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ABSTRACT 

Using analyticity and crossing, one can express the experi-

mental quantities for the physical channel in terms of the crossed-

channel a;npli tudes. For N-N scatterina;, a new set of t- channel 

amplitudes {.g
1

) are introduced for which the s-channel experimental 

D, c NN' 
..,. 
~,.,KP' R' 1 and A' are 

very simple in form. By use of these it is shovm that the measurement 

of certain spin-dependent parameters in N-N scattering can provide 

critical tests of the validity of the Regge pole model of high-energy 

scattering. In particular it is possible to test the factorization 

theorem, which is an inirrlediate consequence of the simple pole Regge 

theory. The relationship of the new amplitudes 

parameters is given. 

g. to the Helfenstein 
l. 
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.I • INTRODUCTION 

. Analyticity of sca.tte:ring amplitudes makes it possible to compute 

.the experimental parameters of a given channel in terms of the crossed-

. . 1 t •t• l't' . 1 ' 2 cnanne rans~ ~on amp.l uo.es. The general crossing property is 

the basis of many theoretical models and phenomenological analyses.3 

In particular, models in which the scat.tering of two particles proceeds 

by the exchange of sets of quantum numbers have been especially fruitful 

in the discussion of experimental data. Consideration of the crossed 

channel often facilitates the interpretation and parameterization of 

the amplitudes for the exchange, and analyticity allows the.use of 

these amplitudes in the main channel to calculate the experimental 

parameters. 

Assuming the usual strong interaction symmetries for nucleon-

nucleon scattering, there are five independent amplitudes associated 

with each value of isotopic spin. Since a 5-by-5 crossing matrix 

relates th'e direct and crossed-channel amplitudes, one expecm umrieldy 

expressions for the experimental parameters when they are •rri tten in 

terms Of the crossed-channel amplitudes. A judicious choice of crossed-

channel amplitudes, however, gives these parameters an amazingly simple 

form. 

In Sec. II, we introduce a new set of ·,t-channel amplitudes for 

which the crossing matrix simplifies tremendously. Calculation of the 

s- channel experimental quanti ties is then easily performed. For the 

reader interested only in results, the new set of amplitudes is defined 
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in Eq. (2. 7), · a,nd the expressi.Ol}S for the a-channel e~erimental 
~ 

. quantities in terms of these'crossed-channel amplitudes are given 

· in Eq. (2.11). We include the differential cross section, the 

depolarization parameters D and Dt' the correlation functions CNN 

and CKP' the. polarization ·· P , and the rotation· parameters R, A, 

R ', and A '• We emphasize that these results are model independent 

and rely only·on a sufficiently large domain of analyticity to give 

physical content to crossing. · 

In Sec. III, we consider models in vrhich sets of definite 

quantum numbers are exchanged. Obvious applications can be made to 

d 
. 4 

both fixed-angular-momentum pole models an Regge pole models. 

The.se results are applied to the Ree;ge pole model in Sec. rv. 

Our·main aim here is to devise critical tests for some of the most 

characteristic properties of Regge poles. In particular we examine 

the consequences of the "factorization theorem," the validity of which 
i 

rests heavily on the simple pole assumption. Indeed, there is already 

some vaGUe indication that the factorization theorem is invalid from 

the experimental result that the difference between the pp and pp 

differential cross sections changes sign at a very small value 

[t ~-o.l5(BeV/c) 2 ] of the momentum transfer. A detailed analysis of 

the situation is given. We also discuss in detail the usual approx- · 

imation of neglecting trajectories other than the P; P', p, m, 

and R. 

I 

.. 
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A general explanation of the nature of the tests in tenns of 

the concept of the ' 1 class~~" of a Regge trajectory is based on the 

discussion in Sec. III. 

· In the· Appendix ve relate the s-channel 1-tolfenstei.n parameters5. 

to the. helicity amplitudes and to the new (analytically continued) 

crossed-channel amplitudes. 

II. DERIVATION OF GENERAL RESULTS 

In this section, we derive expressions for the experimental 

quantities in terms· of the crossed-channel amplitudes. Consider 

NN .... NN scattering in the direct channel ( s channel). \ole shall use 

the Mandelstam variables, 

( 2 2 2 s = 4 p + m ) = 2m + 2rnE , 
2 z) t = -2p (1 

. 2( 
( 2 .1) 

u = -2p 1 + z) 

z = cos e = u - t 
u + t J 

where p. is the center-of-mass (c.m.) momentum of one of the nucleons 1 

9 is the scattering angle in the c.m. system, and E is the total 

energy of the incident nucleon in the laboratory system. 

In the t channel~ NN .... NN, 

t = 2 2 
4(pt + m ) · = 

, 2 
u = ... 2pt ( 1 - zt) , 

.. ' ·.' 

·cont ... (2.2) 
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s + u = 
mE+ it 
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-p t 
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' ( 2.2) 

where pt and Et are the c~rn. momentum and energy of the nucleon (or 

nntinucleon) and et is the t-channel c.m. scattering angle. 

We assume the usual conservation laws of strong interactions 

so that there are five independent helicity amplitudes for the s-channel 

process for each value of isotopic spin. Since the 2-by-2 isospin 

crossing matrix is easily included, we shall simplify the notation by 

omittinB isospin until Sec. III • 

. t.et [ denote the column matrix formed from the five helici ty 

amplitudes rj1 (i = 1,•·•,5) introduced in Ref. 1, and let X be any 

experimental quantity of· interest. Then it is always possible to find 

a 5~ bY-5 matrix i71. (X) such that 
i 

X = iirj(X)_f., = 
5 

L (2.;) 
i,j=l 

Let f be the column matrix of the five kinematical-singularity 
IV 

free t-channel amplitudes r
1 

(i = 1,·••,5) defined in Ref. 1, Eq. (4.2;). 

