson [2], and Neimark [23].

Readers familiar with the Estes-Burke stimulus sampling theory will
recognize the basic modification we have incorporated in Cl-C5: Namely,
the conditioning process has itself been converted inte a probabilistic
processn' For Estes and Burke, sampling of a stimulus element results in
it becoming conditioned or connected, to the reinforced response with
probability one, that 13, deterministically. The experiments we consi&er
lend themselves naturally to the assumption that exactly one stimulus
element is presented on each trial and that the element is sampled with
probability one. If the conditioning process were then sssumed to be
deterministic, we would be in the position of having a theory which

predicts responses exactly if the seguence of stimulus presentations is
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known. This is,rof course,_too strong a theory} The model of condi- é
tipning used here,is a rather drastic simplification of the actuasl state
of affairs, and it is precisely.the probabilistic element of the theory
_Which provides=our predictions with the right degree of definiteness,_
17, aslis:natural:for our discrimination experiments, we suppose
ﬁhat exactly one stimulﬁs-element.is presernted to the subject on each
trial, we may assume that the element is then sampled with probability @,
and thus keep the Estes and Burke deterministic theory of conditioning.
In this case, an additional assumption must be made concerning the
Pgobability of 8 response when no sample is drawn. Various assumptions
may be introduced te cover the_empty;sample trials, hut most of them zseem
to be either awkward to work with or ad hoc in character. It may he
mentioned in this connection that.Eétes and Burke initially introduced .
their deterministic conditioning assumptions for situations in which it
was natural to_assume that a large number-of‘stimulus elémEnts were
present. We have concentrated on a different type of situation, and
this probably accounts for our-changed emphasis: .conditioning is
probabilistic, sampling is requiredl‘_It is possible to derive, for §
certain experimental situations,‘diffe:ent numerical values for observ-.
able guantities in our theory and theirs, but in the cases we have looked
at so far these differences arertoo,small to make a direct test Teasible.
Conseguently it seems.best to consider our conditioning assumphions asg

being an obvious and not very deep generalization of the Estes-Burke

theory. Further generalirzation may be obtained by introducing
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dependericies among the probsbilities thet a stimulus element will be -
conditioned.

Other kinds of generalizetion are possible. For example, Restle
([24], [25]) postulates‘two processés: conditioning and adaptation.
Relevant stimuli are cbnditionéd; irreleVant ones are adapbed out.
Atkinson.intfeduces'the notion of ﬁrace stimuli [3],and also obsérving
responses [4] as determiners of the stimulus elements to be sampled.

Lz Berge f17] weakens Axiom Cl and assumes that initially'some shimulus
elements are neutral in the sense that they are conditicned to no response.
Independent of any'aSSessment of the merits of these various generaliza-
tions, they, like the initial work of Estes and Burke, are aimed at
models with a large.number of stimulus elements. For reasons which will
be .evident before the end of this chapter such models are very unwieldy
for énalyziﬁg our rather domplicated'experiments.

| On the other‘han&, gener&liiations in ﬁhe direction of giving a
more complete account of mgtivation are highly pertinent to our work.
-Two.tentétivefmﬁdels of this éort gre described in the final chapter.

Axioms C3 and S2 have not ususlly been explicitly formulated by
statistical learning theordists, but they are necessary for strict deri-
vation of the appropriate Ma}kbv prdcéss répresenting the course of

learning. Axioms of this character are often called independence of

path assuﬁptions;

The theory formulated by our axioms would be more flexible and
general if (i) Axiom SI were replaced by the postulate that a fixed

number of stimuli are sampled on each trial or that stimuli sre sampled
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with independent probabilities and (ii) Axiom Rl were then changed to

read: the probability of g response is the proportion of sampled

st;mulqgfelements_conditioped o that response.‘ However, for the set
of experiments reported in this book 1%t 1s scarcely possible experi-
mentally te distinguish between 51 and Rl and their_generalizatio_#sn

In the next t@ree sectiqns we“consider;detailed application of the
,learning_theory‘formg;ated in_the above axiems. Before turning to
these applications,_it_will_be useful to introduce some concepts and
_-§Qtations_which we.use throughout the rest of the book. Without going
inte complete;technicgl detail, we want to introduce the basic sample
space and the mgin rgn@om‘variables we define on this sample space.
Tha$ the explicit use of random variables has been studiously avoidedl
in most of the literature of. statistical learning theory is not a
serious argument for avoiding such_use here, for the notion.of g random
variable is exactly the one we need to give frecision ﬁo the probability

assertions we want to make. We remind the reader that a random variable

is simp;y_a (measurable) function defined on the sample space, and_thﬁ :
overall probability measure on the sample space induces a probability
distribution_on the values of the random variable.

Our sample space X for a given experiment is just thé set of all

possible outcomes x of the experdment. It is helpful to think of x

88 a glven subject®s behavior in & particular realization of the
experiment (or in our situationg, sometimes to think of x as the

behavior of a particular pair or triple of_subjects), -For brevity we
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shali in the.sequel speék of subject x , but we reaily mean "behavior
x of the subject.”

For simplicity, let us considexr fifst notation for aﬁ experinment
involving only single subjects, nét pairé or triples of subjectsi A
subject is given a sequence of trials. On each trial the subject mskes
one of two responses, Al or A2 . .Using bol&face letters for random

variables, we may thus define the responsé'randqm variable:

1 1if subject x makes response _Al
on trial n ,

(L.2.1) A (x) =
Q- if subject =x mekes response .A2
on trial n . '

After x's response the correct response is indicated to him by appro-
priate mesns. Indication of the correct response constitutes reinforce-
ment. On each trial exactly one of two reinforceing events, El or E2 N

oceurs. The occurrence of Ei means that Ai (for 1 = 1,2) was the

‘correct response. Thus we may define the ﬁeinforcement random variable:

1 if on trisl n reéinforcement B

occurred for subject x L

(1.2.2) E (x) =

“n
2 1if on trial n reinforcement E
. 2
occurred for subject =x .

‘When experiments asre congidered which permit non-reinforcement on some

trials, such & trial is calied an E0 trial, and the value of Eﬂ is

0 . However, as already remarked, no such experiments are reported here.

-The asymmetry between the values of éﬂ and En iz justified by the
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fact tpat we want to sum the Ah's but not the Eﬁ‘é . -When no sSumma-
tion is‘invoived, we prefer 1o use the values 1 éﬁd 2.;.whichrusgge
readily generelizes to mpre.than TWO Tesponses. o

‘Thé A Aand E notatioﬁ is standard in ﬁhé literature. ©Since the
additianal random variables we need have not been explicitly used, we |
inﬁréduce some new notationf o -

The enumeration of which stimulus elements are conditioned to which

responses may be fepreéented.by a state_gz.conditioﬁing,random variable
gn . We use the term ‘state! becsuse the possible values of this random
ﬁariable.on.a given triml correspond to‘ﬁhe possible states of the funda-
mental Markov. procesgs we-inbroduce in the next sectien. A general
definition of the state of conditioning random variable is not feasible,
since the definitidn.deﬁehds on the number of stimulus elements in the

experiment. For aprlication in the next section, wheré only = singlé

stimulus element 8, 1s assumed, we define gﬂ " as follows:

1 if on txrial n , 8 is conditioned

1 -

to Al for subject x ,

0

(L.2.3) - c (x)

2 if on trial n , s, is conditioned

1
o A2 for subject x .
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Note that for an experiment with a single stimulus eleﬁenﬁQ it follows

’ *
from Axioms 81 and Rl that —/

P(a, =1 Ic_*,,n =1) =1
(1.2.4)
P(A =1 |cn =2) =0 .

We also neéd a random variable Eﬂ for effectiveness of condition-

ing. The value of this random variable corresponds to the sampled
stimutus élement's becoming conditioned, or not, to the reinforced
 response. If it does the conditioning)situatioﬁ is efféctive, otherwise
not. In view of the sampling Axiom S1, which says that exactly one

element is sampled on each trial, the definition of Eﬂ is simple.

1 if on trial n , the stimulus element
sampled is effectively conditicned,

(1.2.5) | En(x) =

0 otherwise,

*/  HNotation like P(An = 1) is standard. The explicit definition in

terms of the sample space is:

P(A =1) = P([x: A (x)=1}),

where {x: -éh(x) = 1} is the set of all experimental outcomes x

which have response 'Al on trisl n . S
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It follows immediately from Axiom C2 that

PF_=1)

it
@

(1.2.6)

:0)=1-96 .

/pE .
b,
1

We shall use F, and FO informélly to indicate the event of the

conditiqning being effective or not. This usage is similar to that
i “and .E2 .

