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ABSTRACT
Using anélyticity and croésing, one can ekpress the éxper{-

mental gquantities fof the physical channel in terms of the crossed-

 channel amplitudes. For N-N scattering, a new set of t-fchannei

_amplitudes '{gi) are introduced for which the s~channel experimental

0’ C}m’ CKP’ P, R, A, R', and A' are

very simplé in form. By use of these it is shown ‘that the measurement

D, D,

quantitiqs I L

of certain spin-dependent parameters in N-N  scattering can provice
critical tests of the validify of the Regge pole model of high=-energy

scattering. In particular it is possible to test the factorization

theorem, which is an immediate consequence of the simple pole Regge

theory. The relationship of the new amplitudes g %o the Wolfenstein

parameters is given.
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I. INTRODUCTION

lr.Analyficity_of scattering amplitﬁdes makes it possible to compute

the experimental parameters of a given channel in terms of the crossed-

channel transition amplitudes.l’e The generai crossing property is

,thé basis of many theoretical models and‘phenbmenological anzilyses.3

In particulér;;models in which the scattering of t&o‘particles proceeds

by the exchange of sets of quantum numbers have been especialiy fruitful

" in the discussion of experimental data. Consideration of the crossed

channel often facilitates the intérpretetion and parameterization of

the amplitudes for the exchange, and analyticity allows the use of

these amplitudesiin the main channel to calculate the experimental

parameters.

Assuming the usual strong interaction symmetries for nucleon-

" nucleon écattering, there are five independent amplitudes associlated

_ with'each value of isdtopic spin. Since a 5-by-5 crossing matrix

relates the direct and crossed-channel amplitudes, one expects unwieldy

expressions for the experimental parameters when they are written in

terms of ‘the crossed-channel amplitudes. A judicious choice of crossed-

channel amplifudes,'however, gives théée parameters an amazingiy simple
erm; ‘

Ih Sec. II, we introduce a néw‘set_of.bt—chanhel amplitudes,for
which thé ;rossing matrix siﬁplifies fremendously; Caicuiatidn of the
s = channel experimenfal quahtities is thén easily performed. For the

feader'interested’oniy'in results, the new set of amplitudes is defined
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- in Eq. (2.7),«§nd;the expresaions for the s-channel experimental
',quantities_iniiefms of'these:crossed-éhannelvaﬁplitu&es are given
:;A_"in Eq. (2.11). We include the differential cross section, the

: depolarizaticﬁ pérameters D and Dt‘ the correlation functions CNN

and- CKP;_thg_polarization P, and thé rotation parameters R, A,

R', and A'. We emphasize that these results are model independent

© and rely onlyjcn a sufficiently lafgevdomain of analyticity to give

physical content to crossing.
In Sec. III, we consider models in which sets of definite

quantum numbers are exchanged. .Obvidus applications can be made to

-both fixed-énguiar-momenfum pole models and Regge pole models.h

These results are applied to the Regge pole model in Sec. IV.

‘ Our‘méin aim here is to devise critical tests for some of the most

chargcteristic propertieé of Regge poles. In part;cular ve examine
thé'consgqunces of the Jfactorization theorem," the validit& of which
rests he;vily oﬁ the simple pole aséumption. Indeed; there is already
some Végué indication thét the factorization theorem is invalid from
the exberimental result that the difference between the pp and pp
diffeféntial cross sections changes gign at a vefy small value

[t zn-O.l5(BeV/b)2]'of the momentum transfer. A detailed analysis of

'fhe situation is given. We also discuss in detail the usual approx- -

imation of neglecting'trajecfories»othér than the P, .P', p, W,

and R..
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_A general explanatioﬁ of the nature of the tésfs in terﬁs of
. the concept of the "claés"'of a Regge trajectory {s based on the
discussion in Sec. III. '
-In the-Appendix we relate the s-channel Wolfénstein parametersﬁ-

t0 the helicity amplitudes and to the new (analytically continged)

crossed-channel amplifudes.

' II. DERIVATION OF GENERAL RESULTS
~In this section, wé derive.expressioné for the experimentai
‘quantities inrterms'of the crossed-channei amplitudes} Cbnsider
NN ~ NN .scattering'in.the.direct channel (s channel). We shall use

the Mandelstam variables,

s = Wp®+nf) = o 42w,
t = «2p2(1 “« Z)
.2 _ : (2.1)
u = =2p7(1 +z) , :
A
u -t
2 = cos B = Tt

where p . is the center-of-mass (c.m.) momentum of one of the nucleons,

v:e is the scattering angle in the c.m. system;_and E 1is the total

energy of the incident nucleon in the'laboratbry system.,
gnexrgy « A o
In the t channel, NN - NN, '
L 2 2 2
. .t = b(p,~ +m%) = hEt poo
uo=e2p (1 - ay)

~Cont.- (2.2)
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s = 2py (1 rz),

. ' '_g..u’ mE+ é’t
zt = COos et = s

~Py, : o .(2.2)

where p, and E, are the cim. momentum and energy of the nucleon (or

%

ahtinucleqn) and 6, 4s the t-channel c.m. scattering angle. -

t
Wé'éssume the usual conservation laws of strong interactions
so that there.are five indepéndent helicity amplitﬁdes for the s-channel
process forleach value of 1sotopic spin. Since the 2-py-2 isospin
crossing matrix is easily inéluded, we shall_stmpiify the hoﬁation by :
omitting isospin until Sec. III. | | |
Let ~2r denote the column matrix formed from the five heiicity
amplitudes ¢, (i = 1,-+,5) introduced in Ref. 1, and let x' be any
éxperiméntal qpantiﬁy of interest. ‘Then it 1s always possible to find

a 5-by=5 matrix M(x) such that
| " : - .
x = Fmwg - ) gigmmy, . @3
iet £ Dbe the.columﬁ'métrix of the five kinematical«singularity
free t-channel amplitudes £, (1= 1,+¢+,5) defined in Ref. 1, Eq. (4.23).
. L. 6 . . ) .

