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Executive Summary 
This study quantifies the potential impact of Shared Autonomous Mobility Service (SAMS) 
modes on access to employment opportunities in the Southern California region. These future 
mobility services can be compared to Didi, Uber and Lyft, except the vehicles will be driverless 
and completely controlled by the mobility service provider, rather than individual drivers.  

With the current transportation system, many commuters face challenges accessing 
employment opportunities that ultimately limit their economic potential and quality of life, 
particularly low-income households that do not own personal vehicles and live in job-poor 
neighborhoods. Specifically, workers in Southern California face challenges, including: (i) high 
parking costs and/or limited parking availability in dense employment and residential areas; (ii) 
long commute distances between residential areas and employment opportunities; and (iii) 
poor transit service quality in many areas. The combination of long commute distances and 
poor transit service quality are particularly burdensome for individuals who cannot physically 
operate a vehicle or cannot afford to purchase, insure, maintain, fuel, and park a personal 
vehicle.  

SAMS modes can help address these employment accessibility challenges as they (i) nearly 
eliminate the need to park in high parking cost areas and (ii) allow travelers to enjoy the 
accessibility benefits of personal vehicle travel without the high cost of purchase, operation, 
maintenance and insurance (which are expected to be spread across multiple passengers). This 
study is the first comprehensive attempt to evaluate the benefits of SAMS for commuters using 
a data-intensive welfare-based (logsum) approach. Key objectives of this study include: 

• Provide a monetary measure of employment accessibility benefits for economic (e.g. cost-
benefit) analyses, 

• Capture key employment accessibility benefits of SAMS modes, and 

• Incorporate heterogeneity in the population of workers with respect to the types of 
employment opportunities that are valuable to different worker segments. 

To fulfil these objectives, a hierarchical destination-mode choice model was developed which 
includes two SAMS modes (SAMS-only and SAMS+Transit) in the future in addition to the 
existing drive-alone, transit, and walk modes. In addition, the latent class analysis (LCA) method 
was used to distinguish the workers based on four socio-economic characteristics – gender, 
age, income and education. The proposed methodology required data from several sources 
including 2012 California Household Travel Survey (CHTS), the Southern California Association 
of Governments (SCAG) metropolitan planning organization (MPO), 2012 Longitudinal 
Employer-Household Dynamics (LEHD), 2012 American Community Survey (ACS) and the US 
Environmental Protection Agency’s Smart Location Database. For drive-alone mode, the cost 
per mile was estimated using an OLS model considering price, vehicle body type, cylinder, and 
age of vehicle. 
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While developing this methodology, the scope of this study was set to model the impact of 
SAMS on mode choice and destination choice of workers. This study assumed no major changes 
in the residential locations of workers, workplace locations of employers, and road network 
travel times. With the help of the travel cost coefficient, the increase in accessibility to work 
locations were converted to dollar units for a 5% representative population generated for each 
census tract of the SCAG region. 

The results can be summarized as follows: 

• Young workers and workers from low-income households may receive larger employment 
accessibility benefits from SAMS modes than workers from high- and middle-income 
households. 

• Benefits of SAMS in suburban and rural areas would be significantly higher than dense 
urban areas when considering both same and variable service quality (service quality is 
lower in less dense areas and vice versa). Although the distributions of benefits are similar 
there is a slight (2%) increase in accessibility benefits across all classes under the 
assumption of variable service quality. 

• Magnitude of employment accessibility benefits is heavily dependent on the service price 
of SAMS in the future – employment accessibility benefits decrease by 26% for workers 
in Class 1 (the high-income, high-education attainment class) as the SAMS service price 
increases from $0.10/mile to $0.50/mile. 

• Most of the accessibility advantages from the SAMS modes come from the SAMS-only 
mode rather than the SAMS+Transit mode. Therefore, it is more likely that first-mile SAMS 
modes will provide very little value to commuters and will not significantly increase 
commute-based transit ridership. 

The results in this report provide valuable insights into the potential impacts of SAMS on 
different clusters of the working population and different regions of Southern California. 
Transport planners and policy makers can use the findings to inform the design and deployment 
of SAMS. The use of a disaggregate agent-based modeling framework allows this research 
methodology to have significant potential to provide further insights into the impacts of SAMS 
modes on employment accessibility. 
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Introduction 

Motivation 

Car manufacturers, technology companies, and ridesourcing companies are currently trying to 
develop fully automated or driverless vehicles (AVs) (Muoio, 2016) with initial plans to deploy 
these vehicles as a mobility service rather than sell AVs to individual consumers (Waymo, 2017; 
Wingfield, 2017). Some companies envision a Shared Autonomous Mobility Service (SAMS); an 
approach similar to existing vehicle-based shared mobility services—like those provided by Didi, 
Uber and Lyft—except SAMS vehicles will be driverless and completely controlled by the 
mobility service provider, rather than individual drivers (Fagnant and Kockelman, 2014; Spieser 
et al., 2014).  

The recent academic (Fagnant and Kockelman, 2015; Mahmassani, 2016) and non-academic 
(Hars, 2010; Thompson, 2016) literature identifies potential economic and environmental 
benefits of AVs and SAMS modes. These potential benefits have motivated significant research 
in recent years related to understanding the impacts of AVs and SAMS modes on trip 
generation (Truong et al., 2017); land-use, energy, and emissions (Wadud et al., 2016); 
residential location choice (Zhang and Guhathakurta, 2018); and vehicle miles traveled and 
associated emissions (Fagnant and Kockelman, 2014). The present study aims to understand 
and quantify another potential impact of SAMS modes, namely, access to employment 
opportunities.  

One of the main design objectives of transportation systems is to connect people to their jobs 
and other employment opportunities. However, many commuters face challenges accessing 
employment opportunities that ultimately limit their economic potential and quality of life, 
particularly low-income households that do not own personal vehicles and live in job-poor 
neighborhoods (Blumenberg and Ong, 2001). Employment accessibility challenges vary from 
country-to-country, state-to-state, city-to-city, and neighborhood-to-neighborhood; 
nevertheless, there are a few common challenges across most large non-Northeast Corridor 
metropolitan areas in the United States that are particularly burdensome for workers in 
Southern California, including: (i) high parking costs and/or limited parking availability in dense 
employment and residential areas; (ii) long commute distances between residential areas and 
employment opportunities; and (iii) poor transit service quality in many areas. The combination 
of long commute distances and poor transit service quality are particularly burdensome for 
individuals who cannot physically operate a vehicle or cannot afford to purchase, insure, 
maintain, fuel, and park a personal vehicle. Moreover, the challenges have increased in recent 
decades as employment opportunities have moved away from central business districts and 
into the suburbs, which makes planning and operating efficient transit routes challenging in 
many cases and unviable in others (Hu, 2015).  

Fortunately, SAMS modes can help address these employment accessibility challenges as they 
(i) nearly eliminate the need to park in areas with high parking costs (Zhang et al., 2015) and (ii) 
allow travelers to enjoy the accessibility benefits of personal vehicle travel, which Kawabata 
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and Shen (2006) show are significant compared to transit in most areas (especially Southern 
California), without having access to a personal vehicle. While commuters will still need to pay 
for SAMS modes for commute trips, the purchasing, maintenance, and insurance costs 
associated with vehicle ownership can be spread across several SAMS users. Even operating 
(i.e. fuel) costs can be spread across multiple passengers if workers are willing to share rides 
with other travelers during the commute trip. SAMS modes also have the potential to improve 
employment accessibility for people who are unable to operate a personal vehicle due to age or 
disability.  

Research Objectives 

The goal of this study is to quantify the employment accessibility benefits of SAMS modes, 
using a systematic and theoretically valid methodology to:  

1. Provide a monetary measure of employment accessibility benefits for economic (e.g. 
cost-benefit) analyses, 

2. Capture key employment accessibility benefits of SAMS modes, and  

3. Incorporate heterogeneity in the population of workers with respect to the types of 
employment opportunities that are valuable to different worker segments. 

To meet this overarching goal and satisfy the methodological constraints, this study employs 
the logsum measure of accessibility, which is a welfare-based accessibility measure that can be 
converted to monetary terms for economic analyses. To capture the key employment 
accessibility benefits of SAMSs, this study adds two commute modes – SAMS-only and 
SAMS+Transit – to the mode choice set of workers and captures the beneficial attributes of the 
two SAMS modes (i.e. no parking costs and travel times that are consistent with driving a 
personal vehicle). Lastly, to capture heterogeneity among workers, this study clusters workers 
based on their socio-demographic attributes using latent class analysis (LCA) methods.  

This appears to be the first study to quantify the employment accessibility benefits of SAMS 
modes for an entire metropolitan region using a logsum- or welfare-based approach. While 
Childress et al. (2015) present logsum-based accessibility measures associated with the impact 
of AVs on accessibility, their study provides few methodological details and only one set of 
computational results. The current study presents a detailed methodology that additionally 
involves clustering workers into classes based on their socio-demographics. In addition to 
improving destination choice model parameter estimates, this clustering is especially valuable 
for evaluation purposes as analysts, planners, and policymakers can easily see the impact(s) of 
SAMS modes on different worker clusters. To illustrate the usefulness of the proposed 
methodology, this study generates a synthetic population of workers in the six-county SCAG 
region, then applies the LCA, mode choice, and destination choice model parameters, which 
were estimated on a sample of workers from the SCAG region, to quantify the employment 
accessibility benefits of SAMS modes for every member of the synthetic working population. 
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SAMS Commute Modes 

This study analyzes the employment accessibility benefits of adding two SAMS modes to the 
choice set of commuters, namely, the SAMS-only and SAMS+Transit commute modes. This 
subsection describes these two modes and their potential commuting benefits relative to 
existing travel modes.  

In this study, the SAMS-only commute mode is effectively a ride-hailing/ridesourcing service 
with driverless vehicles. From a user-perspective the main difference between SAMS and 
current ride-hailing services is the travel cost/price (and the fact that the vehicle does not have 
a driver). The study assumes, as a result of the elimination of labor/driver costs and improved 
operational efficiency due to central control of the AV fleet, the SAMS-only mode is 
considerably cheaper than current ridesourcing services and even cheaper than the average 
cost per mile of personal vehicle travel. From a commute mode attributes perspective, the 
SAMS-only mode in this study is quite similar to a personal vehicle (e.g., the same in-vehicle 
travel times and zero walk distances) with three notable exceptions. First, the SAMS commute 
mode does not include any parking costs. Second, the cost per mile of SAMS is slightly lower 
than the personal vehicle cost per mile. Third, on the negative side, commuters need to wait a 
few minutes at their residence for the SAMS vehicle to pick them up for work.  

In this study, the SAMS+Transit commute mode involves an inter-modal commute trip wherein 
the commuter takes a SAMS ride from home to a convenient transit station/stop before using 
the transit network to travel from this transit stop/station to her workplace. The SAMS+Transit 
mode does not require the commuter to pay for parking at the transit station. Additionally, the 
travel times for the SAMS portion of the trip are commensurate with personal vehicle travel. 
However, the SAMS portion of the trip does include a short wait time. Ideally, the SAMS+Transit 
mode would provide a cost-effective alternative to SAMS-only and personal vehicle travel while 
allowing commuters to utilize the transit network for longer distance commutes, overcoming 
the transit first-mile problem. In addition to connecting commuters to previously inaccessible 
(via walking) transit stations, the SAMS+Transit mode should also reduce the total travel time 
and number of transfers compared to a transit-only trip. This would be particularly beneficial in 
low-density areas where transit stations are not accessible by walking and also in cases where 
commuting with transit requires a significant number of inefficient transfers between bus 
and/or rail lines.  