6 The partial-wave expansions of the fi are 

00 

t 1 • :: :[ (2J + l) r0J(t) PJ(zt) , 

J=O 

·.: Cont • ( 2. 4) 

.. 

•' 
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Et \-·- ' J 
'f2. = -. L. (2J + 1)r11(t) PJ(zt) J 

Pt 
J 

. -, 
E \-·- 2J 1 r . I " I f3 

t ) + 
J flJ(t) (zt P J I ( zt)) 

J = f22(t) P3 ( zt~ J(J + 1) Pt ;._ ... 
J 

i. 

f4 
Et \ 2J+ 1 [ J ( I )I J . " -1 = J(J + 1) f 22(t) zt PJ (zt) - f 1 (t) PJ ( zt)j Pt L~ 

J 

m ~ 2J + 1 r1;(t) 
I 

f5 - -- 2... [J(J + 1)]1/2 
P J ( zt) , (2.4) 

Pt 
J 

where f0J(t) is the spin singlet t-channel transition amplitude and 

f 1J(t) the spin triplet J = L amplitude. The spin triplet J = L t 1 

J J J transitions are described by r11 (t), f 12 (t), and r22 (t), and do 

not mix with the J = L amplitudes because of parity conservation. 

We shall express all our t-channel amplitudes in terms of these spin 

·amplitudes, since they are easily interpretable in models where definite 

sets of quantum numbers are exchanged in the t channel, e.g. fixed 

pole or Ree;ge pole models. 

By analytic continuation, j is related to 

relation3 

1 

f = ( s) lf2 ( s + u )( t + u) K f. ' 

f by the crossing ..... 

(2.5) 

where K is the matrix explicitly displayed in Eq. (16) of Ref. ;. 

....... :r ,. .,. .. 

' 
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In order to simplify the crossing matrix K we define a new 

set of amplitudes denoted by ~ , which are related to f by .... 

2 
(1- zt )f3 = 82 • zt g4' 

2 
(l- zt )fh = gl~ "' zt g2.; 

where 

The partial-wave expansions for the g .. are 
~ 

~ ' 

' ' J . ' 
~ (2J + l)f11(t) PJ(zt) , 
J 

E L ~· 
t 2J + 1 

= - J(J + 1) pt 
J 

g3 = 
~stu~ 1/2 2.~J pt(s + u) J 

( 2.6) 

( 2. 7) 

l 

~ . 
' 
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/l/ vle can now define a ~ew crossing matrix between the t- channel 
i .. 

g1 and the a-channel ~i 

1 
= 

( s + u)( t + u) 

~~2u -st 4m( stu)j. -(s + u)(t + u) 

2 .!. 
-st 4m u 4m(stu) 2 0 

0 

X 4 2. m u •St 4m(stu)i ( s + u)( t + u) 0 

2 -4m u · .. 4m(stu)i 0 ( s + u)(t + u) 

-2rn(stu)j 2 4m u .. st 0 0 

(2.8) 

where 

From Eqs. (2.8), (2.5), and (2.3), the direct-channel experimental 

quantity, X , is given by 

-1 X = B 

The matrix product 

t t . 
~ 1\ ll(<x) l( ~ . 

M(X) = J( t '!ri (X) If 

( 2.9) 

( 2.10) . 

is easily calculated. In Eq. (2.11), we give X in terms of jf [this .... 

!' .· 
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determines /)?_(X) ] and in terms of g , which is found by calculating ,.., 

the matrix product M(X): 

-
da _ I !! 

0 <lllCM 
= ~ [1141 f + 1¢212 

+ 114l + 1¢412 
+ 41¢512] 

= {s)"
1 [1~12 + Ill:/+ 2lg/ + lll4l2 

+ 1~12], (a) 

t 0(1 - D) = ~ [1¢1 - ¢:/ + 1¢2 + 14412] 

· 1 r 2 2-l 
- = _ 2(s)- lfg4J + 1~1 J ,· (b) 

lo(Dt " CNN) - Re {(¢3* - ¢1*)(¢2 + ¢4)} 

-1 . * . 
= 4(8) Re(g4 g

5
), 

1 r 2 2 J = 4 l-1¢1 + ¢21 + 1¢3 - ¢41 sin e 

- Re{¢5*(¢1 + ¢2 - ¢3 + ¢4)} cos 9 

= (s)-1 Re {te:4 • ~)* [a>(9)g3 • ~(e)(g1 + g2)]}' 

= -lm { ¢5*(¢1 + ¢2 + ¢3 - ¢4)} 

= -2(s)~1 l:n+3*(g1 + f!:!)} ' 

(c) 

(d) 

(e) 

(f) 

I 

..... 
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r0R • Re {¢1* ii!
3 

+ ii12* ¢4 } cos~ -Re {ii15*<¢1 • ¢2 + ¢3 +¢4)} sih ~ 

• s "
1 [cu!!> a( ~ ) + G<~l ~( ~ ) - CCJ!l cos ~] j 

(g) 

r0A • ~ [ 1¢112 
• 1¢2 12 

+ lii1312 
- 1¢412 J sin~ 

+ Re h*c¢1 - ¢2 + ¢3 + ii14>} cos~ 
(h) 

·1 [ · e -~ e · e J = s . -ct<z> t3< 2 > + IJJ-~> o:C 2 > + . C<~> sin 2 , 

r0R' • - Re {¢1* ¢3 + ¢2* ¢4 ·}sin~ . . . 

• Re 1¢5*(¢1 • ¢2 + ¢; + ¢4) }cos~ 
• s ·l [ 0lc ~tl ~( ~ ) .- 6< f!l a( ~ ) + C ( ~) sin ~ ] , ( i) 

j 

~ [1¢112 - 1¢212 
+ 1¢;12 - 1¢412 

) cos ~ 
- Re h*<¢1 - ¢2 + ¢3 + ¢4) } sin~ 

• s"1 [ 0.C£;l a( ~ ) . + ({3(£;) ~( ~ ) + (:,(~) cos~) 1 ( j) 

where 
( 2 .11) 

··' .. , 

,. 