-In most experimental studies_response probabilities are computed

which we have adopted for Al, AE’ E

by averaging over a block of trials as well as subjects. For this purpose
we introduce the random varisble Ay for the sum of responses:

' )
(127 R =S ax

n=1 |
Although this definition indicates that we sum from trial 1 of the
experiment, ordinarily this. is not our procédure.‘-WhenAthe suﬁmation

begins on trial m , and it is necessary Lo be exﬁlicit, the follcwing

*
notation will be used: —/

R N
(1.2.8) Em N(K) = :E: éh(x) e
4 n=m+1

Obviously & troublesome problem is what to do about Definitions

(1.2.1), (1.242), (1.2;3), (1.2;5), (1.2.7) ana (1.2.8) when we turn

%/ In the experimental literature there has been a fair amount of

confusion between the random varisbles A and A .
. - —m,N

ey
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from expériments with individual subjects Lo pairs of Suﬁjects.' The
simplest systema-,tic'device is o add & superscript (l) or (2) to
designate the first or secénd member of the pair. The practlical
difficulty is that this notation is rather cumbersome. Often we
shall call one nmember of the pair of subjects player A and the ather

player B . We then define:

P
B =4 (8)
-n "~ -
(1.2.9) { a = P(a = 1)

B =PB =1)

\

i

i
.
it

—l’.B_'n= 1)

Note that I is the probability of a joint event, namely an Al re~
sponse by player A and a Bl response by player B . In 8 similar fashim

T o . 4
we define sums of random variables and Cesaro mean probabilities:

N
By =>4,
_ N
By = 2%
‘ DR D |
(1.2.10) g =F 2o
_ o n=1 _
BN = E'E;;'Bn

~2
=
"
i
'lrv]z
-
H
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Summation starting at trial m ratheér than at trial 1 is defined in

an analogous fashion. Finally, if_the appropriate limits exist, we

define:
O=. 1im
. e
n—0
Q= lim o
: N
N—-o00
B = 1im Bn
n-—=00
(1.2.11) {
B = lim B,
N
N—=o0
y = lim y,
n— QO .
Y = lim 7
N =00 N -

Because the other random varisbles are not often referred to
explicitly in subsequent chapbers we do not introduce an abbreviated

notation for thelr use in the two-person experiments.

£1.3 BSimple Example: Markov Model for Non-contingent Case. We

shall now illustrate the method of deriving, from the learning axioms

gtated in the last section, the Markév learning process for a given

experimental situation. The sequence of events on 8 trial is:
Stimulus sampled — Response made »)Reinforéement ogccur's —

Conditioning of sampled stimulus.
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We consider whaﬁ is.from a theoretical standpoint one of the simplest
cages: non-contingent reinforcément. This case is definéd by'the

condition that the probability of E. on any trial is constant and

1

independent of the subjeét‘s responses. Tt is cuStomary in the

literature to call this probability = . Thus

il

Il
a

(e, = 1)
(1.3.1) ‘ L

P( 2)

I
=
i
A

]

We assume further that the set 5 of sbimulus elements contains exactly

one element which we label 8, . The‘definition of the random verisble

. gﬂ for the state of condltionlng is thus deflned by (l 2 3) of the

prevlous section@ It is posslble to 1nterpret sl' a8 the ready signal

for a trial, but a physical identification.of ] is not necessary.

1
Mareover, 1f two or more stimulus elements are postulated rather than one
there is no obvious clear-cut physical interpretation of the stimuli_
What we may prove from our ax1oms is that the sequence of random
varlables Cl, s

among other things, that knowing the conditioning_on trial n , the

3,.,., C n?e is a Markov chaln.—/ Thls means,

conditional probability

(1.3.2) . ._ P(C

¥/  For an exsct definition of Markov chains, see Feller [1k] or Kemeny
and Snell [16]. For more complicated schedules of reinforcement
this particular sequence of random variables may not be a Markov

chain.
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is ungpanged by knowledge of the copditioning on any trials preceding n .
This fact is qharacteristic_of,Markov_processes, The proéess‘is a
Markov chain when the transition probabilities (1.3.2) are independent .
6f n , that 1s,-constant over trials. -When we_havg.a‘chain, the_ '
transition probabllities may be represented by a_matrix (pij) H
obviously the process ls completely characte;ized by this matrix and

the initial probabilities of a response. For explicitness we note:

(1.3.3) Pyy = P(Qﬂ+ =4

i 1 gﬂ =1),

1

that ;s, .pis. is the piobability that C . = J giﬁeﬁ that C_ =1 .
In the‘uéual lénguage‘of Markov prbcesses, the ﬁalues i and j. of
the random‘variable gﬁ arerthé‘statés 6f the‘processq -When thére is ‘ ' “;
but-one stimuiusrelement and two reépoﬁses, thererare only two states
in the ﬁrdcéss, 1 and 2 (see (1.2.3)).

- lWé noﬁ ﬁée the‘axioﬁs df the preceding section and the particular
assuﬁpfiﬁné.fof thé,noneﬁontingent case.to:derive fhé_ﬁranéition ﬁatrix E

(Pij) + In making such a derivation it is convenlent Lo represent the

various poésible events-happening on a trial by a tree. ’Each set of
brancheé emanating from é foiﬁt.ﬁust represent a mutualiy exclusive aﬁd.
exhaustive set of possibilities. Thus, suppose that at.the end of

trial n subject x 1is in state 1 ; At the beginning of trial n+1 , ‘i
% will make response Al 3 then either El 1

with_probability- 7., and E2 with probability 1L <= . We thus have

or E2 will oeccur, E

this mueh of a tree:

i
|
1
|
t
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(1.3.8) 1

To.complete the tree, we need to indicsate the possibilities at =2 and
b . At a , the stimulus 8 .Will beccme conditioned to -Al with
probability - © (event Fl) and remain unchanged with prebability 1-6
(event FO) . But since x 1is already in staﬁe 1, this means there 1is
only one possibility at a : stay in state 1. At b , the situation
is different. With probability © the stimulus 8y will become

conditioned to 'A2 (event Fl) since the occurrence of E2 reinforced
A2 s that is, =x will go from state 1 to state 2. . And with probablility
1-8 event FO oceurs, so that x will stay in state 1. We then

have a5 the complete tree:'




(1.3.5) : 1

Asguming now that x is in state 2 at the end of trial n , we derive
by exactly the same argument, the other tree (clearly we always need
exactly as many trees as there are states in the process to compute

the transition matrix (pij))

(1.3.6)
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Each path of a trée; from beginniﬁg:point to & terminal point,

represents a poé%ible outcome on a given frial. The probability of
each path is obbained by multiplication of conditional probabilities.
Thus for the tree of (1.3.5) the probability of the top path of the

four may be represented Dby:

il

P.(FE'_n. =1,F = 1) P(g.n =1 ,En_ .= l)P(En =. _;)

@m .

Of the four paths of (1.3.5), three of them lead from state 1 to

state 1. -Thus -

Py = R(Cpyy =118, = 1)
=0 n+(1-8)n+(l-0)(1-m)
=en+(1-86) .
Similafly
Pp = O(1- n)
Notice, of course, that
Piq + Pp =‘l .

By similar computations for (1.3.6), we obtain:

Ppy = O

,p22 (; ~e)n+6(1 -‘Jl‘t) +{1-6)1 .-‘::)

1-6n »
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Combining the above results the transition matrix for the non-

contingent case with one stimulus element is: e
, 1o 2
‘1. | en+{(1-8) e(l-n) -
(1.3.7)
2 g x l=9 =

Before examining-séﬁé of tﬂe predictioﬁs ﬁﬁiéh maj be derived for
the Markov chain represented by (1.3.7), some general rgmarks are
pertinent. concerning the relation of this pﬁocesg to the learning axioms
of §1.2. The central problem may be illustrated by an example.
‘Suppose. subject x makes an “Al response on trial n and reinforcing
event El then occurs. Assuming there is a single stimulus element,

it follows that it must be cqnditioned’to- Al in order. for Al to

occur on trial n . But if El then occurs, according to Axiom C2
the conditioning of 8 carmot change and we predicht, using Axioms B1
and Rl, that response Al will occur on trisl n+1 with probability

one. This prediction may be represented by:

(1.3.8) P(A | = 1} A =1,E =1)=1.

‘Equation (1.3.8). provides a very sharp test, in fact one which is sure
to lead to.rejection of the théory. On the other haﬁd,‘(l.S.B).cannot
be derived from the Markov process represented by (1.3.7).