In summary, in this study the SAMS-only mode is commensurate with the personal vehicle 
mode except it eliminates parking costs, has lower per mile costs, and involves a pickup wait 
time. The SAMS portion of the SAMS+Transit commute option has the same characteristics. The 
study assumes AV/SAMS travel times remain the same as current personal vehicle travel. The 
study also assumes the disutility of in-vehicle travel time is the same in AVs/SAMS as current 
personal vehicle travel. Hence, the employment accessibility benefit results in this study are 
likely conservative compared to other studies that assume reduced travel times (Meyer et al., 
2017) and in-vehicle travel time disutility (Vyas et al., 2019)  with SAMS modes. Finally, the 
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study assumes that the SAMS modes impact commute mode choice and work destination 
locations; however, it assumes worker residences and employment locations remain fixed. 

Report Outline 

The remainder of the report is structured as follows. The next section provides relevant 
theoretical, methodological, and conceptual background information. Section 3 presents the 
data sources and research methodology to quantify the employment accessibility benefits of 
SAMS modes. Section 4 presents and discusses a variety of computational results. The final 
section concludes the report with a summary of the study and a discussion of limitations and 
future research. 

Background 
The current study builds upon and applies the methods and ideas from several existing areas of 
research, including: (employment) accessibility measures and analysis; logsums as a measure of 
consumer surplus and accessibility; modeling the transportation system impacts of AVs and 
SAMS modes; and accessibility analysis of AVs and SAMS modes. This section aims to provide 
relevant conceptual, theoretical, and methodological background information on these topics, 
in order to provide context. A review of all the relevant literature in each of these areas is 
beyond the scope of this report; therefore, where possible, recent review articles are provided 
for the reader’s reference. 

Accessibility Measures 

Adapting the definition in Geurs and van Wee (2004) and to a lesser extent several other 
definitions (Ben-Akiva and Lerman, 1979; Hansen, 1959), this study defines employment 
accessibility as the extent to which land-use and transport systems enable workers to reach 
employment opportunities by means of the available transport modes.  

Geurs and van Wee (2004) suggest four theoretically important components of accessibility, 
namely, land-use components, transportation components, temporal components, and 
individual components. As this study considers employment accessibility, the land-use 
component consists of the spatial distribution, type, and number of employment opportunities 
(by type) throughout the analysis area. The transportation components in the current study 
include the modal attributes of driving alone, taking transit, or walking to work as well as using 
the SAMS-only or SAMS+Transit modes to commute in the future. Modal attributes include 
travel costs, travel times, and other service quality attributes. These modal attributes are 
heavily dependent on the underlying transportation infrastructure in the analysis area. The 
current study assumes workers commute during the morning peak period; hence, the modeling 
framework does not include temporal differences in employment accessibility. Finally, by using 
the logsum measure of accessibility and clustering users based on socio-demographic 
characteristics, the current study models the individual component of accessibility in significant 
detail.  
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Four of the most common accessibility measures in the academic literature and used in practice 
are (Handy and Niemeier, 1997; Miller, 2018):  

• Distance (or travel time or travel cost) to the nearest destination of interest (e.g. bus 
stop, freeway interchange, school, hospital, retail job, office job, etc.);  

• Cumulative activities/opportunities of a specific type within a specified distance or 
travel time or travel cost (known as the “isochrone” or “contour” measure);  

• Gravity/entropy model denominators (known as Hansen’s measure (Hansen, 1959)); 

and  

• Expected maximum random utility-based measure (e.g. logit model “logsums”; (Ben-
Akiva and Lerman, 1979)). 

The distance/time/cost to the nearest destination measure is the most straightforward 
accessibility measure and the easiest to calculate. Handy and Niemeier (1997) employ this 
measure to analyze accessibility to supermarkets and convenience stores for communities in 
the San Francisco Bay Area. For grocery shopping, this simple accessibility measure can be 
useful. However, for other activity/opportunity types, such as employment opportunities, the 
nearest destination of interest measure provides limited information for planning and policy 
analysis.  

The isochrone/contour measure is the most common accessibility measure in practice and has 
been widely applied to cities across the country (Owen and Murphy, 2018). The measure 
provides the number of opportunities that can be reached from an origin of interest within a 
specified threshold of travel time, distance, and/or cost by various modes. This accessibility 
measure has been used to: calculate the number of jobs reachable by socially disadvantaged 
residents in Montreal, Canada, based on travel time and travel cost thresholds (El-Geneidy et 
al., 2016); assess the gains in job accessibility for people belonging to different wage groups 
with the opening of a new light-rail line in the Twin Cities, Minnesota, region (Fan et al., 2012); 
and, create a space- and time-sensitive accessibility measure for subregions within the SCAG 
region (Chen et al., 2011). The two main shortcomings of this method are (i) the results are 
highly dependent on the isochrone travel time or distance cut-off value and (ii) the relative 
value of an opportunity within the isochrone is independent of the travel time/distance from 
the origin of interest to the opportunity. For example, if the isochrone threshold is 45 minutes, 
an additional grocery store 1 minute away is given the same weight as an additional grocery 
store 44 minutes away but the grocery store 46 minutes away is given zero weight. Xi et al. 
(2018) explore the best cut-off time to determine accessibility using the isochrone measure.  

The gravity model denominator, or Hansen’s measure, considers the number of opportunities 
available at destinations surrounding an origin of interest, wherein the measure weights the 
opportunities as a function of the impedance between the origin of interest and each 
opportunity’s location. The impedance function typically captures travel time and/or 
generalized cost. Hence, this measure overcomes the shortcomings of the isochrone measure 
described in the previous paragraph. Grengs (2010) uses the gravity model denominator to 
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measure accessibility to jobs for people living in different places and using different travel 
modes in the city of Detroit. Liu et al. (2004) present a geographical information systems (GIS) 
tool that combines both the gravity model-based approach and the cumulative opportunities 
within a certain impedance level method to measure accessibility. The main shortcoming of the 
gravity model denominator is its inability to easily differentiate between individuals in terms of 
the value of opportunities. That is, without explicit segmentation, the value of an additional 
employment opportunity in the education sector 5 miles away from the origin of interest is the 
same for everyone who resides in the origin, including people with and without any college or 
high school education. Even with explicit segmentation, there is no ‘built-in’ mechanism to 
quantify the value of each type of (employment) opportunity. Ben-Akiva and Lerman (1979) 
address these shortcomings via linking accessibility to consumer surplus and illustrating that the 
logsum value obtained from work destination-commute mode choice models is an accessibility 
measure consistent with random utility theory under the typical MNL assumptions. The next 
subsection details the logsum measure, including its theoretical underpinning as a measure of 
consumer surplus and accessibility. 

Logsums, Consumer Surplus, and Accessibility 

This section parallels the overviews presented in several studies (de Jong et al., 2007; Geurs et 
al., 2010; Kohli and Daly, 2016) and one textbook (Train, 2009).  

To model discrete choices, a typical assumption is that the utility the decision maker n obtains 
from a choice alternative j can be decomposed into an observed component (𝑉𝑛𝑗) and an 

unobserved, random component (𝜀𝑛𝑗), as shown in Eqn. 1: 

𝑼𝒏𝒋 = 𝑽𝒏𝒋 + 𝜺𝒏𝒋 (1) 

where 𝑈𝑛𝑗 represents the utility that decision maker n obtains from alternative j; 𝑉𝑛𝑗 is known 

as the ‘representative utility’ and includes factors the analyst can measure; and 𝜀𝑛𝑗 includes all 

the factors that affect 𝑈𝑛𝑗 that the analyst cannot capture. In this study, let N denote the set of 

all decision makers (i.e. workers) and J the set of all discrete choice alternatives (i.e. 
destinations, modes, or destination-mode pairs). Assuming the 𝜀𝑛𝑗 values are independent and 

identically distributed (iid) across alternatives 𝑗 ∈ 𝐽 and decision-makers 𝑛 ∈ 𝑁, and the 
distribution is Gumbel with standard variance (𝜋2/6), then the choice probabilities are given by 
the standard multinomial logit (MNL) model, as shown in Eqn. 2: 

𝑷𝒏𝒋 =
𝒆𝑽𝒏𝒋

∑ 𝒆
𝑽

𝒏𝒋′
𝒋′∈𝑱

 (2) 

By definition, a person’s consumer surplus is the utility, in monetary terms, this person receives 
in a choice situation. Moreover, consistent with the utility-maximizing framework from which 
the MNL model can be derived, the decision maker, n, chooses the alternative, j, that 
maximizers her utility. Hence, consumer surplus can be defined as shown in Eqn. 3: 
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𝑪𝑺𝒏 =
𝟏

𝜶𝒏
(𝐦𝐚𝐱

𝒋
𝑼𝒏𝒋 ∀𝒋) (3) 

where 𝛼𝑛 is the marginal utility of income (𝛼𝑛 = 𝑑𝑈𝑛𝑗/𝑑𝑌𝑛𝑗  and 𝑌𝑛 is the income of decision-

maker 𝑛). Division by 𝛼𝑛 in Eqn. 3 converts utility units into monetary units. 

Since the analyst does not and cannot observe 𝑈𝑛𝑗 and therefore cannot directly calculate the 

decision maker’s consumer surplus, the analyst can only use the observable component of the 
utility, 𝑉𝑛𝑗, and the distribution of the unobserved portion of utility, 𝜀𝑛𝑗, to determine the 

decision maker’s expected consumer surplus: 

𝑬[𝑪𝑺𝒏] =
𝟏

𝜶𝒏
𝑬 [𝐦𝐚𝐱

𝒋
(𝑽𝒏𝒋 + 𝜺𝒏𝒋)] (4) 

where the expectation in Eqn. 4 is over 𝜀𝑛𝑗. Given the iid Gumbel distribution assumptions on 

𝜀𝑛𝑗 mentioned previously, and an assumption that utility is linear in income (i.e. 𝛼𝑛 is constant 

with respect to income), then the expectation in Eqn. 4 transforms into Eqn. 5, as shown in 
Small and Rosen (1981): 

𝑬[𝑪𝑺𝒏] =
𝟏

𝜶𝒏
𝐥𝐧 (∑ 𝒆𝑽𝒏𝒋

𝒋∈𝑱

) + 𝑪 (5) 

where C is an unknown constant capturing the fact that analyst cannot measure absolute levels 

of utility. (Notice that the summation term (∑ 𝑒𝑉𝑛𝑗
𝑗∈𝐽 ) is in the denominator of the MNL model 

in Eqn. 2. The natural log of this summation term is known as the “logsum.” The summation 
term that appears in both Eqn. 5 and the denominator in Eqn. 2 has no economic meaning, it is 
simply a property of the MNL model assumptions (Train, 2009). Nevertheless, the closed-form 
expression for consumer surplus, which is simply the natural log of the denominator of the MNL 
model, is convenient for analysis purposes. 

