
UCLA
UCLA Electronic Theses and Dissertations

Title
TCP in Error-Prone, Intermittent MANETs: Exploiting Codes and Multipath

Permalink
https://escholarship.org/uc/item/66h5z6g6

Author
Chen, Chien-Chia

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66h5z6g6
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

TCP in Error-Prone, Intermittent MANETs:
Exploiting Codes and Multipath

A dissertation submitted in partial satisfaction of the

requirements for the degree Doctor of Philosophy

in Computer Science

by

Chien-Chia Chen

2012

© Copyright by

Chien-Chia Chen

2012

 ii

ABSTRACT OF THE DISSERTATION

TCP in Error-Prone, Intermittent MANETs:

Exploiting Codes and Multipath

by

Chien-Chia Chen

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2012

Professor Mario Gerla, Chair

Wireless communications over error-prone, intermittent networks are challenging, and

prevent many applications from working properly. Network coding has been successful in

providing low-cost robust communications in such challenged wireless networks. Nevertheless,

existing schemes do not take into account constraints from applications, such as delay for

streaming applications and for TCP timeouts, fairness, and data reordering. This study aims to

bridge the gap between coding protocols and applications. We consider two types of important

applications, multicast streams and unicast TCP. In the context of multicast streams, we

propose a novel coding scheme, Pipeline Coding. Compared to the conventional batch coding

scheme, our analysis shows that Pipeline Coding improves both packet delivery ratio (PDR)

and end-to-end delay. Pipeline Coding is also shown via simulations and testbed experiments to

improve the throughput, and significantly reduce coding delay. In addition, Pipeline Coding is

tested in a heterogeneous VANET testbed, where vehicles upload streams through WiMAX and

 iii

WiFi links via roadside access points (AP) and base stations (BS) to a static client. The

experiment results demonstrate that Pipeline Coding not only achieves better PDR but also

utilizes heterogeneous links without explicit scheduling.

For TCP over static, error-prone environments, a combined intra-/inter-flow coding scheme,

ComboCoding, is proposed. ComboCoding combines inter-flow and intra-flow coding and

features an adaptive redundancy control to provide robust, fair TCP communication in

challenged wireless networks. Simulation results show that TCP with ComboCoding delivers

higher throughput than other coding options in high loss scenarios. Moreover, we study the

behavior of multiple TCP sessions intersecting and interfering with each other in the same ad

hoc network. The results show that ComboCoding consistently provides better fairness among

multiple co-existing TCP sessions when compared with TCP without coding.

For TCP over challenged mobile ad-hoc networks (MANETs), we propose a network coded

multipath scheme for conventional TCP—CodeMP. CodeMP adapts to frequent link changes in

MANET and requires no explicit control messages. The scheme exploits multiple-path

redundancy and maintains total transparency to transport layer protocols. The proposed coding

scheme is based on three components: (1) random linear coding scheme with adjustable

redundancy, (2) multipath routing, (3) ACK Piggy coding. Simulation results show that in an

extreme MANET scenario where two TCP sessions co-exists and nodes move as fast as 25 m/s

with up to 40% packet error rate (an environment in which regular TCP collapses completely),

CodeMP achieves at least 700Kbps aggregate TCP goodput, with a Jain’s fairness index of

0.99.

 iv

The dissertation of Chien-Chia Chen is approved.

Mani Srivastava

Songwu Lu

Danijela Cabric

M.Y. Sanadidi

Mario Gerla, Committee Chair

University of California, Los Angeles

2012

 v

To My Mom, Dad,

and My Grandparents

 vi

Table of Contents

CHAPTER 1 Introduction... 1

CHAPTER 2 Pipeline Coding for Multicast Streams ... 6

2.1 Backgroud—Batch Coding... 8

2.2 Pipeline Coding and Decoding ... 12

2.3 Encoding and Decoding Procedure... 15

2.4 Pipeline Coding Analysis.. 17

2.5 Simulation Results .. 24

CHAPTER 3 ComboCoding for TCP over Multihop Wireless Networks 28

3.1 Backgroud—PiggyCode ... 30

3.2 Coding Flow Chart.. 32

3.3 PiggyCode Performance Analysis .. 36

3.4 Loss Adaptation Algorithm... 46

3.5 Channel Access Scheme ... 48

3.6 Simulation Results .. 49

3.6.1 ComboCoding Overall Comparison ... 50

3.6.2 Loss Adaptation Evaluation.. 56

 vii

3.6.3 Multiple-Session Scenarios... 58

CHAPTER 4 CodeMP: Network Coded Multipath for TCP Support in Challenged MANETs 65

4.1 Related Work on Supporting TCP in MANETs ... 66

4.2 CodeMP Design and Implementation ... 70

4.2.1 Adaptive Redundancy Control and Multipath Routing 70

4.2.2 Ack Piggy Coding... 75

4.2.3 Impact of Packet Reordering... 78

4.3 Simulation Results .. 79

4.3.1 Static Scenarios with Time-Varying Jamming ... 80

4.3.2 MANET Scenarios—Single-Session Corridor Mobility 88

4.3.3 MANET Scenarios—Single-Session Global Mobility 90

4.3.4 MANET Scenario—2-Session; Global Mobility; Jamming 92

CHAPTER 5 Testbed Implementation for Pipeline Coding ... 95

5.1 Wireless Multi-hop Ad-hoc Testbed Experiments.. 95

5.2 Video Streaming in VANET over WiMAX and WiFi 97

CHAPTER 6 Summary ... 104

6.1 Pipeline Coding for Multicast Streams ... 104

6.2 ComboCoding for TCP over Multihop Wireless Networks 105

6.3 CodeMP: Network Coded Multipath for TCP in Disruptive MANETs 106

 viii

6.4 Testbed Experiments for Pipeline Coding .. 107

6.5 Future Work .. 108

References ... 110

 ix

List of Figures

Fig. 1 Batch Coding Example ... 11

Fig. 2 Batch Coding: Undecodable Case .. 12

Fig. 3 Pipeline Coding Example ... 15

Fig. 4 Pipeline Coding－Encoding Procedure .. 16

Fig. 5 Pipeline Coding－Decoding Procedure.. 17

Fig. 6 Enumeration of Received Pipeline Coded Packets... 20

Fig. 7 Pipeline Coding Analysis Validation ... 20

Fig. 8 Pipeline Coding Analysis Validation (G = 4, R = 1.25) ... 21

Fig. 9 Simulation Results of Different Redundancy Strategies .. 23

Fig. 10 String Topology.. 25

Fig. 11 Braided Topology ... 25

Fig. 12 UDP Results (braided topology)... 27

Fig. 13 PiggyCode Example: .. 31

Fig. 14 Coding Flow Chart at Source and Destination ... 33

Fig. 15 Coding Flow Chart at Relay ... 35

Fig. 16 3-Hop String Topology... 36

 x

Fig. 17 n-Ppc-throughput (throughput in bps) ... 41

Fig. 18 Timer-Ppc Plot (Simulation Measurements) ... 42

Fig. 19 Ppc-RTT Plot (Simulation Measurements) .. 43

Fig. 20 Ppc-T0 Plot (Simulation Measurements) ... 43

Fig. 21 Pcollision-Ppc .. 45

Fig. 22 Throughput-Ppc ... 46

Fig. 23 Simulation Topology .. 50

Fig. 24 Throughput-to-Loss .. 53

Fig. 25 Delay-to-Loss ... 54

Fig. 26 Overhead-to-Loss ... 56

Fig. 27 Goodput over Time for Loss Adaptation.. 57

Fig. 28 Multi-flow Topology .. 58

Fig. 29 X-Topology Goodput ... 59

Fig. 30 Congestion Window Time Series for TCP No Coding .. 61

Fig. 31 Congestion Window Time Series for TCP over ComboCoding 62

Fig. 32 Grid Topology Aggregate Goodput.. 63

Fig. 33 Grid Topology Fairness .. 64

Fig. 34 Slice Example ... 71

Fig. 35 Piggybacked Counters .. 72

 xi

Fig. 36 j
inshare Example.. 74

Fig. 37 Ack Piggy Coding Example ... 77

Fig. 38 Single Session Static Topology .. 81

Fig. 39 Single Session Instantaneous TCP Goodput .. 82

Fig. 40 Received TCP Data Sequence Number over Time .. 84

Fig. 41 Single Session Normalized Transmission Overhead.. 85

Fig. 42 2-Session Static Topology .. 86

Fig. 43 2-Session Normalized Transmission Overhead.. 88

Fig. 44 MANET Corridor Model.. 89

Fig. 45 Corridor Mobility Goodput vs. Max. Moving Speed ... 90

Fig. 46 MANET Single-Group Model.. 91

Fig. 47 Single-Session Goodput vs. Max Moving Speed ... 92

Fig. 48 Normalized Transmission Overhead .. 94

Fig. 49 Testbed Experiment Topology ... 96

Fig. 50 Testbed Experiment Results ... 97

Fig. 51 C-VeT Experiment Topology... 99

Fig. 52 Experiment Illustration ... 100

Fig. 53 Number of Packets Received per Second (Static) .. 101

Fig. 54 End-to-End Delay of Each Received Packet (Static) ... 101

 xii

Fig. 55 Number of Packets Received per Second (Mobile).. 102

Fig. 56 End-to-End Delay of Each Received Packet (Mobile)... 103

 xiii

List of Tables

Table 1 Definitions of Terms Used in the Dissertation .. 9

Table 2 Pipeline Coding Simulation Configuration.. 25

Table 3 Pipeline Coding CBR/UDP Simulation Configuration ... 26

Table 4 Inter-Flow Coding Throughput Model Notation ... 37

Table 5 ComboCoding Simulation Configuration.. 50

Table 6 CodeMP Single Path Average TCP Goodput (Mbps) ... 82

Table 7 CodeMP 2-Session Average TCP Goodput (Kbps)... 87

Table 8 CodeMP Single-Group Two-Session Average Goodput (Kbps) 93

Table 9 CodeMP Two-Session Scenario Jain’s Fairness Index.. 94

Table 10 Summary of Streaming Format (Wireless Ad-hoc Testbed) 96

Table 11 Summary of Streaming Format (C-VeT Experiments).. 99

 xiv

ACKNOWLEDGEMENTS

Ph.D. study is a long journey that could not be made without guidance, assistance, and

companions. An immense gratitude goes to my advisor, Dr. Mario Gerla, who gave me

guidance and inspiration during my doctoral study and provided me resources to conduct

research. This study would have been much less in depth and breadth without his everlasting

advice, support, and encouragement.

I would like to also specially thank Dr. M. Y. Sanadidi, who offered the first class I took in

UCLA and opened my world of networking research. His thoughtful advice and enduring

patience were always important and helpful. I also appreciate the other members in my doctoral

committee, Dr. Mani Srivastava, Dr. Songwu Lu, and Dr. Danijela Cabric for their keen insight

and advice making the work much deeper and more complete than it would otherwise have

been.

A special appreciation goes to every NRL member, including Dr. Joon-Sang Park, Dr. Uichin

Lee, Dr. Soon Oh, Dr. Giovanni Pau, Mr. Brandon Pancost, Mr. Jui-Ting Weng, Ms. Yu-Ting

Yu, and Mr. Lee Aik Tuan, for their assistance, ideas, and support. Another special appreciation

goes to Dr. Yong Chiang Tay, who provided guidance and assistance on many of my analytical

studies. Also, I would like to thank all of my project partners, Chieh-Ning Lien, Cliff Chen,

Phillip Tao, and Guruprasad Tahasildar. Without their help, many ideas would have taken much

longer to be implemented and evaluated.

The Ph.D. study would have been much tougher without friendship. I feel grateful to all of

my friends, who accompanied me on this long journey and had so much memory with me at

many places in UCLA, from Boelter Hall, Drake Stadium, IM Field, Wooden Center, to Sunset

Recreation Center.

Lastly, the study could not be done without the support of our sponsors, NSF, ONR, and

Singapore DSO National Laboratories.

 xv

VITA

2006 B.S. (Computer Science),

 National Tsing Hua University, Hsinchu, Taiwan.

2009 M.S. (Computer Science),

 University of California at Los Angeles, Los Angeles, California, USA.

2012 Ph.D. (Computer Science),

University of California at Los Angeles, Los Angeles, California, USA.

Publications

Journal Paper

C.-C. Chen, C. Chen, S. Y. Oh, J.-S. Park, M. Gerla, M. Y. Sanadidi, “ComboCoding:

Combined Intra/Inter-Flow Network Coding for TCP over Disruptive MANETs,”

Journal of Advanced Research, vol. 2, pp. 241-252, 2011.

Conference Proceedings

C.-C. Chen, G. Tahasildar, Y.-T. Yu, J.-S. Park, M. Gerla, M. Y. Sanadidi, “CodeMP:

Network Coded Multipath to Support TCP in Disruptive MANETs," submitted to IEEE

MASS 2012.

C.-C. Chen, C. Chen, J.-S. Park, S. Y. Oh, M. Gerla, M. Y. Sanadidi, "Multiple Network

Coded TCP Sessions in Disruptive Wireless Scenarios," in Proc. of IEEE MILCOM

2011, Nov. 2011.

 xvi

C.-C. Chen, C. Chen, S. Y. Oh, M. Gerla, M. Y. Sanadidi, "ComboCoding: Combined

Intra/Inter-Flow Network Coding for TCP over Multihop Lossy Wireless Netowkrs," in

Proc. of ACITA 2010. Sept. 2010.

C.-C. Chen, S. Y. Oh, P. Tao, M. Gerla, M. Y. Sanadidi, "Pipeline Network Coding for

Multicast Streams (Invited Paper)," in Proc. of the 5th International Conference on

Mobile Computing and Ubiquitous Networking (ICMU 2010), April 2010.

B. Pancost, C.-C. Chen, M. Y. Sanadidi, M. Gerla, "Buffer Estimate Filtering Using

Dispersion Deltas," in Proceedings of the 7th International Workshop on Protocols for

Future, Large-Scale and Diverse Network Transports (PFLDNeT 2009), May 2009.

Demonstrations

P. Tao, C.-C. Chen, S. Y. Oh, M. Gerla, M. Y. Sanadidi, "Demo Abstract: Pipeline

Network Coding for Multicast Streams," in Proc. of IEEE INFOCOM 2010, March

2010.

C.-C. Chen, C.-N. Lien, U. Lee, S. Y. Oh, "CodeCast: Network Coding Based Multicast

in MANETs," in Demos of the 10th International Workshop on Mobile Computing

Systems and Applications (HotMobile 2009), Feb. 2009.

 1

CHAPTER 1

Introduction

Wireless communications over extremely lossy networks are known to be challenging since

packet error rates as high as 50% will kill all kinds of applications. Since ARQ schemes are not

suitable in streaming applications [1], recent research has turned to coding approaches, such as

erasure codes and network coding. Network coding, which mostly stands for coding at the

packet level, has attracted significant interest since [2]. Originally, the main aspect considered

in the pioneer network coding work [2-7] was to exploit the broadcast nature of wireless links

such that the multicast capacity is maximized [8]. Authors in [9] further pointed out the fact that

in addition to multicast flows, network coding is also of benefit to unicast flows by providing a

low-cost reliable transmission scheme over a disruptive network environment. Although several

attempts have been made to propose coding protocols for multicast streams [10] and TCP [11],

none of them takes into account realistic application constraints, such as delay constraints for

streaming applications and latency issues for TCP. This study aims to propose novel approaches

to network coding to bridge the gap between coding and transport/application protocols. We

first propose an innovative low-delay coding scheme, Pipeline Coding, which is ideally suitable

for multicast streams. Based on the proposed low-delay coding, we next propose an efficient

coding approach, ComboCoding, which is compatible and transparent to existing TCP variants.

We further design and implement a multipath network coding scheme, CodeMP, which equips

 2

with an adaptive multipath and redundancy control to support TCP traffic in disruptive

MANETs.

In the context of multicast streams, delay and jitter are critical measures in addition to

throughput. However, existing network coding approaches introduce high coding delay and

high delay jitter. The price of using network coding to provide robust transmissions is one order

of magnitude increase in end-to-end delay [12]. This is because conventional network coding is

based on a batch, or a generation model [3-4, 6, 8, 10, 13] that is inherited from erasure coding

[14] and fountain codes [15-16]. Such type of coding schemes are referred to as “batch coding”

schemes throughout this dessertation.

In the batch coding scheme, each coded packets is a linear combination of all data packets in

a generation. Successful decoding is guaranteed once enough coded packets are received.

However, there are two critical drawbacks in the batch coding scheme. First, it introduces

encoding and decoding delay that proportionally increases with generation size. As a result, the

quality of real-time streaming degrades due to delay and jitter. Furthermore, because of the

generation based coding, a generation is decodable only once enough linearly independent (i.e.,

innovative) packets are received; otherwise, the entire generation is discarded. In other words,

throughput may significantly degrade due to frequent generation discards in a lossy network.

To address these batch coding problems, we propose to use “Pipeline Coding,” a scheme in

which both encoding and decoding can proceed progressively [17-18]. Instead of waiting for all

packets in a generation to be received before coding and transmitting them, the source start

encoding and sending coded packets whenever a new data packet arrives. At the destination,

data packets can also be reconstructed “progressively,” i.e., incrementally. Consequently,

 3

Pipeline Coding achieves (1) a lower coding delay, (2) a higher throughput, (3) transparency to

higher layers (UDP, TCP, or other applications), and (4) no special hardware requirement.