The difficulty with thg one-element model (meaning the assumption

of one stimulus element) is that the fundamental thedry-laid dowvn by
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Axioms C1-C5, S1, 82, Rl is for this model deferministic in all but
minor'réspécfs‘ In particular, from the response on trial :n!¥l we
can always derive exactly what was, according to the theory, the
conditibning on trial n . Effectively then, the random‘variéblés
AL E, ¢, and F are all observable, and thé'values of the
dependent Variables rén, gn and En .can be predicted in a nearly
deterministic féshion from'experimental protocols fér individﬁal
subjects.f/

On the other hand, the Markov process defined by (1.3.7) leads
only to probabilistic predictions foi'the values of én and 'gn s, and
no predictions sbout E and F . The assumed distributions on the
latter two random varisbles are used in the derivation of (1.3.7) but
are noﬁ observed in any'direct'fashién. Contrary to an'opinion that
seems o be widely héldrby psychologists, it is possible to compsare
the fit of (1;3.7) to the prﬁtocol'of an individual subjéct. In fact,
a standard goodness of fit test is available (see S;E.l). Natﬂrélly
a goaodness of fit test can also be made for =a sample of protocols drawn
from a homogeneous population of subjects. Thus the Markov model
defined by (1.3»7) is thoroughij tes%able, but it is in no respect

deterministic.

¥/ If A and E have the same value then the value of F ~ cannot
be observed, but it does not matter in this case. If the values of
én and E differ on a trial, the value of En is determined
uniquely vy the value of £h+l ; and hence it 1s observable since

én+l is observable.




If we assume that it seems too much to ask for a deterministic
theory of learning at this stage of development, the above discussion

does not really entail that the fundamental theory embodied in the

axioms of §.l.2-sh0uld be abandoned, or perhaps regarded as a "make
,believe"_theory fr@mlwhich renlistic stochastic prpcesses.;ike (1.3.7)
may be derived. For the fundamental theory has & sharply deterministic
character only vhen we assume there is but a single stimulus element.

Notice that the axioms of §1.2 say nothing about the number of

stimulus elements. .When we assume there are two stimwlus elements,

say 8, and S5 in the non-contingent case, the random variables B

1
‘ Qn and Eﬂ are not observable, and few deterministic predictions

can-be.made.

The one-element model has so many speclal features that it will
be useful to discuss the two-element model in some detail. Let us
intreduce §n as the sampling random.vgriable defingd for the two-

element model by:

1 if sy is sampled on trial- n ,

(1.3.9) 8 (%)=

2 it 8p is sampled on trial n .

The trial seguence beginning with gn and ending with gn+ may  then ;

1 i
be represented by:

(1-3';]“0)_ o § __}gn'_)én_)—hznﬁy—‘nﬁ_QMl
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We also need to define the random variahie gﬂ répresenting_the

state of conditioning for the'two—element,moiel‘ For expository

purposes we make the value of gﬁ simply the set of stimulus elements
conditioned to the Al response. Here snd subsequently -O is used

*
to designate the emphby set as well as the number zero.—/ Thus if -

Cplx) =0
- this means neither 'sl nor s, is conditioned to Al .
{sl,sg} if s, and s, are both

conditicned to Al

{sl} if s; 1s conditioned to Al and s,
is conditioned to A2

(1.3.11) 'Qn'?'ﬁ . o |
‘ [52] if s, 1s‘cond;t10ned to Al and sy

iz conditioned to A2

0 = if neither element is conditioned =

\

to..Al .

As (1.3.11) indicates the two-element model leads to a four state Markov §
process. In deriving this process we give here only the firet two trees,

that is, the two for which we are at the beginning of the trdial in

%/ We use a familiar notation for sets. A set is described by writing

~ the names of its members, separated by commas, and then enclosing

 the whole in braces. Thus {31’32} is the set of two stimulus

elements - s, and s

1 2 °
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state {51’52} or state {si} . Trees for the other two are in all
egssentiale the same. Note that we have a set of branches for.each of
the intermediate steps in (1.3.10), that is, the successive branches

correspond to the sequence

(1.3.12) . 8 5A 5 E aF .
-m  —h  —n

But since by Axicms Cl and S1 the value of éﬂ is uniquely determined
by the values of gn and.‘§n ; that is, the response is uniquely
determined by the state of conditlioning and the single sampled

stimulus element, we may reduce (1.3.12) to:

(1.3.13) . - o 5 —E —-F .

Each of the random varisbles in (1;3;13) has.two.possible values, which
means thern that there are eight possible_patﬁs in each of the four trees
corresponding to the four possible states of conditioning. However,
some reduction in the number of paths may be made by observing that

if the sgmpled_stimulgs is conditioned %o the response which is rein-=

forced, the effectiveness of conditioning is irrelevant. For example,

(l-3.ll|-) P(gﬂ—i-l: {sl} Ign = .{Sl}’ §n s l’ -En = .l, E_n = 1) =
P(Cy = (5] | c, = {sq3, 8, =1, gﬂ =1,F = _O) =1

‘We take account of this irrelevancy to reduce the number of paths. Thus
there are not eight but six paths in the tree of any state.
Given (1.3.13) and conditional probapilities like (1.3.14), it

is straightforward to derive the trees:
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(1.3.15) . {s
2) (e e}
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The tree fbr the state of conditioning represented by the empty set

is symmetrical to (1.3.15), and the tree for {s,} is similar to

o
(1.3.16). One assignment of probabilities in (1.3.15) and (1.3.16)

which is not justified by any of the preceding discussion is that of

the equi-probabilitieé of 1/2 to 8, or &, being sampled. Axiom

Bl requires simply that exactly one stimulus elemgn% be sampled, and
the special experimental conditions of the non-contingent case do not

entgil the probability with whieh = or 8 will be sampled. We

1 2

make this additional assumption in its simplest form, but it 1s clear
how the anelysis could be carried through under the supposition that

s, is sampled with probpability w and s

1 with probability I -w .

2
When we come to discriminstion experiments, where one player discrim-
inates between knewn responses of the other player, we shall see that
the probabilities corresponding Lo 1/2 for 81 -and Sy fall out in

& natural manner from the theory (see Chapter 5).

From (1.3.15), (1.3.16) and the two additional trees not displayed,

the transition matrix obtained for the two-element non-contingent model

*
is as follows:'—/

f/ The possibility will be examined later of collapsing states [sl}

and {sg} into a single state to yield & three-state process,
where the states are designated 0, 1, 2, depending simply on

the number of stimulus elements condlitioned to Al .
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0 [811  {52} {sl,sé}
0 l1-6x ox /2 e x/2 0
{él] o(1-x)/2 1-8/2 0 o n/2
(1.3.17) . . ‘
{52] e{1-x=)/2 0 1-8/2 8 /2
{sl,se} 0 8(l-n)/2 e6(1-x)/2 (1-8)+6x

Detailed analysis is not required to see that the two-element
model meets the ecriticisms mentioned above of the one-~element model.
The probabilistic character of the Markov chain represented by (l.3¢lT)
is also part of the elementary process given by the trees (1.3.15) and
(1.3.16). Knowing which response and which reinforcing event occurred
on trial n does not permit us to make a deterministic predicticon
about the response on triai n+1 . It should bé noted that the states
of conditloning are not observable; consequently deterministic
predictions are generally not possible in the two-element modei{

On the other hand, statistical analysis of the degree to which
the Markov chain of (1.3«17) fits empirical data is more difficult
and less satisfactoery than the corresponding analysis for the Markov
chain represented by (l'3‘7)f We return to this problem in the next
chapter. If a two-element model were adopted for each subject then
all of our two-person modeis wouid have at least sixteen states in
the sppropriate Markov chain. It is msinly to avoid the burden of
this increased complexity that we have generally restricted ourselves

te the one-element models. We believe the experimental predictions
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repOrted_in subsequent ¢hapters hdve been good enough to justify this
restriction.
We now turn to the derivation of asymptotic probabilities of
response for the Markov chains {1.3.7) and {1.3.17). That is, we

want to find the duantity

(1.3.18) 1im P(A = 1)
n—00 ) .

if the approprisate limit exists. In most experiments estimates of
(1.3.18) are obtained by averaging over subjects and a final block
of trials. Thus, we could-as well ask for the Ceséro mean asymptotic
probability

m+N -

(1f3.19) |  ' "‘ lim % > P(ghﬂ= 1) .

N—soo & n=mt+l

Tt is & well-known result that when both these limits exist, they are
identical, although (1.3.19) may exist and (1.3.18) not. It is also
well-known that for any‘finiteéstate,Mafkov chain the 1imit (1.3.19)

exists.

