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ABSTRACT OF THE DISSERTATION

Semiparametric Methods for Choice Models in Panel Data with
Persistence

by

Kelly C Paulson

Doctor of Philosophy in Economics

University of California, San Diego, 2013

Professor Ivana Komunjer, Chair

This research explores the intersection of econometric theory and consumer

choice applications. Consumer choice panel data often exhibit persistence in

choices which could be explained by unobservable heterogeneity across consumers,

like brand preferences, or structural state dependence, like habit formation and

brand loyalty. A semiparametric method for identifying and estimating structural

parameters in a binary choice model with structural state dependence in the form

of a lagged choice variable is presented. The method requires the availability of

auxiliary data that satisfy a conditional exogeneity assumption the additional

data must adequately explain any systematic relationship between observable and

unobservable components of the model. However, it is not necessary to specify the

ix



functional form of the relationship. The distribution of the error term is also left

unspecified, and certain types of serial correlation of the errors are accommodated.

A constructive two-step estimation procedure is proposed.

The method is applied to consumer choice data using the IRI Academic

Dataset. For a variety of datasets that may be available to marketing researchers,

data that may satisfy the assumptions required for the new method is suggested.

This discussion highlights specific applications where using the method described

above can be helpful in disentangling structural state dependence from unobserv-

able heterogeneity. Simulations show that the semiparametric method estimates

structural state dependence better than the usual techniques. A brand choice

application using data from the milk product category indicates that standard

techniques may overestimate structural state dependence.
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Chapter 1

Identification

Semiparametric identification of the dynamic binary choice model is a
difficult problem since static model identification strategies cannot eas-
ily be extended to accommodate lagged dependent variables. Existing
identification results for dynamic models require restrictive assump-
tions. In this paper, a conditional exogeneity assumption allows for
identification in a dynamic binary choice model with a linear structure
and additively separable heterogeneity. By appropriately choosing the
conditioning variables, we allow for accommodation of endogenous ex-
planatory variables and persistence though an individual fixed effect, a
lagged dependent variable and serially correlated error terms.

1.1 Introduction

This paper is concerned with the application of binary choice models to

panel datasets that exhibit persistence, possibly though structural state depen-

dence. Binary choice models have been widely-used to describe individual choice

behavior.

There is considerable persistence in binary outcome variables in applications

in labor economics, health economics, consumer choice, industrial organization and

corporate finance. Distinguishing between the different avenues of persistence is

important in these applications since the different mechanisms have different pol-

icy and strategy implications.

1
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In labor economics, structural state dependence in unemployment and labor

market participation has been studied by Hyslop (1999) in the US, Arulampalam,

Booth, and Taylor (2000) in the UK , Croda and Kyriazidou (2002) in Germany,

Knight, Harris, and Loundes (2002) in Australia and Lee and Tae (2005) in South

Korea. Policymakers are interested to know if persistence in unemployment and

nonparticipation is due to individuals’ unobservable characteristics or a response

of labor markets to individuals’ past statuses. In these models, structural state

dependence can be interpreted as the “scarring” effect of unemployment - past

unemployment causing an individual to be less likely to leave unemployment. Em-

pirical results indicating significant structural state dependence have motivated

governments to subsidize firms that hire new employees from long-term unemploy-

ment.

In consumer choice applications, data sometimes exhibits persistence in

brand choice. Browning and Carro (2009) have studied product choice using bi-

nary choice models, while Dubé, Hitsch, and Rossi (2010) have used multinomial

models to examine brand choice. In these applications, differentiating between

unobservable heterogeneity and structural state dependence has important impli-

cations for pricing strategy. Persistence from structural state dependence could be

due to consumer habit formation or switching costs. It may also be possible to

observe variety-seeking behavior in which a consumer’s purchase of a good in an

earlier period causes them to be less likely to purchase the good in the current pe-

riod. Structural state dependence induces firms to set prices dynamically. These

pricing implications, discussed in Dubé, Hitsch, Rossi, and Vitorino (2008) and

Dubé, Hitsch, and Rossi (2009), may have a sizable effect on firm profits, market

structure and the level of competition within the market.