Although Eqn. 5 shows that an analyst cannot obtain an absolute level of expected consumer 
surplus for a decision-maker because of the constant C; fortunately, the analyst can obtain the 
difference in expected consumer surplus that arises from an investment or policy or technology 
that impacts the observable component of utility, 𝑉𝑛𝑗. Equation 6 shows the result of 

comparing the expected consumer surplus of decision-maker n before (subscript 0) and after 
(subscript 1) the implementation of a policy/investment/technology, where the constant C in 
Eqn. 5 drops out when calculating the difference in expected consumer surplus before and after 
the policy/investment/technology. The current study extends and utilizes the formulation in 
Eqn. 6 extensively to analyze the increase in consumer surplus associated with the inclusion of 
two SAMS modes in the mode choice sets of commuters. 
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𝚫𝑬[𝑪𝑺𝒏] =
𝟏

𝜶𝒏
[𝐥𝐧 (∑ 𝒆𝑽𝒏𝒋

𝟏

𝒋∈𝑱𝟏

) − 𝐥𝐧 (∑ 𝒆𝑽𝒏𝒋
𝟎

𝒋∈𝑱𝟎

)] (6) 

Ben-Akiva and Lerman (1979) argue that the most appropriate accessibility measure is the 
maximum utility obtainable from a travel choice for a given traveler. Similar to the arguments in 
Eqn. 3 and Eqn. 4, Ben-Akiva and Lerman (1979) also suggest that in a model of random utility, 
where the utility of each travel alternative is not known exactly, the expected maximum utility 
is an appropriate measure of accessibility. The paper goes on to show that accessibility and 
consumer surplus are equivalent under the MNL model assumptions and the logsum is a 
measure of accessibility.  

Ben-Akiva and Lerman (1979) describe important properties of the MNL model assumptions. 
One notable property is monotonicity in accessibility with respect to the choice-set size, 
meaning including additional choice alternatives (e.g. SAMS modes) in the choice set must 
increase consumer surplus/accessibility.  

Niemeier (1997), in one of the first studies to employ the logsum accessibility measure, 
analyzes employment accessibility by estimating a joint work destination-commute mode 
choice model. Zondag et al. (2015) use logsums to measure accessibility and analyze the 
interactions between land-use and transportation in Netherlands. Standen et al. (2019) use the 
logsum to measure accessibility and subsequently appraise non-motorized modes such as 
walking and biking.  

In limited applications, the logsum has provided significant value in transportation and land-use 
policy analysis and investment decisions (de Jong et al., 2007; Kohli and Daly, 2016; Villanueva 
et al., 2018; Zondag et al., 2015). However, the logsum measure still suffers from several 
negative attributes that have limited its use in practice, namely: (i) it is difficult to communicate 
the economic measure and the quantitative results to non-technical decision-makers; and, (ii) 
calculating and validating logsum measures is difficult for modelers who use highly detailed, 
data-intensive activity-based travel demand modeling software and dynamic network modeling 
software (Villanueva et al., 2018). 

Modeling the Impacts of SAMS Modes 

The potential societal benefits and pitfalls of AVs and SAMS modes have motivated significant 
research in recent years. Fagnant and Kockelman (2015) present a macro-analysis of the 
potential benefits and negative impacts of AVs on existing transportation systems and society in 
general, including, decreases in crashes and fatalities, parking cost savings, and congestion 
reductions. Early SAMS research focused on understanding the road network congestion and 
vehicle emissions impacts of SAMS modes while simultaneously trying to estimate SAMS fleet 
sizes (Burns et al., 2013; Fagnant and Kockelman, 2014; Zachariah et al., 2014). Later work has 
focused on improving models and algorithms for the operation of SAMS fleets (Dandl et al., 
2019; Hörl et al., 2019; Hyland and Mahmassani, 2018; Iglesias et al., 2017; Tsao et al., 2018). 
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Additionally, researchers are conceptualizing and modeling the potential impacts of SAMS 
modes on trip generation (Truong et al., 2017); land-use, energy, and emissions (Wadud et al., 
2016); and residential location choice (Zhang and Guhathakurta, 2018). Vyas et al. (2019) 
incorporate AVs within an existing activity-based travel demand model (ABM) by including new 
ABM sub-models and making changes to parameters in existing ABM sub-models. A recent 
review article details the modeling advances related to AVs and SAMS modes in the academic 
literature (Soteropoulos et al., 2019). Several studies also present stated preference (SP) survey 
results regarding the willingness of travelers to use and pay for AV and SAMS modes. Becker 
and Axhausen (2017) and Gkartzonikas and Gkritza (2019) present recent reviews of these SP 
survey studies. 

Accessibility Analysis of AVs and SAMS Modes 

There are a few studies in the existing literature that examine the potential accessibility 
benefits of AVs and SAMS modes. Meyer et al. (2017) examine the accessibility improvements 
of AVs under three different conditions: (i) AVs can only operate on highways; (ii) AVs can 
operate anywhere but SAMS modes do not exist (only personally owned AVs do); and (iii) AVs 
can operate anywhere and SAMS modes exist. Unlike the current study, Meyer et al. (2017) 
focus on the accessibility benefits associated with the improved travel times (assuming AVs 
significantly increase roadway capacities) and the study also explicitly captures induced 
demand. However, Meyer et al. (2017) use the gravity model denominator measure of 
accessibility rather than the logsum-based measure and their analysis does not capture 
variations in accessibility as a function of the attributes of individual travelers, nor does it 
capture the relative worth of opportunities across segments of the population, whereas, the 
current study does capture these effects.  

Milakis et al. (2018), using the four components of accessibility identified by Geurs and van 
Wee (2004), survey seventeen international experts to examine how experts expect AVs to 
impact accessibility. According to this qualitative study, the experts expect AVs to have wide-
ranging impacts on land-use, transportation, temporal, and individual components of 
accessibility. However, the experts disagree in terms of how AVs will impact accessibility.  

Similar to the current study, Childress et al. (2015) also use destination-mode choice model 
logsums to evaluate the impacts of AVs. However, the accessibility analysis section of their 
study includes limited methodological details and only one set of results. The current study 
provides a much more in-depth description of the employment accessibility analysis 
methodology as well as a wide range of results relating to the employment accessibility impacts 
of SAMS modes using destination-mode choice logsum measures. Moreover, the current study 
also clusters workers based on their socio-demographic characteristics to improve the ability of 
the model to capture accessibility differences across the working population. Interestingly 
though, similar to the current study, Childress et al. (2015) also find little difference in the 
impact of AVs on accessibility across households with high and low incomes. 
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Data and Methodology 

Overview 

Figure 1 displays the methodological framework for this study. The data sources and relevant 
variables are shown in blue text boxes; the models, software, and calculations are shown in 
orange text boxes; and the dashed white boxes show the model/calculation outputs. The 
research methodology clearly involves a variety of different data sources, models, and 
calculations to quantify the employment accessibility benefits (i.e. consumer surplus) 
associated with the inclusion of two SAMS modes in the mode choice sets of workers.  

The remainder of this section describes the data sources and variables; provides the scope of 
the modeling framework and key modeling assumptions; presents the LCA clustering approach; 
details the hierarchical destination-mode choice modeling procedure; and shows how this study 
employs the logsum measure of accessibility presented in Section 2. The population synthesis 
procedure, destination choice set generation procedure, and the OLS car cost per mile model 
are relatively straightforward; thus, they are only described briefly in the subsections below. 
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Figure 1. Flowchart Illustrating Methodological Framework 

Data 

This subsection provides an overview and description of the data sources employed in this 
study (displayed in Figure 1) as well as information on dataset preparation for different models 
and calculations. The analysis area is the SCAG region that includes the counties of Imperial, Los 
Angeles, Orange, Riverside, San Bernardino and Ventura. The analysis (i.e. research 
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2. Distances, mode-dependent travel times (wait, walk, in-vehicle), and transit fares 
between each pair of Origin-Destination (OD) zones (i.e. home and work census tracts) 
in the SCAG region, as well as parking costs in each destination zone. 

3. Driving costs between OD zones. 

4. The number of employment opportunities and employment entropy in destination 
zones. 

5. Population density and land use entropy in OD zones. 

6. Marginal distributions of household attributes across census tracts. 

A sample of SCAG workers is available in the 2012 California Household Travel Survey (CHTS) 
(National Renewable Energy Laboratory, 2017) and it contains detailed travel (e.g. commute 
mode) and activity information (e.g. work location) on 42,116 persons belonging to 15,713 
households in the SCAG region. The publicly available version of the CHTS dataset provides 
location information at the census tract level. Therefore, this study analyzes the impacts of 
SAMS modes on employment accessibility at the census tract level of spatial aggregation. Since 
the study focuses on employment accessibility, the final dataset only includes employed 
persons. The study uses the CHTS data, directly or indirectly, in all six models and calculations in 
Figure 1.  

The travel time, (driving) distance, and transit fare data between OD zones (i.e. OD skim 
matrices) are available from the SCAG metropolitan planning organization (MPO). The SCAG’s 
regional travel demand model and 2012 model validation report (SCAG, 2016) provides details 
on the available data. The SCAG dataset includes OD skim matrix information across travel 
analysis zones (TAZs) that have different spatial boundaries than census tracts. To convert from 
TAZs to census tracts, this study utilizes the SCAG network data and the information on census 
tract boundaries. The former includes TAZ IDs for each node in the SCAG network and the latter 
allows one to convert TAZ IDs to census tract IDs. Finally, as mentioned previously, the study 
only considers the peak-hour travel times.  

Unfortunately, the SCAG dataset does not include an OD skim matrix for walking distance or 
walking time. Assuming the walking distance for commute trips is similar to driving distance 
(implicitly assuming workers can and do walk alongside roadways), to calculate walking times 
between OD zones, this study divides the driving distance by a walking speed of 3 miles per 
hour – around the average pedestrian walking speed (Fitzpatrick et al., 2006).  

This study also assumes the in-vehicle travel times (IVTT) of the SAMS modes are equivalent to 
the drive-alone mode. However, the SAMS modes include a five-minute wait time at the 
beginning of the trip. In the SAMS+Transit option, the study assumes the SAMS trip segment 
would not be greater than 10 miles and not more than 50% of the total travel distance. For 
simplicity, the study only allows SAMS to be a transit access mode, not a transit egress mode. 
Additionally, total transfers (including the SAMS to transit transfer) for the SAMS+Transit option 
will be less than or equal to two. Given these constraints and using the car and transit total 
travel time OD skim matrices, the transfer point that minimizes overall travel time can be 
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determined. After determining the transfer point, it is possible to obtain OD skim matrices for 
total travel, in-vehicle, wait, transfer, and egress travel times for the SAMS+Transit mode.  

Driving cost data for different makes and models of cars is not directly available from any 
source. Therefore, this study estimates driving cost per mile, as a function of vehicle 
characteristics, using two different sets of data sources. The first is the aforementioned CHTS 
data that provides information on the vehicle each respondent owns. The second is the five-
year cost of car ownership data from Edmunds (2019) and Kelley Blue Book (KBB, 2019). The 
study estimates the cost per mile for the drive-alone mode for each worker in the CHTS sample 
by first developing and then applying an ordinary least squares (OLS) regression model based 
on observations of cost per mile data collected from Edmunds (2019) and Kelley Blue Book 
(2019). A total of 297 observations of total cost of ownership were drawn from these sources 
that represented vehicles of different make, model, cylinder type, age, and category. These 
websites report five- year cost estimates of new and used vehicles assuming the vehicles are 
driven 15,000 miles per year. The costs include tax credits, insurance, maintenance, repairs, 
taxes and fees, financing, depreciation, and fuel. Categorical variables in the OLS cost per mile 
model include: four purchasing price categories, three body types, five cylinder categories, and 
several vehicle ages. The purpose of the vehicle cost model is to more accurately reflect the 
actual cost each worker spends while driving alone to work, based on the make, model and age 
of his/her vehicle, rather than assuming a flat driving cost per mile. To account for the 
difference in the cost of new versus used vehicles, the cost per mile value is raised by 19.9% if 
the car was acquired new or is less than or equal to six years old. This rate is based on the 
average cost difference of five different vehicles with an ownership of 5 years and 15 years (Q, 
2019). The car total cost per mile results are shown in Table 7 in the Appendix and they 
illustrate that there are significant differences in the costs per mile across vehicle types.  