As for TCP, we propose another novel coding scheme, ComboCoding, which consists of

intra-flow coding and inter-flow coding. By intra-flow coding, we specifically refer to Pipeline

Coding as it provides a low-delay robust communication in disruptive network environments. In

addition, we borrow the idea from previous work on coding schemes for TCP to encode TCP

DATA and ACK packets and thus reduce cross interference [7, 19-21]. We refer to the latter as

“inter-flow coding” throughout this dissertation.

The first work on the inter-flow coding for TCP was reported in [7], in which the authors

point out that network coding does not significantly improve TCP. Authors in [19] were prompt

to remark that this is mainly because the study in [7] does not take into account bi-

directionality, i.e., the fact that TCP DATA flow and TCP ACK flow are naturally in opposite

directions. Therefore, they propose to XOR TCP DATA and ACK opportunistically to reduce

transmissions. This is what we refer to as inter-flow coding, i.e., coding of two flows is in

opposite directions. A similar idea is proposed in [20], where the throughput is improved by

opportunistically XORing TCP ACK and DATA flow. Following the work presented in [20],

[21] proposed a MAC layer modification to provide a better channel access scheme. One of the

earliest proposals to improve TCP in lossy networks is [11], in which authors studied an intra-

flow random linear coding scheme. Intra-flow implies that only packets within one flow, the

data flow in this case, are coded. Hence TCP is significantly improved, but their scheme

requires TCP modifications at both the senders and the receivers.

 4

All the above solutions address either the interference problem or the high loss problem, but

not both. In this study, we present a hybrid network coding scheme that is (1) transparent to

TCP, and (2) addresses both interference and random loss problems. ComboCoding is an

important step forward in the state of the art in many directions: (1) ComboCoding combines

inter- and intra-flows coding into an efficient, robust coding approach that addresses both high

random loss rate and self-interference. (2) ComboCoding is implemented in the network layer

and is transparent to TCP or other reliable protocols at the upper layers. This is contrast to [11],

where the authors entirely redesigned a new TCP variant that is incompatible with existing TCP

protocols. (3) ComboCoding does not rely on any new or modified MAC layer protocols. This

is different from [21], in which the authors propose a MAC layer modification to further

improve coding gain.

While ComboCoding works for a disruptive environment with a static topology, in disruptive

MANET scenarios, similar to [11, 43], it suffers from frequent routes breaks and highly

unstable links. To address these new challenges in disruptive MANET environments, we next

propose CodeMP, a multipath network coding scheme. Following similar design principles as

in ComboCoding, CodeMP is transparent to transport layer protocols such as TCP and requires

no explicit control messages. CodeMP provides a practical and efficient approach to exploit

multiple-path and coding redundancy in disruptive MANETs. It also achieves better fairness in

the presence of multiple coexisting TCP sessions in the MANET scenarios.

In the rest of this thesis, we will first present the design of Pipeline Coding as well as the

corresponding evaluations through both analysis and simulations in chapter 2. Chapter 3

proceeds to unicast TCP case and introduces ComboCoding with a loss adaptation algorithm,

 5

followed by our first order analysis for the inter-flow XOR coding and intensive simulation

evaluations. Chapter 4 further extends to disruptive MANET scenarios and proposes CodeMP

to support TCP applications in such a disruptive mobile environment. Chapter 5 presents a

testbed implementation for Pipeline Coding, in which we validate the results measured via

simulations and conduct a number of experiments in our Campus VANET Testbed (C-VeT).

Finally, the dissertation is concluded in chapter 6.

 6

CHAPTER 2

Pipeline Coding for Multicast Streams

Due to the nature of wireless communications, wireless ad-hoc networks are vulnerable to

channel errors, interference and jamming. There are two well known approaches for effective

error recovery; Forward Error Correction and ARQ [1]. Since the targeted application here is

real time multicast streaming, the ARQ scheme is not appropriate. In order to efficiently control

losses, recent research in this area has exploited FEC-based coding schemes, such as erasure

coding [14] and network coding [2-7].

Erasure coding was first proposed in [14], in which the authors referred the word “erasures”

at the network layer means “missing packets in a stream”. Erasure coding is classified as FEC

coding for binary erasure channels since a source achieves error correction by injecting

redundant data. Conventionally, erasure coding refers to a general coding scheme consisting of

source-only coding. In order to make distinction, we define a new term “batch erasure coding”

that generates encoded packets only from the same batch. A source generates n packets from k

original ones. The original data can be reconstructed from a subset of n packets. A stream of

packets is split into k packets called “generation” or “batch” [3-4, 6, 8, 10, 13] and the source

produces n coded packets for each generation using random linear coding. We define r=n/k as

the “coding redundancy” in this dissertation. At destinations, any subset of k linearly

 7

independent coded packets is sufficient to reconstruct the original generation. In other words, n-

k losses are allowed in a group of n coded packets. The difference between Erasure coding and

network coding is that in the former the coding is done only at the source while in the latter the

coding is done also at intermediate nodes. In fact, Erasure coding can be viewed as a subset of

network coding.

The above erasure coding scheme is called “pre-defined rate coding” since coding

redundancy is decided before transmission. Another form of erasure coding is called “rateless

coding,” which can generate infinite encoded packets. Namely, there is feedback from

destination to source and the source will adaptively adjust the redundancy depending on

reception quality at destination etc. However, end to end feedback can be slow and is not

practical in multicast/broadcast because of feedback control message “explosion” Fountain

Codes [15-16] and Raptor Codes [22] are this type of coding schemes. In this chapter, we only

consider pre-defined rate coding. In this respect, it should be noted that network coding allows

dynamic adjustment of redundancy WITHOUT expensive end to end feedback since it can just

rely on downstream neighbor feedback to adjust retransmissions.

In disruptive networking environments, end-to-end erasure coding is not sufficient to achieve

reliable packet transmission [23]. Thus, researchers have applied network coding to such

challenged environments, in which the broadcast nature of wireless medium renders network

coding particularly effective [6]. Unlike source coding, as mentioned earlier all nodes in the

network participate in the encoding process. In this dissertation, we use “batch network coding”

to refer to a network coding scheme where source and relay nodes encode data packets in the

same generation using random linear coding.

 8

In the rest of this chapter, we first provides fundamentals of batch coding schemes, followed

by the design of a novel low-delay coding scheme, Pipeline Coding. Section 2.3 presents an

analytical model for Pipeline Coding. The encoding and decoding flows are given in Section

2.4. We evaluate Pipeline Coding through simulations and present results in Section 2.5.

2.1 Backgroud—Batch Coding

This section gives the mathematical definition of batch coding. Table 1 below summarizes

the terminology we adopt throughout the dissertation. As defined previously, in this

dissertation, batch coding refers to both batch erasure coding and batch network coding.

Assuming at the source, an application generates a series of equal-sized packets p1, p2, p3,…,.

Let k be the number of packets in a single generation. A coded packet c in ith generation is then

defined as:

1

,
k

j i k j
j

e × +
=

= ∑c p (1)

where ke is a particular element in a particular finite Galois field F , and i k× is the total number

of packets transmitted so far in the file, before the ith generation. Throughout this article, we use

lowercase boldface letters to denote vectors, frames, or packets; uppercase letters to denote

matrices; and italics to denote variables or fields in the packet header. Every arithmetic

operation is overF so that data packets pi and coded packets c are also regarded as vectors

overF . Let r denote the coding redundancy, where r≥1. For each generation, the source will

produce k r× coded packets. At destination side, after receiving k linearly independent packets,

 9

the destination can then reconstruct the original content by solving the following linear system

of equations as given in eq. (2) using Gaussian Elimination.

(1) (1)
1 1 1

() ()
1

.
k

k k
k k k

e e

e e

⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦

c p

c p

"
% #

"
 (2)

Table 1 Definitions of Terms Used in the Dissertation

Term Definition
Erasure Coding Source-side only coding.
Network Coding Source-side and relay coding.

Batch Coding
Every coded packet will encode all data packets
within the same generation. Coding and decoding
begins only when the generation rank is “full”

Pipeline Coding
Coded packets will be generated upon every new
data packet arriving. Destinations decode the data
packets progressively if possible.

Generation A set of packets that are encoded or decoded
together as a unit.

Coding Vector
(Encoding Vector)

A vector of coefficients that reflect the linear
combination of data packets.

Rank
(Degree of Freedom)

Number of linearly independent combinations of
data packets.

Innovative Packet A packet that increases the rank.

Coding Redundancy Number of coded packets sent per generation
divided by generation size.

Delay
The time difference between packet reception by
destination application and transmission from
source.

In batch erasure coding, only the source encodes packets and other nodes relay encoded

packets while in batch network coding, relays also participate in coding. Upon receiving a

coded packet, relays first check whether it is innovative. Non-innovative packets are discarded

while innovative packets are stored in the generation buffer. For each newly arrived innovative

 10

packet, relays generate and send out a new coded packet, which is a new linear combination of

all received innovative coded packets in the same generation. This procedure is called “re-

encoding.” Note that relays do not attempt to recover the original data packets. The re-encoded

packets, by induction, are still linear combination of original data packets. This simple

innovative checking and re-encoding on relays will make a major difference in performance, as

will be shown in Section 2.3.

Since each coded packet must be a linear combination of ALL data packets in the same

generation, at the source a delay is incurred until all data packets in a generation arrive. Further,

at the destinations, either all data packets in a generation will be decoded successfully, or none

will be, under batch coding.

In order to formulate the coding delay, we first define the “delay” as the time difference from

the moment when a packet is received by the application at the destination, to when it is

delivered to the application at the source. Let ti denote the time that the source generates datai

and tci denote the time that ith coded packet is sent out. Assume the four delay components -

processing, transmission, propagation, and queuing delay - are constant. Let dn be the constant

delay in the network including all delay components, and dc be the constant decoding delay.

Assume each generation has k data packets. Therefore, in lossless links, the delay to deliver

datai will be:

*
.i n cic kk

t t d d⎡ ⎤
⎢ ⎥

− + + (3)

For example, the delay for delivering data1 will be tc4-t1+dn+dc as shown in Fig. 1, where we

assume the generation size is k=4 and the coding redundancy is r=1.25. Therefore, k*r=5

 11

coded packets will be sent out for every generation. Note that the figure does not show the re-

encoding process because the latter does not significantly affect the coding analysis while at the

same time creates a graph that is too complicated to draw in limited space. A detailed

description of re-encoding can be found in [4].

Assuming now that packet losses are possible over the communications path, data packets

can still be decoded as long as any subset of 4 linearly independent coded packets out of the 5

transmitted by the source is received. The generation #2 in Fig. 1 shows an example of loss that

was recovered and resulted in a successful decoding. However, if the redundancy level is not

enough to compensate for losses, none of the data packets in this generation will be decoded as

depicted in Fig. 2. Here the loss of two packets renders it impossible to decode this generation.

Fig. 1 Batch Coding Example

 12

Fig. 2 Batch Coding: Undecodable Case

2.2 Pipeline Coding and Decoding

Pipeline coding scheme aims to reduce the coding delay as well as to further improve the

throughput. Normally, packets are not sent from an application all at once. Therefore, in

Pipeline Coding, we relax the limitation of waiting for all data packets of a generation to be

received from the application. Adopting the same notation in section 2.2, the encoding function

is then changed as following:

1
,

m

j i k j
j

e × +
=

= ∑c p (4)

where the new variable m is the number of data packets currently present in the generation

buffer. In other words, upon receiving a new data packet, the source will instantly trigger the

encoding process based on currently received data packets. If all coded packets are delivered

successfully, destinations can construct the following lower triangular matrix without any extra

computation:

 13

(1)
1

1 1(2) (2)
1 2

() () ()
1 2

0 0

.
0

k kk k k
k

e
e e

e e e

⎡ ⎤
⎡ ⎤ ⎡ ⎤⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥=⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

⎢ ⎥⎣ ⎦

c p

c p

"
#

#
%

"

 (5)

The above linear equation can be solved progressively without waiting for generation

completion. For example, upon receiving c1, destinations can decode p1, and so on. Coding

redundancy is applied at the source in order to mitigate losses, in a slight different way from

batch coding. Let r be the coding redundancy, where r≥1. Per each data packet, with a

probability of r r− ⎢ ⎥⎣ ⎦ , r+1 coded packets are generated and sent; with a probability of1 ()r r− − ⎢ ⎥⎣ ⎦ , r

coded packets are generated and sent. In other words, redundancy is uniformly distributed

among every data packet. Also, if network coding is used, relays will all participate in coding,

as explained in [4], in order to produce further redundancy of coded packets.

In the batch coding example (Fig. 1), the delay of data packets is shown in eq. (3), which is

two constant delays plus the time difference between the data packet sent from the source

application and the last innovative packet sent from the source. Following the same notation, ti

denotes the time when the source generates datai and tci denotes the time when the ith coded

packet is sent out. If Pipeline Coding is adopted, in lossless links, the delay of datai will

become tci- ti+ dn+ dc, which is much lower than eq. (3) delay in most cases. Thus, the delay is

greatly reduced.

Fig. 3 presents an example of Pipeline Coding, with generation size, k = 4 and source coding

redundancy, r = 1.25. The re-encoding part is not shown for simplicity. As shown in the figure,

data packets are encoded instantly upon arrival. Similarly, at the destination, coded packets can

 14

be decoded immediately once a new innovative packet arrives. For example, if c1 is delivered

successfully, it is decoded immediately at the destination. This gives us a delay of tc1- t1+ dn+

dc.

In the case of packet losses as shown in the 2nd generation of Fig. 3, the destination will store

un-decodable packets and wait for the next packet with which, hopefully, the previous loss can

be recovered. As soon as a new innovative coded packet arrives and thus Gaussian Elimination

can decode new unknown packets, newly decodable packets will then be delivered to upper

layer. In Fig. 3, after receiving c9 and c10, data7 and data8 will be decoded. Let tc10 denote the

time that c10 is sent. The delay in this case will be tc10 – t7+ dn+ dc for data7 and tc10 – t8+ dn+ dc

for data8. These two data packets will have the same amount of delay as in batch coding

scheme, but data5 and data6 still benefit from Pipeline Coding.

Pipeline coding can partially recovers a subset of the data packets of a generation and deliver

them to the upper layer. This is a significant difference from batch coding, which either delivers

an entire generation to the upper layer, or discards the whole generation. For example, assume

that c10 of Fig. 3 is lost, data packet #7 and #8 will never have a chance to be decoded

regardless of which coding scheme is used. However, without Pipeline Coding, none of the data

packets in 2nd generation can be decoded, while with Pipeline Coding, we can still decode data

packets #5 and #6.

 15

Fig. 3 Pipeline Coding Example

The ability of “partial” generation recovery is important in real time stream applications. It

would not be useful of course in reliable data applications, in which the entire generation must

be received (“all or nothing”).

2.3 Encoding and Decoding Procedure

Fig. 4 shows the encoding procedure of our proposed Pipeline Coding. The coding module is

implemented at the network layer and it does encoding, decoding, and broadcasting. When the

source receives a data packet from the transport layer, it first stores the data in the generation

buffer. Thereafter, based on the coding redundancy, a number of coded packets are generated

and sent out. For each generated coded packet, the source first randomly generates the coding

coefficients. Secondly, it checks the generation buffer. For a missing packet, which has not

arrived yet, the corresponding coefficient is set to zero. Finally, the source encodes the data

packets based on this encoding vector, and sends it to the lower layer. Note that the ‘if’

 16

statement in the while loop is to make sure redundant packets are generated uniformly instead

of always in the end of the generation.

Fig. 5 is the decoding procedure. A destination first examines whether the received coded

packet is innovative or not. An innovative packet will be stored in the generation buffer.

Afterward, the decoding module invokes Gaussian Elimination routines and attempts to decode

data packets. After decoding, newly decoded data packets will be stored into another decoding

buffer and then delivered to the upper layer. Note that in some rare cases, a few packets might

be decoded out-of-order. In order to reduce the impact to TCP, we have a function to avoid out-

of-order data packet delivery. However, this contributes only little to this performance study,

and thus the detail is not shown in the pseudo-code in this dissertation.

Encoding Procedure
Function Handle_Packets_from_Transport(data)
Store data to generation buffer
Coded_Packet_Gen(coding_redundancy)
Function Coded_Packet_Gen(num)
 i := 0
while i < num do
if (num – i < 1 and rand() % 100 > num - i) then
break

Generate Coding Vector
for j := 0 .. generation_size - 1do

 if generation_buffer[j] is NULL then
 coding_vector[j] := 0
Encode packet
Send Coded Packet to MAC layer
i := i + 1

Fig. 4 Pipeline Coding－Encoding Procedure

 17

Decoding Procedure
Function Handle_Packets_from_MAC(data)
if (not innovative(data)) then
 Message_Free(data)
 return
store data to generation buffer
Gaussian_Elimination(generation)
if (decodable packets cause no reordering) then
 Deliver_to_Tranport(newly decoded data packets)

Fig. 5 Pipeline Coding－Decoding Procedure

2.4 Pipeline Coding Analysis

Conventional network coding with batch mode has been analyzed extensively. We present

here preliminary analysis based on probabilistic models that compare batch and pipeline coding.