The partial-wave expansions of the f, are

o

(27 +1) £.7(%) By(z,) ,

*y
[
It
&l
& y
5Mis

‘Cont. (2.4)
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Ly e 5 (e e e B sy
Iy = 5;' s +L)T,(%) Pelzy)

-

- : 1l
5t 5 {I J?iii‘) E_fl(t) (t '(2 )) fez(t) P, (z)}

’ t T+ 1 J ' v "
oy = 5 L T@TI {fee(t) (2 75 (2) ) "= 2,7(0) 2y (zt)} ’
b i | |
(- - 2+ 2 s Te) e (2) , (2.
5 D, ,%; (3 + ) 172 T2t Byt - )

where foq(t). ié the spin singlet t-channel transition amplitudé and
flJ(t)'the spin triplet J = L amplitude. The spin triplet J = L t 1

transitions are described by fllJ(t), flaJ(t), and f22J(t), and do

not mix ﬁith the J = L amplitudes because of parity conservation.

We shall express all'our t-channel amplitudes in terms of these spin

“amplitudes, since they are easily interpretable in models where definite

sets of quantum numbers are éxchanged in the t channel, e.g. fixed .
pole or Regge pole models.

By analytic continuation, 13' is related to I by the CrOSoing
b)

relation

J 2

_ o K £ ,__‘v.‘ | R e v.2'
v (S)l/é (8 +u)(t +u) e ' o (2.5)

where K 1is the matrix explicitly displayed in Eq. (16) of Ref. 3.

2
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In order to simplify the crossing matrix K ’ we deflne a new

..set of amplitudes denoted by g ,  Wwhich are related to f by

where

" The partial-wave expansions

811

£, = 65"
2
(1 - 2,51,

' 2
(1 - % )fh

[e1 - 2,2)]

€ .= '!;/hm2

f:s)
Ps L
vy ,
=Y £33
P

t J.

stu
ls + u)

_t <:- 27 + 1
I

12
fs =

[}

:2 27 + 1

J [J(J + 1)]

’zt 82 K]

for the g, - are

(27 + 1)f 1(-t) P(z ) s

)l |
-g(J + 1)PJ(zt)_- 7

+ PJ'(zt)flJ(t)} ,

1172 flg(t) i’J'(zt) ’

(2.6)

PJ'( zt) ] feg(t) B

[J(J +1) Pylz,) = 2, PJ'-(Zt)} vflJ(t) R

- | + p (zt)fae(t)}
= ; (27 + 1 J(t)P (z,) «
J .

(2.7)
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Ve can now define a new crossing matrix /}l between the t ~channel

gi' and the a-channel Q; :

, .‘7ﬁi .= | l._ |
A (s + u)(t + u)

mPu -8t o hm(stu)%‘ | (s +u)(t + ) 0
. 2 | | | |
-5t bm“u - bm(stu)? . 0 (s.+ u)(t + u)
X ) m2y , | «st hx.n(‘st;u)% | o (s"-+' u)(t + 1.1)} 0
ot . - ..z_meu - -hm(stu)% | o | (s.+ w)(t +u)
-amtste)% -2m(stu)% bnPu - st - " e 0 o ; 0
(2.8)
where

| Kiﬁ = (s + u)(t + u);T{g ‘

From Eqs. (2. 8), (2 5); and (2 3), the direct-channel experimental

guantity, X ; is given by
-1 1, o :
X = s .g 7{ 7,((x)/\/§ . o (2.9)
The matrix product

M(X) = (x) | | (2.10)
K n Rl

is easily calculated. In Eq. (2. 11), we give X in terms of g l[tnis

~
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detemines ?n(x) 1 and in terms of g which is found by calculating ‘

'the matrix product M(X)

RS ~ [1¢ STAC 12 NARRY ;Ei] |
| = ( {igllg ‘ Igzle + 2'{;3'2 ’ghla + lgsl ] (a) vl
Io(1 - D) - %.[lvfl- ¢51?. + g, +.¢h|'2}
- 2(e)7] {|8h12 X |é5'2} L T
W%-%0=R4ﬁ;-ﬁm%+w}

4h(s)'l Re(gh* 85) s . 3 (e) -

Cnog) = B[ e ]

o [lgy - gl® + g, + s, @

H
Q .
!

‘o‘ kp = % {-l¢l + ¢212 + g5 "_¢ht2 '}sin‘e

- Re {¢5*(¢l + ¢2 - ¢3 +,¢h)> cos 6 (e)

[

(S)fl Re {(éh - 85)* [29(9)33»- B(e)(g, + 32)}} ’

L
e
1

;2(5‘)‘-1 Im{é3*(gl-+ ge)} .,_ | . v : (f)

i
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T

l
2 [CU,%) af 3 3) *@)(g) B( 5 ) - C(g) cos -Q—J L
1 e | 2 2 2 |
‘2'“55_1' “"I?’gl + l¢l IQ‘,‘I }sina
. e %955*(9’ By + By + ¢u)} cos 2

N '[‘a‘é’ (3 + oAy el

'Re{¢1 ¢ + ¢ ¢h} 1n—

- Re 2!;5,5 (¢1 - P, + ¢3 +¢,) }cos‘ % .
s*l[(u@ 2 - .5(,%) W 2) + Clg) smg—}
3T - 10,0 16, - 141% ] o &