Data on the number of employment opportunities, by job category, in each destination zone is 
available in the 2012 Longitudinal Employer-Household Dynamics (LEHD) database (US Census 
Bureau, 2012). This study uses the LEHD database to create destination choice sets as well as to 
characterize the destinations in the work destination choice model. The analysis involves 
converting the 20 job categories in the LEHD database to eight categories following the 
classification structure used in the US EPA’s Smart Location Database (US EPA, 2014). The Smart 
Location Database (US EPA, 2014) and Mitra and Saphores (2017) contain data on population 
density and land use entropy, respectively.  

Finally, the marginal distribution of household (HH) attributes (e.g. HH income, HH size, number 
of HH workers) across census tracts is available in the 2012 American Community Survey (ACS) 
(US Census Bureau, 2013). This study uses the ACS marginal distributions and the sample of 
CHTS workers to create a synthetic population of workers in the SCAG region. 

Modeling Scope and Assumptions 

AVs and SAMS modes are expected to have wide-ranging impacts on transportation systems 
and land-use in metropolitan regions. Trying to model all the potential impacts simultaneously 
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is beyond the scope of this study. Hence, this study assumes the introduction of SAMS modes 
will mainly impact the mode choice and destination choice of workers. Conversely, this study 
assumes no major changes in the residential locations of workers nor in the workplace locations 
of employers. Future research can explore these choice dimensions jointly.  

This study also assumes no major changes in the road network travel times in a future with AVs 
and SAMS modes. This assumption is made for several reasons. First, this study aims to provide 
somewhat conservative estimates of the employment accessibility benefits of SAMS modes. 
This reasoning is also why the current study does not assume the disutility of IVTT will decrease 
when workers commute via SAMS models or personal AV modes, unlike other studies in the 
literature (Vyas et al., 2019). Second, it is not clear what overall impact AVs and SAMS modes 
will have on network congestion (and whether policy makers will implement congestion pricing 
mechanisms or other policies to try to mitigate congestion). While AVs are expected to improve 
the stability and throughput of traffic (Talebpour and Mahmassani, 2016), the benefits 
(including accessibility benefits) of AVs and SAMS modes are expected to significantly increase 
demand for vehicle-based travel, thereby pushing congestion levels back toward current levels, 
if travelers are unwilling to share rides with other travelers (Meyer et al., 2017). Capturing the 
demand-supply feedback loop between the impact of accessibility benefits and traffic flow 
benefits of AVs and SAMS modes on travel demand, and the subsequent impact of increased 
travel demand on network congestion, is left for future research. 

Clustering Workers 

The first step of the research methodology (see Figure 1) involves clustering workers based on 
their socio-demographic attributes. The study assumes clustering workers based on socio-
demographic attributes can partially capture how different workers value different types of 
employment opportunities. For instance, a cluster representing high-income, high-education 
workers may value education jobs significantly more than retail jobs; whereas, the reverse may 
be true for low-income, young workers. Hence, the LCA model captures socio-demographic 
differences in order to subsequently capture the fact that a new travel mode that improves 
travel times/costs to destinations with education jobs will improve accessibility for high-
income, high-education workers more than a new travel mode that improves travel times/costs 
to destinations with retail jobs. 

To cluster workers in the CHTS sample, this study employs the LCA clustering approach. In 
comparison to other clustering methods, LCA provides the advantage of statistically confirming 
the number of classes as well as incorporating multivariate discrete categorical data (Dean and 
Raftery, 2010; Greene and Hensher, 2003), the latter property being necessary for the socio-
demographic data in this study. The mathematical formulation of the LCA model is provided in 
Eqn. 7-9 (Linzer and Lewis, 2011).  

Let 𝑉 denote the set of manifest variables, indexed by 𝑣 ∈ 𝑉; and let 𝐾𝑣 denote the set of 
outcomes for each manifest variable 𝑣 ∈ 𝑉, indexed by 𝑘 ∈ 𝐾𝑣, wherein the subscript 𝑣 
denotes the fact that the number of possible outcomes varies across manifest variables 𝑣 ∈ 𝑉. 
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Moreover, let 𝐶 denote set of classes, indexed by 𝑐 ∈ 𝐶; and let 𝑁, once again, denote the set 
of individuals, indexed by 𝑛 ∈ 𝑁. Finally, let 𝑌𝑛𝑣𝑘  equal 1, if individual 𝑛 ∈ 𝑁 has outcome 𝑘 ∈
𝐾𝑣  on variable 𝑣 ∈ 𝑉, and 0 otherwise. The LCA model approximates the observed joint 
distribution of the manifest variables as the weighted sum of a finite number, |𝐶|, of 
constituent cross-classification tables, where the analyst sets |𝐶| (Linzer and Lewis, 2011). 

The probability an individual 𝑛 ∈ 𝑁  in class 𝑐 ∈ 𝐶 produces a specific set of |𝑉| outcomes on 
the manifest variables 𝑉, assuming conditional independence of the outcomes 𝑌𝑛𝑣𝑘  given class 
memberships, is the product: 

𝒇(𝒀𝒏; 𝝅𝒄) = ∏ ∏ (𝝅𝒗𝒄𝒌)𝒀𝒏𝒗𝒌

𝒌∈𝑲𝒗𝒗∈𝑽

 (7) 

where, 𝜋𝑣𝑐𝑘  is the class-conditional probability a member of class 𝑐 results in outcome 𝑘 on 
variable 𝑣. 𝜋𝑣𝑐𝑘  is a model parameter that needs to be estimated and has the property: 
∑ 𝜋𝑣𝑐𝑘𝑘∈𝐾𝑣

= 1 for all 𝑣 ∈ 𝑉 and 𝑐 ∈ 𝐶.  

The probability density function across all |𝐶| classes is simply the sum of class-conditional 
probabilities (𝑓(𝑌𝑛; 𝜋𝑐) weighted by 𝑝𝑐: 

𝑷(𝒀𝒏|𝝅𝒗𝒄𝒌, 𝒑𝒄) = ∑ 𝒑𝒄

 𝒄∈𝑪

𝒇(𝒀𝒏; 𝝅𝒄) = ∑ 𝒑𝒄

 𝒄∈𝑪

∏ ∏ (𝝅𝒗𝒄𝒌)𝒀𝒏𝒗𝒌

𝒌∈𝑲𝒗𝒗∈𝑽

 (8) 

where, 𝑝𝑐 is the unconditional probability that an individual will belong to class 𝑐 before 
considering the outcomes on the manifest variables (𝑌𝑛𝑣𝑘). 𝑝𝑐 is another model parameter that 
needs to be estimated. The 𝑝𝑐 values are also known as the mixing probabilities and the “prior” 
probabilities of latent class membership, with property: ∑ 𝑝𝑐𝑐∈𝐶 = 1 

The study estimates the LCA models (i.e. 𝑝𝑐 and 𝜋𝑣𝑐𝑘) using the poLCA package in the 
programming language R, which utilizes Expectation Maximization (EM) and Newton-Raphson 
algorithms (Linzer and Lewis, 2011). Once parameter estimates for 𝑝𝑐 and 𝜋𝑣𝑐𝑘  are obtained, 
the posterior probability that individual 𝑛 belongs to a specific class 𝑐, can be calculated using 
Bayes’ formula: 

𝑷 ̂ (𝒄𝒏|𝒀𝒏) =
𝒑𝒄𝒇(𝒀𝒏; 𝝅𝒄)

∑ 𝒑𝒄′ 𝒄′∈𝑪 𝒇(𝒀𝒏; 𝝅𝒄′)
 (9) 

In addition to choosing the number of clusters |𝐶|, the analyst also determines the manifest 
variables. To find latent classes of workers, this study considered the socio-demographic 
attributes of the workers in the CHTS. The final model includes four categorical variables, 
namely, gender, age, education, and household income. The study also considered the number 
of vehicles per licensed driver in the household, but it was excluded because it did not help 
meaningfully distinguish between workers in the dataset. 



 16 

Hierarchical Destination-Mode Choice Model 

This section provides an overview of the modeling procedure to obtain parameter estimates for 
a hierarchical destination-mode choice model. The parameter estimates are necessary inputs to 
calculate logsum-based measures of accessibility.  

Let 𝑖𝑛 denote the census tract of worker 𝑛’s residence (i.e. commute trip origin) and 𝑂 the set 
of all origin census tracts, 𝑖𝑛 ∈ 𝑂. Moreover, let 𝐷𝑛 denote the work destination locations 
worker 𝑛 considers, indexed by 𝑗 ∈ 𝐷𝑛 , where 𝐷𝑛 ⊆ 𝐽. Additionally, let 𝑀𝑗𝑛

 denote the 

commute modes worker 𝑛 considers when considering work destination 𝑗, indexed by 𝑚 ∈ 𝑀𝑗𝑛
. 

Finally, let 𝑀0 = {𝐶𝑎𝑟, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑊𝑎𝑙𝑘} be the set of all commute modes before the 
introduction of SAMS modes, and let 𝑀1 = {𝐶𝑎𝑟, 𝑇𝑟𝑎𝑛𝑠𝑖𝑡, 𝑊𝑎𝑙𝑘, 𝑆𝐴𝑀𝑆, 𝑆𝐴𝑀𝑆 + 𝑇𝑟𝑎𝑛𝑠𝑖𝑡} be 
the set of all commute modes after the introduction of SAMS modes, where 𝑀𝑗𝑛

⊆ 𝑀0  

Given the nature of the CHTS data (National Renewable Energy Laboratory, 2017), it is not 
possible to determine the set of work destinations each worker actually considers. Hence, this 
study generates a random sample of 29 work destination census tracts, along with the 
destination census track where the worker currently works 𝑗𝑛, to populate the destination 
choice set for each worker, i.e. |𝐷𝑛| = 30. The study draws the 29 destinations from the LEHD 
data, which provides job flows between pairs of census tracts. The method does not assume all 
destinations in the SCAG region can be in 𝐷𝑛; rather, a search distance of 50 miles was imposed 
around 𝑖𝑛 beyond which it seemed unreasonable to commute on a regular basis. Mitra and 
Saphores (2019) find that only 6.4% of long-distance (50+ mile) trips in California are commute 
trips. However, this search distance was sometimes extended when the number of destinations 
was inadequate (e.g. around rural areas where commutes can be quite long). Besides 
decreasing computational time, limiting the number of alternatives in the choice set also 
minimizes the risk of overwhelming the model with unreasonable destination locations (Ortúzar 
and Willumsen, 2011).  

It is also necessary to determine the modes available to each worker to commute to each of the 
destinations in their destination choice set. The walk, car, and transit modes are considered 
available for each worker for each destination unless (i) the total travel time between the 
worker’s origin, 𝑖𝑛, and a potential destination 𝑗 ∈ 𝐷𝑛 is greater than three hours for a mode, or 
(ii) the worker does not own a personal car, in which case, the car is not available in their choice 
set.  

Error! Reference source not found. displays this hierarchical destination-mode choice structure 
for an example worker 𝑛 with origin location 𝑖𝑛. This hierarchical structure assumes workers 
determine their work location before choosing their commute mode; however, it also assumes 
they consider the attributes of the potential commute modes in each destination, along with 
the other destination attributes, when determining their work location. The assumption that 
the mode choice is nested within the employment destination choice is (i) based on the fact 
that employment location is typically considered to be a more important and longer term 
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decision than mode choice, (ii) something that can be statistically tested and verified within the 
hierarchical discrete choice modeling framework, and (iii) consistent with much of the existing 
literature that assumes and statistically verifies that mode choice is a lower-level choice than 
work destination choice.  