We assume that the same generation size G is used for both. Moreover, for simplicity, a unit

capacity point-to-point lossy link is considered. In batch coding, the sender waits until it

collects G packets and transmits G×R encoded packets, where R ≥ 1 is the redundancy ratio, and

G is the generation size. In pipeline coding, upon arrival of every new application packet, a

coded packet is generated using all the packets belonging to the same generation that are

“currently” in the buffer. When a link loss occurs, the packet is dropped with random,

independent probability p. In batch coding, a packet received at the destination is “helpful” with

high probability. This has been proven in [38], and for the sake of completeness, we include the

result in Lemma 1.

Lemma 1: Suppose node v transmits a coded packet to node u. Let Su
- and Sv

- denote the

subspaces spanned by the code-vectors with u and v respectively at the beginning. Let Su
+

 18

denote the subspaces spanned by the code-vectors by u after receiving a coded packet from v.

Then, Pr(Su
+ > Su

- | Sv
- Su

-) = 1 – 1/q, where q is the size of the field.

A newly received packet is helpful if its code vector is linearly independent from previous

received packets’ code vectors. Thus, when a coded packet is transmitted over the channel the

probability of receiving a helpful packet is (1 – p) * (1 – 1/q). In order to be able to decode and

recover the original data when using batch network coding, one must collect more than G or

more packets with independent code vectors out of a total of G * R transmitted packets. We

calculate the probability for a destination to receive greater than or equal to G packets out of G

* R packets with independent code vectors as follows:

 ()(, , ,) (1)
G R

G R k k
batch

k G

G R
P G R p q r r

k

×
× −

=

×⎛ ⎞
= −⎜ ⎟

⎝ ⎠
∑ , (6)

where r = (1 - p) * (1 - 1/q), which is the probability of successfully (i.e., without error)

receiving a helpful packet. In short, the probability is F(G * R-G; G * R, r) where F(k; n, p) is

the cumulative distribution function of the binomial distribution K ~ B(n, p). Then the expected

throughput of the batch network coding is 1/R * F(G * R - G; G * R, r) assuming that the link

capacity is 1. 1/R is the reduction factor due to the redundancy implemented in the batch

network coding.

In the pipeline coding, if a destination receives greater than or equal to G packets out of G

* R transmitted packets, the destination can decode and recover the original data, similar to the

batch coding case. Moreover in pipeline coding one can decode even if less than G packets are

received due to the “partial decodability” property. For example, if a receiver receives only the

first two encoded packets then it can decode and recover the first two original data packets,

 19

which is not possible in batch coding. Considering this property, the throughput of pipeline

coding can be expressed as:

 (, , ,) (, , ,) (, ,)pipeline batch partial decodeP G R p q P G R p q P G R p−= + . (7)

The second term reflects the throughput increase due to partial decodability, which can be

obtained by enumerating all combinations that the destination receives only some of the first G

packets. Fig. 6 below shows an example of such an enumeration with G = 4, where the

superscript of a state denotes the next packet to be transferred and the subscript denotes the

packets received successfully. With this state transition diagram, the partial decoding

probability is then approximated as follows:

1

(, ,) (1) ,
S

G R kkk
partial decode

k

SP G R p p p
G

× −⎡ ⎤⎢ ⎥
−

=

≈ −∑ (8)

where S is the total number of the terminal states and Sk is the number of decaodable packets for

a particular terminal states. Since there is no closed form to derive Sk, we approximate the

partial decoding probability state by state. However, such a partial decoding probability is

always greater than zero in most cases, so the throughput in pipeline coding is always higher

than in batch coding.

 20

Fig. 6 Enumeration of Received Pipeline Coded Packets

To validate the accuracy of the above first-order analysis, we ran a number of testbed

experiments with our Pipeline Coding router using a 2-hop, 4-laptop braid topology as shown in

Fig. 7. In the testbed experiments, the server sends a sequence of streaming packets over UDP

and the client collects the packet delivery ratio (PDR) at the application level, which is

equivalent to the decoding probability. We use a generation size of 8 packets and a fixed

redundancy of 1.25. Fig. 8 below presents the PDR measurements collected from testbed

experiments and the predicted PDR using the above model. We find that both the model and the

testbed measurements show the PDR of batch coding drops faster than that of Pipeline Coding

as the random error rate increases. The model, however, tends to be more optimistic since it

does not take into account collisions and channel access details, which could lead to higher loss

rates than the one we manually introduced to the experiments.

Fig. 7 Pipeline Coding Analysis Validation

 21

Fig. 8 Pipeline Coding Analysis Validation (G = 8, R = 1.25)

The above analysis shows the first-order behavior of the pipeline coding scheme, where the

additional partially decoded generation helps outperform batch coding scheme at all times. As

we mentioned earlier, we propose to study multiple options to inject redundant packets such as

postfix or interleaved. We also did some preliminary simulation to evaluate the performance

gain and the tradeoffs among different pipeline coding strategies. We ran UDP flows over a 4-

node single path topology. The offered load of the CBR application is 4.1Mbps. We injected

random errors on each link and studied the performance gain and robustness of the following

redundancy strategies: (1) broadcast with postfix adaptive NC, (2) broadcast with interleaved

adaptive NC, (3) unicast without NC, (4) unicast with postfix NC, and (5) unicast with postfix

adaptive NC. The “adaptive” here refers to the loss adaptive redundancy control used in Section

3.4. In these settings, standard 802.11g is used with RTS/CTS disabled. When using broadcast,

 22

MAC layer performs no retransmissions; when using unicast, MAC layer retransmits a frame

up to seven times when a MAC ACK times out.

Fig. 9(a) shows the goodput vs. link error results. We first found that among all cases,

postfix with broadcast performs the best, since it provides the ability to partially decode

generations and include all data packets in the redundant coded packets, which matches our

analytical result. The interleaved with broadcast case performs slightly worse, but it is still

better than the unicast without NC case, which relies solely on the MAC reliability. We also

found that when using postfix coding scheme, enabling MAC layer retransmission (unicast) is

harmful. This is because using unicast converts the postfix redundancy back to the interleaved

mode and further, all the “interleaved” redundant packets generated by the MAC layer are

identical, which reduces the probability of delivering linearly independent packets.

Fig. 9(b) shows the end-to-end delay vs. link error results, which indicate a clear

robustness vs. delay tradeoff. We found that although broadcast with postfix is the most robust

to link errors, when under 20% link error rates, it achieves one magnitude higher end-to-end

delay than all other schemes. This is because even if it provides a higher probability of partially

decoding a generation, when losses are high, the destination has to wait for redundant packets to

arrive, which reduces the delay improvement provided by pipelining packets. This preliminary

study inspires us in designing an adaptive coding scheme that when under low error rates,

unicast or broadcast with interleaved redundancy is chosen to maximize the goodput while

maintaining low delay; when under extreme losses, it switches to broadcast postfix NC to

provide robustness with relatively lower delay.

 23

(a) Goodput vs. Link Error

(b) End-to-End Delay vs. Link Error

Fig. 9 Simulation Results of Different Redundancy Strategies

 24

2.5 Simulation Results

The simulation topologies under study are the single path string topology shown in Fig. 10

and the multipath braided topology shown in Fig. 11. Nodes on both topologies are placed on

grids, with grid edge =150m. For each topology, we use a single traffic flow from a single

source to a single destination. The generated traffic is CBR/UDP traffic. Note that since the

proposed coding scheme exploits a pure-broadcasting channel access protocol,

multicast/broadcast can also be supported. Namely, all nodes in the network can hear the coded

packets and thus can decode the stream if they are multicasting clients.

For the channel access protocol, standard 802.11b (CSMA/CA) is used in “single path

without coding” scenario. For all the remaining cases, a pure-broadcasting scheme is used.

Pure-broadcasting means all packets are sent in standard 802.11b broadcast mode. The reason

why we do not adopt the pseudo-broadcasting approach proposed in [7] is that such design is

not supported by all hardware [19]. However, since RTS/CTS will not be used in broadcast

mode, we exploit the idea from [10], in which a small amount of random delay is added before

delivering the packets to MAC layer. This short random delay effectively avoids phasing,

namely the situation where all nodes receive an innovative packet, finish re-encoding, and

attempt to send it out at the same instant.

The following subsections will discuss the simulation results of UDP. Further details of the

simulation configuration are given in table 2.

 25

Fig. 10 String Topology

Fig. 11 Braided Topology

Table 2 Pipeline Coding Simulation Configuration

Parameter Value
Grid Distance 150 m

Channel Bit-rate 11 Mbps

Channel Access
Control

802.11b +RTS/CTS for string topology , no
coding;

802.11b broadcast mode, for all other cases.
Transport and

Application Layer CBR/UDP (820Kbps)

Per Link Loss
Rate 0%~60%

Packet Size 1500Bytes
Generation Size 8 Packets

A CBR application of 820Kbps sending rate is configured at the source in our simulation

study. 820Kbps is below the saturation throughput of the 3-hop wireless network, thus it leaves

 26

room for redundant packets. Topologies and coding schemes tested using CBR/UDP traffic are

summarized in table 3.

Note that the coding redundancy is chosen to be 2.5 based on a previous simulation study,

which shows that a redundancy level of 2.5 is about the right level to compensate losses without

congesting the network.

Table 3 Pipeline Coding CBR/UDP Simulation Configuration

Traffic
Type Topology Coding Scheme Coding

Redundancy
No coding (Unicast) No Coding

String No Coding
(Broadcast) No Coding

Batch Network
Coding 2.5

CBR/
UDP

Braided Pipeline Network
Coding 2.5

The throughput-to-loss plot is demonstrated in Fig. 12(a). The single path without coding

case is included as the base case. As shown in Fig. 12(a), generally, as the loss rate increases,

all throughput curves drop. Also, all braided cases significantly outperform the string without

coding. Pipeline network coding performs the best regardless of the link loss rate. The

throughput of pipeline network coding shows no degradation for loss rate under 35%. Multipath

without coding achieves 2nd highest throughput, which is slightly better than multipath with

batch network coding case. This fact was also noted in [12]. Based on these simulation results,

we notice that supporting partial decoding of a generation can significantly improve throughput

compared to batch network coding.

 27

Fig. 12(b) presents the delay-to-loss plot for the same set of configurations. As in Fig. 12(a),

the single path no coding case is shown as the baseline case. From Fig. 12(b), we notice that,

multipath without coding has almost the same delay as single path, while Fig. 12(a) shows that

the throughput is greatly improved. Also, pipeline network coding reduces the delay

significantly from batch network coding. In addition, we observe that network coding delay

increases as the loss rate increases.

 (a) Throughput (b) Delay

Fig. 12 UDP Results (braided topology)

 28

CHAPTER 3

ComboCoding for TCP over

Multihop Wireless Networks

We next move onto TCP traffic scenarios and further propose a combined intra/inter-flow

coding approach, which is designed specifically for TCP over wireless multihop networks [24-

25]. The Transport Control Protocol (TCP) is a commonly used reliable transport protocol in

the Internet. In addition to end-to-end reliable transmission, TCP also provides fair congestion

control for better sharing of network resources. Based on how it detects congestion, the control

algorithms in TCP are categorized as loss-based or delay-based congestion control. Among all

TCP variants, the most well-known and most widely-used is TCP-NewReno, which adopts a

loss-based congestion control algorithm. A loss event is inferred by the source upon receiving 3

duplicate acknowledgements (ACK), which are sent by the TCP destination whenever it

receives a DATA packet with non-consecutive sequence number. TCP-NewReno assumes that

packet losses are due to router buffer overflow, which was always true for the wired Internet,

for which TCP-NewReno was originally designed, in which most networks links are point to

point links.

 29

However, the assumption that buffer overflow is the only reason behind packet loss no longer

holds in wireless multihop networks, where a significant amount of loss is due to the

interference and unpredictable wireless links quality. It has been shown that in wireless

multihop scenarios, TCP seriously suffers from reacting to random losses wrongly assuming

that they are congestion indicators. Also, due to broadcast channel sharing in wireless networks,

it is highly likely that a TCP ACKs interfere with its DATA packets causing self-induced

collisions. There are several approaches to address these two issues separately, including other

forms of congestion control, tuning TCP parameters or protocol optimization.

One way to improve loss-based congestion control in wireless networks is to deploy Loss

Discrimination Algorithms (LDA) [26-29]. Another way is to optimize TCP parameters. K. Su

et al. pointed out that TCP congestion window is a key to improve TCP performance in wireless

networks [30]. In [31], J. Li et al. went further showing that controlling the maximum

congestion window size as the most effect. Yet another optimization is to reduce the

interference between ACKs and DATA packets by reducing the ACK frequency [32].

Intelligently controlling the so-called “Delayed Acks” can reduce ACK packets in the network,

thus reducing the inter-flow interference level.

As mentioned previously, considerable previous work has attempted to exploit network

coding to help TCP in wireless scenarios. However, none of them takes into account both

problems of lossy networks and self-interference. We present a hybrid network coding scheme

that consists of intra- and inter- flow coding schemes to provide an efficient and robust coding

scheme. The proposed coding scheme, ComboCoding, is compatible and transparent to existing

TCP variants.

 30

In ComboCoding, the intra-flow coding is employed to provide low-cost robust

communication over disruptive environments and the inter-flow coding is used to alleviate the

interference of the TCP DATA and ACK flows. For intra-flow coding we use Pipeline Coding,

because to the best of our knowledge it is the best random linear coding scheme that is

compatible and transparent to TCP. With Pipeline Coding, the total amount of information

transmitted is less than with batch coding. This implicitly suggests that Pipeline Coding

requires a higher forwarding redundancy, which has been confirmed through simulation results.

In the following subsections, the original design of PiggyCode, the inter-flow coding scheme

we adapt, is introduced first in Section 3.1. The ComboCoding protocol is presented in Section

3.2. We next present a first-order analysis on our inter-flow coding scheme. A loss adaptation

algorithm is given in Section 3.4, followed by a brief discussion of the chosen channel access

scheme in Section 3.5. Lastly, ComboCoding and the proposed loss adaptation algorithm are

evaluated through QualNet [33] simulations, in which ComboCoding is implemented as a

“rouging protocol.” The simulation results are shown in Section 3.6.

3.1 Backgroud—PiggyCode

The idea of PiggyCode is similar to COPE [7]. Namely it is an inter-flow coding scheme.

However, it is re-designed specifically here for a special type of bi-directional traffic－TCP [20].

It is known that in wireless multihop scenarios, TCP DATA flow and ACK flow may create

interference with each other, which decreases the throughput. The main goal of PiggyCode is to

improve TCP performance by opportunistically XORing TCP DATA and ACK packets at

intermediate nodes as shown in Fig. 13. Upon receiving a TCP ACK, the intermediate node

 31

checks its MAC layer buffer. If there exists a TCP DATA packet, the MAC layer performs an

XOR of both packets with additional appropriate identification and transmits the PiggyCoded

packet; otherwise, the ACK is sent out without encoding. All packets are buffered before being

sent out. Upon receiving a PiggyCoded packet, both receivers perform another XOR operation

with the buffered packets to decode the original packets.

The advantage of PiggyCode is it requires no TCP modification. However, as the recent

study in [21] points out, the major challenge here is that a PiggyCoded packet is conceptually a

“dual-cast” packet in the link layer, meaning there are two intended receivers that should

receive the packet correctly. Due to the lack of dual-ACK support in 802.11, the authors noticed

a limitation of the PiggyCode throughput gain. In order to improve performance, the authors

propose a MAC layer modification to introduce dual-ACK support so that both intended

receivers will send a MAC-ACK to the PiggyCode sender. It has been shown in their research

that with this special MAC-layer support, PiggyCode can improve TCP throughput by as much

as 100%.

Fig. 13 PiggyCode Example:

DATA+ACK is the bitwise XOR result of DATA and ACK packets.

Dotted line stands for receiving by overhearing.

 32

3.2 Coding Flow Chart

As mentioned previous, ComboCoding consists of two coding schemes, intra-flow coding

and inter-flow coding. We choose Pipeline Coding as our intra-flow coding, which is applied

only to the TCP-DATA flow. A modified version of PiggyCode is chosen as our inter-flow

coding scheme. The major difference between the original PiggyCode and our modified

PiggyCode is the original PiggyCode implementation sits inside MAC layer, but our

implementation manages a separate coding buffer in the network layer to queue up TCP DATA

packets. This modification helps ComboCoding to be transparent to both higher and lower

layers. Throughout this dissertation, we refer PiggyCode in ComboCoding as the modified

PiggyCode that works in the network layer. The original version of PiggyCode is not

considered, implemented nor tested in our simulation.

Fig. 14(a) below shows the coding flow chart at sources. If the packet is from the upper layer,

the source has no chance to XOR anything, and it forwards the packet to the Pipeline Coding

module. This module will generate the desired number of redundant packets and deliver them to

the lower layer. Meanwhile, all generated coded packets are stored in a local limited-capacity

buffer so that they can be later used in decoding PiggyCoded packets. The source module has a

chance to receive a PiggyCoded packet, since PiggyCoded packets by default will carry the

source and destination IP address of the DATA flow. Therefore, the packet might be delivered

to the source, in which case it will be forwarded to the destination handler function instead.