UCRL-16597 

-10-

{l(g) = Jgll2 ... lg2J2 I 
. - (a) 

e (g) r * } = 2 Re 1 g3 ( gl .. ~) 1 ,.., (b) 

0<!!> = Jg412 .. 1~1 2 , (c) 

and. (2.1;:.:;) 

a{ e) = ~ cos e + '1 sin e , (d) 

~(e) - ., cos e ... e sin e , (e) 

with 

4m2
u - st e = (s + u)(t + u) = 

m(l + 3 cos e) - E(l - cos e) 
4m + (E • m)(l - cos e) ' 

(f) 

4m(stu)1/ 2 
71 - {s + u)(t + u) -

2[2m(m + E)]1/ 2 sine 
4m + (E - m){ 1 .. cos e)" 

(g) 

We emphasize that: (a) The experimental parameters and helicity 

amplitudes are a-channel quantities; (b) · The g
1 

amplitudes were defined 

in the t channel, then analytical~ continued by crossing to the s 

channel; (c) These formulae are model-independent and depend only on 

sufficient analyticity for crossing to be physically meaningful. They 

are applicable to any model in which the t-channel amplitudes are of 

prime importance in studying the s•channel process. 

• 

.. 
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As an alternative derivation of Eq. (2.11), an appendix is 

inclu<l:ed in which the Wol:t:enstein parameters are related to the helicity 

amplitudes. With the crossing relation between the Wolfenstein parameters 

and the g amplitudes, Stapp's Table I (Ref. 5) can be used to rederive 

Eq. (2.11). 

III. EXCHANGE l40DEU3 

We .consider here models in which the scatt~ring proceeds by 
. 'I'~ 

the exchange of well-defined sets of quantum numbers P, I, Iz' B, 

Y, and Q. In some.rnodels, J is included among the definite quantum 
~ 

numbers, e.g., in "elementary particle" exchange. If angular momentum 

is interpolated, the exchange carries J parity instead, as in Regge 

pole models. Attention is confined to exchanges of B = Y = 0 so that 

the t reaction is an NN channel, and the exchange also carries 

definite G parity. 

FJr each of the three main types of spin-transition amplitudes 

(S = 0, J = L; S = 1, J = L; and S = 11 J = L t 1), isotopic spin 

and J or J parity uniquely .label the exchange. Relations among the 

quantum numbers determine the G parity, 4 and it turns out that there 

are 12 possible exchange types. We now assume.that the amplitudes for 

these 12 possible exchange types have been ca~culated. There might 

be several contributions to each exchange type, so we Will denote them 

by gi (JI;LS), where the gi n are defined in terms of the partial-,n , . 

wave spin-transition amplitudes in Eq. (2.7). Note, for example, that 

for a picnic exchange, 1C , only. fi... . 
-;;>,1C 

""{' 

is nonzero, and so on. 

. .. .-:-- ·: ....... ...... ' ~. ·. 
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-The a-channel experimental quantities for pp, pp, pn, and 

-pn elastic scattering can now be calculated and compared. The contri-

bution of a given exchange Vill differ at most by a sign from process 

to process. The amplitude is a sum of terms which we take·by convention 

to have positive coefficients in the s channel for elastic pp 

scattering. Henc~, the. gi to be substituted into 1Eq._ (2.11) for pp , 

elastic scattering are 

g (pp) 
1 

where 1 = 1,···,5· The factor ~ comes from the isospin crossing 

matrix. The relative contribution of the nth term to the other NN 

( 3·1) 

and NN processes is now determined by isotopic spin and the trans-

formation properties of the NN system. As an example, consider the 

process pn ~ pn • Starting from the a-channel pp ~ pp process, cross 

to the t 
1 

channel; perform the G- conjugation operation on the final 

state and charge conjugate both the final and ~nitial states, then 

cross back to the s channel, which has become pn ~ pn • The phase 

( )L+S+I we pick up is just the G parity, -1 , where, of course, 

L, S; and I are well-defined quantum numbers in the . t ·channel 

(i.e., they are just the quantum numbers of the exchange). In general, 

we write 

• ~ ) • 0 n(Nll) gi
1
n(JI;IB), ( 3.2) 

n 

where 

I 
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-where 

en 
(pp) 

a 1 I 

(pn) L +8 +I 
c = ( _1) n n n , n 

c (pp) 
L + S 

= (·l) n n , n 

(pn) I 
c = (-1) n 
n 

These are listed explicitly in Table I. 

The experimental quantities for elastic scattering are then 

X(NN) = is L en (NN) em (NN) fb + M(X) ,&n ( 3-3) 

n,m 

From Eq. (3.1) and Table I, it is easy to verify the following statements, 

which hold for any experimental quantity X : 
I 

(i) The differences (xPP - Xpn) and (xPP - Xpn) depend only on 

the interference between exchanges with different isospin. 

(ii) The differences (xPP - xPP) and (Xpn- Xpn) depend only on 
. 1n+Sn Lm+Sm . 

the interference of terms for whl.ch (-1) = -(-1) • (If we 

neglect the S = 1, J = L amplitudes, which is reasonable in the Regge 

pole model, we can say that the difference depends only on the interference 

between exchanges with opposite J parity.) 

(iii) -The differences. (xPP - Xpn) and (Xpn - xPP) depend only .. on 

the interference between exchanges with opposite G . parity. 

,, 

....... 
I • 
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Similarly~ the expressions (xPP :!: xPP t Xpn t Xpn) can 

be used to teet the contributions of more restricted sets of interference 

terms. 