For i = 1, ..., N and t = 1, ...T , the dynamic binary choice model with

unobservable heterogeneity has the form:

Yit = 1{X ′itβ + γYit−1 + Ai + Uit ≥ 0} (1.1)
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Note that Yit ∈ {1, 0}. A latent variable X ′itβ+γYit−1 +Ai+Uit determines

the value of Yit in a threshold-crossing fashion. There are k observable explanatory

variables contained in the vector Xit. The lagged dependent variable Yit−1 is also

observable. The individual-specific scalar effect Ai and the individual-time-specific

scalar shock Uit are not observable.

In this model, persistence in behavior is allowed through three mechanisms:

1. Unobservable heterogeneity Ai

2. Direct effect of lagged dependent variable Yit−1

3. Possible serial correlation in Uit

The question crucial to identification is how persistence observed in the

data is allocated between these possible sources. The literature on static binary

choice models attributes all persistence to the individual effect. While this may be

plausible in some circumstances, the direct effect of the lagged dependent variable

and serial correlation of the error terms may be important in many applications. A

strategy that allows for the identification and estimation of the relative magnitudes

of these avenues of persistence is superior to strategies that necessitate ex ante

assumptions about the importance of each mechanism.

Existing identification results Heckman (1981) addressed the nature of state

dependence in binary choice models. Heckman differentiates between “spuri-

ous” state dependence (persistence due to unobservable heterogeneity or lingering

shocks) and “structural” state dependence (persistence due to the direct effect of

the lagged dependent variable). Several recent developments in the semiparame-

teric binary choice model literature are related to the method presented here.

For static binary choice models with exogenous explanatory variables and

unobservable heterogeneity in the form of additive unobservable heterogeneity,

Magnac (2004) extends the conditional logit approach developed by Rasch (1960)

and Andersen (1973), and formalized by Chamberlain (1984). The identification
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strategy relies on the sum of the dependent variable for each individual being a

“sufficient statistic” for the individual fixed effect. This method requires assuming

that state dependent occurs only through the unobservable heterogeneity. State

dependence through the serial correlation in the error term or a lagged dependent

variable are explicitly ruled out. Although Magnac describes general conditions

under which the sufficient statistic identifies the fixed effect, it is not possible to

extend this approach further to allow for a lagged dependent variable. To extend

the model in this way, it would be necessary to specify how the persistence is split

between the individual fixed effects and the lagged dependent variable. Making

an assumption of this sort is undesirable as this is what we are trying to estimate

from the data.

For static binary choice models with endogenous variables, a recent topic

of interest has been semiparametric identification and estimation using a control

function approach (Blundell and Powell (2004), Hoderlein (2008)). Although the

lagged dependent variable is an endogenous variable, the methods proposed in this

literature are not well-suited to the lagged dependent variable problem because

they require a complete vector of classical instruments to explain the variation in

the the lagged dependent variable. Generally there is not a plausible instrument

available for the lagged dependent variable.

Hoderlein and White (2010a) consider identification of marginal effects in

nonseparable models with fixed effects using differencing intuition, and illustrate

their technique using the static binary choice model. They consider observations for

which variables that are not of immediate interest are not changing, and calculate

the marginal effect of variables of interest using differencing intuition. Although

this is a clever extension of differencing intuition from the linear case to a nonlinear

situation, it does not allow for a lagged dependent variable. It is not possible to

include Yit−1 as an explanatory variable since it violates Hoderlein and White’s

definition of exogeneity. Treating Yit−1 as a conditioning variable is not possible

either since it violates necessary stationarity conditions.
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Several recent contributions can accommodate a lagged dependent vari-

able. Arellano and Carrasco (2003) present a random effects identification strategy

for binary choice panel models with predetermined variables. The unobservable

individual-specific time-varying component Uit is assumed to have a specific dis-

tribution, conditional on lags of Xit and Yit−1. Also, Wooldridge (2005) presents a

parametric identification strategy for average partial effects in the dynamic binary

choice model. It involves specifying the relationship between the Ai, the initial

condition yi0 and xi, as well as the distribution of Uit. Although a clever solution

to the initial conditions problem for short panels, the approach relies on correct

specification of the distribution. Although it is possible to choose a flexible distri-

bution, it is still desirable to show nonparametric identification.

