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Abstract

Objective: To investigate the association between white matter diffuse excessive high signal 

intensity (DEHSI) on neonatal magnetic resonance imaging (MRI) in very preterm infants and 

neurobehavioral outcomes at the age of 13 years.

Study design: MR images of very preterm children (<30 weeks’ gestational age or 

<1250 g birth weight) were evaluated at term-equivalent age with DEHSI classified into 5 

grades. Additionally, visibility of the posterior periventricular crossroads was assessed. General 

intelligence, memory, attention, executive function, motor abilities and behavior were examined in 

125 children at age 13 and related to DEHSI grades using linear regression.

Results: DEHSI was detected in 93% of infants; 21% grade 1, 22% grade 2. 32% grade 3, and 

18% grade 4. Neurobehavioral outcomes were similar for all DEHSI groups. There was weak 

evidence that higher DEHSI grades related to higher verbal IQ and attention; and that lower 
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DEHSI grades related to better planning ability. Adjustment for gestational age, birth weight 

standard score and sex further weakened these effects. Only 12 children had invisible posterior 

crossroads and showed slightly poorer outcomes at 13 years.

Conclusion: There was little evidence that neonatal DEHSI serves as a sensitive biomarker 

for later impairment. Further investigation on the importance of invisible posterior periventricular 

crossroads in larger samples is needed.

Keywords

prematurity; neurobehavior; magnet resonance imaging; cognition

Although survival rates of very preterm (< 32 weeks’ gestation) infants have increased 

significantly due to enhanced neonatal care, preterm birth is associated with neonatal brain 

injury, in particular to the white matter1. Although focal cystic periventricular lesions are 

relatively rare, diffuse white matter abnormalities are the most common neuropathology 

found in very preterm infants1. Furthermore, diffuse excessive high signal intensity (DEHSI) 

with increased signal intensity in the white matter on T2-weighted magnetic resonance 

imaging (MRI) around term-equivalent age has been reported in approximately 55–75% of 

infants born very preterm2 and 75–80% of infants born extremely preterm3. DEHSI can 

occur in isolation or in addition to other white matter changes, including reduced volume, 

cystic lesions and delayed myelination4. There has been debate as to whether DEHSI 

reflects brain pathology serving as biomarker for later neurodevelopment5 or alterations in 

maturational characteristics reflecting a developmental phenomenon2,6–8.

White matter alterations on neonatal MRI have been associated with consequences on 

cognition, motor development and behavior in very preterm children.9,10 Cognitive, motor 

and behavioral problems following preterm birth remain a significant burden11. It is 

therefore important to determine precisely which findings on neonatal MR serve as 

predictors of long-term outcome in very preterm children, in order to provide prognostic 

information for caregivers and families. Although some studies have reported that DEHSI is 

associated with worse outcome4,12–14 the balance of evidence suggests no relationship with 

outcome2,7,8,15–17. To date, no study has reported associations between DEHSI and outcome 

beyond early school-age and there is a lack of studies assessing specific cognitive domains 

including memory, attention and executive function. Thus, the aim of this study was to 

investigate the associations between neonatal DEHSI and neurobehavioral outcomes in VPT 

13-year olds. We hypothesized that DEHSI would not be strongly related to neurobehavioral 

outcome.

Methods

Participants were VPT infants (gestational age <30 weeks and/or birth weight <1250 g) 

admitted to the Royal Women’s Hospital, Melbourne between July 2001 and December 

2003 and recruited into a prospective longitudinal cohort study called the Victorian 

Infant Brain Study (VIBeS). Of 348 eligible VPT infants admitted to the neonatal 

nursery, 224 children without genetic or congenital abnormalities likely to interfere with 

development (e.g. craniosynostosis, septo-optic dysplasia) were recruited. Two hundred and 
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nine infants underwent MR imaging at term-equivalent age (40 weeks gestational age ± 

2 weeks). Of those, 49 infants were excluded due to limited quality of the T2-weighted 

sequences (n=24), major cerebral injury seen on term-equivalent MRI (n = 15; 3 with 

cystic periventricular leukomalacia, 2 with extensive cerebral hemorrhagic lesions, 9 with 

periventricular hemorrhagic infarction, and 1 with treated posthemorrhagic ventricular 

dilation) and congenital anomalies (n = 10), resulting in usable neonatal MRI data in 160 

infants. Children in the VIBeS cohort have been followed-up at 2, 5, 7, and 13 years. 