2 W 2 |

-Re{¢ 4, -¢2+¢ +¢u)}ein-

ot Lc«g) «g) + @g) (L) + @(@ con _} X

"ReJ¢l*¢ + ¢ ¢h}cos~—-R8{¢ (¢l-¢ +¢ +¢h}81n-

(e)

(1)

(3)

(2.11)
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78 0 R T e o T
@(g)=2Re{g;(gl~sa)}, o .(‘,b)
Cle = lgl® - llP, 1 (@

d ; N ‘: | AU C (2.12)
”‘vfa(é)  = £ cos © + 7Asih e, ' o _- - (a)
”_B(é) = v7 cos & - fsin® , C (e)
with
'g ; hmau - 5t _ m(l + 3 cos ) - E(1 - cos 8) (£)
T (s +u)(t +~u) " im+ (E - m(1 - cos 8) -
_ hm(stu)l/é _ 2(om(m + E)]l/? sin‘e (&)
7= (s +uj{t +u) = Im+ (E~m){1l «cos ) &

We emphasize that: (a) The experimental barameters and helicity
amplitudés are s-channel quantities; (b) "The g, amplitudes were defincd
in the t channel, then analytically continued by crossing to the s

~channel; (¢) These formulae are model-independent and depend only on
suffiéientvaﬁalyficity'for erossing to be phyéically ﬁeaningful. They
are applicable to any model in whiéh the t-channel amplitgdes_are of

~ prime importancé in‘studying'the s«channel process.

A
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vAs'éh élternativé derivation of Eq. (2.11), an appendii is
1nclu§ed.in'which the‘Wolfenstein parameters are related £§ the helicity
amplitudes. With the crossing relation between the Wolf'enstein parameters
and the g amplitudes,-étappfs Table I (Ref. 5) can be used to rederive

Eq. (2.11).

IIT. EXCHANGE MODELS
wejconsider ﬁere mbdels in'which the scattgaing proceeds by

the éxchange of well-defined sets of”quantumvhumbers: p, I, Iz, B,
'Y, and Q@ . In some models, J is included among ?he definite quantum
. numbers, e.g., in "elementary particle" éxchange. 'If angular momenfum :
is interpolated, the eXchange carries J parity instead, as in Regge
pole models. Attention is confined to exchanges of B_= Y=0 so that
the t reaction is an NN channel, and the exchange also carries
definite G pafity. | |

o Fér eaéh of the three ﬁa;n‘types of spin-transition amplitudes
(=0, J=1; S=1,J=1; and S=1,J =1 * 1), isotopic spin
and J or 'J parity uniquely label tﬁe exchange. Relations ambng the
- quantum numbers determine the G parity,u and it turns out that there
" are 12 possible exchange tyﬁes. We now assume  that the amplitudes for
 these 12 possible exchangé types have been calculated. There might
"~ be several contributioné'to each exchange typé, 50 we will denote them .
: by gi’n(JI;LS), where the gi,n‘ are éefined in terﬁs of the partial-
. wave spin-transition amplitudes,in Eq. (2.7). Note, for example, that

for a pionic exchange, = , only 85 4 is nonzero, and so on.

cr o ] e e o vy U T TV

. ST e T R 0T X
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| The g-channel experimental qpantities'for"pp, ,ﬁﬁ, ‘pn,' and
Eh elastic scéttering can ﬂqw be calculated and compared..‘Thé contri-
bution of & given éxchange will differ at mosf by a sign frém process
to'p;oceés. Thé amplitude is a éum of terms Wﬁich we take by convention -
to have positive coefficients in the s channel foriglastic pp
._scattering. Hence, the. g tblbe substituted intogEgg {2.11) for pp
'eiastic-scattering are | | |

g1‘(pp) - % j{: 8y, (IT18) - - (3.1)

n

where 1 = 1,¢¢+,5. The factor % comes from the isospin crossing
‘matrix. The relatiye contribution of the nth term to the other NN
and ‘Nﬁ .procesées is now determined by‘isotOPic spin and the trans-
formafioh préperties of»the NN system. As an example, consider the
 process pn - pn . Stérting from the s-channel pp - pp process, Cross
Afo the t"éhannel, perform the G-=conjugation operation on the final
state andicharge conjugate both the final and initial states, then »
cross back to the s channel, which has become Sh - pn . The'phase

(_l)L+S+I

we pick up is just the G parity, , Where, of course,

L, 8, and I are well-defined quantum numbers in the -t channel
(i.e.,'they are just the quantum numbers of the exchange). In general,

we write °
-gi(lf“):.‘ -3 ) o) Mg aps), (3
S L=t R

- where



" UCRL-16597

~13
whefe

=y L +8 +1I
cn(pn) . (R 2T

— L +8
| cn(pp) = (-1 P,

I

e () Ly,

These are listed explicitly in Table I.

The experimental quantities for elastic scattering are then

(WL Z &M M ¢ * wxy g . (33)

n

From Eq. (3.1) and Table I, it is easy to-verify the following statements,
which hold for any experi;ental quantity X : |

(1) TLe differences (XPP ;‘Xpn) and (Xps - ksn) depend only on
the intefférence between exchanges with different isospin.