 

Figure 2. Hierarchical Structure of Destination-Mode Choice Model 

Given the MNL assumptions described in Section 2.2, the probability 𝑃𝑚|𝑗
𝑖𝑛  that worker 𝑛 residing 

in origin 𝑖𝑛 chooses mode 𝑚 ∈ 𝑀𝑗𝑛
 given the choice of destination 𝑗 ∈ 𝐷𝑛 can be expressed as 

(González et al., 2016): 

𝑷𝒎|𝒋
𝒊𝒏  =

𝒆𝑽𝒎|𝒋
𝒊𝒏  

∑ 𝒆
𝑽

𝒎′|𝒋

𝒊𝒏  
𝒎′∈𝑴𝒋𝒏

 (10) 

where 𝑉𝑚|𝑗
𝑖𝑛 is the systematic component of utility that worker 𝑛 derives from taking mode 𝑚 to 

commute between her origin 𝑖𝑛 and potential destination 𝑗. The term 𝑉𝑚|𝑗
𝑖𝑛 = ∑ 𝛽𝑎𝑋𝑎,𝑚|𝑗

𝑖𝑛
𝑎∈𝐴𝑚  is 

the product sum of a vector of coefficients to be estimated (𝛽) and a vector of attributes (𝑋𝑚|𝑗
𝑖𝑛 ) 

associated with mode 𝑚 between 𝑖𝑛 and 𝑗, and worker 𝑛, with both vectors having rank |𝐴𝑚|, 
where 𝐴𝑚 is the set of mode choice level attribute indices. 

The natural log of the denominator in Eqn. 10 is the mode choice logsum (i.e. inclusive value) 
that represents the maximum expected utility a worker obtains from all mode options, 𝑀𝑗𝑛

, at 

destination 𝑗 (Small and Rosen, 1981; Zhao et al., 2012). Equation 11 displays the mode choice 

logsum 𝐼𝑗
𝑖𝑛, which can be used in the upper-level destination choice model as a measurable 

attribute of potential destination 𝑗 ∈ 𝐷𝑛 (Ortúzar and Willumsen, 2011). 

𝑰𝒋
𝒊𝒏 = 𝒍𝒏 ∑ 𝒆𝑽𝒎|𝒋

𝒊𝒏  

𝒎∈𝑴𝒋𝒏

 (11) 

Level 1:  𝑫𝒏: 

Level 2:  𝑴𝒋𝒏
: 

𝑖𝑛 

𝑗    ………………… |𝐷𝑛| 

𝐶𝑎𝑟 
𝑇𝑟𝑎𝑛𝑠𝑖𝑡 𝑊𝑎𝑙𝑘 𝐶𝑎𝑟 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 

1    …………… 

𝑊𝑎𝑙𝑘 𝑇𝑟𝑎𝑛𝑠𝑖𝑡 
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At Level 1, the choice scenario involves a worker selecting a destination considering the 
attributes of the destination locations (particularly employment opportunities) as well as the 

distance and mode choice logsum (𝐼𝑗
𝑖𝑛) from 𝑖𝑛 to potential destination 𝑗. Equation 11 displays 

the mathematical formulation of the destination choice model, where 𝑃𝑗
𝑖𝑛 indicates the 

probability worker 𝑛 with origin 𝑖𝑛 chooses destination 𝑗. 

𝑷𝒋
𝒊𝒏 =

𝒆𝝁𝑰𝒋
𝒊𝒏+∑ 𝜷𝒃∙𝑿𝒃𝒋𝒃∈𝑨𝒅

∑ 𝒆𝝁𝑰
𝒌
𝒊𝒏+∑ 𝜷𝒃∙𝑿𝒃𝒌𝒃∈𝑨𝒅

𝒌∈𝑫𝒏

 (12) 

In Eqn. 12, 𝑋𝑗 is a vector of attributes describing destination 𝑗; 𝛽 is a vector of coefficients, to be 

estimated, that convert the destination attributes into utility units; and, 𝜇 is the parameter 

coefficient for the mode choice logsum (𝐼𝑗
𝑖𝑛) that verifies the destination-mode choice structure 

if 𝜇 < 1. The term 𝜇𝐼𝑗
𝑖𝑛 connects the mode choice model in Level 2 with the destination choice 

model in Level 1. Both 𝛽 and 𝑋𝑗 have rank |𝐴𝑑| where 𝐴𝑑  is the set of destination choice level 

attribute indices. 

Let 𝑃𝑚𝑗
𝑖𝑛  represent the probability worker 𝑛 with origin 𝑖𝑛 chooses commute mode 𝑚 and 

employment destination 𝑗. Assuming a hierarchical choice wherein the commute mode choice 

is nested within the work destination choice, Eqn. 13 shows that 𝑃𝑚𝑗
𝑖𝑛  is the product of Eqn. 12 

and Eqn. 10. The hierarchical choice model can be estimated simultaneously or sequentially. 
Given the size of the CHTS dataset, this study estimates the hierarchical choice model 
sequentially. 

𝑷𝒎𝒋
𝒊𝒏 = 𝑷𝒎|𝒋

𝒊𝒏 ∙ 𝑷𝒋
𝒊𝒏 (13) 

The natural log of the denominator in Eqn. 12 is the destination choice logsum that represents 
the maximum expected utility a worker obtains from all work destination choice options 𝐷𝑛. 
Equation 14 shows that multiplying the destination choice logsum by 1/𝛼, where 𝛼 is still the 
marginal utility of income, provides the consumer surplus for the hierarchical destination-mode 
choice, which is our measure of employment accessibility. Consistent with much of the 
literature (Ortúzar and Willumsen, 2011; Train, 2009), this study uses the marginal disutility of 
travel cost parameter from the mode choice model, to obtain the 𝛼 value. 

𝑨𝒄𝒄𝒆𝒔𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚𝒏 =  𝑪𝑺𝒏 =
𝟏

𝜶
𝒍𝒏 ∑ 𝒆

𝝁𝑰𝒋
𝒊𝒏+∑ 𝑿𝒂𝒋𝒂 𝜷𝒂

𝒋∈𝑫𝒏

+ 𝑪 (14) 

This study estimates one set of mode choice parameter values, 𝛽𝑎, for all workers. However, 
the study estimates separate destination choice parameter values, 𝛽𝑏, for each separate worker 
cluster. 
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Logsum Measure of Employment Accessibility 

To apply the estimated hierarchical destination-mode choice model, a 5% representative 
population was generated for each census tract of the SCAG region. The representativeness of 
the population was established by using the marginal distribution of four household level 
variables – household size, household income, number of workers in the household, and 
number of household vehicles. Values for these four variables come from the 2012 American 
Community Survey (ACS). Other synthetic population generation inputs include the household 
and person dataset from the CHTS sample (National Renewable Energy Laboratory, 2017).  

The generation of the synthetic population was carried out using the ‘Population Synthesis’ tool 
in TransCAD (Caliper, 2019), which employs the Iterative Proportional Fitting (IPF) algorithm to 
match the marginal distribution of the census tracts with the joint distribution of the household 
attributes (Beckman et al., 1996). After creating the synthetic population, 44 out of the 3,951 
census tracts had missing data, which is mostly due to the absence of households or workers in 
these census tracts according to the ACS data.  

To quantify the employment accessibility benefits of the two SAMS modes, this study defines 
two sets of commute modes:  

• Pre-SAMS Modes, 𝑀0: Walk, Drive Alone and Transit 

• Post-SAMS Modes, 𝑀1: Walk, Drive Alone, Transit, SAMS-only, SAMS+Transit 

This study assumes that the SAMS-only mode has many of the same modal attributes as the 
Drive Alone mode, except the SAMS-only mode has zero parking cost, a different cost per mile, 
and a wait time. The SAMS+Transit mode is treated as a mix between the Drive Alone and 
Transit modes.  

Given the synthetic population, the parameter estimates from the hierarchical destination-
mode choice model (and the assumed parameters for the SAMS-only mode and the 
SAMS+Transit mode), Eqn. 15 displays the formula to determine the increase in employment 
accessibility as a result of two new SAMS commute modes. The superscripts 1 and 0 represent 
the model with and without SAMS respectively. 

∆𝑨𝒄𝒄𝒆𝒔𝒔𝒊𝒃𝒊𝒍𝒊𝒕𝒚 = ∆𝑪𝑺 =
𝟏

𝜶
[𝐥𝐧 (∑ 𝒆𝑽𝒋𝒎

𝟏

𝒋,𝒎

) − 𝐥𝐧 (∑ 𝒆𝑽𝒋𝒎
𝟎

𝒋,𝒎

)] (15) 

Results and Discussion 

Characteristics of the Latent Classes 

This section presents the LCA model results. To ensure optimality of the classification, this study 
considered class sizes up to 10 and for each class size the specified model was run 50 separate 
times with a random set of initial probabilities conditional on the class and manifest variables. 
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This was required to increase the prospect of reaching a global maximum solution rather than a 
local maximum. The model with four classes was found to have the lowest cAIC (i.e., consistent 
AIC) and second lowest BIC. 
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Figure 3. Class-Condition Probabilities 
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Figure 3 displays the estimates for 𝜋𝑣𝑐𝑘, the class-conditional probability a member of class c 
results in outcome k on variable v. Figure 3 shows that the class-conditional probabilities for 
education and income vary the most across the classes. Conditional on being in Class 1, the 
probability of having a college degree and making more than $100k per year is the highest 
across classes. Conversely, conditional on being in Class 2, the probability of not having a 
college education and making less than $50k per year is the highest across classes. Conditional 
on being in Class 4, the likelihood of being younger than 25 is much higher than for other 
worker classes. Figure 3 also shows that there is not much difference in the class-conditional 
probabilities for gender, with the female probabilities of ranging from 42% to 50%. Other than 
Class 4, the class-conditional age probabilities are consistent across Classes 1, 2, and 3. 

Table 1 labels the classes based on their class-conditional probabilities in the final four columns. 
The third column displays the estimates for the parameter 𝑃𝑐, the unconditional probability that 
an individual will belong to class c. The second column displays the results of the assignment of 

the sample workers to classes considering the posterior probability 𝑃̂(𝑐𝑛|𝑌𝑛). Each worker n 
was assigned to the class c with the highest posterior probability.  

The workers in Class 2 have low education attainment levels and live in households with annual 
incomes below $50k. This class of workers only makes up 8.3% of the sample of CHTS workers. 
On the other hand, the workers in Class 1 have high education attainment levels and live in 
households with annual incomes above $50k with most household annual incomes above 
$100k. This class of workers makes up 32.4% of the CHTS sample. The workers in Class 4 are 
most notably young, with low education attainment (likely because they are young) and live in 
households with a wide range of incomes. This class of workers makes up only 9.5% of workers 
in the CHTS sample. Finally, the workers in Class 3 have a relatively even distribution of ages 
and education levels. However, their household annual incomes are noticeably in the middle-
income levels and this class has a disproportionately high number of female workers. The 
workers in Class 3 make up 50% of workers in the CHTS sample. 

Table 1. Characteristics of the Classes with respect to Four Manifest Variables 

Class 
Proportion Assign 
from Post. Prob 

Unconditional 
Class Prob. 