Fig. 14(b) gives the decoding flow chart at destination. If the packet is PiggyCoded, it has to

be decoded from the packet we previously sent and stored in the buffer. If the packet is not

found in the buffer for any reason, the packet will be dropped. After decoding the PiggyCoded

 33

packet, ComboCoding first examines whether the received packet is innovative or not, which is

determined by examining the packet’s coding coefficient vector. If the packet has a linearly

independent coding coefficient vector, then it is linearly independent to all receiving coded

packets in the same generation. ComboCoding will then store and decode the packets and

deliver them to the upper layer.

 (a) at Source (b) at Destination

Fig. 14 Coding Flow Chart at Source and Destination

Fig. 15 shows the coding flow chart for relay nodes, which has the same PiggyCode decoding

and Pipeline Coding innovative checking as the destination. A PiggyCoded packet will be first

decoded and delivered to the Pipeline Coding module. If the received packet is innovative, it

first checks whether PiggyCode is enabled on this node or not. If the node is allowed to perform

 34

PiggyCoding, it first examines whether the packet should be queued for a given time T or not,

which is set by the packet source. In our case, TCP source always marks DATA as queued and

TCP destination always marks ACK as NOT queued. The reason behind this design choice is

that TCP needs feedback to be delivered as soon as possible in order to properly react.

If the packet has to be queued, it will be inserted into the PiggyCode queue, and a timer of the

given buffering time T is scheduled. If the ComboCoding module does not have any ACK to

perform an XOR with the queued DATA, the DATA will proceed to the “Reencode Packet”

decision block once the timer expires.

If the packet should not be queued, it proceeds to look up the PiggyCode queue. If any

DATA is in the queue, it cancels the timer for that DATA packet and performs an XOR to

generate a PiggyCoded packet, which is then sent out.

If a PiggyCoded packet is not generated, the relay proceeds to determine whether the packet

has to be reencoded or not. This reencoding step is designed for the extension of braided path

support, which has been shown to be extremely helpful in mobile wireless networks [12].

However, to perform ComboCoding in a braided path and minimize the information loss per

hop, relays in network coding have to perform re-encoding, which produces a new packet. The

new re-encoded packet will be known only to the node that produced it. As a result, if we allow

both DATA and ACK to be re-encoded at each relay, once the packets are PiggyCoded, only

the two original senders can decode them. This significantly reduces the redundancy and

increase unnecessary overhead. Therefore, ComboCoding does not allow the packet that has not

been queued to be re-encoded. For our purposes, the ACK will never get re-encoded to allow

the DATA a better chance to be decoded, because it is piggybacked on an ACK.

 35

Fig. 15 Coding Flow Chart at Relay

 36

3.3 PiggyCode Performance Analysis

Our inter-flow coding design is different from the original PiggyCode in that we rely on an

additional network layer queue to control XOR opportunities. We next present a first-order

model to analyze the performance gain of our inter-flow coding scheme and provide guidance

on selecting the queue timer value. We first analyze TCP-NewReno throughput in a wireless

multi-hop scenario as shown in Fig. 16 (3-hop string topology). Using the resulting model, we

further model the throughput of PiggyCode under the same configuration. Note that in our

analysis and in the simulations for model validation, we use standard 802.11b with RTS/CTS

disabled and a maximum MAC retransmission of 7 times. The channel bitrate is set to 11Mbps.

Also, we assume there is no random error and majority of the losses are due to collisions. Table

4 below summarizes the notations used in the following analysis.

Fig. 16 3-Hop String Topology

 37

Table 4 Inter-Flow Coding Throughput Model Notation

Variable Definition

RTT Round trip time that measured by TCP.

n Number of hops.

T0 The transmission timeout. Should be somewhere between

3*RTT~10*RTT.

B Throughput in packet/t, where t is a given observation period.

Pdata-link Link loss rate for data flow

Pack-link Link loss rate for ack flow

Pcollision Collision probability.

λ Packet sending probability at each node. At the source, this

should be B/BW, where BW is the MAC layer transmission

speed (bandwidth) in packet/t. The theoretical upper bound of

λshould be BW/3 in a string topology

λeff Effective packet sending probability in the presence of

PiggyCode packet.

E[RTXd] Expected number of transmissions for a data packet.

Pdata Overall path loss rate for data flow.

Pack Overall path loss rate for ack flow.

Ppc Probability of a packet get PiggyCoded.

 38

We first adopt the well-known TCP throughput model proposed by J. Padhye as follows [35]:

2

0

1(, ,)
2 3min(1,3) (1 32)

3 8

data ack
data ack

ack ack

B RTT P P
P PRTT T P P

≈
+ +i

. (9)

In eq. (9), we assume the average round trip time, RTT, is measureable from the simulation or

the traffic trace and the RTT variance due to queueing delay is negligible. We also assume T0 is

a measureable value from simulation or the traffic trace and is in the rage of 3*RTT to 10*RTT.

To simplify the model, we assume that TD (triple dup-ack) event, which is the first term of the

dominator, is not a function of Pack. The intuition is that the loss of an ACK will never trigger

dup acks and thus this term should consider only the data loss rate. The last assumption is the

second term of the dominator, the TO (timeout) event, is affected mainly by Pack. This implies

the TO is mainly due to a number of consecutive ack losses, whose probability is much higher

than losing a number of data consecutively. This is especially true in our PiggyCode

implementation since a PiggyCoded packet is sent to the TCP DATA flow direction via unicast

and relies on overhearing on the ACK flow direction.

Data Loss Probability

We next model the overall path data loss probability as follows:

 1 (1)n
data data linkP P −= − − , (10)

where Pdata-link is the data loss probability per each link. As we focus on the first order behavior,

we simplify our model by assuming all links have the same loss probability. Pdata-link can be

further modeled as:

 39

7()data link collisionP P− = , (11)

where Pcollision is the collision probability of every packet. In a string topology, it is:

2 33 3

(1)
2 3collision eff eff effP λ λ λ
⎛ ⎞ ⎛ ⎞

= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, (12)

where effλ is

 (1) (1)
2 2
pc pc

eff pc

P P
Pλ λ λ λ= − + = − , (13)

where Ppc is the probability of a packet get PiggyCoded. The intuition behind eq. (12) is that for

every three consecutive nodes, there is a collision if more than one node transmits at a given

time instant. Eq. (13) represents the fact that PiggyCoded packets indeed carry two packets in

one transmission and thus reduce the number of transmission by half. In theory,λ should be

B
BW

, where BW is the maximum transmission rate in packet per a given time period.

Sinceλ depends on B and B depends on TCP control feedback, in our first order analysis, we

simply select a reasonable constant for λ as the input to our model.

Ack Loss Probability

Similar to the data loss probability, we have the overall path loss probability for ACK flows

as follows:

 1 (1)n
ack ack linkP P −= − − , (14)

 40

where Pack-link is the ack loss probability per each link. To simplify, we again assume all links

have the same loss probability. Pack-link is further modeled as:

[]7(1)() () dE RTX

ack link pc collision pc collisionP P P P P− = − + , (15)

where E[RTXd] is the expected number of transmissions for a data packet, which is:

7 7

1 1

1 1
[] (1) () 7 1 (1) ()i i

d collision collision collision collision
i i

E RTX i P P P P− −

= =

⎛ ⎞ ⎛ ⎞= − + × − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∑ ∑i i i . (16)

Here I assume the maximum number of MAC layer retransmission is 7 times.

Model Validation

Fig. 17 shows the n-Ppc-throughput chart in 3-D. The range of n (number of hops) is 3~10

and the range of Ppc is 0~0.5. Generally speaking, the throughput drops as the number of hops n

increases. Also, for all n, they have a similar curve that the throughput increases first as Ppc

increases but after a certain threshold, the throughput starts dropping. We will next show that

from the simulation measurements, the operation range of Ppc is less than 0.3. Since if Ppc goes

close to 0.3, TCP will be unstable and thus system becomes difficult to model.

 41

Fig. 17 n-Ppc-throughput (throughput in bps)

The next step to to measure Ppc, RTT, and T0 from the simulation in order to validate our

proposed model since those are the input values to our model. The simulations are conducted by

the following configuration. As shown in Fig. 16, the topology is a 4-node (3-hop) string

topology. Each node is 500 meters apart so each of them can hear only its 1-hop neighbors. The

MAC layer uses standard 802.11b unicast mode with RTS/CTS disabled. The MAC-layer

retransmission limit is set to 7 and the transmission rate is 11Mbps. Transport layer runs

standard TCP-NewReno without delayed acknowledgement. The application layer is a generic

FTP, which backlogs TCP by continuously generating packets of 1536 bytes. The simulations

are done by varying the PiggyCode timer to increase the Ppc and measure RTT, T0, resulting in

different throughput.

Fig. 18 shows the Timer-Ppc plot. Ppc is measured by summing up the total number of

PiggyCoded packets sent by the relays divided by the total number of data packets and

 42

acknowledgements sent by TCP server and client. We notice that as we increase PiggyCode

timer, Ppc increases dramatically in the first half. The curve becomes flatter after 31ms, which

might imply the system reaches its limit and thus TCP is unable to transmit fast enough for

more packets to be PiggyCoded.

Fig. 18 Timer-Ppc Plot (Simulation Measurements)

Figures 19 and 20 plot RTT and retransmission timer (T0) for different PiggyCode timer

settings. Note that since Ppc is not linearly to the timer, in order to show figures in a better scale,

all the rest figures use Ppc as the x-axis instead of the timer, which can be converted back to

PiggyCode timer values by cross-checking Fig. 18. We observe that RTT decreases slowly in

the beginning and tends to be unstable in the end. Fig. 20 also reflects the same fact in T0 that

the retransmission timer tends to increase extremely fast in the end, which implies TCP is not in

a normal operation range. From figures 18-20, we notice that a timer of 51ms (equivalent to a

Ppc of 0.25) has already pushed the system to its limit as curves turns unstable.

 43

Fig. 19 Ppc-RTT Plot (Simulation Measurements)

Fig. 20 Ppc-T0 Plot (Simulation Measurements)

 44

Ideally, we should next validate our PiggyCode throughput model by the above values

observed. However, as we omit the channel access scheme details, the λ becomes a term that

can neither be obtained from the simulation nor be obtained by the model. Therefore, we

experimentally pick a constant value of 0.65 for λ , which is within a reasonable range and fits

the best to our model.

Fig. 21 shows the link collision probability validation by using a λ of 0.65. The collision

probability measured from the simulation is obtained by taking the total number of MAC-layer

retransmission divided by the total number of frames sent at all nodes. We observe that the

collision probability measured from the simulation drops faster than the model prediction. Also,

our model always estimates a higher collision probability. The reason why the model has a

higher estimated collision probability is because the measured collision probability considers

only the case that a data frame is sent but no MAC-layer ack is received, i.e., an actually

collision. However, in 802.11b, MAC layer will also perform random backoff when it senses a

busy channel without even sending out the data frame. Since my model considers both cases as

“collisions,” it results in a higher predicted loss probability. Note that the increment after Ppc =

0.25 is because the system is out of its normal operation range.

 45

Fig. 21 Pcollision-Ppc

Putting together all these values collected from simulation measurements, Fig. 22 shows the

throughput measured from simulations and predicted by our PiggyCode throughput model. The

estimation is obtained by feeding the measured Ppc, RTT, and T0 values and then times by the

size of a data packet (1536 bytes). The need of multiplying by the packet size is because in the

original model given in eq. (8), its throughput unit is in number of packets per a given time.

Again, we observe that the model has about 10%~30% error in the operation range. The reason

why the model is always higher than the measured throughput is because we over-estimate the

collision probability and thus the PiggyCoded ACKs have more chances to be retransmitted.

However, if we choose a smallerλ resulting in a lower collision probability, then both the peak

of the throughput and the turning point will be shifted, which results in a less accurate

prediction. A better approach is to further consider the channel access scheme such as binary

exponential backoff and the channel sensing behavior. By modeling the channel access scheme

 46

in more detail, the model should be able to estimate the throughput more accurately.

Nevertheless, our PiggyCode throughput model provides a first order analysis on how to select

a PiggyCode timer. We have shown that there is an optimal value for PiggyCode timer and it is

a function of the topology and network load. Also, we show that in a 3-hop string topology, a

timer value of 5ms to 20ms (Ppc of 0.1 to 0.2) affects only less than 8% of the throughput. In

other words, the operation range of PiggyCode timer is relatively broad and needless to be fine-

tuned case by case.

Fig. 22 Throughput-Ppc

3.4 Loss Adaptation Algorithm

Since the link quality in wireless networks varies significantly over time, we propose a

feedback-based loss adaptation algorithm to dynamically control the coding and forwarding

 47

redundancy. In wireless multihop communication, the redundancy should ideally be set to 1/(1-

p), where p is the link loss probability. Therefore, it is crucial to estimate the loss rate for each

link in order to adaptively adjust the redundancy. In our experiment, we found that the TCP

ACK flow must use the same redundancy as the TCP DATA flow due to the use of symmetric

links. Therefore, the following algorithm estimates only the loss rate on TCP DATA flow. Note

that the algorithm is specifically for a single path (string) topology.

To estimate per link loss rate, we first add a field in the header of each coded packet to track

the number of coded packets received in the corresponding generation at node i, which is

denoted by Ni. This Ni will be carried in the TCP ACKs, in addition to the reencoded TCP

DATA packets. Nodes receive reencoded TCP DATA packets by overhearing neighbor nodes,

and receive TCP ACKs through unicasting. Assuming node i+1 is the nexthop of node i in the

TCP DATA flow, the instantaneous link loss rate from node i to node i+1 is estimated as

follows:

0 1 ,i i
i

i

M NP
M

+−
= (17)

where Mi is the number of reencoded packets sent from node i to node i+1, which is recorded

locally at node i.

Since the loss rate may vary significantly over time, a smoothed loss rate is calculated by

taking the exponential moving average of the instantaneous link loss rate as follows:

()0 ,i i i iP P P Pα′ = + × − (18)

 48

where α is the smoothing factor, which is set to 1/6 in our simulation. The redundancy for the

link from node i to node i+1 is thus estimated as follows,

1(1) ,
1

i i

i

R K
P

= − +
′−

(19)

where Ki is the base redundancy that is need at node i in the absence of losses. Ki is used to

introduce extra redundancy to recover packets that have been lost and to compensate future

potential packet losses. In our simulation, Ki is set to 1.4.

3.5 Channel Access Scheme

The choice of channel access scheme is always a crucial issue that affects wireless network

behavior under any conditions. Since ComboCoding is designed specifically for delivering TCP

traffic, it is important to have lower layer reliability support to reduce losses due to MAC layer

collisions. Consequently, Pseudo-Broadcast was chosen in our implementation. In other words,

nodes unicast a coded packet to an intended receiver, and all nodes are set in promiscuous

mode. PseudoBrodcast is also a good fit with PiggyCoding. As mentioned previously, the

original PiggyCode is limited by the lack of dual-ACK support in the MAC layer [21]. It is

important to choose the intended receiver such that the lack of dual-ACK has minimal impact

on TCP. Since TCP ACKs are cumulative and DATA is not, all PiggyCoded packets in

ComboCoding are sent destined to the next hop of the DATA flow.

RTS/CTS is also an important issue in configuring a desired channel access scheme. A

previous study in [34] suggested that RTS/CTS is not effective in ad hoc networks, as it

introduces overhead while not entirely helpful in preventing hidden terminals. Similar

 49

observations are found by most of the network coding work in [6-7, 20]. As a result,

ComboCoding disables RTS/CTS, and our simulations confirm that this choice provides better

performance.

3.6 Simulation Results

The proposed ComboCoding scheme was tested on QualNet 4.5 [33], where the module is

implemented at the network layer. We compare ComboCoding with the original PiggyCode [20]

and the unmodified Pipeline Coding. The simulation topology is a string as shown in Fig. 23.

Nodes are 250 meters apart, and the Physical and MAC layer protocols are standard 802.11g,

with RTS/CTS disabled. The channel bit-rate is 54Mbps. To exploit the MAC layer reliability,

nodes communicate using pseudo-broadcast as in [7]. The transport layer protocol is TCP-

NewReno and the application traffic is a Generic-FTP, which continuously generates packets of

1500 bytes and keeps TCP backlogged. The generation size of the random linear coding (intra-

flow coding) module is set to 16 packets. The inter-flow coding timer is set to 4ms, i.e., TCP

DATA packets will be buffered in the inter-flow coding module for up to 4ms. In all simulation

sets, variable link loss rates of up to 50% are introduced in order to simulate a challenged

environment subject to random interference and jamming. Note that we assume routing is a

given input to our problem and thus all simulations are based on single-path topologies with

variable hops and different number of flows in the network. Table 5 summarizes the

configuration of the simulation described above.

 50

Fig. 23 Simulation Topology

Table 5 ComboCoding Simulation Configuration

Parameter Value
Node Distance 250 m
Channel Bit-

rate
54 Mbps

Channel
Access Control

802.11g (CSMA/CA)
RTS/CTS Disabled

Transport and
Application

Layer
Generic FTP/TCP-NewReno

Per Link
Packet Loss

Rate
0%~50%

Packet Size 1500 Bytes
Generation

Size
16 Packets

3.6.1 ComboCoding Overall Comparison

We first evaluate the performance gain of ComboCoding. In this set of simulations we

assume RTS/CTS is disabled, and an optimal PiggyCode timer of 4ms is used for the cases that

PiggyCode is enabled. Both Pipeline Coding and ComboCoding use a generation size of 16

packets in random linear coding. The dynamic loss adaptation algorithm is turned off in this set

of simulations in order to demonstrate the performance gain of coding without being affected

by other factors.