Some notation less awkward than (1.3.18) is useful. If (p,.,) is

1]
the transitiod matrix then pgn) is the probability of being in state
ij

j &t trial r+n giveﬁ that at trial r we were in state .i . We

defire this quantity‘recursively:
iy T i

(1.3.20)
§ . P§§+l)= E%: Piypig) ,

et = e e e

S S A




-35-

Moreover, if the appropriate limit exists and is independent of 1 ,
we set
(1.3.21) w, = 1im p®) |
J n-eo -9
In particular, in the one-element model discussed above

= lim PA =1) .
v o= m P |

The limitiné Quantities uj exist for any finite state Markov chsin
which is irreduciﬁle énd aperiodic. A Markov chain is irreducible if
there is HOICIOSed proper sﬁbset of states, that is, a propér subset
.of states such that once Withiﬁ this set the probability of leaving it

is zero. For exemple, the chain whose transition matrix is:

1 2 3
1 1
1 5 5 9]
1 3
2 I; i 0
' 1
3 o] -2]-'- 5

is reducible; because the set {1,2} of states is a proper closed
subset. A Markov chain-is aperiodic if there is no fixed period for
return to any state; that is, to put it the other way, a chain is
periodic if a return to some state J having started in j is
impossible except in %,2%, 3t, ... trials, for t > 1 . Thus the

chain whose matrix is:
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1 2 3
i G 1 9]
2 0 0 1
3 1 Q 0

hes period t = 3 for return to each state.

All of the Markev chains we consider in this beook are irreducible
and aperiodic. Moréover, since each has only a finite number of
states,_the limiting quantities uj exist in all cases aqd are inde-
pendent. of the initialkstate_opltrial 1l . If there are r states,

we call the vector u = (ul’ s waas ur) the stationary probability

Yo
vector of the chain. It may be shown (Feller [14], Frechet [15]) that

the components of this vector are the solutionsg of the 1r linear

equations

i

(1.3.22) ay = > uPs J=1lyaee, 1T
kY

such that g uj =1 .

Thus to find the asymptotic probabilities uj of a state, we need
only find the solutions of the r Jlinear equations (1.3.22). The
intuitive basis of this system of equations seems clesar. Consider a

two-state process. Then the probability Pn+ of being in state 1

1

is just: .

Ppyg = Pilpn +'P21(l~'Pn) 2
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but at ssymnptote

Pl =P T %
1- pn = u2 »

whenece

Up = Pyyty F Pyt

which is the first of the two equations of the system (1.3.22) when
r=2

We now find the asymptotic probabilities u,'j for the one~eleﬁent
and two-element non-contingent models. Recalling (1.3.7), the transition

natrix for the one-element model is:

1 2

1 . en+ (1-8) 6(1-=x)
2 e - ' 1-6x

The two equations given by (1.3.22) are:

ul=[6n +(l-6ﬂﬁ_+8nu2
(1.3.23) _
u, = e(1- :r)ul + (L-8x ), ,

and the normalizing assumption is

(1.3.2k) wotu, =1 .

Using (1.3.24) and the first equation of (1.3.23) we obtain:

w = [en+ (1- e)]ul + Gﬂ?(l-—ul) ,
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and solving for u, we conclude

1
(1.3.25) u o=

For the two-element model, the five eguations, including the
normslizing assumption are, on the basis of (1.3.17):

( u, = (l-@ﬁ)ul + 32—' 6(1-1()1_12 + !2'- G(l~3t)u3

.u2_=%eﬂul + (.l-—é—__e)ug g +%e(1—:r)uh

(1.3.26) { u; = Zonu + (1-3 8)uy + % o(L - 1)y,
w, = feau. o+ lexw | + [(1-8)+06lu
b= > > p VTl ' y

ul + u2 + u3 + uh % 1 .

To indicaﬁe that systems of equations'like (1.3.26) may often be
solved by a little insight rather than by applying routine methods
which guarentes &n answer, we proceed te solve this system. XNote

initially that the first three eguations simplify to:

fi

(1) nuy %(1- s*:)(u2 + u3)

(2) | ﬁ2. Ty ; (l-:Ouh

(3) ug = A w f_(l"“)uh .




R el

() | =

vhence we mey express u, . and w, in terms of u, , using (1) and (2)
: o _ _il-=x

(5) M T T %

(6) Wt ToR %

Substituting from (%), (5) and (6) into the fifth equation of (1.3.26),

we geb:

CON A1+ 1+ 75T
whence simplifying (7)

[(1-5)% + 2x(l-7) + 112]u2 = (1~ )
is

but since the ceefficient of u2

(1-x+ :t)e,z.l ,

wWe iﬁfer
u, = n(l- %),
and by appropriate subst.itﬁtion
w = @-x)
uy = ﬁ(lﬂ_ﬂ)
o
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Since the states of conditioning cannct be observed in the two-element

model, & feortiori the asympiotic probabilities of these states cannot.

However, for any trial n we may relate the probabilities of states

of conditioning te the probability of an Al responsge, namely: . E

(13.27) R(a, = 1) = B(ls,85)) + 5 B(le 1) + 3B, ((s,))

Note why the coefficient eccurs. If the subject is in state 8 s

1
2
is sampled on trial n he will make response Al 3 bub

w7

then if sl

if 5y is Sampled, he will make responsge A2 } And by assumption the

probability of sampling s, is % . From (1.3.27) and the asymptotic

probabilities of the states —[51,52]; {sl] and, {SE} s the following

asymptotic probability of an A, response 1s obtained:

1
; = 1) = 1 L
lim P(éﬂ = 1) =y +Fu,t+ 3 ug
n —00
L 1
= +-§ﬁ(l*n)+-§n(l-n)

This result agrees with the asymptotic prohebility of an Al

in the one-element model. Moreover, it is not difficult to show that

response

this asympiotic probability of response will be obtained on the
assumption of any number r of stimulus elements and any sampling
probability distribution Wy wen; W .

In the next chapter we shall be concerned with the general <

question of goodness of fit of & model to observed data, but the
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fundamental character -of this'géneral quéstion,should not obséure the
importance of ceftain particular quaﬁtitiés like the asymptotic proba-
bilities of responge. It is generally agreed that thélfirst and most
gross testrof g model in the area df stétistical léarning ﬁheory is
its ability to predict observed asymptotic response probabiiities.
From this gross test we may move in eithef two diréctidns: toward
Turther asymptotic resulits or toward.anﬁl&sis of the'rate.of learning.
Let us.begin with the former.

It.is ofﬁeﬁ charged that-étafistical learniﬁg theory correctly
predicts only the average behavior of a g;rbup of subjecfs and not the
behavior-qf,individual subjects. This miscopception rests on some
father widespredad misunderstandings of probabilistic theories of
behavior. Rather then speak in generalities, we may illustrate what
we mean by conéidering the variaﬁce of the sum of the random variables
A1 "f"5m+n’_ st asymptote. Following (1.2.5), this quantity is
defined as
m+-N

= Co én .
n=m+1l '

(1;3.28)

éﬁl

In a given experiment consisting, say, of 240 trials for each subject,

we may compute E%_N(x) for each subject x over the last 100 trials,
, -~

that is, we compute A

f1%0,100 ° By averaging over subjects we obtain

the expectation B(A_ ) , which is predicted to be N n . But from a

;N)

given sample of subjects drawn from a homogeneous population, we may

alsc compute the variance of s which cen then be compared with the

Ao w
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predicted variancg.- Moreover, the same variance is predictedxfor_the
corresponding ﬁumber of blocks of trials qf length N far-a given
1subject at asymptoté._ In either case we have & probaﬁilistic predic-
tion about individual subjects. .For example,_if N =10 , and we
consider the last -iOO trials for a given subject &t‘asymptote,.then
we may directly compare tﬁe vériance of the ten Elocks of ten trials‘

each with the theoretically computed variance of ém X -

“"We now turn to the derivation of this variance. For notational
simplicity we drop the m subscript, particularly since at asymptote

it does not maiLiter at which trial we begin.

Theorem. - In the one-element; non-contingent model the variance

of A, at asymptote is:

: : : ’ o . _ i N- -
(1:3:29) Vax(Ey = W (1- (52 2L (0] ]

Prodf: By the classical theorem for the sum of random variables

(see Feller {13]; p. 216):

N
(l) Var(ZAN) 3 Z var(ﬁl;l)—+ 2 E: : cov(é;l&{) .

n=1 1< 3<k<N

(Note that for simplicity we sum from n=1; this does not affect the

result at asympﬁote.).
Now since at asymptote

E(én) =W

i
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the variance is:

var(gn) =7 (1<)
and
cov(AA ) = E(&,4 ) -E(4,)E(4)
= E(é,j&i) - 112
Furthermore
CE(AA) = B(a A)E(A)
= < (& [ 4)
- aaftd)

Now for the tramnsition matrix of the one-element model we may prove by

induction that

pgi) =+ (L-n)(1-8)",

whence, combining the above results

a [+ (1 - 7)(1- @)k"'j] i

1l

COV(_‘AJ%{)

x(lfxxl-eﬁ’J,.