(11) The differences (XPB - pr) and (kﬁn - X*)  depend only on
the interfereﬂCe of terms fér which (-1) ® 'n = --(--~1)_Lm . (If we
neglect the S = 1, J = L amplitudes, which is reasonable ih the Regge B

' pole ﬁodel, we can séy that the difference depends only on th¢ interfe?ence
between eXchAnges with opﬁosite J parity.) |
o (iii) “The differences (Xﬁg - xP?y  and (X-I-;n - pr> depend only .on -

the interference bétween exchanges with opposite Gv.paritys
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Similarly, the expressions (xPP + xPP 2 .Xp?' + xP*) can
be used to test the contributions of more restricted sets of interferenuc

~ terms.

' IV. THE REGGE POLE MODEL--CRITICAL TESTS

‘A particularly intefesting application of the forégoing formalisi
can be made when the exchanged system is a Regge pole. It will be our
aim to find cfitical £eets that-can be used phenomenologically to estimuie
the &alidity of the Regge pole model.8 We remind thevreadér that- the
Regée pole model has been Qery successful in correlating a huge amount
of experimental information about scattering processes.9 The most .
convincing sﬁccéssee are those involving forward scattering processes
(t = 0), since very few parémeters are needed to collate the large
quantity of data. For nonforward processes, the situation ié much more
difficult to assess, since essentially arbitrary functions of t are
introduced in order to fit the data.
| ' An énﬁlysis_of the overall situationlo suggests very stfongly
that Regge-type "states" are being exchanged and that one is indeed
| seeing the'effect of the rightmost singularities in the complex J
. plane, eaéh of which has well-defined sets of quantum numbers. It is
.much iess ciear, however, that these singularitieé can be tﬁoughtvofr
as éimple ﬁoles. In fact, from a theoretical point df view, it is very

1ike1y'that there are cuts in the J plane,'pérhaps endihg:on the poles.
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,1 In.the'following we shall propose tests that might make 1%
possible to decide on phenomenological grounds, whether or not the
singularitiee can be treated as simple poles. The method hinges on
the so-called "factorization theoreﬁ," which states that if the
singularities are simple poles, then at the poles,

f.,7 f =(f12).' ‘ (4.1)

Our object will thus be to comoare predictions based on a Regge
model with and without the imposition of the condition Eq. (L.1). g

| We are also interested in testing some of the typical assumptioos

usually made in Regge pole theory, such as keeping only the contributions
'of P, P, p', w , and R , which are all trajectories of Class I
type. The argument in favor of this assumption is‘based on a considera-
tion of the positions of the known particles and resonances when plotted
‘on a ChewiFrautschi'diagram [Re(a) vs t]. Thus if there is no known.
particle or reeonance with the quantum numbers of a particular one of
the 12 possible Regge trajectories, then that trajectory is ignored.
Also, if from the position of a particle or resonance one is 1ed to
_suppose that its trajectory a(t) , for t <0, is going to 1ie much
lover than the trajectories of the P, ,P': p,y,w ) and R, then again
one usually ignores that trajectory., (For example, the pion is ignored

: for this latter reason.)
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- To test these essumptions ve construct experiment31 quantities
that, 80 fér as possible, depend solel& on those trajectories which
are usually ignored.

| The procedure is as follows. The div&sion into classes in
Teble 1 ié based on spin and angular momentum. Thus a suitable
geometrical combination of the standard experimental quantities can
be found which depends only on Class III trajectories. It 1s not
simple,.hOWever, to split up Classes I end II, and for these we have
to rely on interference measurements. |
An experimentdl quantity whioh depends only on a certain class

will serve equally well whether we look at that experimental quantity

- for pp, pn, pS, or sh scattering. However, if we wish to study

the individual members of & class, then ve must be able to measure

linear c0mbinations of the experimental quantity for several or
perhaps all of the processes pp, pn, pp, and pn . The manner in
’which these rules arise and their specific applications will become
 >c1ear in the following. -

| _ The g amplitudes are Reggeized in the usual way.u We define
a new set of_partial-wave amplitudes that contain the proper.threshold
| behaviOr'at. t =0, and that preserve the factorization theoren,

Eq. (b 1), if 1t holds*

v
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"ﬁ o 3 T R
t fay e g e
5o (& f.l)lfllv(t) s

e

l.'l..- t.
2
f

CE )
P By g(a+1) 22,( )‘f‘

omS BT 1 e
Py B, I+ 1) flh(t),f:;ﬂ’j:;, P

it

Ll
— (27 + 1)£.°(t) s S :

R {

o (t)

' f;The Sommerfeld~Watson transformation is then applied to the

S _'és""wi‘.il

Retaining only the Regge pole terms we get (putting ‘m =1,

be done in 81l that follows),Au,;‘?ﬁ1F?lf-7

Zc 5

zz: C E [a 722 (t) + ‘i? 7i;n(t)lf:’

_;{;i~*(,€)1/2 j? " e, 712 n<t? ,5a;ﬂ; :f'{ji%-’

(4.3)
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where terms of order. E " are neglected, and where €= t/ﬂmefS 0.

The term '71 J(t) (for =0, 1, 11, 12; 22) 1is defined by
b J

o )
' 2” Na, +3) - :
. ?i;n('t) = e ﬂva "I‘('a' . 1) ("Pt) : Bi;n(t) P
n = .
where )
B, (8) = um (5 -a(t))(t) .
ton geafs) "0 |

The term 71 n(t) is called the "reduced" residue and is assumed to be
¥ ’ .
a real analytic function with only a right-hand cut‘,‘The sum is over

all poles of both values of isospin and ’T‘=-(61)J'- Also we have

tn(+)' ; % (}ot*( f;¥v) 6'1;) ~for T = +}
and . . P (4.4)
 €;(') . %»(%an ( Z;E ) +iit) for T f'-l X |

The factorization theorem now asserts that the pole residues satisfy

722,“ = (712’n) ¢ , ()'1"5)

711,n

It has been customary8 to satisfy Eq. (h.5)'by‘introducing by

and b, 80 that
= Puos R ,

It
o
o
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The effect of this 1s to simplify certain formulae, but the rééults can
bé misleading. Thiae is because the b's are analogous to conling
constants, and we know nothing about their analyticity properties. On
the other hand we believe that we have some knoﬁledge about the
properties of the 7'9 s namely the 7i,n(t) are real analytic functions

with no left~hand cuts., It will therefore be advantageous to continue

using the 7i;n(t) .