 51

Fig. 24 presents the throughput-to-loss1 curve of TCP-NewReno without any coding, with

PiggyCode, with Pipeline Coding, and with ComboCoding. In Fig. 24, we notice that in the

absence of random losses, PiggyCode outperforms all other schemes as it reduces interference

without introducing significant coding overhead. Pipeline coding performs the worst, because in

order to reduce coding delay, it adopts a non-uniform inclusion of original packets into a coded

packet. Specifically, the number of transmission is not equal for each uncoded packet within the

same generation. For example, the first uncoded packet has the highest chance to be included

and transmitted in coded packets but the last uncoded packet has only 1 chance. Due to this

property, Pipeline Coding requires a relatively higher redundancy as discussed in the original

paper [17], where it was shown that a coding redundancy of 2.5 was needed. A higher

redundancy implicitly means more interference and thus in low loss rate cases it does not

perform any better than non-coded TCP-NewReno. This anomaly can be addressed by a

modification of Pipeline coding to eliminate the non-uniform inclusion of original packets,

which is a problem that we are working on and will report on in future papers.

However, under low random loss rates, ComboCoding still achieves the same amount of

throughput in the sense that the coding overhead and the number of redundant packets it sends

is compensated for by PiggyCode. Because of PiggyCode, in the low loss rate cases where

Pipeline Coding performs worst, ComboCoding does not suffer from the same redundancy it

needed by using Pipeline Coding. It will be shown later in the overhead evaluation that

1 We measure throughput in the application layer, so all the graphs are actually showing TCP GOODPUT rather than

throughput.

 52

PiggyCode significantly reduces the transmission overhead introduced by Pipeline Coding,

which is the major reason for the improvement in the case of low random error rate.

As the packet error rate increases, the performance of TCP-NewReno with no coding help

deteriorates, particularly after the loss rate goes beyond 30%. This is because without redundant

packet transmission, TCP throughput is inversely proportional to the square root of the packet

loss rate as shown in [35]. With the use of redundant packets, both Pipeline Coding and

ComboCoding are more robust to losses. Most importantly, ComboCoding is greatly helped by

PiggyCode, and the throughput is consistently higher than Pipeline Coding by 10%~100%.

Note that both Pipeline Coding and ComboCoding are configured with the optimal coding

redundancy that is experimentally discovered in a reasonable parameter space. Theoretically,

the coding redundancy is a function of packet loss. Previous work in [6], ETX [36] is used to

estimate how many packets have to be sent in order to make 1 successful delivery. However,

since packets in Pipeline Coding do not have equal chances to be transmitted as explained

previously, it needs a relatively higher coding redundancy [17]. This reflects in the transmission

overhead that will be discussed later.

 53

Fig. 24 Throughput-to-Loss

We next evaluate the delay performance as shown in Fig. 25. We observe that the delay for

all cases is a function of loss rate, where a higher loss rate results in a higher delay. The

intuition behind this is the more packets get lost, the more time it takes to deliver a packet to the

destination. We also notice that for all cases, once the throughput drops to almost zero, the

delay increases dramatically. Since ComboCoding still has about 400Kbps under 50% packet

loss rate, the delay of ComboCoding never increases beyond 2 seconds and is consistently

lower than the others.

 54

Fig. 25 Delay-to-Loss

As network coding relies on redundant packet transmission to compensate for packet losses,

it is important to evaluate the transmission overhead of ComboCoding. The transmission

overhead is designed to take into account the impact of reducing interference with PiggyCode

packets, so we define the term “transmission overhead” as:

1 ,
i

N

tx
i

S

D
=
∑

 (20)

where N is the total number of nodes, D is the total number of DATA packets received by the

TCP destination, and
itxS is the number of signals physically transmitted by node i. This metric

is based on signals transmitted in the physical layer rather than packets sent in the network

layer, since the reduction of transmitted packets also implies a lower probability to interfere

 55

with other nodes. Consequently, packet collision probability is reduced and thus fewer signals

need to be retransmitted. The value of physical signals transmitted is obtained from the

simulation statistic reported by QualNet. Eq. (20) is the average number of physical

transmissions needed per each successful TCP DATA packet delivery.

As mentioned previously, Pipeline Coding requires a relatively high coding redundancy, and

consequently results in the highest transmission overhead as shown in Fig. 26. In the case of

perfect links, Pipeline Coding still needs 18 transmissions in order to deliver 1 TCP DATA

packet, which explains why it has the worst throughput when no loss is present. In contrast,

PiggyCode has low overhead since it does not introduce any redundant packets, and further

attempts to mix DATA and ACK opportunistically.

Without random loss, TCP-NewReno still needs 15 transmissions for a single DATA packet

delivery, because TCP source and TCP destination are hidden from each other. Potential

collisions significantly increase the average number of transmissions required per successful

packet delivery. The power of PiggyCode is shown in the low loss rate cases, where both

PiggyCode and ComboCoding reduce the number of transmissions by 50%. The overhead of

ComboCoding eventually increases because the best coding redundancy requires more coded

packets to be sent in order to recover more losses. From figures 24 and 26, ComboCoding is

shown to be robust to losses while reducing the redundant packet transmission overhead by up

to 30% when compared to Pipeline Coding.

 56

Fig. 26 Overhead-to-Loss

3.6.2 Loss Adaptation Evaluation

We next evaluate the performance of our loss adaptation algorithm. We compare TCP-

NewReno without coding, PiggyCode, Pipeline Coding with and without loss adaptation, and

ComboCoding with and without loss adaptation in the following loss rate configuration. The

application starts sending packets at time 20 and during time 20~50, the packet error rate for all

links is 0%. As shown in Fig. 27, TCP-NewReno and PiggyCode outperform all other coding

schemes when we have perfect links. Pipeline Coding and ComboCoding perform worse

because of the extra redundancy needed. The two configurations with the loss adaptation

algorithm perform slightly worse than those without, because the algorithm reacts to short-term

loss and thus takes time to lower redundancy.

At time 50~80 seconds, a 40% packet error rate is introduced to every link. During this period,

all cases that do not have the adaptation algorithm drop to almost 0bps throughput, while both

 57

configurations with adaptation still achieve around 1Mbps. Specifically, ComboCoding with loss

adaptation delivers about 20% higher throughput than PipelineCoding with loss adaptation.

At time 80~110 seconds, the per link packet error rate is lowered back to 20%. We notice that

both TCP-NewReno and PiggyCode have the highest instantaneous throughput, but are both

very unstable due to the lack of coding redundancy. In the absence of dynamic coding

redundancy control, both Pipeline Coding and ComboCoding take a longer time to stabilize. This

is because random linear coding needs time to give up undecodable generations resulting from

loss. In contrast, loss adaptation helps both Pipeline Coding and ComboCoding to efficiently

adapt to the loss rate and stabilize. In particular, ComboCoding delivers about 20% higher

throughput than Pipeline Coding.

Fig. 27 Goodput over Time for Loss Adaptation

 58

3.6.3 Multiple-Session Scenarios

In out last set of simulations, more coexisting TCP sessions are introduced to further evaluate

the adaptive ComboCoding performance in complex topologies. Two topologies, as shown in

Fig. 28, are used: X-topology and grid topology. In the X-topology, there are two coexisting

sessions, and in the grid, there are four. All other simulation parameters remain the same. Note

that nodes can hear diagonally so at most five nodes can fall within the same collision domain.

Fig. 29 shows the goodput for different coding options under the 2-flow X-topology.

 (a) X-Topology (b) Grid Topology

Fig. 28 Multi-flow Topology

 59

(a) No Coding and ComboCoding

(b) PiggyCode and Pipeline Coding

Fig. 29 X-Topology Goodput

 60

We notice that without random linear coding, TCP No Coding and TCP PiggyCode both

encounter severe capturing problems. This was expected since TCP is prone to capture as

demonstrated in several previous studies [46]. Also, as expected, the aggregate throughput is

high, i.e., it is the same as the single TCP throughput since only one flow is transmitting at a

time. Unfortunately, this solution is unacceptable, as it may shut off one TCP session for an

indeterminate amount of time. Once the random linear coding is enabled, the two flows start

sharing the bandwidth fairly. The aggregate throughput is slightly lower than for the non-coded

TCP, since now some of the bandwidth is wasted to manage the fair sharing among the flows.

ComboCoding further outperforms Pipeline Coding thanks to the inter-flow coding.

To understand capture, note that due to extreme losses, TCP No Coding and PiggyCode

suffer frequent timeout events and thus are both in the slow start phase all the time. This was

observed from the congestion window time series plot as shown in figures 30 and 31 for TCP No

Coding and ComboCoding respectively. We observe that both two sessions get frequent timeout

events and thus stay mostly in the slow-start stage. Due to exponential window expansion during

slow start, bottleneck buffers tend to be filled up by one of the flows, resulting in capture. In

contrast, TCP over ComboCoding, with the assistance of random linear coding, encounters only

few timeouts. By inspecting the congestion window behavior of ComboCode, we noticed that

these flows stay mostly in the congestion avoidance phase. This leads to more stable flows, and

results in better fairness.

 61

(a) TCP No Coding—Session 1

(a) TCP No Coding—Session 2

Fig. 30 Congestion Window Time Series for TCP No Coding

 62

(a) ComboCoding—Session 1

(a) ComboCoding—Session 2

Fig. 31 Congestion Window Time Series for TCP over ComboCoding

 63

We next extend the topology to a 4-flow grid as shown in Fig 28(b). The results in figures 32

and 33 show the overall goodput of all four flows and the instantaneous Jain’s fairness index

respectively [45]. Consistent with the X-topology, both TCP No Coding and PiggyCode provide

a higher aggregate throughput, but a much poorer fairness among flows. In both non-coding runs,

flows 1 and 2 and flows 3 and 4 capture the channel in turns, as those two flows do not interfere

with each other. For ComboCoding and Pipeline Coding, the overall throughput is lower but the

fairness is almost optimal since losses caused by either interference or link quality are overcome

by coding, so all four flows are transmitting and sharing the bandwidth.

Fig. 32 Grid Topology Aggregate Goodput

 64

Fig. 33 Grid Topology Fairness

(Note that we mark the fairness as 0 if the overall throughput is 0.)

 65

CHAPTER 4

CodeMP: Network Coded Multipath for

TCP Support in Challenged MANETs

In disruptive MANET environments, TCP not only encounters challenges described above,

random errors, unstable links, interference, etc, but also suffers from frequent route breaks due to

mobility. In order to overcome the problem of frequent route breaks and highly unstable links in

disruptive MANETs, multipath routing is inevitable. In [6], S. Chachulski et al. propose a

multipath coded routing scheme, called MORE. Subsequent to MORE, many extensions have

been proposed [39-41] to further improve its performance. Although these studies have shown

the effectiveness of multipath coded routing, most of them rely on explicit control messages

and/or explicit ACKs at the network layer. The dependence on explicit control messages can

lead to excessive overhead in MANET environments where most of the network parameters,

such as number of nodes, network topology, number of flows, buffer length at all nodes, and

buffer occupancy by every flow, are changing at all times. Furthermore, all these approaches do

not claim to be compatible with and transparent to the TCP layer.

In this study, we address the above problems with conventional TCP running on an adaptive

network coded multipath scheme. While totally transparent to TCP, the combination of

 66

conventional TCP over multipath, which we refer to as CodeMP, provides a robust solution for

TCP in disruptive MANET environments by mitigating random losses via intra-flow coding, and

reducing interference through encoding the ACK and DATA packets together. Moreover,

without explicit control messages, CodeMP adjusts coding redundancy and multiple-path

redundancy adaptively to further deal with route breaks and unstable wireless link quality in

MANET scenarios.

The contributions of the proposed adaptive multipath coding scheme are as follows. (1) It

provides a practical and efficient approach to exploit multiple-path redundancy in disruptive

MANETs. (2) It adapts the redundancy to network changes using a heuristic-based link estimate

algorithm. (3) The adaptation algorithm requires no explicit control messages. (4) The design

and implementation are transparent to transport layer protocols such as TCP. (5) The proposed

coding scheme achieves better fairness in the presence of multiple coexisting TCP sessions in

the MANET scenarios.

Note that in order to deploy CodeMP, proper network layer modifications at the wireless

nodes are inevitable as for any network coding implementation. However, modifying the

network layer at the node itself is well accepted and is part of the MANET design [42].

4.1 Related Work on Supporting TCP in MANETs

Recent related work on network coding strategies for lossy wireless networks mainly falls in

two categories: multipath coded routing and single-path coded routing (generally with TCP).

Numerous research studies have shown that Network Coding has helped improve the throughput

or robustness or both. We review the most popular schemes below. Anticipating the conclusions,

 67

we report that no previous study has addressed the problem of TCP performance in lossy, mobile

MANETs using multiple paths (for redundancy) and no previous study has evaluated fairness

among competing flows.

Multipath Coded Routing
J.-S. Park et al. proposed and implemented CodeCast, one of the first Network Coding

schemes designed for a disruptive, ODMRP-mesh based, multicast environment [10]. CodeCast

was successfully demonstrated in lossy environments particularly for multicast streaming

applications. S. Oh et al. later extended CodeCast to unicast UDP traffic [12], where relays can

dynamically switch between random linear coding or plain multipath routing based on network

loss conditions. CodeCast and its successor work [12], however, assume fixed redundancy and

are thus not very suitable for disruptive MANET environments.

MORE, proposed by S. Chachulski et al., like CodeCast, uses multipath coded routing. It

adapts coding redundancy to changing link loss rates [6]. In MORE, relays opportunistically

form multiple paths on which packets are re-encoded and forwarded. Based on ETX, relays

adaptively adjust their redundancy. Relays also rely on explicit network layer ACKs to

determine when a generation is completed so that a new generation can be started. As a result of

this “stop-and-wait” design, MORE induces potentially high delay and delay jitter that is not

suitable for some TCP applications. Also, MORE uses explicit control messages that tend to

cause excessive overhead in disruptive MANETs. In [40], Y. Lin et al. point out that the design

of MORE does not fully utilize the available capacity. They introduce an enhanced, window-

based flow control algorithm, CodeOR. CodeOR improves the performance of MORE, but it is

still not designed for MANETs and still suffers from a significant amount of explicit control

message overhead.

 68

Along a similar path, but with a more theoretical emphasis, X. Zhang et al. propose an

extension of MORE called Dice [41]. Dice considers the sharing of network resources among

two or more UDP sessions, and using a game theory framework, optimizes resource allocation

for better efficiency-fairness tradeoffs. The environment is static and loss free and thus the

scheme is hardly applicable to MANET scenarios. Another MORE variant is later proposed by

the same group in [39]. Different mathematical optimization techniques are used to address the

resource sharing problem, this time with random errors. Both work in [39] and [41] provide a

good theoretical study of MORE properties using optimization-based approaches. The schemes,

however, offer little insight into routing and flow control in a constantly changing MANET. In

addition, as in MORE, the dependence on explicit control messages remains a major problem.

In the family of network coding solutions, one must also mention the inter-flow coding

solutions, like COPE [7], which have the goal of opportunistically saving spectrum in multi-flow

scenarios, generally trading bandwidth for robustness. These schemes do not claim to be suitable

for disruptive MANET operations.

Single-Path Coded TCP
While the above multipath proposals address mainly robust unicast and multicast applications

without TCP, there have been several single path proposals that are directly targeting TCP. The

reason for preferring single paths for TCP is quite obvious—the avoidance of out-of-order

packets due to multiple paths. Yet, the single path configuration renders TCP performance

precarious in presence of mobility and high errors. In [11], J. K. Sundararajan et al. propose one

of the pioneer schemes for single-path coded TCP over lossy links. They show that random

linear coding improves TCP performance in lossy scenarios after clever modifications to TCP

acknowledgement semantics are made. The work in [11] assumes a fixed Network Coding

 69

redundancy. H. Seferoglu et al. extend the above work in I2NC, where, using Network Utility

Maximization (NUM) techniques, the network coded TCP protocol design is formulated as an

optimization problem [43]. I2NC also employs inter-flow coding, in addition to intra-flow

coding, to mitigate interference. Nevertheless, since I2NC is based on NUM framework, it has

the inherent limitation of requiring the fine tuning of several parameters, such as number of

nodes, network topology, number of flows, buffer size at all nodes and buffer occupancy by

every flow. As a consequence, re-optimization must be triggered whenever a parameter changes

value. Similar to the approach presented in [43], we propose a practical network coding design,

ComboCoding, which uses both intra- and inter-flow coding and adapts the redundancy to the

estimated loss rates. As described in chapter 3, ComboCoding further eliminates all explicit

control messages and relies completely on overhearing. As we shall see, this combination

strengthens the protocol and improves its fairness in multi-flow disruptive scenarios.

Most of the above single-path coded TCP studies, however, assume static scenarios with a

pre-determined single-path route from the TCP source to the TCP destination. This is totally

impractical in MANET environments. Besides, although each of the above schemes supports

multiple concurrent sessions and works in lossy wireless networks, none has been tested in a

disruptive MANET where mobility and time-varying jamming and random errors are the norm.