Honorè and Kyriazidou (2000) propose a semiparametric identification strat-

egy that uses a differencing intuition to accommodate an individual fixed effect and

identify β and γ in Equation (1.1). By considering only observations that meet

certain conditions, they are able to invoke conditional maximum score results from

Manski (1987) to identify β and γ. However, the observations that meet these

conditions are not necessarily representative of the sample or population. For

instance, they consider trends in the dependent variable {1,0,1,1} and {0,1,0,0},
only when the exogenous variables between the second and third observations are

equal. In many applications, observations with this sort of variation may not be

representative of the true variation in the population.

Honorè and Lewbel (2002) employ a “special regressor” approach to iden-

tifying the dynamic binary choice model, based on Lewbel (2000). They require

a variable Vit with unbounded support that affects the dependent variable. Also

Vit should to be independent of the sum of unobservables, conditional on Xit.

The unbounded support assumption ensures that −Vit can take all values that

βXit+γYit+Ai+Uit can take, so that the probability that Yit = 1 can be arbitrar-

ily close to 0 or 1. The approach presented here also relies on a relevant explanatory
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variable with large support, but extends the special regressor approach in the dy-

namic binary choice setting by requiring a different and possibly less stringent

exogeneity condition

.

Honorè and Tamer (2006) approach the identification problem from another

direction. Instead of considering assumptions that, if satisfied, would lead to point

identification of model parameters, they bound the range of possible parameters

using linear programming methods, making only mild assumptions. In simulations,

they find that when the true value of γ is small, bounds will be very tight around

true values of β and γ. However, for structurally persistent processes, bounds are

very large and possibly uninformative. This emphasizes the restrictiveness of the

assumptions used to point-identify β and γ in this literature.

Chernozhukov, Fernàndez-Val, Hahn, and Newey (2010) investigate the pos-

sibility of using a linear model to estimate the marginal effect in a binary choice

framework. For Equation (1.1), they show that generally linear fixed effects es-

timators for parameters are not identified, but it is possible to identify bounds

around the marginal effect of interest. Further, they show that the bounds can

become small (and hence informative) when T gets large or when more restrictive

assumptions are made (for instance, specifying the distribution of Yit conditional

on Xit and Ai). However, their approach has several drawbacks that prevent it

from being useful in an applied context. Their results hold only for discrete vari-

ables, and the discretization of continuous variables makes the bounds somewhat

arbitrary. Also, the result that the bounds shrink as T grows relies on the assump-

tion that the support of Xit is also the marginal support of Xit. This is a strong

assumption in applications like labor supply, where it would be unlikely that some

explanatory variables, education level for instance, vary on the entire support of

Xit.

Although the recent work on bounding relevant parameters in dynamic bi-

nary choice models is promising, it is not useful from a practical perspective at
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this point because it is not clear how to do inference with bounds. Chernozhukov,

Fernàndez-Val, Hahn, and Newey (2010) present some inference results, but note

that it is not straightforward. For this reason, the development of point identifi-

cation results for dynamic binary choice models that are more widely applicable

than existing literature is a research priority.

Approach This paper proposes identification of β and γ using a two-step method

- first identifying the coefficients of the continuous variables, then using them to

identify the coefficients on the binary variables.

Utilizing conditioning covariates that allow for conditional independence

assumptions to be made, it is possible to equate conditional probabilities observed

in the data with a function G characterized by the distributions of the error term

and the unobservable heterogeneity. Then, by exploiting the linear structure of

Equation (1.1), it is possible to show that the derivative of the joint distribution

with respect to every xc` is equal to β` multiplied by the derivative of the joint

distribution that does not depend on `. Then, the ratio of β`1 and β`2 is identified

for any `1 and `2. The normalization βc1 = 1 provides point identification.

To identify the binary variable coefficients, it is first necessary to identify the

function G. Using the subset of data for which all binary variables are equal to zero,

it is possible to trace outG by varying xcβc along its entire support. This is possible

because of the large-support continuous regressor. When G has been identified,

it is possible to identify a binary variable coefficient by considering the subset of

data for which all binary variables are equal to zero except for the coefficient of

interest. It will be possible to equate the observed conditional probability with G

as a function of known components xcβc (since βc was identified in the first step)

and conditioning covariates q, and the binary coefficient of interest. As long as G

is invertible, which occurs when, for instance, the distribution of the error term has

positive density at any point along the real line, then it will be possible to solve

for the binary coefficient of interest in terms of known quantities. This process can
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be repeated for each binary variable, including the lagged dependent variable.