.
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Finally, we need the following summation:

— (1-6)9 = (1-6)%1 4 [(1-0)32 + (1-0)371]

1< J<k<N

+ [(1- o)t-3 + (L~ 9)“”2 + (1~ o)1

Foowt [(1-0)M. (1~ )"

2 N
\ l_‘_.(_é_*_@_l_J,”,J,L-_%:_@l . (W-1)

N-1 1 2 N
=[—= - W-1)] -5 [(2-6)" +...4 (L-e)7]

(1-9)

. 92

=-1¥-é-£(1-e)‘— [1‘0*(l~9)N]

N 1-6 ¢ N
=3{1-9) - "z [1-(1-8)7]

Using this result and substitubing in (1) we then have:

i

var(gﬁ)-

i) Jrl(_l-n').i-E w(l-x) —g—{l- 8)=2 ﬂ(lf&) ﬁl—"?@l f1- (1--0)N]
8

-8) _2x(l-x)(1-0)f1-(1- o)}

8 @2

Nw(l- ) (2

it

Q.5.D.

Later, (1.3.29) will be éompared with some observed data. A
nearly endlegs number of further interesting asymptotic quantities can
bé presented, but we delay additional computations until we consider

some data for the non-contingent case in Chapter 7.

We conclude this section with a discussion of the rate of learning

for the one-element nen-contingent model. The learning rate may be
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represented by the absolute probability of an A, response on

1
trisl n , which, using a standard notation, is a:g_n) defined by:
(1.3.30) (1) 5 1)

e 1 A ivil ?

i=1
where a, is the initial probability of response Ai , Bhat is, on
. ‘
trial 1. —/
We observed in the proof of (1.3.29) that

p:(&) a+ (L-n)(1-08)"

i

and we may easily prove that

1

(n) _ e oan
_P21 = nw-q(1=8)
The absolute probability a(n) is then:

(1.3.31) ‘a_.J(_n) -al[:ur+,(l - a1 _e)n-l] + a2[1r'- (1 - e)n'l]

7 -(.rf'-.al)(l- é)n—l

For w>s, and 0<8<1,itis cleay from (1.3.31) that ain)

is a stric¢tly increasing function of n .

*/ For explicitness, note that
P(§1-= 1)

o
il

m"\
=
g
n
L
-
n
=
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The analogues of (1.3.29) and {1.3.31) for the two-element model
are somewhat cumbersome to derive for arbitrary © and =.. They
will not be pursued here, but the analogues in the two-person
situations will.

At this point we stop our theoretical analysis of the non-~
contingent case; but we feturn to.it bfiefly in $1.6 and again in
Chapter 7. In Chajter.B the effects of strengthened motivation (money
payoffs) is anglyzed by introducing another cencept, nsmely that of

IEMOYy «

_§lmh Markov Model for Zero-Sum Two-Person Games. In tﬁe preceding.

section stimulus sampling learning theory was applied to the simplest
one-person experimental case.. We now want to apply 1t to one of the
simpler two-person cases (cf. [5]). ' The general experiﬁental situstion
may be described as follows. On a given trial each .of the.tﬁo players
(i.e., subjects) independently makes one of twe responses. As indicated
in $1.2, the players are designated as A and B , with A meking
response A or A , and B meking response B or B,

1 2 1 2

probability that a given response for & given player will -be reinforced

« The

on a particular trial depends on the actual responses made on the trial.
It is by virtue of this dependence or contingency that the game aspect
of the experiment arises. For example, if player A makes response Al 3

and player B response Bl s then there i1s a probability a

1 that Al

is reinforced and B

> is reinforced, and a probability 1-a, that

1
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* : ]
AQ is reinforced and Bl is reinforced.-/ Thus with probability al

it turns out that A made a correct response and B an incorrect one;

with probability 1- a) the situation is reversed. The zero-sum
character of the geme 1s due to the fact that whichever one of the
four response pairs (Al,Bl), (A1’Bg)’ (AE’BI)’ (AE’B2) actually
occurs, exactly one player wins in the sense of having made a correct

response. Thds the reinforcement probabilities may be described by

the Tollowing payoff matrix:

(1.%.1) , A a a

A %3 2

In thinking of each trial as the play of a simple 2X2 game, it is
to be noted that the rayoff is not being correct or incorrect, but the

*¥
probability ai of being correct.——/ The experimenter’s selection of

*/  Using the E, notation introduced in §1.2, there is =

probability =a, that an El event occurs for player A

1
end an E2 event for piayer B and a probability 1- al
that an E2 occurs for player A and an El for player B.

*%*/ Technically we then have a constant-sum game, which is
strategically equivalent to the zero-sum game obtained by

subtracting 1/2 from each CH
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actual.reinforcements on the basis of the ai's corresponds to a
chance move by.the referee in a game. Appropriate choice of a game
stfategy is in terms of the expected values of these chance moves.
Restricting ourselves to the assumption of one stimulus element
for each player, the stipulation of (1.4.1) completely determines
the derivetion of the Markov process from the axioms of £1.2. We
agsume, of course, that both players satisfy the axioms. On each
trial the single stimulﬁs element of player A is conditioned to
response Al or A2 , and the singie element of player B is condi-
tioned to réspopse Bl or 32 . There are, consequently, four
possible states of conditioning, whiech will be represented by the
Tour ordered pairs: (1,1), (1,2), (2,1), (2,2) . The first member
of each.-pair indicates the conditioning of pilayer A's stimulus
element, and the second member that of player B's. Thus the pair
(1,2) represents the conditioning state defined by player A's element

being conditioned to A1 and player B's to B

5
In view of the detailed derivations given in the preceding
section, we restrict ourselves here to deriving only one of the

four trees for the Markov process. Let us assume we are in the

state (1,2) . Then the tree locks like: -
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(1.&.?) o .
8,(1-85): (1,2)

B (1-8,): (1,1)

(1,2) (1-8,)(1-85): (1,2)
CIE (2,2)

8,(1-85): (2,2)

- 65(1-8,): (1,2)

(1-eA)(1-eB): (1,2)

- We want to make éeveral remarks about.this'free.l First, in order to
avoid a further multiplication of notation, the actual reinforcement
and conaitioning events have not beén indicated on the tree, since
these evenis are unequivocally specified by their prdbaﬁilities. For
example, a2 on the upper main branch indicates that playgr A made &

correct response and player B an incorrect one, that is, both players

A anpd B received an E. reinforecing event. The probability 6,8, at

1 A™B

the top indicates that conditioning was effective for both players.

However, in the one-element model the effectiveness of conditioning is

irrelevant when the response actually made is reinforced {(a point
already made in §1J3), and therefore by considering only relevant

conditioning, (l.h.B) may be reduced as follows:
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(1-65): (1,2)

(1.4.3)  (1,2)

(l‘eA): (112)

It should be clear from (1.4.2) and (1.4.3) that ©, is the proba-

A

kbility of effective conditioning for player A, and GB the
corresponding probability for B . That is, using a superscript A
or B to designate the random variable En for player A or B , we

have &s a generalization of (1.2.6):

P(F(A) =1) =286

(1.4.4)
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An important observation about (1.4.2) ard (1.4.3) is that it is
not possible in a single trial to go from the state (1,2) to the state
(2,1). Analysis of the other three trees leads to similar ponclusions:
it is not possible irn a single trial to go from (2,1) to (1,2), from
(1,1) to (2,2), or from (2,2) to (1,1). This means that the anti-
diagonal of the transition matrix must be identically zero. With thils
result we bring into the Markov process itself the kind of overly
strong deterministic predictions which arise in the one-element stimulus
model for the non-contingent case but not in the Markov process for
that case, as represented by (1.3.7). In this respect then the
gituation is worse in the cage under present discussion, for the Markov
process itself yiélds deterministic predictions. As any experimenter
would expect and as we shall see in Chapter 3, these predictions are
not borne out by actual data. As in the case of the nén—contingent
cése these difficulties may be met by passing from a one-element to a
multi-elemént stimulus model for each player, the device which was also
used for the simple contingent case in £§1.3. The two-element model
will be discussed in Chapter 3.

Construction of the other three trees like (1.4.3) yields the

following transition matrix



e,
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(1,1) (1,2) (2,1) (2,2) !
[ (1,1) &, (0,-65) 8,05 (1-a )8, 0
+ (l-QA)
(1,2) 8,8, 8,(8,-8;) 0 " (1-ay)8,
. + (l—QA)
(1.%.5)
(2,1) (1-a;)8, o a3(8,-65) 8.0y
+ (1-9A)
(2,2) 0 .(1'%)% 2y, 0p ah(eA-eB) :
+ (l-@A)

From the discussion in 921.3, it is clear that this matrix
represents an irreducible, apericdic case and thus the asymptotes
exist and are independent of the initial probability distribution on

the states. We are interested in establishing certain general conclu-

sions about the asymptotic probabilities and comsequently it is
necessary to obtain the solution of (1.4.5). For this latter purpose
we can, as easily as not, proceed by solving for the asymptotic proba-

bilities of any four-gstate, irreducible and aperiedic Markov chain.