IV. TilE REGGE POLE MODEL--CRITICAL TESTS 

·A particularly interesting application of the foregoing formali:;:.: 

can be made when the exchanged system is a Regge pole. It will be'our 

aim to find critical tests that can be used phenomenologically to estiJr,;,,':e 
. . 8 

the validity of the Regge pole model. We remind the reader that· the 

Regge pole model has been very successful in correlating a huge amount 

of experimental information about scattering processes.9 The most 

convincing successes are those involving forward scattering processes 

(t = o), since very few parameters are needed to collate the large 

quantity. of data. For nonforward processes, the situation is much more 

difficul~ to assess, since essentially arbitrary functions of t are 

introduced in order to fit the data. 

An analysis of the overall situation10 suggests very strongly 

.that Regge-type "states'i are being exchanged and· that one is indeed 

seeing the effect of the rightmost singularities in the complex J 

plane, each of which has well-defined sets of quantum numbers. It is 

much less clear, however, that these singularities can be thought of 

as simple poles. In fact, from a theoretical point of view, it is very 

likely that there are cuts in the J plane, perhaps ending on the poler;. 

-
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In the follwing we shall propose tests that m'ight make it 

possible to decide on phenomenological grounds, whether or not the 

singularities can be treated as simple poles. The method hinges on 

the so-called "factorization theorem," which states that if the 

singularities are simple poles, then at the poles, 

(4.1). 

Our object will thus be to compare predictions based on a Regge 

model with and without the imposition of the condition Eq. (4.1). 

We are also interested in testing some of the typical assumptions 

usually made in Regge pole theory, such as keeping only the contributions 

of P, pt , p J ID , and R , which are all trajectories of Class I 

type. The argument in favor of this assumption is based on a considera-

tion of the positions of the known particles and resonances when plotted 
I 

on a Chew-Frautschi diagrrua [Re(a) vs t]. Thus if there is no known. 

particle or resonance with the quantum numbers of a particular one of 

the 12 possible Regge trajectories, then that trajectory is ignored. 

Also, if from the position of a particle or resonance one is led to 

suppose that its ·trajectory a(t) , for t < 0 , is going to lie much 

lower than the trajectories of the P, P', p, ro 1 and R, then again 

one usualiy ignores that trajectory. : (For example, the pion is ignored 

for this latter reason.) 
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To test these assumptions we construct experimental quantities 

that, so far as possible, depend solely on those trajectories which 

are usually ignored. 

The procedure is as follows. The division into classes in 

Table I is based on spin and angular momentum. Thus a suitable 

geometrical combination of the standard experimental quantities can 

be found which depends only on Class III trajectories. It is not 

simple, however, to split up Classes I and II, and for these we have 

to rely on interference measurements. 

An experimental quantity which depends only on a certain class 

will serve equally well whether we look at that experimental quantity 

for pp, pn, pp, or pn scattering. However, if we wish to study 

the individual members of a class, then we must be able to measure· 

linear combinations of the experimental quantity for several or 

perhaps d11 of the processes pp, pn, pp, and pn • The manner in 

· which these rules arise and their specific applications will become 

clear in the following. 

The 
. . 4 

g amplitudes are Reggeized in the usual way. We define 

a new set of partial-wave amplitudes that contain the proper threshold 

behavior at t ~ 0 ; and that preserve the factorization theorem, 

Eq. (4.1), if it holds: 



,. ' 

'"' 

' J ) · . m2 2J . + 1 · ·· J · · . 
. f22 ( t . -. Pt Et J(J + 1) ·. f22 ( t) ' . 

. t J . ' 
~12 ' ( t) 

. -~ -· 

. . 
m 2J. + 1 ·· J · · 

~, Pt [J(J + 1) ]1f2 f12 (t). '· 

,:, If~; 

-;')!' ·'. 

v .. 

UCRL-16597 

.. . .. 

The Sommerfeld-Watson transformat-ion is then applied to the 

•. gi 's .· ~ _Retaining only the Regge pole terms we get {putting -·m = ·1 , · 

as will be done in all that follows), 

., .. '·· n 

·. .. ,._ 

•·.·.· Cl~ ~.: < y,tn Eari[an2 7l,D(t),\ i 722,n(t)l'. 
. ·. -- . 

·,' .... 

·_,. , .. 

n. .. .--.. .. ..... . 

~_n _;_: .. ;· :-
. > :: .·. '· ·., 

;,,._ 

'•; .. · .. 

!! •. . . 

' 
( 4. 3) 
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a -2 
where term~ of order. E n are neglected, and where 

. 2 
€ = t/4m .~ 0 • 

The term "i,n(t) (for i "' 0 1 1, ll, 12, 22) is defined by 

where 

~1 ( t) = ,n. 

Ct 
2 n r{a + .! ) 

n 2 

The term ri ( t) ,n is called the ''reduced" residue and is assumed to be 

a real analytic function with only a right-hand cut. The sum is over 

all poles of both values of isospin and T ·= (•l)J • Also we have 

~ ( +) ~ (cot ( 
tea 

- i) 
n ) for T·= +1 = 2 n .. 

and ( 4.h) 

i (-) 
tn = .! tan ( -2 ( tea 

2 2 ) + i) for T = .. 1 • 

The factorization theorem now asserts that the pole residues satisfy 

2 
7l1,n 722,n = (r12,n) • 

8 . . . 
It has been customary to satisfY Eqi (4.5) by introducing . b1 

and b2 so that 

711 = b 2 
1 ' 

122 = b 2 
2 ; ( 4.6) 

112 = bl b2 • 

.~. 