Class Representation 

Gender Age Education Income 

1 0.324 0.280 - - Graduate/Bachelors Upper Middle/High 

2 0.083 0.140 - - Below High School Low/Lower Middle 

3 0.498 0.433 Female - - Middle 

4 0.095 0.147 - 16-25 
High School/ Some 

College 
- 

 
Table 2 displays the distribution of socio-demographic and travel characteristics across the four 
worker classes and the significance of their differences with respect to the p-values of chi-
square and ANOVA tests. Once again, workers in the CHTS sample were assigned to the class 
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with the highest posterior probability. The second column of Table 2 also shows the distribution 
of socio-demographic and travel characteristics for all workers (i.e. without clustering). The first 
four variables, from the LCA model, verify a statistically (and practically) significant difference 
between the four classes in terms of the four manifest variables.  

In addition to the socio-demographic differences in the classes, there are significant differences 
in the distribution of variables pertaining to household/person characteristics, travel 
characteristics, and work location attributes. The most important is the current employment 
sector of workers because the study assumes that different workers value different 
employment types differently; hence, in the destination choice model it is valuable to cluster 
workers based on the type of jobs they are likely to value. As expected, Table 2 illustrates 
significant differences between the classes in terms of current employment type. Moreover, 
the crosstab values between employment sector and class (considering the LCA class attributes) 
are unsurprising. Class 1 workers, who have the highest education and household incomes, 
have more jobs in education and offices than the other three classes. Class 2 workers, who are 
predominately male without college degrees and have low household incomes, have a much 
higher percentage of industrial jobs than the other worker classes. Class 3 workers, who are in 
medium income households, have the highest percentages of jobs in healthcare and public 
administration sectors. Finally, Class 4 workers, who are the youngest, are more likely to have 
jobs in entertainment and retail than the other worker classes.  

The employment type results, specifically the statistical significance across clusters, provide 
some evidence that the LCA method, which used only four socio-demographic manifest 
variables, clustered workers in a manner that should be effective in terms of differentiating the 
types of employment opportunities different segments of the working population value. 

Table 2. Distribution of Socio-demographic and Travel Characteristics Across Classes 

Characteristics 
All Class 
(N= 12,733) 

Class 1 
(N= 4,125) 

Class 2 
(N=1,055) 

Class 3 
(N=6,343) 

Class 4 
(N=1,210) 

Significance of 
Difference 

Household/Person 

Gender 
Male 
Female 

 
52.49 
47.51 

 
56.56 
43.44 

 
68.91 
31.09 

 
47.23 
52.77 

 
51.82 
48.18 

Pr(> χ2) = 0.00 

Age (years) 
16-25 
26-35 
36-45 
46-55 
56-65 
66+ 

 
9.68 
13.28 
19.33 
28.68 
23.96 
5.07 

 
0.24 
10.06 
22.11 
34.35 
27.78 
5.45 

 
2.94 
13.84 
29.57 
35.36 
14.31 
3.98 

 
0.03 
17.75 
19.50 
29.10 
27.65 
5.96 

 
98.35 
0.33 
0.00 
1.32 
0.00 
0.00 

Pr(> χ2) = 0.00 

Education 
Below High School 
High School Graduate 
Some College Credit 
Associate Degree 
Bachelor’s Degree 
Graduate Degree 

 
5.32 
15.58 
17.39 
11.16 
27.57 
22.98 

 
0.00 
0.36 
1.62 
0.68 
40.87 
56.46 

 
58.86 
38.01 
3.13 
0.00 
0.00 
0.00 

 
0.00 
18.45 
26.39 
20.09 
25.67 
9.41 

 
4.63 
32.89 
36.36 
9.83 
16.28 
0.00 

Pr(> χ2) = 0.00 
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Characteristics 
All Class 
(N= 12,733) 

Class 1 
(N= 4,125) 

Class 2 
(N=1,055) 

Class 3 
(N=6,343) 

Class 4 
(N=1,210) 

Significance of 
Difference 

Household Income ($1,000) 
Low (<25) 
Lower Middle (25 to <50) 
Middle (50 to <100) 
Upper Middle (100 to <200) 
High (200+) 

 
8.43 
15.43 
35.06 
32.47 
8.60 

 
0.00 
0.00 
11.22 
64.63 
24.15 

 
52.61 
35.73 
9.86 
1.80 
0.00 

 
5.74 
22.21 
54.74 
17.31 
0.00 

 
12.81 
14.79 
35.12 
29.09 
8.18 

Pr(> χ2) = 0.00 

HH Size 3.19 3.03 3.93 2.99 4.11 Pr(> F) = 0.00 

HH Vehicle per Driver 
Low (<1 Vehicle) 
High (1+ Vehicles) 

 
15.62 
84.38 

 
9.76 
90.24 

 
26.35 
73.65 

 
15.59 
84.41 

 
27.59 
72.41 

Pr(> χ2) = 0.00 

Employment Sector 
Retail 
Office 
Industrial 
Service 
Entertainment 
Education 
Healthcare 
Public Administration 

 
9.11 
10.38 
18.70 
14.29 
8.60 
18.43 
11.66 
8.83 

 
3.49 
12.90 
12.65 
16.99 
5.31 
26.86 
12.07 
9.72 

 
12.70 
3.03 
42.46 
14.22 
13.74 
3.51 
8.06 
2.27 

 
9.16 
10.75 
20.05 
13.07 
7.20 
17.01 
12.42 
10.33 

 
24.88 
6.28 
11.49 
11.49 
22.64 
10.17 
9.42 
3.64 

Pr(> χ2) = 0.00 

Job Count 1.25 1.20 1.40 1.26 1.24 Pr(> F) = 0.00 

Work Hour (per week) 37.39 40.34 36.68 37.19 28.60 Pr(> F) = 0.00 

Work Flexibility 
No 
Low 
High 

 
41.98 
44.39 
13.63 

 
32.88 
50.58 
16.54 

 
53.33 
35.65 
11.01 

 
45.65 
41.49 
12.86 

 
44.24 
45.94 
9.82 

Pr(> χ2) = 0.00 

Travel 

Commute Distance (miles) 9.68 10.44 8.60 9.78 7.51 Pr(> F) = 0.00 

Commute Mode 
Walk 
Drive Alone 
Transit 

 
3.67 
91.51 
4.82 

 
3.49 
93.55 
2.96 

 
6.73 
79.15 
14.12 

 
2.96 
93.08 
3.96 

 
5.29 
87.11 
7.60 

Pr(> χ2) = 0.00 

Work Location 

Population Density 14.75 14.66 15.09 15.00 14.01 Pr(> F) = 0.28 

Employment Density 7.66 7.94 8.47 6.69 8.97 Pr(> F) = 0.06 

Land Use Entropy 0.52 0.52 0.53 0.50 0.53 Pr(> F) = 0.00 

Employment Entropy 0.54 0.54 0.53 0.53 0.54 Pr(> F) = 0.37 

Note: Data on land use entropy was collected from Mitra & Saphores (Mitra and Saphores, 2017), who created this index based 
on eight land use categories. 

Specification and Estimation Results of the Hierarchical Logit Model 

This section presents the final model specification and estimation results of the hierarchical 
destination-mode choice model. Since the focus of the report is on accessibility analysis, this 
section does not include a detailed discussion of each parameter estimate. The destination and 
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mode choice models were specified considering the variables in Table 2. For the lower-level 
mode choice model, the specification includes household-, person-, mode-, and some 
destination-specific variables. All destination-specific variables were considered for the 
destination choice model along with the mode choice logsum. These variables were 
incorporated in the models in different combinations and the final set of variables for each 
model were identified based on their significance, impact on the sign and significance of other 
variables, and the overall goodness-of-fit of the model.  

Table 3 shows the mode choice model estimation results for the combined dataset containing 
all four classes. Among the three alternatives in the mode choice model (‘Walk’, ‘Drive Alone’ 
and ‘Transit’), ‘Walk’ was specified as the base alternative. As the mode choice data was only 
available at a spatially aggregate level, the mode choice model estimation results were 
relatively sensitive to changes in the specification of the mode-specific variables. The final 
model specification of the mode-specific parameters includes only parameters that are 
consistent with transportation theory (i.e. cost and travel time showing a negative marginal 
utility). The total travel time includes access time, wait time, transfer time, in-vehicle travel 
time, and egress time. According to the parameter estimates, the value of total travel time 
savings (VOTTTS) is $19.7 per hour. Given this baseline, walk time is $14.3 per hour more 
onerous, resulting in a value of walk time savings of $34.1 per hour. Similarly, wait time is $11.6 
per hour more onerous, giving a value of wait time savings of $31.4 per hour. These values are 
consistent with most value-of-time ranges in the existing literature (Frei et al., 2017; Wardman, 
2004). The opposite of the coefficient for ‘Total Travel Cost’, 𝐵𝑐𝑜𝑠𝑡, is treated as the ‘Marginal 
Utility of Income’ parameter to measure consumer surplus/accessibility; i.e. 𝛼 = −𝐵𝑐𝑜𝑠𝑡.  

In terms of the individual-specific variables in the mode choice model, there are several notable 
results. Relative to males, females prefer driving alone and taking transit to walking to work. 
Age is only found to be significant for drive-alone and the two positive coefficients indicate that 
older workers (age 46-55 and 66+) are more likely to choose drive-alone than walk. The 
coefficients for household income are only significant for transit, where they suggest a 
consistently decreasing tendency to choose transit over walk when income increases from 
middle to high. There is a significant negative association between the choice of drive-alone 
and having some work flexibility. This is also true for transit, which is an indication that an 
inflexible work schedule requires workers to choose faster commute modes. Also, as expected, 
tendency to choose drive-alone is positively associated with household size, and negatively 
associated with high population density at work locations. While in the case of transit, a higher 
diversity of land uses at work locations tends to increase workers preference for transit as a 
commute mode. 
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Table 3. Hierarchical Logit Model (Lower Level: Mode Choice) Estimation Results 

Parameters Coefficients 

Total Access and Egress Time (mins) 
Total Wait Time (mins) 
Total Travel Time (mins) 
Total Travel Cost ($) 

-0.021*** 
-0.017 
-0.029*** 
-0.088*** 

Mode (Base: Walk) Drive Alone Transit 

Constant -1.004** -0.088 

Gender: female 0.565*** 0.581*** 

Age (base: 16-25) 
Age: 26-35 
Age: 36-45 
Age: 46-55 
Age: 56-65 
Age: 66 and above 

 
0.145 
0.141 
0.422* 
0.335 
0.997*** 

 
-0.432 
-0.257 
-0.195 
-0.276 
-0.130 

HH Size 0.109* 0.044 

HH Vehicle per Driver: high (base: low) 1.201*** 0.031 

HH Income (base: low) 
HH Income: lower middle 
HH Income: middle 
HH Income: upper middle 
HH Income: high 

 
-0.117 
0.282 
0.244 
0.021 

 
-0.334 
-0.522* 
-0.686** 
-1.488*** 

Work Flexibility (base: no) 
Work Flexibility: low 
Work Flexibility: high 

 
-0.587*** 
-0.378 

 
-0.455** 
-0.408 

Land Use Entropy at Destination 1.582 0.961* 

Population Density at Destination (persons/acre) -0.013* 0.001 

Model Results 

Log-Likelihood  
Wald χ2 
AIC 
BIC 

-3340.284 
488.190 
6756.568 
7035.680 

Note: Sig. codes:  0.01‘***’ 0.05‘**’ 0.10‘*’ 

Table 4 displays the results of the destination choice model which was estimated separately for 
each of the four classes. The log of distance parameter is statistically significant and negative in 
all four models, clearly indicating that workers prefer employment locations closer to their 
residence locations. Except public administration, which is negative for the relatively high-
income classes—Class 1 and Class 3—all the job type count variables are positive and have a 
high statistical significance. The interpretation of the job type count variables (with a positive 
coefficient) is that workers are more likely to choose a destination location with more jobs of a 
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specific type. Hence, looking at Class 4, the very young cluster, an additional retail job in a 
destination is significantly more impactful than an entertainment job, which is significantly 
more impactful than a health care job, which is significantly more impactful than an office job 
wherein the office job has no statistically significant value for members of Class 4.  