We note that because of the analyticity, if 7ll(t) has a zero
of order r for some negative value of t , then both 722 and 710
must have zeroes at this point. _Thus _712 could have a zero_of orderw\

s and then the zero of 722 would have to be of order 28 - r . In

particular it is obvious that 711 and Yo, St change signs together.

Returning now to Eq. (2.11), we give‘the Regge parameterization
"for the experimentél quantities, without making use of the factorization

theoren. | For simplicity of writing, we define the operators

3 : — o
Tk T
| | n,m S - (4.7)
, o . oo
jg:; - %E -ZE: : °a “m Im(gn% gm)E nm’

where the sums_on' n and m go over all Regge poles. The expressions
for the experimental quantities in terms of theé Regge parameters are:

[
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We‘how attempt to analyze these results and to derive various

»

testé‘for the Regge pole hypothesis. The tests are divided into three
categories according to whether they examine:_ 1., general properties
' of the Regge theory; 2. the validity of the factorization theorem; or
3. the validity of_neglecting Class II and III trajectories. We shall
assumé, as seems entirely reasonable, that 1f we 1§%it our attention
to fairiy small values of momentum tranéfer, we canétreat the trajectory;
functions af(t) és approxiﬁately linear functions of ¢ . It then
follows, ffom a consideration of thé position of the particlés associated
with them, that of the three types of trajectory discussed in Table I,
| the Class I type with S =1, J=L%1 (i.e., those associated with
the P, p', p, @, and R) have trajectories that. lie much higher
than the types with § =0, J =1 (Class III) or s =1, T= L (Class II).
Ve shall.test this conclusion by studying the behavior of expefimental
quantitiés that depend directly'on the 1atter two trajectory types.
~ To make our statements more precise let us define aII(t) and

aIII(t) to be the highest-lying trajectories of the Class II and Class III

respectively.
qIII(t) = Max aiIIi(t) 5 for_.i - lali.’h . (h.lo) f

We number the following tests with lower case Roman numerals.

R e R R i R o B L e T L vy v O b
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1. General Properties

I'rom the formulse of Eq. (4.8), we deduce the following expressions
for the experimental quantities.

"t (1) The differential cross section is giﬁen by

P

I, = s;“ . -2 ¢ a a
0 L., "11,n 711? 712,n 712,m

'w'v+ O(e2 EM(t)) ,

2 2 .
e o % '722,n 722,m
(4.11)
. Wwhere
| M(t) = Max aaIII(t) - 1; szI(t) « 13 aII(t) +:‘gP(t) -2 .
| | - (4.12)

a_aP(t)-l

‘can be found from Eq. (4.7). This form of I, will be useful in

The leading term in I behaves like E and its exact form

discussing the factorization theorem.

" (11) For"tte polarization we have

VYA o | . n)
TP = 2( e) Z % .712,n(711,m teOy Yool

I

s O( (--e)z‘/2 a% ) (k;13)

' The leading terms are
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ohe .
o \1/2 -,  ag4a
' ngPp

A | | ]
2 o 2 '

x L“b V2, 0{T,n * €% Toon) "% (M1 pt €% 722,P)I .
, 3

(k.14)

The remaining formulae of Eq. (4.8) are easily discussed in the
same manner, however, the rotation parameters (A, R, A!, and'R') do not

simplify appreciably.

2. Factorization Theorem

. (41) Tfwe apply the factorization theorem to Eq. (h ll), then we

get, for the leading terms of Io

Y o+

n

I T U * mon 2
Io = Ls é;“ Qn m R?(gm- gn) L 711 m. 7ll, (l € Ah)
n,m . v D o
o | B | - (ka25)
vhere
o al(t)y,, (8) o
A(t) = B e,n Lo T (4.16)

_711,n(t)

Using Table I, we compute the difference of the pp and PP

differential cross sections to be

- \
ary e Io(pp) - I,(pp) = ﬁ; /.
- | | n=P,P',R

s ma na, , . \2
. ‘X(_l - cob 5= tan "'2") "11,n 711,p(1 "€ ’Q |

. - S - |
xE® P 4 (psa). - o (k.17)
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D Cwa. e
Now, for reasonably small t, the terms (1 - cot —= tan —£ ) and
b (o no ' e 2

(1 - cot _EE tan _52 ) are certainly positive, since for them to

become negative would require trajectory slopes far steeper than

9

indicated by the above-mentioned analysis.” Also, in the customary

)2

form of the theory, and 7., 0 in Eq. (4.17) appear as (bl o

711,n
‘and' (bl,p)2 respectively ad_that it is tempting to conclude that the
difference Io(ﬁi) - I,(pp) has to be positive. |

However, it is known experimentally that Aio changes sign at
t --O.lS(EeV/c)2 for high energieé. Thus we might conclude that there
is here éome evidence against the validity of the factorization théorem
on which Eq. (4.17) is based.