To simplify notation the states will be numbered as follows: 1 = (1,1),
2= (1’2)’ 3= (2’1') and b = (2)2) . Let (plj) 2 for i,J = 1)2:3)“- ‘f

be the transition matrix. Then we seek the numbers uj such that
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(1.4.6) ,
EE: uj =.1
S 7.
The general solution is given by
_ D,

(1.k.7) - uy = 7% , for j =1, .., 4,
where

Dy = [pp) Pyp By + Py Pp Ppy + By (2pp1)(Pg3-1)]

D = -[(py;-1)pgp Byg + Py Byp Pyg * By Pip(pyg-1)]

+ Ipy; Pop Prg (R -L)Byp(Raa-1) + Py Py Byl

(1L.4.8)\ D, =

3= Llpyy D opp1Imyg + Py Py Py * Py Prp Pl
" [pyy (Bpp-1)py g + (R -LImyp Bpg + By Prp Pyl
Dy = ~L(py 1) (Ppp-2)(py3-1) + Byy Pyp Byg * Py Prp P!

+ [P (Ppp-1)p 5 + (Py;-1)Pg, Bpy + Bpy Pyp(Pyz=l)]

o,

\p

When the antidiagonal of (pij) is identically zero, as is The case

with (1.4.5), the first four equations of (1.4.8) simplify to:

*/  We are indebted to Mr. Frank Krasne for making this computation.




le
N
b
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)
|

=
!

Loyl 2 = “Pg) Byp Pr3 + [P 1Py (Pag-1) + Bgy Ppp 5]

)
1l

]
=
i

Applying (1.%.9) to (1.4.5) we obtain after some simplification:

= [ag(l-a3)(l-a4) + {1- -2, J(1-a )ah] @ e, +

[a2a3(l-ah) + ae( -a )ahi A B ,

- [a, (1) (2my) + (L8 ay(1-9,)] 6 & + F

[5133(l_ah) + al(l-a

2 .
302, 6,85 » i |

(1.4.10)
D3 = [(l—al)(l-ag)ah + (l—al)ag(l;ah)] eieB +

f(i-al)aealL + al(l-ae)ak} eAeg s

Dy, = [(l—al)(l—ag)aS + al(l—ag)( -aq )] e oy +

2

[(l-al)aga3 + a (l -8, )a le A 3

Since D 1is the sum of the Dj’s , and by virtue of (1.h.7)

o)

w =5l

we may infer from (1.%4.10) that the asymptotic probability uj of each

state ié a function only of the ratio GA/GB and the experimenter

determined values a; - To see this, first note that
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2 2
c.856. + d4.0.6
(1.4,11) w, = 928 Ag

J 2 ‘
CGABB + d@AQB

wvhere the coefficients cj, dj’ ¢ and & are functions of the ai's

given by equations (1.4.10), namely,

(e = 52(1‘33)(1‘34)_+ (1_32)(1'33)ah
c, = al(l-a3)(l-ah) + (l-al)aj(l—ah)
¢y = (]_-a.l)(}_--ae)alL + (l-al)ag(l—au)

ey, = (l-al)(l—ae)a3 + al(l-aa)(l-a3)

d, = a,.a {1l-a,) + a,(l-a_)a
(1.%.12) 1772 23T

d, = ala3(l-au) + al(l-a3}ah

d3 = (l-al)aeau + al(l-ae)au
dy, = (l-,al)aga3 + al(l—a.e)a3 :
¢ =)ty gy

d = dl + d2 + d3 + du .

Dividing numerator and denominator of (1.4.11) by eAeg we obtain the

desired.result:

7 c.(eA/eB) + 4,
(1.%.13) uy = %(GAZQB} - dJ
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With (1.%.12) and (1.4.13) at hand it is a matter of elementary arith-
metic to compute the asymptotic probabilities uj for any fixed ratio
eA/eﬁ of the learning parameters. Moreover, for some experimental

gituations it is reasonable to expect that the rete of learning will be

approximately the same for both players, and therefore to assume that

(1.h.14) 6, =8, .

With this additional assumption a parametér—free prediction of
asymptotic response probabilities can be made independent of, and
prior to, any analysis of experimental data. The results of such
predictions are reported in Chapter 3.

-Fron (l.4.13) we can also draw some iﬁteresting conclusions about
the relationship of the asymptotic response probabilities uj to the
ratio eA/eB . Setting p = eA/eB and differentiating (1.4.13) with

respect to p we obtain:

cjd - cdj
(1.4.15) - g, = +——
d 3 (ep+ a)?

It ng # cdj then uj has no maximum for p in the open interval
(0,0 ) , the permissible range of values for the ratio GA/GB o In
fact, since the sign of the derivative is independent of p , uj is
either a monotonically decreasing or monotonically increasing function

of p , strictly decreasing if cjd < cdj y and strictly increasing if

cjd-> Cdj . Cbviously both cases must obtain since

u, +ou, +u

1 5 3+ul+=l o
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Moreover, because of the monotonicity of u:l in p, it is easy to

compute the bounds of u from (L.4.13). Namely,

. [l
lim u, =
p—@ ’
R

(1.4.16) .
lim wu, = ”di .
p—0

. d, c,
It uj is an increasing function with respect to p , then a%-< ?%

. d. ¢,
and its values lie in the open interval (753 :%); if decreasing, in

c, 4.
the interval (EJ— 3 E’l) . Numerical values of these intervals are given

in Chapter 3 for the sets of experimental parameters ai actually used.
In connection with asymptotic response probabilities of players
A and B we want to show that a certain linear relation obtains between

= lim P(A '=1) and B = Llim P(B = 1) , which is independent of
n-—->Q n—-ao0 n

* ‘
the ratio eA/eB .—/ (In $1.5 we show that this same linear relation

obtains in the non-Markov linear model.) To begin with, note that
(1.%.17) o= u, + 1y
since

-1 _ -1 -1 —1
and correspondingly

(1.4.18) B=u +u

°

*/  Note that 7 as defined in (1.2.11) is simply u
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From (1.%.13), (1.4.17) and (1.4.18) it follows %hat

(cp + &)

i

(cl + ce)p + dl + d,

(cp + d)B

il

.(cl + c3)p f a, + d3 .

By elementary operations we may eliminate p Ffrom these two equations

and obtain:

(cl-+03 -cp)da - (cl4-03 -cﬁ)(dl+-d2) = (cl-l-c2 - cO )P

+ (cl+c —cd)(dl+d3).

2
The quadratic term cdaf cancels Qut and we have:

(cld+c d+ecd + cd3)o:= (cld+02d+c -

(1.4.19)

3

+ (cl4-c2)(dl+.d3) + (cl-+c3)(dl+-d2) .
In terms of the parameters a, , we may derive from (1.%.12) and (1.4.19)

[(5.3"‘ a-h._' al - 8'2) + (alag - 8.38-1'_)]0: = (61&3 - aaah)ﬁ + %(334‘ all_- 8..1" aE)
(1.4%.20) + 34(32 —33) .

It would he pleasant to state that we have proved a theorem about

the variance of the sum of Al or B responses, corresponding to

1
the variance theorem proved for the non-contingent case in the preceding
section (see equation (1.3.29)). The analytical difficuities of proving

such & theorem are not insurmountable, but the effort reguired to obtain

the explicit higher transition probabilities pg) for (1.4.5) seemed

considerably greater than the value of the result. The compromise we



-59-~

struck was to prove some relatively simple theorems sbout varisances

for arbitrary L4Xk4 irrequeible, aperiodic Markov chaing, and then

proceed from these by numerical computation. The theorems are given
in this section; the compubtations are reported in Chapters 3 and L,
The generalization of the theorems to nxXn chains is obvious.

We first define the following random variables:

1 if on trial n state 1 occurs,
(1.:.21) X (x) = :

0 otherwise.
Thus, with reference to (1.4.5) if X =1 then state {1,1) occurred
on trial n , that is, responses Al and Bl were made. Note that
here the proper interpretation of the sample space point x is as a
pair of subjects, players A and B, not as a single subject.

1 if on trial n state 2  oceurs,

(1.5,22) Y (x) =

6] Otherwise.

Again with reference to (1.%.5), state 2 corresponds to (1,2) ,

that is, to the pair of responses A, and B, .

1 if on trial =n state 3 occurs,

(1.4.23) z (x) =

-n
0 otherwise.

With respect to {(1.4.5), state 3 ‘corresponds to the state (2,1) ,

that is, to the pair of responses A2 and 'Bl . g
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Analogous to (1.%.17) and (1.4.18) we have the following two

functional equalities‘for A and B in terms of " X , ¥ and 7
—n =1 -n’ - el

It
P4
+
1

A
—n
(1.4.24)

I

et
¥
(]

For the sum of any of thesé five random variables over a block of I

trials we use the notation already introduced for gﬁ' and En R

namely XN YN’ ZN’ éN and EN . Also, from previcus notation the

asymptotic probabilities of gn, zn’ %n’ én and En are U, U u3

and P respectively.