Contributions The identification strategy described here contributes to the dy-

namic binary choice model literature by providing an identification strategy that

has has several advantages relative to existing methods. First, it can accommo-

date endogeneity when classical instruments are not available and without the

parametric assumptions required by some control function methods. Second, both

continuous and binary endogenous variables can be treated with the same identifi-

cation strategy. Also, this identification strategy is unique in the dynamic binary

choice literature in accommodating serial correlation in Uit when suitable condi-

tioning covariates are available.

Equation (1.1) can be interpreted as a transformation model in which the

explanatory variables enter linearly and are transformed by the indicator function.

The method of identifying βc through the ratio of derivatives of CDFs is similar

to methods that have been used in the transformation model literature (Ridder

(1990), Horowitz (1996), Chiappori, Komunjer, and Kristensen (2011)). Typically

in this literature, the transformation is assumed to be invertible. However, this

paper shows that similar methods can be used to identify a model in which the

transformation is not smooth, but rather an indicator function. Integrating over

the distribution of unobservable heterogeneity provides a sufficiently smooth func-

tion to apply the derivative ratio method. In this way, the results presented here

extend the transformation model literature to accommodate transformations that

are not invertible

Also, this paper extends the class of models for which structural parame-

ters can be identified using conditioning covariates (Altonji and Matzkin (2005),

Hoderlein and Mammen (2007) and Imbens and Newey (2009)) to include the

dynamic binary choice model. Hoderlein and White (2010b) detail identification

results for nonseparable panel data models with a lagged dependent variable when

the dependent variable is a smooth function of the independent variables, but it is
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not possible apply these results when the indicator function is present. Hoderlein

and White (2010a) present identification results utilizing conditioning covariates

for static binary choice models, but their assumptions preclude specifications in-

cluding a lagged dependent variable.

Outline The main identification result is contained in Section 1.2. Section 1.2.1

discusses the assumptions sufficient for identification of β and γ in Equation (1.1).

Section 1.2.2 details the main identification result. Section 1.2.3 shows that under

additional assumptions, it is possible to incorporate more information into the

identification strategy. Section 1.3 will compare the assumptions required here

with key assumptions utilized in other identification strategies and summarize the

advantages of the method presented here.

1.2 Identification Result

1.2.1 Assumptions

This section outlines the necessary assumptions for identification of β and γ

in Equation (1.1). Identifying these objects is of interest to researchers because it

allows for comparison of the relative magnitudes of different explanatory variables.

In particular, it is possible to compare the effect of the lagged dependent variable

with the other variables and do inference on the estimated coefficients.

We assume the following in order to identify β and γ in Equation (1.1).

A1 Data generating process

(i) Equation (1.1) holds.

(ii) There are at least two continuous variables in Xit. Also, Xit may
contain binary variables. Denote continuous components with super-
script c and binary components with superscript b: Xit = [Xc

it X
b
it],

with coefficients β = [βc βb]. Xit is a [k × 1] vector.
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(iii) A vector of conditioning instruments Qit exists. These instruments
are related to the determinants of the dependent variable in a way that
will be specified below.

(iv) Yit, Yit−1, Xit, and Qit are observable. The individual-specific scalar
effect Ai and the individual-time-specific scalar shock Uit are not ob-
servable.

Correct specification as described in A1 (i) is assumed in all of the papers

discussed above. Identification of parameters when Equation (1.1) is misspecified

is an open research topic. However, as will be discussed in Section 1.2.2, this

method produces a variety of overidentifying restrictions that can be used to test

the specification of Equation (1.1). Of particular interest is testing whether β and

γ are common across individuals and if the linear structure is appropriate.

Note that A1 accommodates both continuous and binary variables. Ex-

isting literature on endogeneity in static binary choice models allows for only

continuous endogenous regressors (Blundell and Powell (2004), Hoderlein and

White (2010a)) or only discrete endogenous regressors (Lewbel (2000)). Hoder-

lein (2008)’s method can accommodate both discrete and continuous endogenous

regressors, but his results identify average structural effects rather than parame-

ters.