Given these premises, it appears that no study has addressed the situation where TCP must run

on a multiple paths (for redundancy); moreover no study has reported on the ability for two or

more TCP flows to share resources fairly in a multipath, network coded scenario. In this study,

we approach this problem leveraging our prior experience with TCP on single path. Our aim is

 70

to leverage single-path coded TCP and the multipath coded routing results to design a practical

scheme for TCP traffic in disruptive MANETs.

4.2 CodeMP Design and Implementation

CodeMP consists of three main elements: random linear coding (RLC) with adaptive

redundancy, adaptive multipath routing, and ACK Piggy coding. The first two components

interact closely with each other to provide efficient and reliable communications. We chose

Pipeline Coding as presented in chapter 2 as the RLC scheme for CodeMP. The ACK Piggy

coding is used to mitigate TCP DATA-ACK interference.

4.2.1 Adaptive Redundancy Control and Multipath Routing

The redundancy and multipath adaptation algorithm consists of four parts: slice assignment,

forwarding control, cross-slice loss estimates, and intra-slice redundancy distribution. The main

idea of our adaptive control algorithm is to first group together the nodes within the same

distance from the flow source. In our design, such a group is called a “virtual slice” or a “slice.”

We use the number of hops from the flow source as our distance metric. Once nodes assign

themselves a slice number, they then start learning and estimating the network conditions and

adjust the redundancy accordingly. If a node notices that it delivers only a few packets to the

adjacent downstream slice or it is not within a reasonable distance to the destination, the node

suppresses all of its packet forwarding until the network conditions change. Note that all the

control and adaptation are done per “flow,” so each flow will form their own multipath

forwarding set with different redundancy at each node. In our design, TCP DATA flow and

ACK flow within the same session are treated as two separate flows.

 71

Slice Assignment and Forwarding Control
To determine the number of hops a node is away from the flow source, an extra 1-byte field

called “hop-count” is added to our coded packet header. It is initialized to zero by the flow

source and incremented at each relay. Note that all these procedures are applied only to

“innovative packets,” to avoid loops. Fig. 34 below presents an example of a snapshot of a sliced

network topology.

Fig. 34 Slice Example

Since topology changes dynamically, each relay maintains a “hop-count” window of 10

samples for each flow. Every time the sampling window is filled, a relay resets its hop-count to

the minimum number of hop-count number in the current sampling window. A similar approach

is also used so that relays could learn the current shortest path length from the flow source to

flow destination. Based on the hop-count and the shortest path length, a relay could determine

itself a non-helpful node and suppress all of its forwarding until it is within a reasonable range to

the flow destination.

Cross-Slice Loss and Redundancy Estimate
Based on the above slice assignment algorithm, relays then actively estimate the loss rate

between their own slice (slicei) and the adjacent downstream slice (slicei+1), where the

superscript i denotes the hop-count calculated as previously described. Each relay j annotates in

 72

the packet header the total number of packets it has sent in the current generation, which is

denoted by jS . The relays in the downstream slice then stamp in the header i
sentN , which is the

sum of all jS . Also, another field, 1i
recvN + , is added to the header to denote the total number of

packets a particular node in slicei+1 has received. Both i
sentN and 1i

recvN + will be overheard by

adjacent upstream relays. These additional counters are all of two bytes length and thus to avoid

overflow, they are reset when every new generation arrives. Fig. 35 below shows an example of

the above procedure where node 1, 2, and 3 are the upstream nodes in slicei and we assume only

one downstream node in slicei+1 for simplification.

Fig. 35 Piggybacked Counters

 Based on the overheard counters i
sentN and 1i

recvN + from downstream nodes, a relay in the

slicei then computes an instantaneous loss rate from slicei to slicei+1 as follows:

11 /i i

si recv sentP N N+= − . (21)

The relay then takes an average for every ten Psi samples, which is denoted by siP . Since the

loss rate may vary significantly over time, a smoothed loss rate is then calculated by taking the

exponential moving average of the instantaneous link loss rate as follows:

 73

 m m m() ,si si si siP P P Pα′ = + × − (22)

where α is a proper smoothing factor (set to 1/6 in our simulation experiments). The cross-slice

redundancy from slicei to slicei+1 is then set as follows:

m

1 ,
1

i

si

R K
P

= +
′−

 (23)

where K is the base redundancy (set to 0.8 in our experiments). The value 0.8 is chosen based on

our simulation studies in which it introduces the minimum additional redundancy to avoid under-

estimate.

Intra-Slice Redundancy Distribution
The redundancy distribution algorithm is based on the heuristic that if a relay learns that its

neighboring nodes are making good progress, it should reduce its share to avoid overstressing

the network.

The procedure works as follows. Upon receiving an innovative packet from upstream node

X, a relay will initiate a re-encoding event. Namely, it creates a number of new re-encoded

packets that include the ID = X in the header. When relays in the upstream slice overhear this

packet, they increment the count of the trigger node. Upon a new generation arrival, based on the

track of triggering nodes in the previous generation, a relay j then calculates the percentage of

packets that are triggered by the relay itself or an unknown node, which is denoted by j
inshare .

Note that we use an aggressive approach here to consider all re-encoding events triggered by

unknown nodes as if triggered by the relay itself. This is because overhearing has a high loss rate

in MANETs and in case a relay misses piggybacked feedback, it has to assume no other nodes

will compensate for such a loss.

 74

Fig. 36 below shows an example of the above j
inshare calculation procedure, where we

assume generation size is 4 and there is a redundant packet generated when DoF = 3. In this

example, the downstream node informs all upstream nodes that DoF 1 to 3 are all triggered by

node 2 and only DoF = 4 is triggered by node 3. Therefore, nodes 1, 2, and 3 set their j
inshare to 0,

3/4, and 1/4 accordingly. Assuming node 1 loses the feedback information for DoF = 1 and

receives only the others, node 1 will then consider it is the triggering node of DoF = 1 and then

set its j
inshare to 1/4 instead.

Fig. 36 j
inshare Example

Based on the estimated j
inshare , a local redundancy for node j in slice i is then updated as:

j j

i i inR R share= × . (24)

Again, the local redundancy is per flow, which means relay j now uses redundancy j
iR only for

the corresponding flow. With this estimate, if a node learns that all of the triggers are by some

other neighbors, it will effectively suppress itself in the next generation.

Impact of Inaccurate Estimates

 75

As the adaptation is designed for MANET scenarios, inaccurate estimates are inevitable. Our

coding scheme tries to avoid under-estimation of loss rates and relies on TCP to recover from

over-estimates. In the current design, the base redundancy K and the aggressive estimate of

redundancy share introduce extra redundancy to protect against under-estimate. Over-estimates

lead to congestion and more losses, not recoverable by RLC. This triggers the TCP congestion

control mechanism, which in turn reduces the sending window. As the TCP sending rate slows

down, the contention is alleviated and thus the redundancy falls back to the affordable range. In

addition, our adaptation treats congestion/collision losses and random errors identically. Thus,

flows might all encounter more losses when congestion happens, which eventually exceeds the

working range of redundancy and triggers TCP congestion window reduction, similar to over-

estimates. It is possible to further shorten this feedback cycle by introducing loss discrimination

algorithms to CodeMP.

4.2.2 Ack Piggy Coding

To alleviate TCP DATA-ACK self-interference, we adopt a network layer XOR-based coding

that is extended from our previous ComboCoding design. The idea of such an XOR-based inter-

flow coding is similar to COPE [7], but with modifications to address special types of bi-

directional flows－TCP DATA and ACKs.

Similar to ComboCoding, the Ack Piggy coding module employs an inter-flow coding buffer

at the network layer. All TCP DATA packets will be buffered in the coding module at each relay

for a given Piggy coding timer T. If an ACK arrives before timeout, the DATA will be XOR’ed

with the ACK and the inter-flow coded packet will be broadcasted. If no ACK arrives in T, the

DATA will be re-encoded based on the algorithm given in the previous section and sent to the

 76

next-hop via broadcast. If DATA and ACK packets are not of the same length, padding zeros are

appended to the shorter packet.

In addition to our previous design, there are still changes needed to accommodate multipath

scenarios. In the single path scenario, it has been shown by L. Scalia et al. that XORing DATA

and ACK within a TCP session guarantees decodability [20]. Even if the DATA flow is intra-

flow random linear coded (RLC), on single path, this decodability property still holds. However,

in multi-path routing, decodability is no longer guaranteed since only those nodes that have

overheard the corresponding RLC coded packets can decode the XOR packet. As a result, if a

packet is first RLC coded and then XOR coded with another RLC coded packet, the multipath

redundancy is reduced.

Due to this reason, in our multipath coding scheme, all ACK flows are not RLC coded (i.e.,

generation size of ACK flows will be set to one). With this modification, the decodability of

(RLC coded) DATA packets will be higher since all nodes that have heard the ACK can decode

the XOR packet. Nevertheless, since XOR mixing of DATA and ACK precludes intra-flow RLC

mixing, and since the latter mixing is the one that provides redundancy, ACK piggybacking

leads to some reduction in multipath redundancy and thus impacts robustness.

Fig. 37 below shows an example of the ACK Piggy coding implementation. In this example,

we assume A1 has been heard and buffered at nodes 5, 6, and 7. At time t1, node 2 first sends a

DATA packet C1, and then at time t2, node 6 sends ACK A1. At time t3 Node 4 then XOR C1

and A1 and broadcasts the XOR packet. At time t4, node 2 can decode C1♁A1 and continue

propagating A1. At the same time instant t4, assume nodes 1 and 3 cannot hear node 2 but receive

C1♁A1. They will not be able to decode and must discard the XOR packet. On the other hand,

 77

since ACKs are sent uncoded, it is practical to assume nodes 5 and 7 could receive A1 from

either node 6 or any other relays. Therefore, it is highly likely that nodes 5, 6, and 7 are able to

decode C1♁A1 and continue propagating C1. Also note that in the same example, if node 2 does

not receive C1♁A1 due to any reason (either jamming or even it just moves away), no nodes will

be able to recover A1. This design choice reduces the multipath redundancy to the ACK flows,

which have been found through simulations that it has caused instability to TCP.

Fig. 37 Ack Piggy Coding Example

In the proposed scheme above, we have simplified our system design for this early study of

multipath coding in MANETs. We are aware of a number of design enhancements, which we

discuss briefly here, and which we intend to investigate in future work. First, our current design

XOR an incoming ACK with only the oldest DATA packet in the buffer. It is possible to further

improve the multipath redundancy for ACK flows by allowing ACKs to be XOR’ed with all or

with a number of the buffered DATA packets. For example, in Fig. 37, if by the time node 4

receives A1, it buffers not only C1 from node 2 but also C1’ from node 1 and C1” from node 3,

node 4 can instead generate 3 different XOR’ed packets C1♁A1, C1’♁A1, and C1”♁A1. Such a

modification would allow A1 to be potentially decoded and propagated by nodes 1, 2, and 3.

 78

In addition, our design buffers TCP DATA and waits for TCP ACK, which so far is an

engineering decision since we found this works better in our simulations. It is also possible that

one could buffer TCP ACK and wait for TCP DATA, although it might need additional tuning.

Further, we use a fixed timer of 5 ms in all our simulations. We have found from our

simulations that 5ms is not always the best timer for all cases. More analysis and experiments

are required to fine tune the Piggy ACK strategy.

4.2.3 Impact of Packet Reordering

One of the major challenges for TCP over multiple concurrent paths is to packet reordering.

Simulation shows that in a naïve multipath broadcast scheme without network coding, data

packets frequently arrive out-of-order. Out-of-order deliveries lead to dup-acks, which are

treated as congestion indications and thus cause the sender to unnecessarily reduce its

congestion window. In CodeMP, the out of sequencing due to multiple paths is prevented by

Network Coding. In fact, the NC middleware at the destination reassembles packets within each

generation and delivers them in sequence to the destination. Duplicate ACKs can be created by

multiple paths on their way back to sender. However, ACKs are stamped with the generation

number. If they are recognized by the source to belong to the same generation, they are

dropped. In CodeMP, however, there is a possibility that a new generation arrives before the

proceeding generations are not fully decoded, in which case a duplicate ACK is generated and it

is properly interpreted as a congestion indicator (as it belongs to a new generation). Recall that

the window increases linearly in CodeMP, spanning multiple generations. In case of heavy

congestion, generations fail to be timely assembled. Then, a timeout causes a window

reduction, and so does a triple dup-ACK. Our simulation traces show that dup-ACKs are

 79

extremely rare so that one can say that practically network coding resolves the TCP sequencing

problem over multiple paths. The larger the generation size, the rarer the out-of-ordering but the

higher the coding overhead and the end to end delay. From simulation, we have found

experimentally that a generation size of 8 is the best compromise in most situations.

4.3 Simulation Results

CodeMP was tested on QualNet 4.5. We evaluate our proposed coding scheme in both static

and MANET scenarios. For static topologies, we compare the multipath coding scheme with

non-coded single-path TCP and a single-path TCP with ComboCoding. For MANET scenarios,

we compare the multipath coding scheme with TCP running on a popular MANET routing

protocol, OLSR [44]. In both static and MANET scenarios, we also compare our scheme with a

multipath broadcasting approach, in which all relays forward a received packet once; a “unit

generation size” random linear coding scheme is used to eliminate packets that have been

forwarded by the same relay.

In all simulations, unless otherwise specified, nodes are 150 meters apart, and the Physical

and MAC layer protocols are standard 802.11g, with RTS/CTS disabled, even in the MAC

unicast mode. The channel bit-rate is 54Mbps. In all multipath runs, nodes communicate using

pure-broadcast as we rely on multipath opportunistic forwarding. For baseline single-path

simulations, nodes communicate using pseudo-broadcast as in [7]. The transport layer protocol is

TCP-NewReno and the application traffic is a Generic-FTP, which backlogs the TCP port with

continuously generated 1500-byte packets. The generation size of the random linear coding

(intra-flow coding) module is set to 8 packets in all simulations.

 80

The ACK Piggy coding timer is set to 5ms, i.e., TCP DATA packets will be buffered in the

Ack Piggy coding module for up to 5ms. In all simulation sets, variable link loss rates of up to

40% are introduced in order to simulate a challenged environment subject to random interference

and jamming. Also, unless otherwise noted, all simulations last for 110 seconds and the FTP

application starts at 20 second.

4.3.1 Static Scenarios with Time-Varying Jamming

In the first set of simulations, we perform a series of static topology runs to validate the

effectiveness of the proposed coding scheme and to collect baseline measurements. In this set of

simulations, all single path topology assumes known routes and thus uses pseudo-broadcast; all

multipath (grid) topology assumes no topology knowledge and uses pure-broadcast.

Single-Session Scenarios

We first perform several single TCP session simulations over a 3-hop topology as shown in

Fig. 38. Two configurations are used for the single path topology: no coding and ComboCoding.

Three configurations are used for the multipath (grid) topology: multipath broadcasting,

multipath coding, and multipath coding with ACK Piggy coding. The multipath broadcasting is

done by setting the generation size to 1 with a fixed redundancy of 1.00 at every node.

 81

 (a) Single Path (b) Grid

Fig. 38 Single Session Static Topology

Fig. 39 plots the instantaneous TCP goodput over time. The application starts sending packets

at time 20 seconds, and the packet error rate (PER) for all links is 0%, 40%, and 20% during the

time intervals of 20~50 seconds, 50~80 seconds, and 80~110 seconds respectively.

Table 6 below summarizes the average TCP goodput for each period. The first observation is

that with zero errors, single path without coding performs the best. In a perfect scenario with

given route and no random errors it is well known that coding is ineffective. This fact is

confirmed by Fig. 39 results. CodeMP is designed for mobility and random errors, it cannot

dynamically adapt to perfect link conditions. A future extension of this work will address the

ability to monitor link loss and disable coding, i.e., setting generation size = 1 and redundancy =

0, when the loss estimate drops below a threshold, say 5%.

 82

Fig. 39 Single Session Instantaneous TCP Goodput

Table 6 CodeMP Single Path Average TCP Goodput (Mbps)

Config 0% PER 40% PER 20% PER

1-Path No Coding 3.61 0.02 0.00

1-Path ComboCoding 2.66 0.67 1.51

Multipath NC + Piggy Coding 1.92 1.16 1.56

Multipath NC 1.71 0.87 1.38

Multipath Broadcast over Grid 1.13 0.10 0.31

We next find that as random losses occur, TCP without coding fails to work. Also, single path

TCP + ComboCoding works better than multipath TCP + NC when links have no random errors,

but with 40% random errors, multipath NC outperforms single path ComboCoding since it

exploits multipath redundancy. For multipath runs, we found that multipath NC with ACK Piggy

coding achieves 10% to 30% higher goodput than without Ack Piggy coding. Besides, TCP +

multipath broadcast performs the worst, which is mainly due to the out-of-order data packets.