The present study included all children who had usable neonatal MRI data and who were 

assessed at the 13-year follow-up. This study was approved by the Human Research and 

Ethics Committees of the Royal Women’s Hospital and the Royal Children’s Hospital, and 

informed written consent was obtained from the parents at all time points.

MR Imaging

MR images were obtained on a 1.5T Signa LX EchoSpeed system (GE Healthcare 

Milwaukee, Wisconsin) without any sedation, including 1) a 3D spoiled gradient-recalled 

echo sequence (0.8 – 1.6-mm coronal sections; flip angle, 45°; TR, 35 ms; TE, 9 ms; 

FOV, 210 × 157.5 mm; matrix, 256 × 192, interpolated 256 × 256) and 2) a double-echo 

(proton-density and T2-weighted) spin-echo sequence (1.7 – 3-mm axial sections; flip angle, 

90°; TR, 4000 ms; TE, 60 and 160 ms; FOV, 220 × 165 mm; matrix, 256 × 192, interpolated 

512 × 512; interleaved acquisition).

MR Imaging Analysis

Grading of DEHSI was conducted by 1 investigator trained in fetal and preterm MR imaging 

and blinded to the clinical data. Grading was based on severity and extent of signal intensity 

and classified into 5 grades: 0 = no DEHSI throughout the white matter; 1 = DEHSI visible 

only within the crossroads; 2 = DEHSI visible in one region additional to the crossroads; 3 

= DEHSI visible in two additional regions; 4 = DEHSI visible in three additional regions 

(extensive white matter) (For an illustration of the grades refer to Kidokoro et al, 201117).

For infants with DEHSI grades 2–4, we additionally assessed whether the margins of 

the posterior periventricular crossroads were visible. Healthy variations of immature white 

matter typical for this age of assessment are visible as high signal intensity in the white 

matter of the posterior periventricular crossroads18 (An example is shown in Figure 1; 

available at www.jpeds.com). If crossroads were visible, this indicated typical signal 

intensity; widespread signal intensity such that the periventricular crossroads were invisible 

indicated signal intensity beyond the healthy maturational variations.

The inter-observer agreement on the DEHSI grade was assessed in 15 infants by 2 authors 

using Kappa statistics. The observers showed complete agreement in 10 infants, a difference 

of 1 grade in 4, and a difference of 2 grades in 1 infant (κ = 0.58). Test-retest agreement in 

the 15 infants was perfect (κ = 1).

Neurobehavioral Outcome Measures

At the 13-year follow-up, general intelligence was estimated with the Kaufman Brief 

Intelligence Test, Second Edition (KBIT-2)19, of which the KBIT IQ Composite, Verbal 
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and Nonverbal standard scores (M = 100, SD = 15) are reported. Short term memory was 

evaluated using the Digit Recall subtest and working memory was investigated using the 

Backward Digit Recall subtest (M = 100, SD = 15) of the Working Memory Test Battery 

for Children (WMTB-C)20. Attention was assessed using subtests from the Test of Everyday 

Attention for Children (TEA-Ch)21 including Score! (sustained attention) and Map Mission 

(selective attention; M = 10, SD = 3). Executive Function was evaluated using the subtests 

from the Behavioural Assessment of the Dysexecutive System for Children (BADS-C)22. 

The Zoo Map test captures the ability to plan and execute a specific eight-location sequence 

in accordance with several rules (Zoo Map total score, M = 10, SD = 3) and the Six Part Test 

examines planning, task scheduling and performance monitoring skills (Six Part total score, 

M = 10, SD = 3). The behavioral manifestations of children’s executive control functions 

were assessed with the Behavior Rating Inventory of Executive Function (BRIEF)23, a 

parent-completed rating scale including a Global Executive Composite (GEC), a Behavioral 

Regulation Index (BRI) and a Metacognition Index (MI) (M = 50, SD = 10; high scores 

reflect worse outcome). Motor function was evaluated with the Movement Assessment 

Battery for Children 2 (M-ABC-2)24. A total composite score, derived from the summarized 

subtest standard scores, and ‘manual dexterity’, ‘aiming and catching’ as well as ‘balance’ 

component scores are reported (M = 10, SD = 3). Higher scores reflected better functional 

outcome in all of the abovementioned measures except the BRIEF parent rating, where 

elevated scores reflected worse outcome.

Statistical Analyses

Baseline characteristics were described for participants with differing degrees of DEHSI as 

proportions (categorical data) and means (SDs) (continuous data).