The alternative is to assume that some of the 7l,h , say
711,a(t), change sign for = -Q.ls(BeV/c)a. With respect to the
analytic properties of the 72,n(t) there is nothing against this
possibility. If, however; we take the customary viewpoint that 7ll(t)
~ is the séuare, [Bl(t)]z, of an anaiyticalxy continued coupling constant,
then bl(t)vbecomes pure imaginary, i.e., has a tranch-point singularity,
at ﬁhis.valué of t . As mentioned earlier, we do not know enough about
the bi(t) to preclude this possibility, 8o it is feasible that for
;ome reasons of dynamical origin blgp’v be,p’ or biﬂb’ b2ﬂb’ or both
do indeed become pure imaginary at t % -O.l5(BeV/c)2 .

It 18 worth noting that both b, and b, must become pure
imaginary at the same ‘t-:Valuevin order that 712 = blb2 'be real: ’
real analytic for £<0 z‘_xt_ié also wpfth nbting.that it could not be,

W o .

I G T T ST oor ey T SR e bt g e en g A
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1,p* %2,p
leading term in both io(pp)» and Io(pE) to change sign.

say, b which become imaginary, siﬁce that would cause the.
If we restrict our attention to the NN system we see that

there are three possibilities:

(a) The factorization theorem is valid and 7i1,p and 711¢n
change sign at t = -0.15 (BeV/c)2 . |

(b) The factorization‘theorem is valid and either (i) M1,p o
(11) 711#0 _éhangé sign at some value of % in the range 0 >t > -0.15.

(c) The factorization theorem is invalid.

| R. J. N. Phillips has pointed out that if we take into éccount_

aN scattering as well, we can immediately eliminate possibilities (a)
and (b.i). It is well known thaf the charge-exchange scattering process
2 p -+ x°n 'dépends solély on the p trajectory. Also the residue

for this process, and the residue function

function )
nevions Tin,e Tom,p-
7&“ b og the nn - st process, are related by the factorization theorem '
J . i . X

- to the_functions 71 0’ of the NN . process. In fact we have
i 1, , :

722: (Y

vé )2

““)9711:9 = (71":9 ’

Ta,p 722,p - (72n,p

)2 . EE © (4.18)
‘It 18 important‘to'realizé that these relations are on an equal footing
with thé relation Eq. (L4.5) and follow directly from the factorization

theoren.
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If follows, then, that if possibility (é) or‘(b.i) holds then
the differential cross section for x p =~ ﬂon will vanish at
bt -0.15(BeV/c) or at some point t in the range O > t > -0.15.
.However, the éxperimental measurements on this process show that this
is manifestly not true.
We are thus forced to one of two possibilities:
(A) The factorization theorem is valid and 711¢n changes sign
somevwhere in the range O 2 t > <0.15, or
(B) The factorization_theorem is not valid.
" We shall discuss these alternatives in tests (vi) and (vii).
(iv) If we now apply the factoriiéfion theorem to the leading
terms for the difference between the 55 and pp  polarizations (Eq.

(4.1%)), we find

T, e
X Op = AJa - e A) +(p=a) (129)
Thus alternative (a) of test (ii)_predicts that
® =0 S (ke0)

at t % -0.15 (BeV/c o
o - If either alternative (b) or (c) holds, then there is no reason

to expect ‘that Eq. (u eo) will be. true.
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(v) I Cyy 18 large despité the fact that it is & spin-
correlation quantity, and, as such, depends on the spin-flip amplitudes.

Thus

IOCNN = 2¢ ;{: aﬁ(am 722,m 7ll,ﬁ - an 712,n.712,m).
R f

o Optapp=2 G40y - 2 v (h.21)

+0(e“E ) ; O(e E

Note that the leading term is

o X ap(t) 5 Ezap(_t)

) %+) 711 p 722 P~ "12,p

v €
; IOCNN = 3; cosec
. (Lk.22)

which will be identically zero if the result Eq. (4.5) 6f the factorization

theorem holds. In case it does, we would have

b

IOCNN =

e = = OeEaP+(«1H 1) »‘ | (k.23)
where ah(t)‘ is the highest-lying trajectory from among P', p, w, and
R . . ' - ' .

It the faetorization theerem does not hold then there is something
' emiss with the simple pole Regge model, and Eq. (4.21) is probably not o
correct, However, it is likely to be correct up to logarithmic factors
in E . Thus to the extent we cannot distinguish 1ogarithm1c factors
experimentally, a measurement of the variation of IOCNN with energy.
.would help to decide the validity of the simple pole Regge model. A

A
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Next, we consider the difference between I C .for pp and

O"NN
pp . We get, for the leading terms,

CNN(EE) -~ I Cpy(pp)

A(ToCyy)

r(l

It

ﬂClP na > (IP+CI

* 1% Ta2,p Tin,0-t % o2, T11,p T % Yi2,p T10,0
. ‘ J

(o> o) o o (k)

" Using the result Eq. (4.5) of the factorization theorem, we get

3

NN

: ﬂap ﬂa dP+a
&0 ~-E-l-cot-—tan > | yllellp()“P

+ (p = )+ (4.25)

. Again alternative (a) of test (iii) implies

at t X -0.15 (BeV/c)? .

(vi) If the alternative (A) of test (iii) holds, then it has the
following consequence. Let t, x '¥O.15(BeV/é)2 -be the value of t for
wh;ch AIO = 0. " Trvaerlxafor svome. ,vallu?-,btlértlv’.,wj‘th o> tl > %, s 711)0_)
changes Si@., ife.o, j. L . : - o |

£
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711,(”( tl) = o . . ( )“' 026)
"Then at t = tl,' if we are at sufficiently high energies, we have from
Egs. (4.17), (4.19) and (4.25), ' ' Y ¢
. sin L (o, -a) : : +
AL, = & 2 % "% 7 7. (1—e.x)2EaP°
Mo Tl w e o wa e i, A Mg )
- 3 %p o8 5 9, | .