,.,.. 
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The effect .of·this is to simplify certain formulae, but the results can 

be misleading. This is because the b's are analogous to coupling 

constants, and we know nothing about the:f.r analytic! ty· properties. On 

the other hand we believe that we have some knowledge about the 

properties of the 7's ~ namely the ri,n(t) are real analytic functions 

with no left-hand cuts. It will therefore be advantageous to continue 

using the 1i ( t) • ,n 

We note that because of the analyticity, if r11(t) has a zero 

of order r for some negative value of t , then both 122 and 112 

must have zeroes at this point. Thus 
I 

112 could have a zero of order .-

s and then the zero of r22 would have to be of order 2s - r • In 

particular it is obvious that r 11 and r22 must change signs together. 

Returning now toE~. (2~11), we give the Regge parameterization 

for the experimental quantities, without making use of the factorization 

theorem. 1For simplicity of writing, we define the operators 

1 
1;8 

1 
4s 

n,m 

n,m 

( 4. 7) 

where the sums on n and m go over all Regge poles. The expressions 

for the ·experimental quantities in terms or the Regge parameters are· 

·' i 

l. 
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= ) , . [rll,n 7i1,m • 2Ean"m712,n712,m + "
2
"n 

2
"m 

2
722;n722,m .· 

.L~R .t· 

2 2 2 2 
+ E: 7o,n 1o,m + · € · 0 n cxm 71,n 11,m 

+ l a~ a., (an.+ am)(rl,n 722,m ·+, 7~,n rl,m)} '(a) 

. Io(l ~ D) - 2l: i "R. fo,n 7o,m + an 2 "m 2 71,n 7i,m 

. · ·· ; .* .anE""'(crli 71,n 722,m + "m 722,n 71,m)} ' 
(b) 

IoSm " 2' :} R a., {~n 712,n :r12,m + 722,m<", 111,n - i i'o,nl 

"' .: 71, m( ~ "m 1o ~ - k 711 n)} ' 
~... . ... 
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·I 
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·.· .. ,· 

,,. .. _ 

... ; .. · _..: ·, . 
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(e) 
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.•· . 
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We·now attempt to analyze these .results and to derive various 

tests for the Regge pole hypothesis. The tests are divided into three 

categories according to whether they examine: 1., general properties 

of the Regge theory; 2. the validity of the factorization theorem; or 

3· the validity of neglecting Class II and III traj~ctories. We shall 
f': 

assume, as seems entirely reasonable, that if we l:iJlllit our attention 
. :~~ 

"l 

to fairly small values of momentum transfer, we can'treat the trajectory· 

functions a(t) as approximately linear functions of t • It then 

follows, from a consideration of the position of the particles associated 

with them, that of the three types of trajectory discussed in Table I, · 

the Class I type with S ~ 1, J = L ± 1 (i.e., those associated with 

the P, p', p, ID, and R) have trajectories that. lie much higher 

than the types with S = o; J = L (Class III) or S ~ 11 J = L (Class II). 

We shall test this conclusion by studying the behavior of experimental 

quanti tieis that depend directly on the latter two trajectory types~ 

To make our statements more precise let us define ori(t) and 

~II(t) to be the highest-lyitlg trajectories of the Class II and Class III 

respectively. 

~I(t) = Max {~r1(t)} 
orii(t) = Max { aiii

1
(t)} ' for i = 1, ••• J 4 • (4.10) 

We number the following tests with lower·case Roman numerals. 
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1. General Properties 

From the formulae of Eq. (4.8), we deduce the fol1owing expressions 

for the experimental quantities • 

. (1) The differential cross section is given by 

) .R { 711,n 711,m - 2 E "n "m 712,n 712,m ' 

+ '
2 "n2 

"m
2 

722,n 722,m} + 

( 1~ .11) 

. where 

M(t) = Max {~II(t) - 1; ~1(t) • 1; aii(t) +f'P(t) - 2} . 

( 4.12) 

~(t)-1 
The leading term in r0 ~ehaves like E · and its exact form 

·can be rohnd from Eq. (4.7). This form of r0 Will be useful in 

discussing the factorization theorem • 

.. · (if)Fbt·.tre polarization we have 

The lead.ing terms are 

(4.13) 
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The remaining fornrulae of Eq. {4.8) are easily discussed in the 

same manner, however, the rotation. parameters (A, R, A' , and R' ) do not 

simplify appreciably. 

2. Factorization Theorem 

· : (iii) Ifwe apply the factorization theorem to Eq. ( 4.11), then we 

get, for the leading terms of I0 ; 

where 

-~ 

\ 
L 
n,m 

c c n m 

A.n(t) 
= an(t) r12,n(t) 

111,n(t) 
.. 

(4.15) 

( 4.16) 

Using Table I, we compute the difference of the pp and pp 

differential cross sections to be 

( 4.17) 
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. 1((l 1((l 

for reasonably small.t, the terms (1 
1((l 1((l 

cot 2n tan~ ) and Now, 

(1 -
·n . m cot- tan-) 2 2 are certainly positive, since for them to 

become negative would require trajectory slopes far steeper than 

indicated by the above-mentioned analysis.9 Also, in the custo~ry 
. . . 2 

for.m of the theory, 111. and r11 in Eq. {4.17) appear as (b
1 

) 
. ,n . , p ,n 

and (b1,p)2 respectively so that it is tempting to conclude that the 

difference I0(pp) - I 0{pp) has to be positive; 

However, it is known experimentally that AI0 changes sign at 
2 . 

t ~ -0.15(BeV/c) for high energies. Thus we might conclude that there 

is here some evidence against the validity of the factorization theorem 

on which Eq. (4.17) is based. 