 83

Fig. 40 shows a typical snapshot of the received TCP data sequence number and the

corresponding timestamp for three selected schemes: 1-path ComboCoding, CodeMP (without

ACK Piggy coding), and multipath broadcast. Note that since each scheme has different progress,

to show threes lines in a single snapshot, we use different offsets Y0 for each of them as noted in

the legend; in other words the real sequence number should be Y + Y0. In Fig. 40, each data point

represents a TCP sequence number received by the TCP destination along with its corresponding

receiving timestamp. If all data packets arrive in order, it should show a monotonically

increasing line. Each drop in Fig. 40 implies an out-of-order data deliver, which will then trigger

a dup-ACK. We find that for both 1-Path ComboCoding and CodeMP, sequence numbers grow

stably over time. In contrast, in multipath broadcast, they often arrive out of order. This is

because the single-path ComboCoding has virtually no chance to create out-of-order packets,

and CodeMP, mitigates reordering by virtue of network coding generations. Although we still

see from our packet trace that CodeMP has out-of-order data packets, it happens rarely and does

not cause noticeable impact. Also note that Fig. 40 omits single-path no coding and CodeMP

with Ack Piggy coding for a cleaner presentation. However, the single-path no coding

demonstrates a similar pattern as single-path ComboCoding. Moreover, both CodeMP with and

without Ack Piggy coding show a similar trend. Hence, we conclude that it is packet reordering

that causes the dramatic goodput degradation of multipath broadcast.

 84

Fig. 40 Received TCP Data Sequence Number over Time

Fig. 41 below shows the normalized transmission overhead for each scheme. The normalized

transmission overhead is defined as:

 1 ,
i

N

tx
i

S

D N
=

×

∑
 (25)

where N is the total number of nodes, D is the total number of DATA packets received by the

TCP destination, and
itxS is the number of MAC frames physically transmitted by node i. The

number of MAC frames transmitted is obtained from the simulation statistics reported by

QualNet. Eq. (25) can be interpreted as the average number of MAC frames needed per node per

successful TCP DATA packet delivery.

We find that the overhead in single path experiments is higher than in multipath ones. This is

because for single path, unicast MAC is used, which produces relatively inefficient link-layer

 85

retransmission. In the multipath cases, broadcast MAC is used. Redundant RLC packets

compensate for losses, causing less overhead than MAC retransmission. We also found that in

this static single session simulation, ACK Piggy coding does not significantly reduce the

overhead since the TCP DATA-ACK self-interference does not present as a major problem in

this simple multipath configuration.

Fig. 41 Single Session Normalized Transmission Overhead

2-Session Scenarios

The next set of experiments reconfigures the topologies to accommodate two TCP sessions as

shown in Fig. 42.

 86

 (a) Single Path (b) Grid

Fig. 42 2-Session Static Topology

Table 7 summarizes the TCP goodput per session for each setting in each loss rate period.

Note that we also consider the simple single-path adaptive NC without Ack Piggy coding in this

run, which is literally ComboCoding with zero Ack Piggy buffer timer. The results show a

similar trend except that the single path ComboCoding works the best. We also notice that Ack

Piggy coding helps more in single path than in multipath.

We focus on two important performance measures of the 2-session experiments: aggregate

throughput and fairness. In terms of aggregate throughput, we note that (for the Piggy ACK

versions—both single- and multi-path) the aggregate throughput in the 2-session case is only

marginally lower (by at most 10%) than the single session case. Moreover, the two sessions

share the resources fairly. In contrast, the no coding versions exhibit extreme unfairness,

especially for 20% loss rate, where complete capture by one flow is observed. This brings up

another important benefit of Network Coding especially when combined with Piggy ACKs,

namely the ability to maintain fair sharing among TCP sessions, even in extreme loss situations.

 87

Table 7 CodeMP 2-Session Average TCP Goodput (Kbps)

Config 0% PER 40% PER 20% PER

1087.90 65.12 0.00
1-Path No Coding

2113.12 63.08 159.74

749.57 226.10 473.91
1-Path NC

756.53 324.40 504.22

1196.03 283.85 736.05
1-Path ComboCoding

1375.03 410.42 661.50

1163.67 553.37 864.26
Multipath NC

647.58 537.40 660.28

932.25 371.92 780.70
Multipath NC + Piggy Coding

883.92 577.13 684.44

959.69 131.07 618.50
Multipath Broadcast over Grid

700.83 74.96 2.05

Fig. 43 shows the normalized transmission overhead for each setting. Similar to the single

session runs, single path schemes have higher overhead than multipath schemes. Under 2

sessions, ACK Piggy coding also helps reduce overhead in the multipath since it reduces the

number of transmissions and hence mitigates interference.

 88

Fig. 43 2-Session Normalized Transmission Overhead

4.3.2 MANET Scenarios—Single-Session Corridor Mobility

We next evaluate the performance of CodeMP under mobility scenarios. We first consider the

corridor model given in Fig. 44. In the corridor model, we configure three groups that are

equally located between a static source and a static destination. We place four nodes in each

group. Each node moves within its corridor using random ‘way-point’ model with a pause time

of 10 seconds. We vary the maximum moving speed for separate runs and set the minimum

speed to 10 m/s slower than the maximum speed. Since this is a dynamic topology where routes

cannot be pre-configured, a dynamic MANET routing algorithm is required. For the single path

runs, we select the state-of-the-art MANET routing protocol, OLSR [44]. We use all the default

values specified in RFC 3626 for OLSR control timers. For multipath, we use the multipath

broadcast scheme as a naïve multipath without redundancy.

 89

Fig. 44 MANET Corridor Model

Fig. 45 below shows the average TCP goodput vs. maximum moving speed graph. As

expected, the goodput degrades for all cases as the moving speed increases. OLSR under high

mobility degrades very rapidly, as expected. From the packet trace, OLSR actually shows a

bimodal behavior. When OLSR can maintain a valid route, it delivers an instantaneous goodput

as high as 7Mbps. As soon as the route breaks, OLSR drops to zero goodput and takes several

seconds to recover from the route change. As nodes move faster, OLSR needs longer recovery

times resulting in lower goodput. Multipath broadcast, likewise, is not as efficient as multipath

NC. However, it is still more robust to mobility than OLSR. We next notice that in this

structured topology, DATA-ACK self-interference is a major issue and thus ACK Piggy coding

improves the performance significantly. With ACK Piggy coding, CodeMP improves goodput

by 30% in low mobility and by 100% in high mobility.

 90

Fig. 45 Corridor Mobility Goodput vs. Max. Moving Speed

4.3.3 MANET Scenarios—Single-Session Global Mobility

The previous experiments have shown that CodeMP provides efficient and robust

communications over “structured” scenarios with local mobility. We next move to a more global

mobility model, as shown in Fig. 46. In this model, 20 nodes move in a random ‘way-point’

model with 10-second pause time. TCP source and destination nodes are fixed as in the corridor

mobility. All other nodes move with maximum speed varying between 10 and 35 m/s. Minimum

speed is 10 m/s slower than maximum speed as in the corridor setting. We again compare

CodeMP with the two non-coded schemes, OLSR and multipath broadcast.

 91

Fig. 46 MANET Single-Group Model

Fig. 47 below shows the average TCP goodput vs. maximum moving speed chart. We first

notice that in this more mobile scenario, OLSR fails to work when the maximum speed reaches

35 m/s. Even with around 25 m/s maximum speed, OLSR has dropped to below 100 Kbps. The

packet trace reveals that OLSR still works in bimodal manner, where instantaneous goodput

jumps from 0Mbps to 7Mbps frequently and rapidly, with varying recovery time. We next

observe that in this scenario, as nodes move with more freedom, TCP DATA-ACK self-

interference is no longer the performance bottleneck and thus ACK Piggy coding does not

improve much. From the packet trace, we notice that the main challenge in this case are the

frequent route breaks and thus the inability of ACK flows to exploit multipath redundancy limits

the improvements introduced by ACK Piggy coding.

 92

Fig. 47 Single-Session Goodput vs. Max Moving Speed

4.3.4 MANET Scenario—2-Session; Global Mobility; Jamming

In the last set of experiments, we run an extreme scenario, in which nodes are moving as in

the global mobility model (Fig. 46) with a maximum speed of 25 m/s. We introduce a second

TCP session side by side with the first one. As before, a time-varying random error rate is

induced by jammers as follows: 0%, 40%, and 20% during the time intervals of 20~50 seconds,

50~80 seconds, and 80~110 seconds respectively. The same set of coding schemes as in the 1-

session global mobility experiments are used, namely, OLSR, multipath broadcast, and CodeMP,

with and without Piggy ACKs. From these experiments, we plan to determine whether the

proposed scheme maintains efficient and robust communications even in this extreme case,

while guaranteeing fair share among co-existing sessions with acceptable transmission overhead.

 93

Table 8 below summarizes the average TCP goodput per session for each setting in each loss

rate period. We first find that when there is no random error, OLSR successfully delivered

3Mbps for around 25% to 50% of the time resulting a goodput as high as 1.4Mbps. However,

OLSR fails to provide reasonable fairness and thus one session continuously occupies more

bandwidth. Further, OLSR again fails when loss rates increase and is unable to recover. We next

notice that multipath broadcast is neither efficient nor fair. Multipath broadcast also fails under

high random error rates. For multipath NC cases, both with and without Ack Piggy coding

perform almost the same, while with Ack Piggy coding, it is slightly fairer. Table 9 below

summarizes the Jain’s fairness index of each setting in each period [45]. Overall, adaptive

multipath coding with Ack Piggy coding is the fairest scheme.

Table 8 CodeMP Single-Group Two-Session Average Goodput (Kbps)

Config 0% PER 40% PER 20% PER

445.64 0.00 0.00
OLSR (Single Path)

1435.24 0.00 115.05

126.16 29.90 116.33
Multipath Broadcast

97.08 31.54 57.75

532.89 374.37 458.75
Multipath NC

483.33 440.72 503.40

575.90 430.49 482.10
Multipath NC + Piggy Coding

491.52 404.68 519.78

 94

Table 9 CodeMP Two-Session Scenario Jain’s Fairness Index

Config 0% PER 40% PER 20% PER

OLSR (Single Path) 0.783 0.000 0.500

Multipath Broadcast 0.983 0.999 0.898

Multipath NC 0.998 0.993 0.998

Multipath NC + Piggy Coding 0.994 0.999 0.999

Fig. 48 below shows the normalized transmission overhead (as defined in eq. (25)) for each

setting. As shown in Fig. 48, OLSR has the least overhead among all schemes since it utilizes

only one path at a time. As opposed to OLSR, multipath broadcast uses all paths at all times

resulting in the highest overhead. Among the CodeMP schemes, ACK Piggy coding reduces the

overhead by 35%. In this extreme test with global mobility, random errors, and multiple TCP

sessions, CodeMP with ACK Piggy coding achieves much better overall goodput than OLSR,

with much better fairness and only 38% more transmission overhead, which is the least

overhead of all multipath cases.

Fig. 48 Normalized Transmission Overhead

 95

CHAPTER 5

Testbed Implementation for

Pipeline Coding

5.1 Wireless Multi-hop Ad-hoc Testbed Experiments

The proposed pipeline coding scheme was implemented in Click modular router [37] as a

packet-level coding element inside Linux kernel. Fig. 49 shows the configuration of our

experiment topology. The source coding redundancy at the streaming server is 2.0 for both

batch coding and Pipeline Coding. The generation size is set to 8 for both coding schemes. The

bit-rate of the source stream is 192 kbps. Table 10 summarizes the format of the streaming file

we tested. Similar to the simulation, we artificially introduce random drops at the receiving

sides to emulate a highly lossy scenario.

 96

Table 10 Summary of Streaming Format (Wireless Ad-hoc Testbed)

Video Compression MPEG2-PS

Bit Rate VBR with Peak 192Kbps

Resolution 240x180

Frame Rate 24 FPS

Audio Compression MPEG1-LayerII (MP2)

Audio Bit Rate 64Kbps (CBR)

Sampling Rate 32KHz

Fig. 50(a) shows the packet delivery ratio of one of the clients for the simple multipath

without coding, batch coding, and Pipeline Coding cases. As we expect from the simulation

experiments, batch coding does not significantly outperform multipath without coding. Pipeline

coding does much better than the two previous schemes and constantly delivers more than 98%

of the packets. Fig. 50(b) gives a similar result obtained from previous simulation that Pipeline

Coding consistently reduces the delay by one magnitude. Fig. 50(c) shows the video quality in

PSNR (Peak Signal-toNoise Ratio) for these three cases, which shows a significant

improvement when using Pipeline Coding.

Fig. 49 Testbed Experiment Topology

 97

 (a) Packet Delivery Ratio (b) Delay

(c) PSNR

Fig. 50 Testbed Experiment Results

5.2 Video Streaming in VANET over WiMAX and WiFi

We further extend our Click implementation as a vehicular router element and test Pipeline

Coding in our Campus VANET Testbed (C-VeT). The experiment consists of a video stream

from a vehicle to infrastructure over heterogeneous wireless channels (WIMAX and WiFi). The

 98

quality of the channel is impaired by mobility and external interference. Through the testbed

experiment, we show that Network Coding can improve video quality by introducing

redundancy when needed.

Fig. 51 below shows the configuration of our experiment topology. As a part of our C-VeT

platform, we have a WiMAX base station (BS) installed on the roof of Boelter Hall, where a

WiFi access point (AP) is also installed. We also have another WiFi AP installed on the roof of

parking structure 6. Both WiFi APs connect to the same CS department subnet and the WiMAX

BS connects to another CS department subnet. Fig. 52 illustrates the experiment design. A

vehicular router is installed on a campus vehicle. On the vehicular router, a streaming server is

running on top of Pipeline Coding module. The Pipeline Coding module encodes all streaming

data packets and duplicates each coded packet over both WiFi and WiMAX interfaces. The

WiFi interface is configured to support layer-2 roaming without restarting the network layer

coding module.

As we have two concurrent interfaces, the source coding redundancy in this experiment at the

streaming server is reduced from 2.0 to 1.5. The generation size is set to 8 for Pipeline Coding

module. Also in this experiment, unicast is used for both WiFi and WiMAX, which provides us

a higher channel bandwidth, so the bit-rate of the source stream is increased to 450 kbps. Table

11 summarizes the format of the streaming file we tested.

 99

Table 11 Summary of Streaming Format (C-VeT Experiments)

Video Compression MPEG2-PS

Bit Rate VBR with Peak 450Kbps

Resolution 320x240

Frame Rate 29.97 FPS

Audio Compression MPEG1-LayerII (MP2)

Audio Bit Rate 64Kbps (CBR)

Sampling Rate 32KHz

Packet Size 1316 Bytes

Fig. 51 C-VeT Experiment Topology

 100

Fig. 52 Experiment Illustration

We first perform a static experiment to collect baseline measurements. In this experiment, the

vehicle is parked on the roof of parking structure 6, which is under the coverage of both WiFi

and WiMAX. The video stream lasts for about five minutes, which generates a total of 13,614

packets. With a redundancy of 1.5, each of the WiFi and WiMAX interfaces transmits 20,376

coded packets. Fig. 53 shows the number of packets received per second for both WiFi and

WiMAX. We first notice that, although unicast MAC is used on both WiFi and WiMAX, not

100% of packets are delivered. For WiFi, only 95.7% of the coded packets are received; for

WiMAX, only 69.9% of the coded packets are received. Fig. 54 plots the end-to-end delay of

each received coded packet. The average end-to-end delay for WiFi is 909 milliseconds and for

WiMAX is 945 milliseconds. With a difference of 30~40 milliseconds in delay, we find that

when the vehicle is under WiFi coverage, most of the innovative packets are delivered via the

WiFi link. In this experiment, 99.8% of the decoded data packets are received from WiFi.

 101

 (a) WiFi (b) WiMAX

Fig. 53 Number of Packets Received per Second (Static)

 (a) WiFi (b) WiMAX
Fig. 54 End-to-End Delay of Each Received Packet (Static)

After characterizing WiFi and WiMAX links, mobility is introduced to our next experiment.

In this experiment, the vehicle moves around the roof of the parking structure 6, where both

WiFi and WiMAX become intermittent due to mobility and obstacles blocking the line-of-sight

from the vehicle to antennas. The video stream again lasts for about five minutes, which

generates a total of 13,614 packets. Similar to the previous experiment, with a redundancy of

1.5, each of the WiFi and WiMAX interfaces transmits 20,376 coded packets. Fig. 55 shows the

 102

number of packets received per second for both WiFi and WiMAX. We observe that both WiFi

and WiMAX fail to maintain connectivity throughout the entire 5-min experiment period.

However, when WiFi fails, WiMAX seamlessly takes over. In this experiment, WiFi delivers

only 57% of the packets and WiMAX delivers only 72% of the packets. However, our trace

shows that Pipeline Coding modules still successfully decodes 97% of the data packets (13,614

in total), and the recorded video clip shows only few frames are skipped or dropped. Fig. 56

shows the end-to-end delay of each received coded packet. We notice that when WiFi is under

coverage, most of the delays are still 30~40 milliseconds lower than WiMAX. However, when

WiFi losses connectivity, due to the random backoff, its delay increases dramatically. In

contrast, WiMAX delay is bounded since WiMAX uses slotted MAC that has no random

backoff. Through this experiment, we conclude that in this heterogeneous VANET scenario,

Pipeline Coding helps the switching in between WiFi and WiMAX links and makes the

streaming quality better.

 (a) WiFi (b) WiMAX
Fig. 55 Number of Packets Received per Second (Mobile)

 103

 (a) WiFi (b) WiMAX
Fig. 56 End-to-End Delay of Each Received Packet (Mobile)

 104

CHAPTER 6

Summary

In this thesis, we aim to close the gap between network coding protocols and applications.

