UCLA

Posters

Title

Wireless Seismic Data Collection

Permalink

https://escholarship.org/uc/item/66f3q505

Authors

Paul Davis Jeremy Elson Deborah Estrin et al.

Publication Date

2003

Center for Embedded Networked Sensing

Wireless Seismic Data Collection

Paul Davis, Jeremy Elson, Deborah Estrin, Allen Husker, and Igor Stubailo **UCLA Earth and Space Sciences and CENS Systems Lab**

Introduction: Seismology is limited by the need for wired infrastructure

Discoveries are driven by data collection

- Much of our knowledge of the Earth's internal structure comes from measurement of earthquakes
 - Comparison of observations from many locations yields insight into details of the Earth's structure in between

Data collection currently requires infrastructure

- Correlation across sensors usually requires time synchronization
 - GPS (Global Positioning System) Satellites provide precise time world-wide
 - Unfortunately, GPS is not visible from many seismically interesting areas: inside buildings or tunnels, under foliage, in canyons, underwater...
- Remote data retrieval makes the system practical
 - Instant feedback after a significant event
 - Also allows health monitoring faster turnaround on tuning, maintenance, etc.
 - Typically accomplished by connecting nodes to the Internet

Problem Description: Ease deployment by going wireless but maintain "good as wired" service

Wireless, autonomous nodes ... Use inexpensive, off-the-shelf hardware (e.g., 802.11b) to provide a wireless link to every node

Multi-hop data and control routing

... Allow collected data and outgoing control messages to be distributed hop-by-hop through the network to the nearest access point, rather than requiring Internet to every node

High-precision multi-hop time sync

... Nodes that have a view of GPS satellites propagate high-precision global time to nodes that need it

Proposed Solution: A prototype wireless seismic testbed using commodity hardware

Small, low-power Linux platform: The Intel/Crossbow X-Scale "Stargate"

400 MIPS, 32 MB Flash and RAM, PCMCIA, Compact Flash

EmStar: A Framework for Flexible Wireless Sensor Network Software

Reference-Broadcast Synchronization: Leverages Wireless Broadcasts for Precision

Automatic Construction of Trees for Multi-Hop, High-Precision Time Sync