The alternative is to assume that some of the .,
1 

, say 
,n 

7ll,n(t), change sign for t ~ -0.15(BeV/c)
2

• With respect to the 

analytic properties of the 12 (t) there is nothing against this ,n 
possibility. If, however', we take the customary viewpoint that 111 ( t) 

t . 2 . 
is the square, [b1 ( t)] , of an analytically continued coupling constant, 

then b1(t) becomes pure imaginary, i.e.,.has a ~~point singularity) 

at this value of t • As· mentioned earlier, we do not know enough about 

the b1(t) to preclude this possibility, so it is feasible that for 

some reasons of dynamical origin b1 · ; b2 , or b1 , b2 , or both ;P ,p ,m ,m 
do indeed become pure imaginary at t ~ -O.l5{BeV/c)2 • 

It is worth noting that both b1 ~ b2 must become pure 

imaginary at the same . t . value in order that 112 = b1b2 _be real; · 

real analytic for .t < 0, It is also worth noting that it could not be) 

, ~.: :· :· . ..., ....... ~ .... :-- :-~·~_~.,-.~.·~"'!"-->:<."':'-:"-r .... ~·-~;"~~·~ .... ,,.,..,. :-: --~ ..... ..,.~ .. ,. "~. -· ..,;.;; ,. ·\~ ......... -,~:oo:·"~>....r·....,"'~~ ~~~ ...... -..-... ~ . .,.,.~-...... '"""'"'<":""':""':"~ .... ~: ~~~ .... -~ .. ,.,. ~- .... -.~~ 

. ', ~ ' 
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say, bl,P' b2,P which become imaginary, since that would cause the. 

leading term in both 10(pp) and I 0(pp) to change sign. 

If we restrict our attention to the NN system we see that 

there are three possibilities: 

(a) The factorization theorem is valid and 

change sign at t ~ -0.15 (BeV/c)2 • 

(b) The factorization theorem is valid and either (i) 

(ii) 111 ru change sign at some value of t in the range 
' 

(c) The factorization theorem is invalid. 

.,11 or ,p -

0 ? t > -0.15· 

R. J. N. Phillips has pointed out that if we take into account 

~N scattering as well, we can immediately eliminate possibilities {a) 

and (b.i). It is well known that the charge-exchange scattering process 

- 0 ~ p ~ n n 'depends solely on the p trajectory. Also the residue 

functions 7 ~ 
1 

p' 7 21c 
1 
p , for this process, and the residue function 

'~n~,p o~ the nn ~ nn process, are related by the factorization theorem 

to the functions 111, p' 122,p of the NN . process. In fact we have 

2 
1 nn, p 711, p = ( .,~, p) ·' 

. 2 
( 4.18) 1nn, p 122,p = { 12~, p) • 

It is important.to realize that these relations are on an equal footing 

with the relationEq. (4.5) and follow directly from the factorization 
'· 

theorem. 

... 
'< . ; . ~ 

•· 



It follows, then, that if possibility (a) or (b.i) holds then 

- 0 the differential cross section for ~ p ~ ~ n will vanish at 

t ~ -O.l5(BeV/c)2 or at some poin~ t in the range 0 ~ t > -o .. i5. 

However, the experimental measurements on this process show that this 

is manifestly not true. 

(4.14)) 1 we find 

.X (Xp • ~ )(1·· E Xp A)+ (p ~ m) 
P, . . p . 

Thus alternative (a) of test (ii) predicts that 

lfP = 0 ( 4.20) 

at t ~ -0.15 (BeV/c) 2 • 

If either alternative (b) or (c) holdsj then there is no reason 

to expect that E<.i.. ( 4.20) will be. true. 
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(v) I 0CNN is large despite the fact that it is a spin• 

correlation quantity, and, as such, depends on the spin-flip amplitudes. 

Thus 

I c = 2E: ~ a (a 1 ., - a r 1 · ) 
0 NN ~ m m 221 m 'll,n n 12,n 121 m 

R ' 

(L_4a._ .::2 · CL +(l ... 2 
+ 0(€2 E--p !I ) + O(€ E P III ) • (4.21) 

Note that the leading term is 

21C~(t) 2 { 2 } ~(t) 
cosec 2 OF (t) rll,P 722,P • 112,P . E ' 

( 4.22) 

which Will be identically zero if the result Eq. (4.5) 6f the factorizatioa 

theorem holds. In case it does, we would have 

( 4. 23) 

where <1I(t)· is the highest.:.lying trajectory from among P', p, ro, and 

R • 

If the factorization theorem does not hold then there is something 

amiss with the simple pole Regge model, and Eq. (4.21) is probably not 

correct. However, it is likely to be correct up to logarithmic factors 

, ' in E • Thus to the extent we cannot distinguish logarithmic factors 

experimentally, a measurement of the .variation of I 0CNN with energy 

would help to decide the validity ot the ·simple pole Regge model • 

. !\.· 
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Next, we consider the difference between t
0

cNN :for pp and 

pp • We get, for the leading terms, 

+ (p ... (I)). 

Using the result Eq. (4.5) of the factorization theorem, we get 

+ ( P .... w) • ( 4.25) 

Again alternative (a) of test (iii) implies 

OONN = 0 

at t ~ -0.15 (BeV/c) 2 • 

(vi) If the alternative (A) of test (iii) holds~ then it has the 

following consequence, Let t
0 

. ~ ;..O.l5(BeV/c)2 ·be the value of ~ for 

which AI0 = 0 •. · Then for some value t = t 1,. with 0 > t 1 > t 0 ; r11,ill 

changes sign, i.e., 
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( 4.26) 

Then at t = t 1, if we are at sufficiently high energies, we have from 

Eqs. (4.17), (4.19) and (4.25); ~. ' 

x ( 1 .. e: Ap Ap)E ~-tap " 

sin !!. (a_ - a ) ex....~ = € 2 · ·. P p . ., 1 (L A )2 E P p 4s 1( 1( ' I 1l,P 11, p . -p - p . 
sin 2 ~ cos 2 a P 

( 4.27) 