A2 Large support variable

For at least one element in Xc
it, X

c∗
it , the support of Xc∗

it is the entire
real line.

As per Chamberlain (2010)’s impossibility result, it is necessary to have

at least one variable with large support for identification in this framework. The

approach here is similar to the special regressor approach suggested by Honorè and

Lewbel (2002). However, the large support regressor may be endogenous, unlike

Honorè and Lewbel’s requirement.
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A3 Normalization

βc1 = 1

A scale normalization is required, in line with identification in binary choice

models generally. Without loss of generality, the coefficient on the first component

of Xc
it is normalized to 1.

A4 Conditional Exogeneity

Uit ⊥ Xit, Yit−1, Ai | Qit (1.2)

Ai ⊥ Xit, Yit−1 | Qit (1.3)

A conditional exogeneity assumption accommodates endogeneity and allows

for identification of the effect of the lagged dependent variable. One benefit of this

identification strategy is the flexibility that comes from the researcher’s ability to

select components of the conditioning matrix as suggested by economic theory. A

detailed discussion about when appropriate conditioning instruments are likely to

be available and how to select them can be found in Chalak and White (2006).

Note that it is possible to accommodate serial correlation in Uit when an

appropriate Qit is available. This seems plausible when, for instance, we observe

a sufficiently good proxy variable for a process causing serial correlation. The

methods discusses earlier are unable to accommodate serial correlation, with the

exception of Honorè and Kyriazidou (2000). Since their method relies on Man-

ski (1987) which allows for some types of serial correlation, it may be possible to

extend Honorè and Kyriazidou (2000)’s result to incorporate mild forms of serial

correlation.

Here, it is sufficient to make two assumptions about the distribution of

unobservables.
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A5 Characteristics of Uit

The pdf of Uit has positive density everywhere on the real line.

A6 Differentiability

The distribution of −Uit conditional on Qit is unknown and denoted
by G(u, q). The distribution of Ai conditional on Xit, Yit−1 and Qit

is unknown and denoted by F (a|x, y, q). It is necessary that G̃(x +
a, q) ≡

∫
G(x + a, q)dF (a|x, y, q) be differentiable with respect to the

first argument.

Beyond this, no assumption about the functional form of Ai and Uit are

required. This feature alleviates the need to make functional form assumptions

as in Arellano and Carrasco (2003), Wooldridge (2005) and the parametric litera-

ture. Robustness to functional form assumptions is very important since economic

theory rarely gives researchers as to what sort of functional form to anticipate.

Moreover, functional form assumptions sometimes induce arbitrary features. For

instance, Arellano and Carrasco (2003) assume that for some period t∗, the differ-

ence between Uit and the conditional expectation of Ai has a normal distribution,

implying that for other periods, the difference does not have a normal distribution.

This leads to the uncomfortable implication that the researcher must arbitrarily

select one period to have a normal distribution in a setting where the impact of

misspecification are unknown.

1.2.2 Main result

The method presented here shows that it is possible to use conditional

probabilities observed in the data to identify parameters of interest.

Theorem 1

Under A1 - A6, β and γ are identified.

The proof of this result requires three steps - first identification of βc, then

identification of an intermediate function, which allows for identification of the

coefficients on the binary variables, βb and γ.
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Identification of βc Suppose that unobservable fixed effect Ai were observable.

Then it would be possible to observe the conditional probability Pr(Yit = 1|Xit =

x, Yit−1 = y,Qit = q, Ai = a).

Pr(Yit = 1|Xit = x, Yit−1 = y,Qit = q, Ai = a) = Pr(xβ + γy + a+ Uit ≥ 0)

= Pr(xβ + γy + a ≥ −Uit)

G(·, ·), a function of −Uit and Qit, can be evaluated at Xit = x, Yit−1 = y,

Ai = a and Qit = q. Xit, Yit−1 and Ai enter in a linear fashion as described in A1

so that the first argument is the latent value at which the marginal distribution is

evaluated (xβ + γy + a). The second argument is q, which determines the shape

of the distribution.