Most of the previous work on network coding does not consider application constraints, such as

delay for streaming applications and compatibility for TCP applications. We propose a low-

latency coding scheme, Pipeline Coding, which is designed for multicast stream distribution in

high loss rate scenarios. For TCP applications, we propose a combined inter- and intra-flow

coding, ComboCoding, which provides a robust communication paradigm in a static error-

prone network. For TCP over error-prone, intermittent MANETs, a multipath network coding,

CodeMP, is proposed. In addition, a VANET testbed for Pipeline Coding is implemented. We

summarize our studies as follows.

6.1 Pipeline Coding for Multicast Streams

Most of the previous network coding implementations have been based on batch network

coding, where all blocks in the same batch are mixed together. Batch coding requires that the

entire batch is received before decoding at destination. Thus, it introduces high decoding delays

that impact the stream reception quality. In our first study, we propose Pipeline Coding, which

is a low-latency coding scheme ideal for delay constrained applications such as video streaming

 105

in a lossy wireless multihop network. In Pipeline Coding, instead of waiting for the entire batch

(i.e., generation), packet are encoded and decoded incrementally. Consequently, pipeline

network coding yields several benefits: (1) reduced decoding delay, (2) further improved

throughput, (3) transparency to higher layers (UDP, TCP, or other applications), (4) no special

hardware support and (5) easier implementation. We provide a first-order analysis of our

proposed Pipeline Coding scheme and validate the performance improvement via intensive

simulation experiments. Through these studies, we have shown that compared to batch coding,

Pipeline Coding achieves higher throughput while maintaining a low end-to-end delay.

6.2 ComboCoding for TCP over Multihop Wireless Networks

TCP over wireless networks is challenging due to random losses and DATA-ACK

interference. Random linear coding schemes have been proposed to improve TCP robustness

against extreme random losses, but a critical issue still remains of DATA-ACK interference. To

address this problem, we use inter-flow coding between DATA and ACK at potential

intersecting nodes to mitigate self-interference. In addition, a pipelined random linear coding

scheme with adaptive redundancy is introduced to overcome high loss rates over unreliable

links. The resulting coding scheme, ComboCoding, combines inter-flow and intra-flow coding

to provide robust, fair TCP communication in multi-flow disruptive wireless networks while

maintains total transparency to TCP. By exploiting the benefits of both types of coding,

ComboCoding reduces the interference between DATA and ACKs within a TCP session and

also exhibits robustness to high link loss rates. The simulation results show that in a 3-hop

string topology, ComboCoding successfully achieves 2 Mbps throughput with 30% per link

 106

packet loss rate, while TCP-NewReno with no coding delivers only 200Kbps. The adaptive

ComboCoding was tested on a longer string topology with time-varying link loss, and

simulation results show that it outperforms all other coding schemes and quickly adapts to

changes in link quality. We also demonstrated that under multi-flow scenarios, in the situation

where conventional TCP collapses, ComboCoding manages to stay fair and stable.

6.3 CodeMP: Network Coded Multipath for TCP in Disruptive MANETs

TCP over Mobile Ad-hoc Networks (MANETs) is challenging due to frequent route breaks,

high random errors, and DATA-ACK interference. Network coded multipath approaches have

been shown in several previous studies to be an effective transmission paradigms in disruptive

networks. However, most of the previous studies either have no adaptive redundancy control or

rely on theoretical models that require knowledge at all relays of the entire network state. In this

study, we propose a network coded multipath scheme for conventional TCP—CodeMP—that

adapts to frequent link changes in MANET and requires no explicit control messages. The

proposed scheme, CodeMP, consists of three main components: (1) random linear coding, (2)

multipath routing, and (3) ACK Piggy coding. The RLC and multipath routing schemes adapt to

dynamic scenarios and work closely with each other to provide robust and efficient multipath

redundancy. The ACK Piggy coding helps reduce intra-session interference and greatly

enhances fairness among concurrent sessions. The proposed CodeMP scheme is implemented at

the network layer, totally transparent to TCP or other transport layer protocols, and without

explicit control messages or cross layer optimization. Simulation results show that the proposed

scheme adapts well to environment changes (mobility, time-varying jamming) and to different

 107

number of co-existing sessions. It consistently provides efficient, robust, and fair

communications. In an extreme situation where nodes are moving as fast as 25 m/s, with

varying packet error rate culminating at 40% and two co-existing TCP sessions, CodeMP can

still deliver at least 700Kbps aggregate goodput with a fairness index of 0.99, with merely 38%

more overhead than OLSR (which delivers zero goodput in presence of errors). This early study

of a practical design of multipath network coding has achieved an important goal, mainly to

demonstrate that conventional TCP Reno, with the help of Network Coding, can be made to

work with acceptable performance even in extreme conditions where most TCP variants have

failed.

6.4 Testbed Experiments for Pipeline Coding

Conventional network coding approaches are mostly based on a block-based coding scheme.

The block-based coding scheme (batch coding scheme) introduces noticeable coding delay and

thus results in discarding generations that have insufficient coded packets received. The

proposed pipeline network coding relaxes the limitation of encoding and decoding based on a

whole block of data. We implement our pipeline network coding scheme on Click modular

router. Using the Pipeline Coding router, we conduct a number of testbed experiments using a

simply 2-hop wireless ad-hoc network. The experiment results show a significant delay

reduction as well as a remarkable packet delivery ratio improvement for multicast applications.

Also, the streaming quality is improved by up to 10dB in PSNR value (peak signal-to-noise

ratio).

 108

The implemented Pipeline Coding module is also ported to vehicular routers on our Campus

VANET Testbed (C-VeT). Using C-VeT platform, we evaluate the effectiveness of Pipeline

Coding, where vehicles upload streaming files to infrastructure using heterogeneous WiFi and

WiMAX links concurrently. Our testbed experiments show that without explicit scheduling of

coded packets, Pipeline Coding improves both the packet delivery ratio and video quality by

providing smooth switch in between WiFi and WiMAX links. We also show that our Pipeline

Coding implementation is easy to deploy to a VANET testbed and is capable of running more

future experiments.

6.5 Future Work

Several areas of future work are suggested by this study. First, in our coding scheme designs,

we have strived to maintain the transparency to TCP layers and thus have not considered the

explicit interaction between TCP and the network coding layer. It is important to study the

interactions between TCP protocols and the proposed coding schemes. In particular, in order to

be robust to jamming attack, our current design reacts to both random errors and congestion

losses by increasing the coding redundancy. In the case of pure congestion without jamming,

added redundancy will exacerbate congestion level and might impact the stability of TCP

control mechanisms. A potential improvement is to exploit loss discrimination algorithms so

that the coding layer reacts to only random errors and possibly jamming attacks. However, it is

still an open issue to distinguish jamming attacks from congestion.

The other future study is to optimize the design of multipath coding for PiggyCoded packets.

In our current design, unlike TCP DATA flows, TCP ACK flows are all sent without random

 109

linear coding. This effectively reduces the spatial redundancy of ACK flows to a single path

when the ACKs are XOR coded. We have discussed a number of alternatives such as XOR a

single ACK with more than one RLC coded DATA packets. To enable multipath for

PiggyCoded ACKs, it will be important to determine how much spatial redundancy should be

introduced and how to adaptively control such a redundancy factor.

We are also interested in extending our VANET testbed implementation to a more intelligent

coding scheme. In our current implementation, Pipeline Coding module duplicates every coded

packet to both WiFi and WiMAX links. From the experiment results, we have observed that

when both interfaces are within coverage, most of the coded packets sent to WiMAX links are

not innovative when received at the destination. Hence, it is important to reduce the number of

redundant packets on the higher-latency WiMAX link when the lower-latency WiFi link is in

operation.

Lastly, as our study mostly aims to propose practical design and implementation that is

deployable to a realistic environment, a significant amount of effort is spent on addressing

practical issues. The analysis is, however, equally important to the practice so that the

performance gain from each segment of the procedure can be analytically validated. For

example, analytical models provide more insights on how much benefit we separately gain from

multiple paths, Pipeline Coding, and PiggyCode. To identify the gains from each part is helpful

to provide a guideline on how to choose suitable combinations under different circumstances.

 110

References

[1] J. F. Kurose and K. W. Ross, Computer Network: A Top-Down Approach

5/e, Addison Wesley Publishing Co., Inc., Boston, MA, 2010.

[2] R. Ahlswede, N. Cai, S.-Y. R. Li, R. W. Yeung, "Network information flow,"

IEEE Trans. on Information Theory, vol. 46, no. 4, pp. 1204-1216, July

2000.

[3] R. Koetter and M. Medard, "An algebraic approach to network coding,"

IEEE/ACM Trans. on Networking, vol. 11, no. 5, pp. 782-795, 2003.

[4] P. A. Chou, Y. Wu, K. Jain, "Practical Network Coding," in Proc. of Allerton

Conference on Communication, Control, and Computing, 2003.

[5] S.-Y. R. Li, R. W. Yeung, N. Cai, "Linear network coding," IEEE Trans. on

Info. Theory, vol. 49, no. 2, pp. 371-381, Feb. 2003.

[6] S. Chachulski, M. Jennings, S. Katti, D. Katabi, "Trading Structure for

Randomness in Wireless Opportunistic Routing," in Proc. of ACM

SIGCOMM 2007.

[7] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, J. Crowcroft, "XORs in

the Air: Practical Wireless Network Coding," IEEE/ACM Trans. on

Networking, vol. 16, no. 3, June 2008.

 111

[8] T. Ho, M. Medard, J. Shi, M. Effros, D. Karger, "On randomized network

coding," in Allerton, 2003.

[9] D. S. Lun, M. Medard, R. Koetter, "Efficient Operation of Wireless Packet

Networks Using Network Coding," in Proc. of Internation Workshop on

Convergent Technologies (IWCT), 2005.

[10] J.-S. Park, M. Gerla, D. S. Lun, Yu. Yi, M. Medard, "CodeCast: A Network

Coding based Ad hoc Multicast Protocol," IEEE Wireless Communications,

October 2006.

[11] J. K. Sundararajan, D. Shah, M. Medard, M. Mitzenmacher, J. Barros,

"Network Coding meets TCP," in Proc. of IEEE INFOCOM 2009.

[12] S. Y. Oh, M. Gerla, "Robust MANET Routing using Adaptive Path

Redundancy and Coding," in Proc of THE FIRST International Conference

on COMmunication Systems and NETworkS (COMSNETS), January 2009.

[13] C.-C. Chen, C.-N. Lien, U. Lee, S. Y. Oh, "CodeCast: Network Coding

Based Multicast in MANETs," in Demos of the 10th International Workshop

on Mobile Computing Systems and Applications (HotMobile 2009), Feb.

2009.

[14] L. Rizzo, "Effective Erasure Codes for Reliable Computer Communication

Protocols," in Proc. Of ACM SIGCOMM, vol. 27, no. 2, pp. 24-36, Apr.

1997.

 112

[15] J. W. Byers, M. Luby, M. Mitzenmacher, A. Rege, "A digital fountain

approach to reliable distribution of bulk data," in Proc. of SIGCOMM 1998.

[16] D. MacKay, "Fountain Codes," IEE Proceedings on Communications, vol.

152, no. 6, pp. 1062-1068, Dec. 2005.

[17] C.-C. Chen, S. Y. Oh, P. Tao, M. Gerla, M. Y. Sanadidi, "Pipeline Network

Coding for Multicast Streams (Invited Paper)," in Proc. of the 5th

International Conference on Mobile Computing and Ubiquitous Networking

(ICMU 2010), April 2010.

[18] P. Tao, C.-C. Chen, S. Y. Oh, M. Gerla, M. Y. Sanadidi, "Demo Abstract:

Pipeline Network Coding for Multicast Streams," in Demos of IEEE

INFOCOM 2010, March 2010.

[19] Y. Huang, M. Ghaderi, D. Towsley, W. Gong, "TCP Performance in Coded

Wireless Mesh Networks," in Proc. of IEEE SECON 2008.

[20] L. Scalia, F. Soldo, M. Gerla, "PiggyCode: a MAC layer network coding

scheme to improve TCP performance over wireless networks," in Proc. of

IEEE GLOBECOM 2007.

[21] P. S. David and A. Kumar, "Network coding for TCP throughput

enhancement over a multi-hop wireless network," in Proc of IEEE

COMSWARE 2008.

[22] A. Shokrollahi, "Raptor Codes," IEEE Trans. On Networking, vol. 14, pp.

2551-2567, Jun. 2006.

 113

[23] A. Fujimura, S. Y. Oh, M. Gerla, "Network coding vs. erasure coding:

Reliable multicast in ad hoc networks," in Proc of MilCom 2008.

[24] C.-C. Chen, C. Chen, S. Y. Oh, M. Gerla, M. Y. Sanadidi, "ComboCoding:

Combined Intra/Inter-Flow Network Coding for Wireless Multihop TCP,"

submitted to ICNP 2010.

[25] C.-C. Chen, C. Chen, S. Y. Oh, M. Gerla, M. Y. Sanadidi, "ComboCoding:

Combined Intra/Inter-Flow Network Coding for TCP over Multihop Lossy

Wireless Netowkrs," submitted to ACITA 2010.

[26] M. Handley, S. Floyd, J. Padhye, J. Widmer, "TCP Friendly Rate Control

(TFRC)," RFC 3448, January 2003.

[27] G.-S. Ahn, A.T. Campbell, A. Veres and L.-H. Sun, "SWAN: Service

Differentiation in Stateless Wireless Ad Hoc Networks," in Proc. Of IEEE

INFOCOM 2002, June 2002.

[28] Vicente E. Mujica V., Dorgham Sisalem , Radu Popescu-Zeletin and Adam

Wolisz "TCP-Friendly Congestion Control over Wireless Networks," in

Proc. of European Wireless, Ferburary 2004,.

[29] Ijaz Haider Naqvi , Tanguy Perennou , "A DCCP Congestion Control

Mechanism for Wired- cum-Wireless Environments", in Proc. of the IEEE

Wireless Communications and Networking Conference, March 2007.

 114

[30] K. Xu, S. Bae, S. Lee, M. Gerla, "TCP Behavior across Multihop Wireless

Networks and the Wired Internet," in Proc. of ACM WoWMoM 2002,

October 2002.

[31] J. Li, C. Blake, D. Couto, H. Lee, and R. Morris, "Capacity of Ad Hoc

Wireless Networks," in Proc. of ACM SIGMETRICS 2000, June 2000.

[32] J. Chen, M. Gerla, Y. Z. Lee, M. Y. Sanadidi, "TCP with Delayed Ack for

Wireless Networks," Ad Hoc Networks, vol. 6, pp. 1098-1116, 2008.

[33] Scalable Networs Inc. QualNet. http://www.scalble-networks.com.

[34] K. Xu, M. Gerla, S. Bae, "Effectiveness of RTS/CTS Handshake in IEEE

802.11 Based Ad-Hoc Networks," Ad Hoc Networks, vol. 1, pp. 107-123,

2003.

[35] J. Padhey, V. Firoiu, D. Towsley, J. Kurose, "Modeling TCP Throughput: A

Simple Model and its Empirical Validation," in Proc. of ACM SIGCOMM

1998.

[36] D. S. J. De Couto, D. Aguayo, J. Bicket, R. Morris, "A high-throughput path

metric for multi-hop wireless routing," in Proc. of MOBICOM, 2003.

[37] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans

Kaashoek, "The Click modular router," ACM Transactions on Computer

Systems 18(3), pp. 263-297, August 2000.

 115

[38] S. Deb, M. Medard, and C. Chout, “Algebraic Gossip: A Network Coding

Approach to Optimal Multiple Rumor Mongering,” in Proc. Allerton’04,

Allerton, IL, Sep. 2004.

[39] X. Zhang, B. Li, "Optimized multipath network coding in lossy wireless

networks," in IEEE Journal on Selected Areas in Communications, vol. 27,

no. 5, pp. 622-634, 2009.

[40] Y. Lin, B. Li, B. Liang, "CodeOR: Opportunistic routing in wireless mesh

networks with segmented network coding," in Proc. of IEEE ICNP 2008.

[41] X. Zhang, B. Li, "Dice: a game theoretic framework for wireless multipath

network coding," in Proc. of MobiHoc 2008.

[42] A. Tiwari, A. Ganguli, A. Sampath, D. S. Anderson, B.-H. Shen, N.

Krishnamurthi, J. Yadegar, M. Gerla, D. Krzysiak, "Mobility Aware Routing

for the Airborne Network backbone," in Proc. of IEEE MILCOM 2008.

[43] H. Seferoglu, A. Markopoulou, and K. K. Ramakrishnan, “I2NC: Intra- and

Inter-Session Network Coding for Unicast Flows in Wireless Networks,” in

Proc. of IEEE INFOCOM 2011.

[44] T. Clausen, P. Jacquet, Optimized Link State Routing Protocol (OLSR),

IETF RFC 3626, Oct. 2003.

[45] R. Jain, D.M. Chiu, and W. Hawe, "A Quantitative Measure of Fairness and

Discrimination for Resource Allocation in Shared Systems," DEC Research

Report TR-301, 1984.

 116

[46] Kaixin Xu, Mario Gerla, Lantao Qi, and Yantai Shu, "Enhancing TCP

Fairness in Ad Hoc Wireless Networks Using Neighborhood RED", in Proc.

of MobiCom ‘03, Sept. 2003.