Since t = t
1 

is very close to t = o, we may assume that we 

know [ap(t
1

) - ae{t1 )] with some degree of certainty. (It would even 

be quite reasonable to approximate this quantity by (ap(O) ~ ap(O)] , 

since the trajectory slopes are kno~ to be reasonably small.) We then 

construct the experimental quantity 

~·. 

t(t) = .! 
E: . cos !!. (ex.... - a ) .. 2 ·p e 

. i 

... 
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It f'o11mrs.f'rom Eq. (4.27) that a~ sufficiently high energies, if' 

alte~nat1ve (A) holds, then 

(1~.29) 

Note that at t = o, L(O) has a finite value. If we use the 

fact that ap(o) ~ aa.>(o) and ~(0) l::.'j. 1 we have, at t = o, 

L(o) = 
. 2 2(1-+a ) 

( >-.. - >-.. ) E ~' p CJ) 

L(O) 

. 1 
Taking the currently accepted value ap(O) 1 2 , 

where, ot course, the 11 (t) are evaluated at t = o. ,n 

(4.31) 

Thus alternative (A) predicts that at high energies, L(t) will 

become zero somewhere in the region 0 > t > t 0 • 

(vii) A further test of alternative (A) can be devised by 

constructing a combination.of processes that depend, at high energies, 

on 7ll,m only. Unfortunately this takes us a little way into the 

experimental1•eal.m· of .the ·future, but it will be worth vhil~ to record 
·, ' 

the results • 

J . 
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If'·alternative (A) holds, then the three quantities 

( 4.32) 

will all vanish at some value t = t 1 with 0 > t
1 
~ t 0 • 

). Class II and III Trajectories 

(viii) r0(1 - D) drops quickly with energy, since it depends on 

the interference of trajectories or Class II and Cl~ss III. In fact, 

· . 2 M(t) 
10(1 -D) = 0(€ E ) • (4.33) 

• 
Thus if M(t) is measured experimentally·we ean deduce [see Eq. (4.;10) 

and (4.12~] 

~II ~ ~ (1 +M(t)) , 

1 . 
~ · 2 ( 1 + M( t) ) , 

and 

~I ~ 2 + M( t) • . '1? • . 

( ix) I 0(Dt • CNN) · .. depends· on interference with Class III 

trajectories. It will be of order e2 ~(t) , where 

~. '. ~ 

( 4. 31+) 
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J· 

N(1>) • ·Max { "'III(t) + ali(1>) • 1; ":m(t) + "'P(t) • 2}, 

From a measurement of N(t) we could then deduce 
~, 

0JII + OJI ~ 1 + N(t) 

and 

aiii ~ 2 + N(t) - ap • 

(x) The experimental quantity Q defined as 

·' 1 Q = I0( 1 -- D) + (I0R .. I<f- 1
) 

(9/2) cos 

! 0(1 .. D) (I'R' + I<f-) 
1 

= - 0 sin (9/2) 

depends solely on Class III trajectories. It is given by 

Q = 1o n 1o m ' , , ' 

~ -1 
and the leading term in its energy variation is then E II 

\ 

( 4.35) 

' . 
I 

( 4.37) 

( 4.38) 

[Eq. (4.10)]. A measurement of Q will thus provide us with direct 

evidence about the Class III trajectories. 

(xi) In gene:al if XIII is any experimental quantity that 

depends only on Class IIII then the dependence on.the individual members 

., . 
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of the class can be isolated to some extent by measuring . 'S:rr for 

all of the processes pp, PP; pn, and pn. The results are 

( 4. 39) 

where the symbol ex: is used here ·to mean "depends on." The symbol 

IIIj means the sum of the amplitudes arising from all trajectories of 

type IIIj •. 

The quantity Q in test (x) is an ~II ·type quantity. If 
• 

only the ~(III4 ) and the ~(III1) trajectories are important, we 
i ' 

get the prediction that the combination of quantities in the last line 

of Eq. (4.39) should be much larger than the other two combinations. 

If it is taken for granted tha~ ~II . and ~II. are negligible:, 
. 2 . 3 . 

then a simpler method can be us~d to estimate the·in~erterence between 

~ .. and ~-like trajectories, since then ve have . : · 

(4.40) 

Explicitly for Q we have 
. . ~ . 

( '2 ·. ·a..a 
Qp • Qn = 4

€ Re( t * . t ) 1 7 . E ~ ~ · • 
-p 1> s . . · ~ · 11 , o,~ o,~ . . ( 4.41) 
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(xii) If an experimental quantity Y depends onJ..Y: on Class I 

and II, then in practice it 1s more difficult than in test (xi) to 

isolate the dependence _on individual members IJ or IIk • A typical 

equation of the type Eq. (4.39) would nov·read 

YPP .. YPP + Ypn ... Ypn tt (I1 + II1)(I2 + II2 ) -~ (!3 + II3)(r4 + II4), 

and similarly·for the other combinations. 

.,~ ,., 
( 4.42) 

In practice, however, the Class II trajectories are completely' t 

ignored, so that equations of the type Eq. (4.42) yield some knowledge 

about the. ·individual Ij members. 

The tests discussed in (vii) are of this type and the validity 

of the conclusion that the quantities listed in Eq. (4.32) will vanish 

at t = t
9 

is, strict1Y speaking, true only if the Class II trajectories 

can indeed be ignored. 

It is therefore of great importance to measure further experi-

mental quantities which depend directly on Class II trajectories. We 

now suggest a possible check. 

-(xiii) The experimental quantity Q defined as 

5 I
0
(1 -.D) +.I (A + R') . __ l __ 

· 0 · . · sin(e/2) 
( 4.43) 
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. . •, 

... ~\ 

depends solely on ClBss I and Class II trajectories. 'It is given, by 

.Q = 
a a· 

nE m (an ·11,n 722,m +am 11,m 722,J 

. ( 4.44) 

·--' The quantity .Q should be qu:i.te sensitive to the ClAss II trajectories, 
- . ' - . . - - - . 

since the Class I t~ajectories always ~nt~r ~ :i.tt E·q. ( 4.44) with an extra 

factor' of ·,E in the denominator, 

. The ... leading 'term _is· 
, ... 