As long as Uit ⊥ Xit, Yit−1, Ai | Qit, it is possible to equate

Pr(Yit = 1 | Xit = x, Yit−1 = y, Ai = a,Qit = q) = G(xβ + γy + a, q) (1.4)

Since Ai is not actually observable, it is not possible to observe Pr(Yit =

1|Xit = x, Yit−1 = y, Ai = a,Qit = q) in the data. Instead, Pr(Yit = 1|Xit =

x, Yit−1 = y,Qit = q) is observable, as are less specific quantities like Pr(Yit =

1|Xit = x,Qit = q).

The identification method proposed here has the advantage of identifying

β and γ for any combination of (x, y, q).

It is desirable to use as much information from the data as possible in iden-

tification and estimation. The method proposed here also has the advantage that

averaging can be done across binary variables so that βc can be identified for every

(xc, q) rather than for every (xc, xb, y, q) using the less specific conditional proba-

bilities mentioned above. This extension will be discussed in Section 1.2.3.

By integrating Ai out of Equation (1.4), it is possible to use observable
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conditional probabilities to identify βc.

Pr(Yit = 1|Xit = x, Yit−1 = y,Qit = q) =

∫
G(xβ + γy + a, q)dF (a|x, y, q)

=

∫
G(xβ + γy + a, q)dF (a|q)

≡ G̃(xβ + γy, q) (1.5)

The second equality is a consequence of Ai ⊥ Xit, Yit−1 | Qit. Denote this

quantity by G̃(·, ·).

G̃(·, ·) is a function characterized by the joint distribution of Ai and Uit.

A topic for further investigation is how deconvolution methods can be applied to

G̃(·, ·). It would be interesting to know what additional assumptions are needed

in order to recover G(xβ + γy, q) and F (xβ + γy|q) from G̃(xβ + γy, q).

From here, it is possible to identify βc as long as there are two continuous

variables. For continuous variables xc1 and xc2,

∂

∂xc1
Pr(Yit = 1|Xc

it = xc, Xb
it = xb, Yit−1 = y,Qit = q) = βc1G̃

′(xcβc + xbβb + γy, q)

(1.6)

∂

∂xc2
Pr(Yit = 1|Xc

it = xc, Xb
it = xb, Yit−1 = y,Qit = q) = βc2G̃

′(xcβc + xbβb + γy, q)

(1.7)

where G̃′(xcβc+xbβb+γy, q) is the derivative of G̃(xcβc+xbβb+γy, q) with respect

to the first argument. Recall that A6 guarantees that this quantity exists.

Then, note that the ratio of Equation (1.7) and Equation (1.6) identifies βc2
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relative to βc1.

∂
∂xc2
Pr(Yit = 1|Xc

it = xc, Xb
it = xb, Yit−1 = y,Qit = q)

∂
∂xc1
Pr(Yit = 1|Xc

it = xc, Xb
it = xb, Yit−1 = y,Qit = q)

=
βc2G̃

′(xcβc + xbβb + γy, q)

βc1G̃
′(xcβc + xbβb + γy, q)

=
βc2
βc1

It is necessary to use a normalization in order to identify βb and γ. Justifi-

cation for the normalization will be given in Section 1.2.2. With βc1 normalized to

1 under A3,

∂
∂xc2
Pr(Yit = 1|Xc

it = xc, Xb
it = xb, Yit−1 = y,Qit = q)

∂
∂xc1
Pr(Yit = 1|Xc

it = xc, Xb
it = xb, Yit−1 = y,Qit = q)

= βc2 (1.8)

Using the ratio of quantities in which certain components cancel in order

to identify effects of interest can also be found in Chiappori, Komunjer, and Kris-

tensen (2011) for transformation models and Hoderlein (2008) for identification of

average structural effects in static binary choice models.