Because our sample included a number of multiple births, regression models were fitted 

by using generalized estimating equations with an exchangeable correlation structure and 

are reported with robust standard errors to allow for nonindependence of multiples25. 

Associations between DEHSI and neurobehavioral outcome were examined using linear 

regression with separate models for each predictor-outcome combination. Analyses were 

repeated adjusting for gestational age, female sex and birth weight SD score, variables 

known to be associated with improvements in most of the outcomes studied.

Further, for infants with DEHSI grades 2–4, linear regression models were fitted to examine 

differences in neurobehavioral outcomes between those children who had visible and those 

who had invisible posterior crossroads in their neonatal scan. Analyses were conducted 

by using SPSS version 24 (IBM SPSS Statistics, IBM Corporation) and Stata 14.2 (Stata 

Corp, College Station, TX). Interpretation of the findings was based on overall patterns and 

magnitude of differences rather than individual P values26.

Results

Patient Characteristics

Of 160 preterm infants who were eligible and had usable neonatal MRI data, 125 children 

had usable MRI data and follow-up data at 13 years (mean age 13.3, 0.4 SD). Thirty-five 

Mürner-Lavanchy et al. Page 4

J Pediatr. Author manuscript; available in PMC 2022 March 06.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



children were not assessed at the 13-year follow-up (unable to contact n=8; withdrawn 

n=8; declined to participate n=18; died n=1). Participants’ neonatal characteristics are 

summarized in Table 1 (available at www.jpeds.com). Participants and non-participants had 

similar perinatal/neonatal characteristics (Table 2; available at www.jpeds.com).

Most infants had some grade of DEHSI visible on their term-equivalent MRI (Table 1). The 

neonatal characteristics of the DEHSI groups were generally comparable but the DEHSI 

grade 0 group was small (n=9) and tended to have a lower mean birth weight.

Neurobehavioral Outcomes after DEHSI

Neurobehavioral outcomes for each DEHSI grade are summarized in Table 3. Outcomes 

were broadly similar between groups. Regression analysis yielded weak evidence for 

linear relationships between DEHSI and verbal IQ, selective attention and planning ability 

(Table 4), but Figure 2 demonstrates that the relationships were more complex, and not 

clinically meaningful. Adjusting for gestational age, birth weight SD score and sex reduced 

the strength of the evidence for the linear associations between DEHSI grade and most 

outcomes; only the linear relationship with planning ability retained some evidence to 

support it.

Neurodevelopmental Outcomes in “invisible” Posterior Crossroads

Among the 90 children with grade 2–4 DEHSI, 12 had invisible posterior crossroads (5 in 

grade 3 and 7 in grade 4 DEHSI), and 78 had visible posterior crossroads (28/28 children 

who had grade 2 DEHSI had visible crossroads, 35/40 children in grade 3 DEHSI and 

15/22 in grade 4 DEHSI). There was weak evidence that invisibility of posterior crossroads 

was related to worse neurobehavioral outcome, with lower scores in tests of intelligence, 

memory, attention, and executive function, and higher scores in the behavioral questionnaire 

compared with children with visible crossroads in 15 of the 16 variables (Table 5).

Discussion

It is established that DEHSI is visible on neonatal MRI in a high proportion of VPT 

children. There is ongoing debate as to whether DEHSI serves as a biomarker for later 

neurodevelopmental outcome. To date, results are inconsistent and there are no reports on 

long-term outcome in VPT adolescents, which allow for a reliable examination of specific 

areas of cognitive function, such as executive function27. In our sample of 125 VPT children 

without severe cerebral injuries at term-equivalent age, there was little evidence that the 

extent of DEHSI was systematically related to poorer neurobehavioral outcome including 

intelligence, memory, attention, executive function, motor abilities and behavior at 13 years 

of age.

Our findings are in line with studies examining associations between DEHSI and outcome 

on developmental tests in preschoolers2,6–8,15 and on a broader range of tests in early 

school-age children16. Nevertheless, some studies have found DEHSI to be related to early 

development in VPT and extremely low birth weight (<1000g) preschoolers4,12. Further, a 

sample of high-risk preterm infants with DEHSI performed nearly ten points lower (0.67 

SD) on Full-Scale IQ at six years of age compared with those without DEHSI13. Additional 
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follow-up of these groups into late childhood is important to determine whether these group 

differences persist.