The theorem with which we conclude this secticn is then:

Theorem. At asymptote we have the following variances for the sum

of N random zg;iablesi

ZN'l .J)
=1

If
=
e
=
1
=
o

(1.4.25) var(gﬁ)

) . N-1
(1.4.26) var(gﬁ) Nu, (1 -Nuz) + 2u, S (W= 3) () »

= : Poo
J:
= Il (J)
{(1.4.27) .var(gN) = Nu3(l -Nu3) + 2u3 2 (N - J)P s

IS

(1.4.28)  var(Ey) = var(%) + var(F) + 2 >_ (8- 3)p{3)
. . l j=1

(.3) 2
+ 2u, z;: (N - J)p - 20w,
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(1.k.29) var(By) = var XN) + var(z) + 2u, §:: (- J)p(a)

+.2u Z(N J)p(J) —2N2uu

Proof: We prove only (1.4.25) and (1.4.28); proofs of the other

three cases are similar.

By the fundamental thecrem for the variance of a sum of random

variables (see Feller [l’H, P -216), at asymptote

(1) va_r(XN) N var( X Y+ 2 > cov(X Xk)

l< J<k<N

Now at asymptote

(2) var(X, )

= ul(l - ul)
and
(3) | cov.(ﬁjgk) = E(EJ}_%{) -E(Ej )E(Kk)
2
= E(gjgk) - uy
Moreox.rer,
(%) -E(§j§k) = E(X, I;ﬁ)E(gj) for j <k
= w E(% | X))
(k-j)

YPq
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We need to evaluate one sum:

(k-j) (2-1) (3 -2) | (3-1)
5 > [ ]
) 1§j<ngP“'_ TP R Pp U7

[35153) (k-2) , (u-l)] .

+ pll ll 4.
{P£§ (N—l)) ers + p§§ l)
= -0l v re2)p®) oy s p(0Y)
— ()
=>_(u - 3)py J
=1

Substituting (4) into (3) and applying the summation result (5), we

infer that

N-1
(6) 2 =Z cov(X, Xx) E{: (N- J)p(J) 2 == ui

1< < k<N 1< j<k<N

'_i

-
= 2u, %é;' (W - J)p(J) N(N- l)ui

Finally combining the last term on the right of (6) and (2) multiplied

by N , we have:

(7) ‘ Mu (1-w ) - N(N- 1)u§ = Fu (1 - Fu)

The term on the right of (7) and the first term on the right of (6)

vield the desired result for var(gﬁ)

P
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We turn mow to (1.%.28). By virtue of (1.4.24) e have immediately:

1]

(8) var(ZAN) var(-__X__N + EN)

var(gN) &_var(iN) + 2 cov(—}_CNiN)

Now as before

(99 eov(ETy) = BEFY) - BEIHE)

'E(%EN ) - N2u1u2

We note that the product X.¥. is a product of sums and -for 1<n<N

whence

(10) B(XTy) =

b
=
P4
'_I
M
'_..l
bl
+
jaiy
i\i)N
™
o
e
4
+
..I_
=
5
=
| =t
[»]

Il
F
o
Paatin
=49
g_.l
g
+
L |
M
My —
=
o —_
+
o
i
o
Mo e
b
g
+




= _l[(N l)p(l) + (W= 2)p(2) +oout pgg'l)] +
u, [ - l)p(l) (W - 2)p§§) - péf'l)]

1]
o

-1 (3) N-1 (3)
D CED: L S B DS
Jj=1 J=1

Substituting the results of (9) and {10) into (8) yields the desired

result. @Q.E.D.

in comparing these variances with empirical data in Chapters 3
and 4 we shall divide tﬁem by ¥ to normalize to the relative
frequencies of responses in ¥ +trials.

Models for more complicated experimental situations gre presented
in later chapters. And in Chapter 3 the two-stimilus-element model is
discussed for the simple zero-sum game situation which has been the focus
of this sectlon. However, all of theSe.models are derived on the basis

of the fundamental axioms of §1.2.

$1.5 Alternative Linear Model. For those experiments in which the

available stimuli are the same on all trials it is possible to use a
model which dispenses with the concept of stimuli. In such a "pure"
reinforcement medel the only assumption is that the probability of a

response on & given trial is a linear function of the probability of

that response on the previous trial. A one-person experiment may be
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represented simply as a sequence (§11'§1’ ég) EQ,..., én’ En,..}) of
the respense and reinforcement random variabies defined by (l.2ql) and
‘(1.2,2).' Any sequence of values of these random variables represents
a possible experimental outcome. (For analysis of an experiment in
‘which more than two regponees or reinforcements are possible, (1.2;1)
and (1.2.2) need to be modified so that the value of the random
variablé éﬁ is-a number .j representing the respdnse'on trial n ,
and the value of En is'a number k representing the reinforeing
event on trial n . Howevér, this modification is not necessary for
purposes of this section.)

The linear theory is formulated for the probability of a response
on trial n+l , gizga the entire pfeceding sequencé of responses and
reinforcements. f/ For this preceding seqguence we use the notation X,
Thus, x is_a sequence of length 2n with O's and 1's 1in the

odd positions indicating responses A and ‘A, and i's and 2's in

s 2

~the even positions indicating reinforcing events El and E2 . The

axioms of the linear theory are as follows:
Axiom L1, If E =1 and P(x ) >0 then
—_— = _— n ——

+ &

P(Ay = 1lx) = (-0)p(a =1 ]x )
AxiomI2. If E =2 and P(x ) >0 then
P(A_ . =1 |x ) = {1-0)P(4 =1 Ixn_l) .

f/ In the language of stochastic processes, this means we have replaced

the Markov chains of earlier sections by chains of infinite order.
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Here, as usual, © is to be thought of as the learning parameter.
For the non-contingent case of §1.3 we can derive from L1 and

12 the same asymptotic mean result as for the Markov model, namely,

(1.5.1) 1im P{A = 1) =am .
n-—co n

On the other hand, the expression for the variance of the Cesaro sum
Eﬁ given by (1.3.29) is different for the linear model. We shall

not derive it here, bui in Estes and Suppes [12] it is shown to be:

(1.5.2) var(EN) = T%%) (Ne(k-38) - 2(1-6)[1- (1-@)N]} .

The Tollowing interesting result obtains.

.~ Theorem. In the non-contingent case, for every N >2 and for

every © in the open interval (C,1), the variance of AN at

asymptote is less irn the linear model than in the one-element Markow

model..

Proof: We seek the conditions on N and & under which the
following inequality holds (=(1 - x)/® has been cancelled from both
(1.3.29) and (1.5.2)):

2(1-8)[1-(1-0)"]
e

No(k-38) 2(1-6)[1-(1- )]
2-6 2-8

<Nz-8) -

This gimplifies to:

(_1} | 1-(1-e)N<-N.e .
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How

(2) 1-(1-0) =61+ (1-0) + (1-6)° 4.4 (1-0)"T17,

whence from (1) and (2), cancelling © , which by hypothesis is not O ,

we have:
14 (1-8)+ (1-8)° +..+ 1-0)"t<w,

and clearly this strict inequality holds under the conditions of the

hypothesis of the theorem. Q.E.D,.

To extend the linear model to two-person situations, we assume that
both subjects satisfy Axioms L1 and [2. For the study of higher moments,
which will not be considered here (see Lamperti and Suppes [18]), we
also need the assumption that, given the sequencé‘of past-responses-and
reinforcements, the probabilities of responses of the two players on
trial n are statistically independent. It is shown in Estes and
Suppes [12] that the following recursive equations hold for the two-
person zero-sum situation defined in &1.4 (we use here the notation

of (1.2.9)):

= [1- 8, (2~ a - ah)]ah + 6, (ay - as)an ¥ 8, (1- &, )

Q%+l
(1.5.3) . |
'§n+l = [1- QB(a34_ah)]Bn + eB(aE -au)Q£ % 0334

+a, -8 - .
+ eB(a3 2y, - 8y ag)yn
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Tt is further shown in Lamperti and Suppes [18] that the 1limits
¢, B and 7y exist, whence we obtain from (1.5.3) two linear

relations, which are independent of eA and eB

(2 - 8‘2-8‘4)03 = (alL -a3)[3 + (al+ a3-ae-ah)7 + (l-ah”)
(1.5.4)
(a3 + 34)6 = (a2 —ah)a + (a34-ah -ay —a2)7 + ay,

_By eliminating ¥ from these two equations we obtain the linear
relation (1.4.20) in « and B . Unfortunately, this linear
relationship represents one of the few guantitative results which
can be directly computed when this model is gpplied to multiperson
situations. Our relative neglect of the linear modei in the sequel...
is due mainly to its mathematical intractability in comparison with

the Markov models already discussed ([5]).