This method can be extended to any number of continuous variables. Any

βc` can be identified from

∂
∂xc`
Pr(Yit = 1|Xc

it = xc, Xb
it = xb, Yit−1 = y,Qit = q)

∂
∂xc1
Pr(Yit = 1|Xc

it = xc, Xb
it = xb, Yit−1 = y,Qit = q)

= βc` (1.9)

Identification of G̃ Prior to showing the identification of γ and βb, it is nec-

essary to identify G̃. To do this, consider observations for which Yit−1 = 0 and

Xb
it = 0. Then,

Pr(Yit = 1|Xc
it = xc, Xb

it = 0, Yit−1 = 0, Qit = q) = G̃(xcβc, q) (1.10)

Since we observe xc and βc was shown to be identified above, it is possi-

ble to identify G̃(·, q) by varying Xc∗
it , the large support variable, over its entire

support and tracing out the function as the first argument changes, holding the
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second argument constant.

Recall A3, the normalization βc1 = 1. Without this normalization, we could

identify the ratios of any βc`1 to any βc`2 , but it would not be possible to identify

G̃(·, ·), γ or βb.

To see this, suppose
βc2
βc1

= 2. It is the case that {βc1, βc2} = {1, 2} is con-

sistent with this ratio, as well as {βc1, βc2} = {2, 4}. When {βc1, βc2} = {1, 2}, it is

possible to trace out a function G̃(·, q) by varying the large support variable in

G̃(1xcit1 + 2xcit2, q). Suppose here the large support variable is xcit1. However, it is

also possible to trace out a function G̃(·, q) by varying xcit1 in G̃(2xcit1 + 4xcit2, q).

The G̃(·, q) function traced out in these cases is generally not the same. In other

words, without the normalization, there are many possible G̃(·, q) functions that

are observationally equivalent, and an econometrician observing the ratio
βc2
βc1

can-

not distinguish between many possibilities for G̃(·, q).

It will be shown that identification of βb and γ depends on G̃(·, q). When

G̃(·, q) is not uniquely identified, it will not be possible to identify βb and γ.

Normalizing βc1 = 1 pins down G̃(·, q), allowing βb and γ to be identified. Normal-

izations of this sort are not thought to be restrictive in this literature.

Identification of βb and γ With βc and G̃ identified, it is possible to identify

the coefficients on the binary variables.

First, consider identification of γ. For observations with Yit−1 = 1 and

Xb
it = 0,

Pr(Yit = 1|Xc
it = xc, Xb

it = 0, Yit−1 = 1, Qit = q) = G̃(xcβc + γ, q) (1.11)

Since βc and G̃(·, q) are identified, and xc and Pr(Yit = 1|Xc
it = xc, Xb

it =

0, Yit−1 = 1) are observable, it is possible to identify γ if G̃ is invertible.
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To show invertibility, it is sufficient to show that:

∂

∂t
G̃(t, q) > 0

A6 ensures that G̃ is differentiable. It remains to show that G̃ is strictly

a increasing function over its entire domain. Two observations enable us to con-

clude this. First, G̃ is increasing because it is the integral of the product of two

always positive functions, as defined in Equation (1.5). Then, A5 ensures that G̃

is strictly increasing since Uit having positive density everywhere necessitates that

the value of the integral will be strictly increasing across the domain.

Then, γ is identified by:

G̃−1(Pr(Yit = 1|Xc
it = xc, Xb

it = 0, Yit−1 = 1, Qit = q), q)− xcβc = γ (1.12)

Identification of βb follows in the same way. Consider observation with

Yit−1 = 0, Xb
it` = 1 and Xb

it(−`) = 0, where Xb
it` denotes the `th element in Xb

it, and

Xb
it(−`) describes the other variables in Xb

it. Then,

Pr(Yit = 1|Xc
it = xc, xbit` = 1, xbit(−`) = 0, Yit−1 = 0, Qit = q) = G̃(xcβc + βb` , q)

and it is possible to identify βb` .

G̃−1(Pr(Yit = 1|Xc
it = xc, xbit` = 1, xbit(−`) = 0, Yit−1 = 0, Qit = q), q)− xcβc = βb`

This technique can be used to identify the other binary variable coefficients.

Sequential Identification of Binary Variables Note that it is also possible

to identify the binary variables sequentially, in addition to the method described

above. Suppose γ has been identified in the way described above. It is then possible

to identify βb using data for which Yit−1 = 1 , in addition to the method using
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Yit−1 = 0 described above. The conditional probability observed in the data is,

Pr(Yit = 1|Xc
it = xc, xbit` = 1, xbit(−`) = 0, Yit−1 = 1, Qit = q) = G̃(xcβc + γ + βb` , q)

Since G̃(·, q) is invertible, it is possible to identify βb` with this quantity.