- V(t) •.. 
........ ..... 

-Q · = ·o·(.,2 - E. ) .. ., _ _, ' 

where.· 

' -

· V(t) ,T 1; 

. -~ i ·:·. ,~ ' 
. 'l. 

;, <. ~~ ·:;. 
' ... 

:. ~I . 

. \' 

-( 4.45) 

( 4.46) 

-Thus ·· Q . is expected to drop rapidly .with _energy. · .·. From a-· measurement of 

then conclude that 

-·· .-, 

1' •·. 
·, .···"-

:··, '•-· 

' '-. :;. .~ . 
. . ; -:::-: 

.· ... -·. ,:, ' 

.:_- '.·. 

. ..... 
'-: 

.. '.'· .. ·· 

' ' • ;. •• ; ' : ~ < • 

- • .J- • . '' 
"• .·. - ;-.. 

-~ . 
.r: ; . '·' 

( 4.47)-

' ~--

.; . 

i 

'\· 
; 

. ·. \ . 
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CONCWSION 

The measurement and analysis of.the various experimental 

quantities discussed in Sec. IV would proVide the basis for a 

critical examination of the general validity of the Regge pole theory 

and of some of the customary assumptions made in the application thereof. 

In particular the measurements discussed in tests (iii) through (vii) 

are designed to test the validity of the factorization theorem that 

follows from the assumption of a simple pole Regge model. There is 

already some weak indication fro~ the difference of the pp and pp 

differenti.al cross sections that the factorization theorem is not valid. 

The tests described in (viii) through (xiii) are designed to 

examine the validity of the customary assumption that Regge trajectories 

of Class n and III can be ignored • 

. It is hoped that in the not too distant future there will be 

available sufficient experimental evidence to clinch the. case p:ro or 
I 

contra the Regge pole theory. 
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APPENDIX 

It is useful to relate the ¢ and the g amplitudes to the 

Wolfenstein parameters a(e)~ e(e), m(e), g(e), and h(e) as 
. . . . . 11 

defined by Stapp, Eq. (2.10) of Ref. 5· Using Raynal's Eq. (16) and 
. i . 

Appendix 2, we write the Wolfenstebt parameters in ~rms of the helicity 
, ' I ' '•, ., 

amplitudes of Ref~ 1: · 

4ic(e) = (¢1 + ¢2 + ~3 .. ¢4)sin ·'e .. + · ~5 cos e 
' . . . 

. ; . •; 

. t ' 

X in terms of ¢ (Eq. (2~11)] can now ~e derived from Stapp's Table r. 

The crossi~ re1at1on .. betveen.the ·gtj .· ot.Eq. (2.7) and th~ 

... ' 

. . . . ~ . . ' ' :~ 
,• ,; •' ,' i I • 

-· ·,··. 

. -·.: --~ . 

··-. 

. :·) .· 

.. · 
~ • '! ' • ' 

'· 

· •••. ;·i • 

. . ' 
I· ... 

; . ·: . I 

- ': 

lo • 
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'· ':.\., •', I 

·~·-~ . . . ' 

' 
"·/: .. · .' : .·.· 

•_; 

-ta(e) · ·. ~l~(a) , 2r3(e) o. ·\ 
~1 \ 

\ 
m(e) 

I 

' I 
·"t. ~ .' ' 

. / '' '' · .. '' .... : ·...... . ' . :· . . . , .. 
'!~(e);. •2ia(e) .b .. 

.· ( ' . ..: ' ' 

. 1 . 
··· = .. · 2(s)~/2' . c(e) 

g(G). . Q ... ;''6 .· 
. ·: . 

. . ·h(e) 0 l 0· 0 ~ / 
! 

' . ·. . . . . '. . ~ . ' . . ·. . . : . . . . ' 

. . where . the woifenst~in parameters ar~ now ~xpressed in, tenns of the . . . .. •' . . ' 

·.· ·, 

··. Tbe crossing relation and. siapp' a· Table. :t can be used to . redri ve 
' ... · .. ·· . '·. . 1' " . . .. ; . .: :.. ·. . :: . .· • . • . .. ; : • _. •. . . ·.· < • 

Eq~: (2.11)/ and the triplE!.correlation parameters;, if needed• 
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Table I. Classification of the 12 pO~!=libleexchanges giving their relative 
. . . . . . 

contributions to pp, pp, ·. pn, .. and ii'n el!!Btic scattering amplitudes. 
. . 

Not all the listed quantum numbers are independent. The particle names 

corresponding to the quantum numbers are taken from Rosenfeld, et a1. 7 

Type of · Quantum numbers 

exchange I (-l)J p G 

Possible 

Label particles 

Value of the coefficients 

c(pp) e(pp) c(pn) cfpn) 

Class I 

s="l; J,i:J:l 0 + 
.. 

+ + Il . p, p', t + + + + 

0 ·- I . m, ¢ •. 2 "' 
+ + 

1 ... + I' 
p + + 

1 + + I4 A2(R) .+ + 

C:J,.ass II ·# • 

s"'1i J=L l 0 + + II· 
1 + + + + 

0 +· II2 + + 

1 + + ·II . 3 + + 

1 + ·II . . .. 4 A1 + + 

Class III 

s"'Oi J,L . 0 + + III1 
0 

TJJ X + + + + 

0 .. ·+ ·III + + . 2 

1 + + III3 + + 

1 + III4 
f( + + 

-- _ _,~"'1 ...... ----~ .. ~---.-----.. ----~-·--r-----· -~--·"~·· ...... -· ... -· _....... ... -- -i . ~ 
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