The lack of systematic associations between DEHSI assessed based on the presence and 

severity of signal intensity in our relatively large cohort followed-up until 13 years suggests 

that neonatal DEHSI has little predictive value for neurodevelopmental outcome. Thus, our 

findings suggest that DEHSI reflect a transient developmental phenomenon, or alternatively, 

that the immature brain has the capacity for compensation. In order to predict functional 

outcome, a more comprehensive scoring system of neonatal MRI combining assessments of 

the nature and extent of white-matter signal abnormality, loss of volume of periventricular 

white matter, the extent of cystic abnormalities, ventricular dilatation and the thinning of the 

corpus callosum, may be more useful9,28. Such a scoring system has been used to predict 

poorer cognitive, motor and neurosensory impairment in VPT 2-year-olds28 and poorer IQ, 

academic and motor outcome at 7 years of age beyond the effect of other perinatal and 

neonatal variables9.

Children with grade 0 DEHSI had lower means on some of the reported measures. However, 

this group comprised only 9 children, which limits the generalizability of this finding and 

limits speculation about whether DEHSI might just be a normal variant in very preterm 

children at term-equivalent age.

We also investigated the presence of high signal intensity within the periventricular posterior 

crossroads, which form important intersections for projection and corticocortical fiber 

pathways29. In the same sample of children assessed for the present study, invisible 

posterior crossroads were associated with a reduction in cognitive development and an 

increased risk of cognitive delay at age two years17. In the present study, there was some 

evidence that 13 year-old children with invisible crossroads showed worse outcome across 

a range of neurobehavioral measures, although mean differences were non-significant and 

smaller than at the two-year follow-up. Although our results may be suggestive of invisible 

periventricular posterior crossroads being a possible biomarker of later neurodevelopmental 

outcome, our study sample with invisible crossroads was small (n=12) and further studies in 

other cohorts, with larger samples are required to further investigate this relationship.

Methodological limitations of the DEHSI rating limit the interpretation of our findings. It 

has been suggested that T2-weighted sequences should be optimized using fluid-attenuated 

inverse recovery (FLAIR) for a better distinction between DEHSI and CSF, as they may 

appear in the same intensity distribution in conventional T2 images30. Furthermore, signal 

intensity of T2-weighted images is susceptible to magnetic field inhomogeneity. Increased 

signal intensity caused by field inhomogeneity may be confused with DEHSI31. Hence, T2 

relaxometry is suggested as it is thought to provide improved distinction between CSF and 

DEHSI over that of conventional T2-weighted imaging31.

Scoring DEHSI is potentially variable and subjective in nature16. In the present study, 

scoring was done by one physician only. In a subset of the present study, however, inter- and 

intra-rater agreement were moderate. This may have contributed to the lack of associations 

between DEHSI and neurobehavioral outcomes in the present study. Further studies should 
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examine the predictive value of automated DEHSI scoring for long-term neurobehavioral 

outcomes.

Although we had some attrition, compared with other studies, our sample is large and to the 

best of our knowledge, no other study has reported relationships between DEHSI and such a 

broad range of cognitive and motor outcomes in early adolescence.

The presence of qualitatively defined DEHSI on term-equivalent MRI does not appear useful 

as a predictor of long-term neurobehavioral outcome in VPT children. The predictive value 

of the less common finding of a lack of visibility of the posterior periventricular crossroads 

with DEHSI needs further investigation.
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Figure 1. 
(online). Samples of visible (typical) and invisible (atypical) posterior periventricular 

crossroads. A. High signal intensity is visible within the crossroads (arrows). B. Posterior 

periventricular crossroads are invisible because of widespread homogeneous high signal 

intensity of the entire cerebral white matter surrounding the crossroads.
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Figure 2. 
Neurobehavioral outcomes at 13 years for children in each DEHSI grade. Scatterplots 

showing individual data points (empty circles), group mean (red dots), overlaid with 

boxplots indicating first and third quartiles (bottom and top of box), the median (band inside 

the box) and maximum 1.5 interquartile range (end of whiskers). Results are shown for A. 

Verbal IQ, B. selective attention and C. planning ability.
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Table 1.