4 | RV cbsE(QP-'a) 7
'A(Iop) = Lu,)g —2 % '1,p 711,9“? - )

sin §aP co8 = > ctp :

%ty
‘ - < sin X (o:P p o 0¥,
sin = (xP cos = _
l 2. p
(k.27)
Since t = tl is very close to t = O,' we may assume that we

know [ap(t ) - & (t )] with some degree of certainty. (It would even
be quite reasonable to approximate this quantity by [aP(O) -Q (O)] s
since the trajectory slopes are known to be reasonably small ) We then

- construct the experimental -quantity,

ey L 1) o) [ aEP) (.08)
) = - + -8 . .
$).= g sln"(ap-a) ‘__COS_(GP-Q) s

: o
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It follows from Eq. (4.27) that at sufficiently high energies, 1f

alternative (A) holds, then

{ tl)

1
o

. | (4.29)

Note that at t = O, L(O) has a finite value. If we use the

fact that ap(o) o aw(o) and aP(o)' = 1 we have, at t =0,

2

o 7 7, 7 2 2(1+a) |
L(O) - 11)2 lé):: 11)0.) (}\p - )\’w) B Q . (14-.30)
16 8° cos 3 @ -
p
Taking the currently accepted value ap(o) = % y
g v
| / / .
o _ E .2 1/2 1/2
0) =33 "i,p [(722 o 11 w) = (7pp,0 "1, p) } s
R ) (4.31)

~ where, of course, the 71,n(t), are evaluated at t = O. |
Thus alternative (A) predicte that at high energies, IL(t) will
| become zero somewhere in the region 0>¢t> to . . _

(vii) A further test of alternative (A) can be devised by
constructing a combination‘ﬁf processes that depend, at high energies,
on 711,& only} _Unfortupatély this takgélus_a'little way ;nto thé
experimentai”realﬁ'of‘the»future, 6ut|it'vii1gbe worth while to record

the results.
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If alternative (A) holds, then the three quantities

ar (t) = I (pp) + “Io(pn) - I,(pp) = 1I,(pn),
ap,(6) = IP(pp) + IP(pn) - IR(pp) - IP(Bn)
ac (t) = IColpp) + ICplpn) - I ColPp) - ICoulbn) ,

(4.%2)

will all vanish at some value t = tl with 05> tl'? to .

%, Class II and III Trajectories

(vit1). Io(l - D) drops quickly with energy, since i depends on

the interference of trajectories of Class II and Ci@és ITI. 1In fact,

2 EM(t)

(1 - b) = 0o(e ) ,?f" | i‘ (4.33)

Thus if M(t) is measured experimentally we can deduce [see Eq. (h 10)

- and- (h 125] 4 ,f
%ﬁ»'<,‘%(1+u(t)> , o
| aqp < Faemw), . |
and S (k)

9y < 2 + M(t) "dP‘.

(ix) T (D “ C, ) depends on interference with Class IIT

traJectories. It will be of order ea EN(t) s Where |

- . |
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N(t) = -Max orIII(t) + an(t) “ 1; anz(t) + aP(t) -29 ..
(4.35)
From a measurement of N(t) we could then deduce‘;
- € 1+ N(t)
and ,
. < ‘ _ : '
o S 2 + N(t) o . } | (4.36)
(x) The experimental quantity Q defined as ‘b
= I.(1l=-D) + I R - I —t
Q of ) v A') wo (672)
= Io(1-D) - (IgR'+ IA) (4.37)
{0 : OA sin (9/2) ‘
depends solely on Class III trajectories. It is given by
q = ke 7, .7 | (4.38)
O,n O,m ’ . ' ) . . *

R
o | | 2oyt
and the leading term in its energy variation is then E
. . - \ . .
(Eq. (h.lo)]. A measurement of Q will thus provide us with direct
evidence about the Class IIX trajectories.

(xi) In general if X is any experimental quantity that

III
depends only on Class III, then the dependence on the individual members
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of the class can be isolated to some extent by measuring Xppp for

all of the processes bpp, 55, pn, and Sh. The results are
xIII(pp) -.XIII(pp) 4+ XIII(pn) - XIII(pn);bd III;) IIX:+ Il IIT,
Xprp(pp) « Xppy(PP) = Xppp(pn) + Xppo(pn) e III, IIT, + III, IIT, ,

Xppr(pp) + Xppp(Pp) = Xppy(pn) « Xppp(pn) oo IIny 117, + IIL, III,

| (4.39)
 where the symbol o is used here to mean "depends on." The symbol

III, means the sum of the aﬁplitudes arising from 8ll) trajectories of

J
type III

3 :
The quantity Q in test (x) is an XIII"type quantity. If
only the ﬁ(IIIh) and the n(IIIl) trajectories are important, we

{ B :
get the prediction that the combination of quantities in the last line
of Eq. (4.39) should be much larger than the other two combinations.

If it is taken for granted that Oy and Oppp are negligiblc,
- 2 ' 3 .

then a simpler method can be used to esﬁimété.thetintefférence between

- and 7n-like traJectories,_éince then we have ;3-7"P

- Xppp(ep) = Xppg(em) om0 (ko)

Explicitly for Q we have

€

J R P N TR "
Y- Qpn"=}:~E__Be(§x;';ﬂ);7b,ﬂ'7b;nA ET N (k)
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[ .