The signs on the percentage of medium and high-income workers in the destination are 
consistent with the representation of the income levels of the four classes. For example, High 
(Medium) Wage Worker Percentage is positive (negative) and statistically significant for Class 1, 
which is the group composed of workers from high-income and upper-middle income 
households. Employment entropy, which represents the diversity of employment opportunities, 
is positive and statistically significant for Class 1 and Class 3, which are the two highest income 
and education attainment classes, indicating diversity in employment opportunities is more 
valuable for these workers.  

The significant differences in the magnitudes of the coefficient estimates for the employment 
types (as well as employment entropy and wage-levels) across the four classes, confirm that (1) 
different types of workers value different types of employment opportunities at different 
levels, and (2) the LCA clustering approach using only age, income, gender, and education 
variables effectively captures major differences. 

Table 4. Hierarchical Logit Model (Upper Level: Destination Choice) Estimation Results 

Parameters  

Coefficients 

Class 1 
(N=3,766) 

Class 2 
(N=849) 

Class 3 
(N=5,663) 

Class 4 
(N=1,078) 

Log of Distance 
Retail Jobs 
Office Jobs 
Industrial Jobs 
Service Jobs 
Entertainment Jobs 
Education Jobs 
Health Jobs 
Public Administration Jobs 
Medium Wage Workers (%) 
High Wage Workers (%) 
Employment Entropy 
Mode Choice Logsum 

-0.733*** 
0.143*** 
0.029*** 
0.052*** 
0.024** 
0.133*** 
0.091*** 
0.133*** 
-0.022*** 
-0.013*** 
0.026*** 
0.276* 
0.371*** 

-0.668*** 
0.112* 
--- 
0.082*** 
0.044** 
0.118*** 
--- 
--- 
0.011* 
0.034*** 
--- 
--- 
0.554*** 

-0.718*** 
0.138*** 
0.025*** 
0.055*** 
--- 
0.162*** 
0.080*** 
0.104*** 
-0.018*** 
0.011*** 
0.023*** 
0.515*** 
0.427*** 

-0.917*** 
0.356*** 
--- 
0.049*** 
--- 
0.159*** 
0.106*** 
0.095*** 
--- 
--- 
--- 
--- 
0.618*** 

Log-Likelihood  
Wald χ2 
AIC 
BIC 

-8150 
2480 
16327 
16408 

-3280 
495.6 
6576 
6614 

-15632 
2870 
3128 
31368 

-4782 
765.2 
9579 
9614 

Note: Number of jobs are in thousands; Sig. codes: 0.01‘***’ 0.05‘**’ 0.10‘*’ 
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As expected, the coefficient for the mode choice logsum is positive and significant in all classes, 
indicating that in addition to distance to destinations, the modal attributes between worker 
origins and destinations impact the choice of destinations.  Moreover, the mode choice logsum 
coefficient estimates are all less than 1, which verifies the nesting of mode choice under 
employment destination choice. The relative magnitudes of the mode choice logsum coefficient 
estimates across the four worker classes provide insight into which groups may benefit the 
most from the introduction of SAMS. Table 4 indicates that improvements in commute mode 
choice alternatives may improve accessibility the most for Class 4 followed by Class 2, Class 3, 
and Class 1. Interestingly, this indicates that the high-income class (Class 1) and the middle-
income class (Class 3) may be less sensitive to changes in mode choice alternatives than the 
low-income class (Class 2) and the young worker class (Class 4). 

Employment Accessibility Improvements in the SCAG Region 

This section presents the employment accessibility analysis results. The accessibility results 
were calculated using the parameter estimates presented in Table 3 and Table 4, for workers in 
the synthetic population. The study assumes that the individual-specific mode choice 
coefficients (e.g. age, income, work flexibility, population density, etc.) for the SAMS-only mode 
are the same as the drive-alone mode in Table 3; whereas, for the SAMS+Transit mode, the 
study assumes the individual-specific mode choice coefficients are an average of the drive-
alone mode and transit mode in Table 3. Section 3 describes how the study determines modal 
attributes for the SAMS-only mode (i.e. the same as drive-alone but with no parking costs and a 
five-minute wait time at the origin) and the SAMS+Transit mode (i.e. a mix of drive-alone and 
transit). 

Employment Accessibility Benefits across Worker Classes 

Table 5 displays summary statistics comparing the consumer surplus/accessibility benefits 
across the classes. All values correspond to the 5% synthetic working population in the SCAG 
region. With respect to the total benefit, Class 3 sees the largest increase in accessibility from 
the introduction of the SAMS modes because Class 3 represents the largest portion of workers 
in the synthetic population. Considering the median benefit across the workers in each class, 
Class 4 sees the largest accessibility improvement ($9.09 per work trip), whereas Class 1 sees 
the smallest ($6.30). A look at the 25th and 75th percentiles in accessibility benefits suggest that 
most workers would receive a benefit between $5 and $10 per work trip from the introduction 
of SAMS modes. To provide additional insights, Figure 4 displays a histogram of accessibility 
benefit values for the synthetic workers in each worker class. 

Interestingly, Table 5 shows that the employment accessibility benefits across worker classes 
are relatively consistent, with the mean and median benefit values ranging between $6.34 and 
$9.20. Although there is a relatively even distribution of benefits across the four worker classes, 
the young worker class (Class 4) and the low-income class (Class 2) do benefit the most and 
second-most respectively from the SAMS modes, respectively. Considering the results in Table 
4, the difference in overall benefits from SAMS across the worker classes shown in Table 5 is 
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coming directly from the sensitivity to changes in mode choice alternatives (i.e. the coefficients 
for Mode Choice Logsum) in the destination choice model. 

Table 5. Employment Accessibility Improvements Across Classes 

Statistics 
Class 

1 2 3 4 

Total Benefit ($) 504,056 197,000 842,098 246,638 

Benefit per Capita ($) 
Minimum 
Maximum 
25th Percentile 
50th Percentile 
75th Percentile 
Mean 
Std. Deviation 

 
2.70 
20.53 
5.72 
6.34 
7.20 
6.61 
1.35 

 
4.56 
25.51 
7.87 
8.48 
9.18 
8.62 
1.31 

 
3.70 
22.12 
6.31 
6.86 
7.58 
7.06 
1.22 

 
4.30 
29.91 
8.43 
9.09 
9.85 
9.20 
1.39 

 

  

  

Figure 4. Distribution of Employment Accessibility Benefits in Each Class 
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Employment Accessibility Benefits from each SAMS Mode 

Error! Reference source not found. displays the benefits of adding both the SAMS-only mode 
and the SAMS+Transit mode to the commute choice set of workers. This section illustrates the 
percentage of overall SAMS benefits obtainable from each of the two SAMS modes, 
individually. Let 𝑀𝑆 ={SAMS-only, SAMS+Transit} be the set of SAMS modes, indexed by 𝑚𝑆 ∈
𝑀𝑆. Equation 16 displays the formula for determining the percentage of the overall SAMS 
accessibility benefit that is obtainable from just adding one of the two SAMS modes to the 
workers’ choice sets. It is important to note that Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑠  ≠
Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝐴𝑀𝑆𝑜𝑛𝑙𝑦 + Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑆𝐴𝑀𝑆+𝑇𝑟𝑎𝑛𝑠𝑖𝑡; therefore, it is necessary to calculate 

Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑚𝑠 for each SAMS mode individually added to the workers mode choice sets. 

%𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝐴𝑀𝑆 𝐵𝑒𝑛𝑒𝑓𝑖𝑡𝑚𝑠 =
Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑚𝑠

Δ 𝐴𝑐𝑐𝑒𝑠𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑠
 (16) 

Figure 5 displays the share of the total SAMS accessibility benefits from the two SAMS modes—
SAMS-only and SAMS+Transit—obtainable from just incorporating one of the two SAMS modes 
into each worker’s mode choice set. The results suggest that just adding the SAMS-only mode 
can provide at least 98% of the total accessibility benefits of both SAMS modes for all four 
classes. Conversely, just adding the SAMS+Transit mode only provides 2-4% of the accessibility 
benefits of both SAMS modes across the four classes. These results imply that SAMSs may 
provide very little benefit to workers as a mode to access transit in Southern California. 
Moreover, SAMS access modes seem unlikely to positively impact transit ridership in a 
significant way, at least not for commute trips, based on the models developed in this study. 

 

Figure 5. Share of SAMS Employment Accessibility Benefits Obtainable from just One SAMS 
Mode Alone 

Spatial Distribution of Employment Accessibility Benefits 

To understand the spatial distribution of accessibility improvements from the SAMS modes, 
three sets of maps were generated for the SCAG region; the maps illustrate the whole SCAG 
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region (Figure 6), the City of Los Angeles (Figure 7), and Orange County (Figure 8). Figure 6a, 
Figure 7a and Figure 8a display the accessibility improvements by census tract in the respective 
administrative areas, when using the base modal attributes for the SAMS modes. Figure 6b, 
Figure 7b and Figure 8b display the accessibility improvements by census tract when assuming 
service quality (i.e. wait time) is a function of population density (see Section 4.3.2 for further 
analysis). Figure 7c and Figure 8c display the median household income across census tracts; 
whereas, Figure 7d and Figure 8d display population density across census tracts.  

The reason behind choosing the City of Los Angeles (LA) and Orange County is that they have 
different demographic distributions. For example, household income and population density 
vary significantly across census tracts in LA; whereas, household income and population density 
are relatively consistent across Orange County census tracts. 

Figure 6 clearly shows that the census tracts that benefit the most from SAMS modes are in the 
periphery of the SCAG region, where population density is lowest. The same inference can be 
drawn when looking at the accessibility improvements in LA (Figure 7) and to a lesser extent 
Orange County (Figure 8). The significant differences in employment accessibility improvements 
from SAMS modes in low- vs. high-density areas stem from the distances between residential 
locations and employment opportunities in low- vs. high-density areas and (related to commute 
distances) the ability to walk or take transit to work in low- vs high-density areas. In low-density 
areas where employment opportunities are far away from residential locations, walking is 
unviable, and transit service is usually poor or nonexistent, workers would benefit significantly 
from a fast and relatively affordable travel mode like the SAMS-only mode. Conversely, in high-
density areas where employment opportunities are close to residences, walking is a reasonable 
option in some cases, and transit service can be good or adequate, the benefit of another 
commute mode like the SAMS-only mode is not as large as for workers in low-density areas. 
The low accessibility improvements shown in Downtown LA as well as in the cities of Anaheim, 
Fullerton and Santa Ana in the northwestern region of Orange County exemplify this effect.  

Figure 7 also shows that low-income census tracts seem to receive relatively lower accessibility 
improvements from SAMS modes than high-income census tracts in LA. As there is nothing in 
the modeling framework and the parameter estimates to suggest low-income households 
receive lower accessibility improvements from SAMS modes (in fact the opposite is the case 
according to the class-dependent results in Table 5), the relationship between income and 
accessibility improvements in LA shown in Figure 7 is likely coming from the strong relationship 
between density and income in LA. That is, high-density census tracts are also low-income 
census tracts, and high-density census tracts see lower accessibility improvements from SAMS 
modes in general, as discussed in the previous paragraph.  

Figure 7 and Figure 8 also display disadvantaged areas that represent vulnerable low-income 
communities that are unduly subjected to several polluting sources, according to the California 
Environmental Protection Agency (CalEPA) for Senate Bill 535 (SCAG, 2019). The SCAG 
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disadvantaged areas in LA experience accessibility benefits that are slightly higher than the 
other low-income areas but not as high as the high-income areas, which are in less-dense areas. 