Participant characteristics

Grade 0 n=9 Grade 1 n=26 Grade 2 
n=28

Grade 3 n=40 Grade 4 n=22 Total N = 
125

Gestational age at birth - weeks (SD) 26.1 (1.9) 26.6 (1.4) 27.8 (2.2) 27.9 (2.0) 27.7 (1.7) 27.5 (1.9)

Postmenstrual age at MRI - weeks 
(SD)

40.4 (1.5) 40.1 (1.9) 39.9 (1.0) 40.5 (1.5) 40.5 (1.2) 40.3 (1.5)

Birthweight - g (SD) 789 (183) 875 (236) 967 (228) 1007 (209) 985 (214) 951 (225)

Birthweight z-score (SD) −0.5 (1.3) −0.5 (0.9) −0.8 (1.0) −0.6 (0.9) −0.6 (0.9) −0.6 (0.9)

Exposure to antenatal corticosteroids 
No. (%)

8 (89) 25 (96) 26 (93) 34 (85) 19 (86) 112 (90)

Exposure to postnatal corticosteroids 
No. (%)

2 (22) 3 (12) 2 (7) 3 (8) 2 (9) 12 (10)

Proven sepsis No. (%) 4 (44) 11 (42) 16 (57) 14 (35) 11 (50) 56 (45)

Proven necrotizing enterocolitis No. 
(%)

1 (11) 2 (8) 0 3 (8) 2 (9) 8 (6)

Bronchopulmonary dysplasia No. (%) 4 (44) 10 (39) 10 (36) 14 (35) 6 (27) 44 (35)

Grade III-IV intraventricular 

hemorrhage No. (%)
a

0 1 (4) 0 1 (3) 0 2 (2)

Cystic periventricular leucomalacia 

No. (%)
a

0 1 (4) 0 1 (3) 1 (5) 3 (2)

Patent ductus arteriosus No. (%) 5 (56) 17 (65) 10 (36) 18 (45) 12 (54) 62 (50)

Female sex No. (%) 6 (67) 13 (50) 10 (36) 19 (48) 10 (46) 58 (47)

Singleton No. (%) 6 (67) 9 (35) 16 (57) 22 (55) 16 (73) 69 (55)

Note. SD=standard deviation. Bronchopulmonary dysplasia defined as oxygen dependency at 36 weeks of gestation.

a
Detected on neonatal ultrasound.

J Pediatr. Author manuscript; available in PMC 2022 March 06.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Mürner-Lavanchy et al. Page 13

Table 2.

Neonatal characteristics in participants and non-participants

Participants N = 125 Non-participants N = 
99

Mean difference (95% CI) P-value

Gestational age at birth - weeks (SD) 27.5 (1.9) 27.5 (1.8) 0 (−0.5, 0.4) 0.90

Postmenstrual age at MRI - weeks (SD) 40.3 (1.5) 40.2 (2.0) 0.1 (−0.4, 0.5) 0.82

Birthweight - g (SD) 951 (225) 973 (226) −30.5 (−85.3, 24.3) 0.27

Birthweight z-score (SD) −0.6 (0.9) −0.5 (0.9) −0.1 (−0.4, 0.1) 0.28

Exposure to antenatal corticosteroids No. (%) 112 (90) 86 (90) 0.1 (0, 0.2) 0.21

Exposure to postnatal corticosteroids No. (%) 12 (10) 9 (9) 0 (−0.1, 0.1) 0.75

Proven sepsis No. (%) 56 (45) 42 (42) 0.4 (−0.1, 0.2) 0.53

Proven necrotizing enterocolitis No. (%) 8 (6) 2 (2) 0.1 (−0.1, 0.2) 0.28

Bronchopulmonary dysplasia No. (%) 44 (35) 31 (31) 0 (−0.3, 0.2) 0.69

Grade III-IV intraventricular hemorrhage No. 

(%)
a

2 (2) 6 (6) 0 (0, 0.1) 0.09

Cystic periventricular leucomalacia No. (%)
a 3 (2) 6 (6) 0 (−0.1, 0) 0.19

Patent ductus arteriosus No. (%) 62 (50) 48 (49) 0.1 (−0.1, 0.2) 0.37

Female sex No. (%) 58 (47) 52 (53) 0 (−0.2, 0.1) 0.47

Singleton No. (%) 69 (55) 61 (62) 0.1 (−0.1, 0.2) 0.40

Note. Estimates of regression coefficients from separate linear regression models fitted using generalized estimating equations to allow for 
clustering of twins. SD=standard deviation. Bronchopulmonary dysplasia defined as oxygen dependency at 36 weeks of gestation.

a
Detected on neonatal ultrasound. 35 of the non-participating children had DEHSI scoring with 11% showing grade 0, 40% grade 1, 11% grade 2, 

37% grade 3 and none grade 4.
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