(xii) If an experimental quantity Y depends only on Class I

and II, then in practice it is more Aifficult than in test (xi) to
isolate the dependence on individual members IJ or IIk « A typical

equation of the type Eq. (4.39) would now read

Ypp - Yﬁp + an - Yﬁn oc (Il + IIl)(12 4'112) % (1:3 + 113)(Iu + IIu), '

A

(4.42)
and Bimilarly‘fof the other combinations.

In practice, however, the Class II trajectories are completely(

¥

ignored, so that equations of the type Eq. (L4.42) yield some knowledge

about the -individual Ij members.

The tests discussed in (vii) are of this type and the validity
of the conclusion that the quantities listed in Eq. (4.32) will vanish

Y
can indeed be ignored. .

v‘at t = t, 1is, strictly speaking, true only if the Class II trajectories

It is therefore of great importance to measure further éxperi-
mental quantities which depend directly on Class II trajectories. We

- now suggest a possible check.

(xiii) The experimental quantity Q defined as

QA = ">; . T (A - 1
N Io(l.v'p)v f:'Io(Ai R) cos(8/2)
S n1eD) ¢ IArR) —E— (g

- " sin(e/2) -
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';vv deben&eisolely.oﬁ'Clése_I and diass'II'traJectories‘ "It 1s giVen_By"ff

. u/é-_’ - a2a 27 7-A  +. a..___.n % a .y o . n>'
"\e AN n}m_- 1,0 “1,m i E 71n722m+a 71’ 722 -

a o .
mom S
2 ‘22,n '22,m

Cot
—

' The quantity i) should be qpite sehsiﬁiﬁé'fo'ﬁhe Cléss‘II‘tfejeCtories, '

t

since the Class I trajectories always enter_in Eq. (h hh) with an extra ‘__")
factor of E 1n the denominator. : LT

The leading term is

(k)

. .‘ e

Thus Q is expected to drop rapidly with energy._ ﬁreﬁ'efmeasufement_of

V(t);hwe could_then conclude that

(N
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‘ CONCLUSION
The measurement and analysis of . the various expérimental
quantities discussed in Sec. IV would provide the basis for a
critical examination of the general validity of the Reggé pole theory
and.of some'of the customary assumptions made in the application thereof.
In particular the measurements discussed in‘tests (111) through (vii)
are designed to test the validity of the factorization theorem that |
follows from the assumption of a simpie pole Regge model. There is
already some weak indication from the difference of the pp and pp
differenti.al cross sections that the'factorization theorem is not valid.
The tests described in (viii) through (xii1) are designed to "
examine the validity of the customary assumption that Regge trajéctories
of Class II and III can be ignored. :
‘It is hoped that in the not too distant future there will be
available sufficient expe;iméntal evidence to c¢linch thé;case’pro or
. eontra thL Regge pole theory.
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APPENDIX ‘

It 18 ugseful to relate the ¢ and the g amplitudes to the
Wolfenstein parameters a(8), c¢(8), m(e), g(0), and h(8) as
defined b& Stapp, Eq. (2'10) of Ref. 5. Using Raynal' u Eq. (16) and
Appendix 2, we vrite the Wolfenstein parametera in terms of the helicity

amplitudea of Ref. 1: -

ba(®) = ¢1 - g, ‘+ ¢3 +' ~¢1¢1 + '(_¢i + ¢é.'+‘ ¢ T- ¢u)qos 0 - % sf'm"e
be(e) = ':(¢1 + 4, + 4, -¢h)sin9 +’+¢5 cos ©

.hm(e) = (¢, - ¢, + ¢3 + ¢,,,) + (¢1+¢2+ gy - B))cos 0 - W, sin 6
ele) = A, +4, +'¢3"+'¢h SR A

n(e) e _¢l_¢ +¢h%

X 1in terms of ¢ [Eq. (2 11)] can now be derived from Stapp's Table I.
The . crossing relation between the g s “of Eq. (2.7) and the

Wolfenstein parameters 19 iftlyf}'lf”f'g'*i_;g"‘ffﬂ;gl g ;'_ ' 3,;-
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":{;-f,,_v-m(e) aa(e)

‘ where the Wolfenstein parameters are now expressed in terms of the
;§i¥ianalytically continued g s ; f a(e) and a(e) were given in Eq. (2 12)

_ The crossing relaﬁion and Stapp 8 Table I can be used to redrivc
‘é..
: Eq. (2411) ‘and the triple correlation-‘arameters, 1f needed.
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' T&ble I.- Classification of the 12 possible exchanges giving their relative
contributions to pp, .pp, .pn, and P elastic scattering amplitudes.
Not all the listéd-qpﬁntum numbers are independent. The particle names

- corresponding to the qﬁantum nﬁmbers are taken from Rosenfeld, et al.7

-

———

————

Type of 'Quantum'humbers~ ,' . ' Possible Value of the coefficients

exchange I (-1)Y P G . 1label particles gep)  [(pp)  [pn) (Pn)

Class I

8=1; J=121 0O -+ T+ 4 : Il o, P, 4+ + + +

2. ©

1 LA T S ) A (R) + + - -

Class II : A
8=1;Jd=L [ O -~ + 4+ . . II. L . + + +
o .

|
+
l
+
[
[
[
+
[}
-+

Class III

8=0; J=L + - - % ITI

0
0 - 4+ -  II, - - . + * -
1 -+ o+ I, - + - +
1

+ - - IIIh ”t : + + - -

T
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mission, nor any person acting on behalf of the Commission:

A.

Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report. ‘ :

As used in the above, '"person acting on behalf of the

Commission" includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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