 

 

Figure 6. Employment Accessibility Benefits of SAMS modes with (a) Density-independent 
and (b) Density-dependent, SAMS Wait Times, across the SCAG Region Census Tracts 

(a) 

(b) 
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Figure 7. LA City Census Tracts: (a) Baseline Employment Accessibility Benefits; (b) Employment Accessibility Benefits with Density-
Dependent SAMS Wait Times; (c) Median Household Income; (d) Population Density 

(a) (b) 

(c) (d) 
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Figure 8. Orange County Census Tracts: (a) Baseline Employment Accessibility Benefits; (b) Employment Accessibility Benefits with 
Density-Dependent SAMS Wait Times; (c) Median Household Income; (d) Population Density 

(a) (b) 

(c) (d) 
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Employment Accessibility Benefits with Density-dependent SAMS Wait Times 

In the previous analyses, the SAMS wait time attribute value was set to five minutes for all 
members of the synthetic population. This is an unlikely assumption given the relative ease of 
having available vehicles near travelers in dense urban areas, and the relative difficulty of 
having available vehicles near travelers in rural areas, from a SAMS fleet operations perspective 
(Hyland and Mahmassani, 2018). This subsection analyzes an alternate, possibly more realistic, 
scenario wherein SAMS wait times are dependent on population density. This section assumes 
highly dense areas have more available vehicles nearby resulting in low average wait times 
(Loeb et al., 2018; Zhang and Guhathakurta, 2018). To analyze this scenario, the wait times are 
apportioned according to the population density. The population density in SCAG, which ranges 
from 0.01 to 146.79 persons per acre in the census tracts with non-zero households, was 
divided into quartiles with each origin census tract receiving a wait time between 10 to 3 
minutes. The quartiles were further segmented into two for increased resolution of wait times. 
Hence, the synthetic workers in the lowest density tracts were assigned a 10-minute wait time; 
whereas, synthetic workers in the highest density tracts were assigned a 3-minute wait time.  

Table 6 displays summary statistics of accessibility improvements across classes for the case 
where SAMS wait times are dependent on population density. Similarly, Figure 6b, Figure 7b, 
and Figure 8b display the accessibility improvements in the census tracts of SCAG, LA, and 
Orange County, respectively, for the case with density-dependent SAMS wait times. 

Table 6. Employment Accessibility Improvements Across Classes with Density-dependent 
SAMS Wait Times 

Statistics 
Class 

1 2 3 4 

Total Benefit ($) 513,974 201,805 860,895 251,710 

Benefit per Capita ($) 
Minimum 
Maximum 
25th Percentile 
50th Percentile 
75th Percentile 
Mean 
Std. Deviation 

 
2.88 
20.85 
5.83 
6.47 
7.35 
6.74 
1.39 

 
4.61 
26.07 
8.06 
8.68 
9.41 
8.83 
1.34 

 
3.76 
22.56 
6.45 
7.02 
7.75 
7.22 
1.26 

 
4.60 
30.54 
8.56 
9.28 
10.07 
9.39 
1.43 

 
Comparing the employment accessibility benefits of SAMS in Table 6 with Table 5, there is only 
a small difference in benefits, with all classes seeing around a 2% increase in accessibility 
benefits when SAMS wait times depend on population density. The increase in overall benefits 
suggests that the increase in benefits of SAMS in high density areas (from lower wait times) 
outweighs the reduction in benefits in low density areas (from higher wait time).  
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Figure 6 through Figure 8 shed additional light on this effect. In Figure 6, the distribution of 
benefits appears to be similar, at least in the peripheral low-density areas, in both the density-
dependent and density-independent cases. Contrasting with the maps of population density in 
Figure 7 and Figure 8, a closer look at the high-density tracts of LA (Figure 7) and Orange County 
(Figure 8) reveal slight increases in the accessibility benefits in most of these tracts. These 
findings are consistent with the results in Table 6 that indicate slight overall increases in 
benefits with density-dependent wait times. 

Sensitivity Analysis 

This section and Figure 9 present the results of a sensitivity analysis on employment 
accessibility benefits from SAMS modes with respect to changes in the expected SAMS cost per 
mile attribute value. Conducting the sensitivity analysis simply involves changing the modal 
attributes for the SAMS modes in the dataset for the synthetic population of workers and 
recalculating the accessibility/consumer surplus values. 

The original cost per mile for the SAMS modes was $0.30/mile; whereas, this section considers 
cost per mile values of $0.10/mile, $0.20/mile, $0.40/mile and $0.50/mile. Figure 9 presents 
the median accessibility benefit for all five cost scenarios, across all four clusters. When moving 
from a higher to lower cost per mile, all four classes experience a constant linear increase in the 
median accessibility benefit per capita.  

The fact that the employment accessibility benefits of SAMS decrease as the expected cost per 
mile increases is unsurprising. However, it is important to note the magnitude of the decrease 
in accessibility benefits. According to Figure 9, for Class 4 (Class 1, respectively), accessibility 
benefits decrease from $10.16 ($7.35) per commute trip, to $8.18 ($5.46) per commute trip, as 
SAMS cost per mile increases from $0.10 to $0.50; this represents a 19.5% (25.7%) decrease in 
accessibility benefits.  Hence the SAMS cost per mile significantly impacts overall accessibility. 
However, the SAMS modes can still provide accessibility benefits even at cost values 
comparable to the current cost per mile of personal vehicle travel in a sedan. 

 

Figure 9. Sensitivity Analysis on Employment Accessibility Benefits with Respect to Changes in 
SAMS Cost  
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Conclusion 
This study assumes SAMS modes exist in the future and are competitive with existing commute 
modes. Given this assumption, the study analyzes the potential employment accessibility 
benefits of adding two new SAMS modes to the mode choice sets of workers—SAMS-only and 
SAMS+Transit. The main employment accessibility benefits of the SAMS modes captured in this 
study arise from the ability of SAMS modes to (i) avoid parking costs in dense urban areas that 
personal car users need to pay and (ii) use the temporally and spatially ubiquitous roadway 
network to provide transport services that are significantly faster and more reliable than public 
transit service between many residences and employment locations in Southern California.  

To analyze the impact of the SAMS modes on employment accessibility, the study first 
estimates hierarchical destination-mode choice models using CHTS data. Next, the study applies 
the parameter estimates from the hierarchical choice models to a 5% synthetic population of 
workers in Southern California to obtain welfare-based measures of employment accessibility 
before and after the introduction of SAMS modes. Another important component of the 
methodology is the clustering of workers based on their socio-demographics before estimating 
destination choice models. The purpose of clustering workers is to improve the explanatory 
power of the destination choice models as different clusters value different types of 
employment opportunities at different levels. The agent-based modeling framework and 
accessibility analysis methodology is relatively data-intensive; however, this allows analysts to 
investigate the potential wide-ranging employment accessibility benefits of SAMS in significant 
detail.  

The results of the analysis provide several valuable insights into the potential impacts of SAMS 
modes on employment accessibility. First, although the difference in magnitudes of accessibility 
benefits from SAMS are not huge, there are noticeable differences in benefits across the four 
worker classes. The results indicate that young workers and the workers from low-income 
households may receive larger employment accessibility benefits from SAMS modes than 
workers from high- and middle-income households.  

Second, results show significantly higher benefits of SAMS in suburban and rural areas than 
dense urban areas, assuming service prices and service quality are the same everywhere. 
However, even when assuming service quality is lower in less dense areas, the overall results do 
not change significantly. This finding implies that the benefits of SAMS modes, from an 
employment accessibility perspective, will be higher in less-dense suburban areas than higher 
density urban areas.  

A third notable finding is that the magnitude of employment accessibility benefits is heavily 
dependent on the service price of SAMS. For example, the findings in this study indicate that 
the employment accessibility benefits decrease by 26% for workers in Class 1 (the high-income, 
high-education attainment class) as the SAMS service price increases from $0.10/mile to 
$0.50/mile.  
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A fourth finding indicates that most of the accessibility advantages from the SAMS modes come 
from the SAMS-only mode rather than the SAMS+Transit mode. This finding indicates that first-
mile SAMS modes are unlikely to (i) provide significant value to commuters and therefore (ii) 
increase commute-based transit ridership significantly, without major changes and re-designs 
of transit networks, such as proposed in Pinto et al. (2019). 

As far as the authors are aware, this is the first study to provide an in-depth theoretically- and 
methodological-sound analysis of the potential employment accessibility benefits of SAMS 
using the logsum-based measure of accessibility. Moreover, the results in this report provide 
valuable insights into the potential impacts of SAMS on different clusters of the working 
population and different regions of Southern California. The four insights described above 
should have immediate value to transport planners and policy makers.  

The modeling framework employed in this study has significant potential to provide further 
insights into the impacts of SAMS modes on employment accessibility. The disaggregate agent-
based modeling framework enables the calculation of accessibility/consumer surplus for all 
workers in the dataset as well as any worker segment or subsegment. For example, the authors 
are currently using the proposed modeling framework and employment accessibility analysis 
methodology to explore subsegments of the different worker classes, considering their socio-
demographics and residence locations, to gain more insights into the potential impacts of SAMS 
modes on employment accessibility. 

Other areas of future research include (i) capturing spatial competition for jobs (Merlin and Hu, 
2017) when measuring employment accessibility using the logsum-based approach; (ii) 
integrating the hierarchical destination-mode choice model presented in this study with 
residential location choice (or other activity-based travel demand sub-models), firm location 
choice, and/or traffic and transit network assignment models to provide more accurate and 
theoretically sound employment accessibility estimates; (iii) capturing how improvements in 
employment accessibility from SAMS modes may induce persons currently out of the workforce 
to enter or re-enter the workforce, which the current study does not do. 

This study includes several limitations related to data availability. One example includes the 
temporal dimension of employment accessibility. This study assumes all commuters travel 
during the peak commute period. A more realistic model would capture work and commute trip 
start and end times.  Future research that captures off-peak start and end times may find even 
larger benefits for the SAMS modes which have high availability throughout the day, unlike 
transit. Another data limitation relates to the aggregate nature of the modal attributes used in 
the study. Higher resolution modal attribute data between all relevant origin-destination pairs 
would likely improve the mode choice model parameter estimates. A final limitation of the 
study is the sequential rather than simultaneous estimation of the hierarchical destination-
mode choice model. As the study aims to provide first-order estimates of the employment 
accessibility benefits of SAMS, more advanced model estimation procedures are left for future 
research 
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Appendix 
Table 7. Car Total Cost Per Mile Model Results 

Parameter Coef. t-value 

Intercept/Constant 0.657 15.32 

Purchase Price Base = Low 
High 0.306 14.23 
Luxury 0.678 14.62 

Vehicle Type Base = Truck 
Sedan -0.095 2.89 
SUV -0.076 2.13 

Age Base = 0-1 years 
Age 2-3 -0.108 5.01 
Age 4-6 -0.208 9.64 
Age 8+ -0.392 3.87 

Fuel Type Base = Hybrid 
3-4 Cylinders ICE 0.039 1.98 
5-6 Cylinders ICE 0.071 2.15 
8+ Cylinders ICE 0.15 1.87 
EV -0.071 1.26 

Model Statistics 

Sample Size 297 
F (11,285) 73.16 
Prob > F 0.000 
R-squared 0.8102 
Root MSE 0.14811 
LL (null) -94.9 
LL (model) 151.904 
Df 12 
AIC -279.81 
BIC -235.48 
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