51.6 Comparisons with Game Theory. As remarked in the first

section, it is possible to view game theory as a descriptive,
empirical theory of behavior, but in fact, this does not seem to be

a very promising approach. Our a posteriori reason is that for our
own experiments it did nét'make good predictions. It seems to us.
that there are several general reasons why one should not be surprised
by the poor predictive success of game theory. In the classical sense
of psychological theories, game theory is not a behavior fheory. It
does not provide an analysis of how the organism interacts with its

environment; that is, of the way in which the organism receives cues




-69_.

or stimuli from its environment and then adjusts its behavior -
accordingly. Another way of stating the matter is that game theory
does not provide, even in schematic form, a formulation of the
elementary process which would lead an organism to select the
appropriate game-theoretic choice of a strategy.

From a general methodological standpoint, the orientation of
game theory is that of classical economics: the concern is with what
should be the behavior of a rétional man. This concern with the
rational nian is the basis of another strong bond between classical
economics and game theory; namely, both ére very much theories of
equilibrium. The derivation of an eguilibrium condition does not,
in these disciplines, depend on any assumptions about the particular
dynamic process by which the equilibrium point is reached. This
static character no doubt accounts for the uneasiness with which
many psychologists view the concept of utility. The economist and
game theorist take the utility function of the individual consumer
or player as given, vwhereas a psychologist immediately tends to
inguire where the utility function came from and to seek the environ-
mental factors controlling the process of acquisition of a particular
set of values or utilities. (We do not imply by this last sentence
that psychologists are yet able to propound a theory which will
account in any detail for the actual préferences, tastes and values of

organisms. )
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Granted that game theory is an eguilibrium theory, it may still

be argued that it has predictive pertinence to our. experiments. For

it .can be maintained that when individuals have reached what, from
the learning standpoint, is described as an asymptotic level of
Behavior, then they will be ir equilibrium with their environment
(including the other players in a game situation) and the optimality
concephs of game theory may well apply to their patterns of choice.
For example, even when subjects are not shown the pay-off matrix,
after a large number of trials they may have learned enough about the
prospects of wiﬁning and losing to approximate an-optimal game strategy.
For ready reference in reporting our experimental findings with
regard to game theory, we define here the three concepts of optimality
which later will be used for comparison with learﬁing theory predictkﬂm.f/
In the first place, when it is applicable, the appealing sure-
thing principle may be used to select an optimal strategy. A strategy
satisfies the sure-thing principle if, no matter what your opponent
does, you are at least as well off, and possibly.better off, with this
strategy in comparison to any other available to you. TFor example,.

consider the following 2X 2 matrix of a two-person, zero-sum game.

*/  For a detailed presentation of game theory, see McKinsey [20],
Luce and Raiffa [19], or Blackwell and Girshick [6].




-7l

A2 2 -1

1

o It Al and Bl are chosen

then A receives $5.00 and B loses this amount. If A, and B

On each play of the game player A chooses row A or A2 and
player B chooses column Bl or B |
2
are chosen, A loses $1.00 and B receives this amount, and
similarly for the other'two combinations of strategies. It is
cbvious that the choice of Al by player A ig the selection of a
strategy sstisfying the sure~thing principle, for no matter what B
does, A 1is better off with Al than A2 . However, the weakness
.of the sure-thing principle is exemplified by B's situation. Neither
Bl nor B2 satisfies the sure-thing principle, and so, in his
choice of a strategy, B 1is not in & position to apply this principle
of optimality.

Intuitively, it seems clear what B should do, namely, always
select B , since he will only lose $5,00_rather than ST.OO when A
chooseé A . The optimality principle which covers the selection of

1

B, is von Neumann's famous minimax Pprinciple [26]. The idea is that

B  should minimize his maximum losg. If he chooses B2 his_maximum

loss is $7.00, and if he chooses B , it is $5.00. So he should

minimize this loss and choose Bl .
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When the sure-thing principle applies, it agrees with the
minimax principle. Thus, if A minimizes his maximum loss he will

pick A This is most eaéily seen by maximizing his minimum gain,

1
which amounts to the same thing. If A picks Al his minimum gain
is $5.00 and if he picks A, his minimm “gain" is the loss of $1.00.
Thus to maximize his minimum gain he should pick Al

Let (aij) »with i=1,...,n and j=1,..., m, be the

payoff matrix of an n¥m zero-sum game. If

©omax min ai. = min nsx .ai. =v ,
i j it

we call v  the value of the game and any strategies i¥ and J¥*

such that
min B,.yps = mex min &, ,
. i*3 ! . ij
d e J
and
max a,,, = min max a.,.
} ij* . . 1j
i J i
are pure minimax strategies, 1i* for A and J* for B. A pure

strategy 1is one which selects a given row or column with probability
one.
Unfortunately, pure minimax strategies do not always exist. For

instance, there are none for the following payoff matrix:
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Bl B2
(1.6.1) | Ay -1 3
A2 0 -2
because
max min a,, = -1
. . 13
1 d
but
min max &a,, = O

J i
The implication of this situstion is that in repested plays of this
game a fixed qhoice of Al or A2 , by A, or a fixed cholce of Bl
or BE_’ by B , will not be optimal against an intelligent opponent.
The insufficiency of pure strategies may be remedied by intro-
ducing probabiiity mixtures of pure strategies. For instance, player A
might choose Al with probability l/3 and A2 with probability 2/3 s

A probsbility mixture is called a mixed strategy. Such a strategy for

A may be designated £ = (51,52) » Where ¢, is the probability of
choosing Ai y for i = l,2-.f/ Similarly, mixed strategies for B

are designated 1 = (nl,qa) . The fundamental theorem of von Neumann

*/ If n strategies are available to A , then ¢ = (gl,..,, gn) is

an n-dimensionsl vector such +dhat gi >0 for i=1,..., n and

Z§i=l-' o
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i1s that mixed minimax strategies exist for any zZero-sum, two-person

game with a finite number of strategies available to each player. In

other words, there are probability mixtures &% and mnu¥ such that

* = i *
(1.6.2) max > 3y 5 £y n% = min ‘- 8 5 &7 N,
2

£ 1, 1

= Vv 3

and v is called the value of the game.i/ What (1.6.2) shows is that
player A may assure himself of winning at least v by playing t¥ and
player B may assure himself of losing at most v by playing n¥ .

It is not appropriate to discuss here general methods of fihding v
the value of a game and its miﬂiﬁax strategies, but we can illustrate

the simple technique for 2X2 games with payoff mnatrix (aij) . For

simplicity, let x =& eand y =17, . Then it may be shown that it is

sufficient to consider x and y separately ageinst the use of pure

stfategies'by the other player. Thus we seek numbers X,y and v

such that ' - ‘ :
xa,, * (l-—x)ael > v é
X8, + (l-—x)a22 > v %
(1.6.3) _ yaq, + (1- y)a12 <v |
Yo,y + (l-—y)a22 < v |

* Note that a,. E. 1. is just the expectation of A's gain
1] 1 TlJ

l .
with respeCt’%o the two independent probabllity mixtures € and 7 .
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In aﬁy numerical case solutiqn of these inequalities is a simple matter.
For (1.6.1), we obtain: . x = 1/3 , y=5/6 , v=-1/3 . (In example
(1.6.1), x and y are unique. This is not always the case; as a
trivial instance, if -aij =0 for 1 and J , any £ and any 1

is & mixed minimax strategy.)

The dewlopment of an adequate theory of optimal strategies for
non-zero-sum, twWo-person games is a complicsted matter which as yet
does not have a satisfactory solution. (Recall that a two-person
geme is non-zero-sum whenzwhat_one player receives_at the end of.a
play is not the negative of what the other-player receives.) . A

natural division of non-~zero-sum games is into cocoperative and non-

c00perativergames,. In & cgopgrativg game the plgyers are permitted
to comrunicate and bargain before selecting & strategy; in a non-
cooperative game no sﬁch communication and bargaining is permittea.
Subsequent chapters devoted to non-zero-sum games are entirely
concerned with those of the_non-cooperative type. Pfobab;y the best
concept of opbimality yet proposed for such games is Nash's notion of

an equilibrium point ([211, [22]). An equilibrium point is a set of

Strategies, one for each player, with the property that these strategies
provide a way of playing the game such that if all the players but one
follow their given strategies, the remaining.player cannqt do better by
following any strategy other than one belonging to the equilibrium_point.
It was shown by Nash that every non-zero-sum, n-person game, in which
each playef has a finite number of strategies, has ap_equilib:ium point
among its mixed strategies. Consideration of techniques for findipg the

equilibrium point will be delayed until Chapter 4.
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