G̃−1(Pr(Yit = 1|Xc
it = xc, xbit` = 1, xbit(−`) = 0, Yit−1 = 1, Qit = q), q)− xcβc − γ = βb`

(1.13)

The binary variable coefficients can be identified in any order. These prop-

erties will be used in later work to propose a specification test based on overiden-

tifying restrictions.

1.2.3 Extensions

When additional assumptions hold, it is possible to show identification using

a strategy that incorporates more data than the method described in Theorem 1.

Recall that Theorem 1 shows identification of β and γ for each (x, y, q) combination.

Detailed in the Appendix, Theorem 2 describes the additional conditions under

which it is possible to incorporate both values of a binary dependent variable into

the identification strategy for βc rather than just one particular value of y and xb.

βc, identified with these averages, can be used to identify γ and βb, as before.

1.3 Discussion

This paper provides a method of identification for dynamic binary choice

models that does not require functional form assumptions to be made about the

distributions of unobservables. It relaxes assumptions made in Arellano and Car-

rasco (2003) and Wooldridge (2005). Using a two-step identification method, it

is possible to identify parameters while accommodating both continuous and bi-

nary variables. Serially correlated errors can also be incorporated. The method is

useful when suitable conditioning covariates are available, and can be used when
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classical instruments are not available. Broadening the horizon of special regressor

literature, this method can be used when large-support variables that do not meet

the requirements of Honorè and Lewbel (2002) are available.

Parameter identification results for any (x, y, q) provide two advantages.

First, this strategy makes it possible to provide identification using data from all

(or any) individuals. Compared to Honorè and Kyriazidou (2000), which uses

data from only individuals who exhibit frequent switches in Yit. Also, the method

produces a variety of overidentifying restrictions for parameters identified with

various (x, y, q) combinations. This allows for specification testing. In light of

recent results by Browning and Carro (2009) suggesting that the specification

described in Equation (1.1) does not allow for enough unobservable heterogeneity

for common applications, this property may be very useful.



Chapter 2

Estimation

This chapter proposes a nonparametric technique to estimate a binary
choice model with unobservable heterogeneity and a lagged dependent
variable. The estimation technique, a two-step method, employs a ratio
of weighted average derivative estimators and a quantile estimator in
order to estimate structural parameters. These estimators are shown to
be asymptotically normal and converge at the parametric rate, despite
the nonparametric set-up. A model specification test for the stability
of structural parameters over time is suggested.

2.1 Introduction

Section 2.2 explains notation and recalls relevant identification results from

Chapter 1. Section 2.3 proposes estimators for β and γ. Section 2.4 describes the

asymptotic behavior of the proposed estimators.

2.2 Notation and identified objects

2.2.1 Notation

Yit, Xit and Qit are random variables. Realizations of random variables are

denoted by lower case letters. Note that y denotes the realization of the lagged

dependent variable (Yit−1 instead of Yit).

20
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Xit contains both continuous and binary variables. Since continuous and

binary variables are treated differently, it will sometimes be clearer to denote

Xit =

(
Xc
it

Xb
it

)
, vectors with dx

c
and dx

b
elements, respectively. Qit contains both

continuous and discrete variables, sometimes denoted Qit =

(
Qc
it

Qd
it

)
, vectors with

dq
c

and dq
d

elements, respectively. Note that Xits refers to the sth element of the

Xit vector, and xs refers to the sth element of the realization vector x.

2.2.2 Identification of βc

Each component of βc can be identified from a ratio of the derivative of

the conditional probability with respect to xs to the derivative of the conditional

probability with respect to x1 (since βc1 is normalized to 1).

∂
∂xcs
Pr(Yit = 1|Xit = x, Yit−1 = y,Qit = q)

∂
∂xc1
Pr(Yit = 1|Xit = x, Yit−1 = y,Qit = q)

= βcs (2.1)

βcs is identified for each (x, y, q) combination.

2.2.3 Identification of βb and γ

Once βc has been identified, it is possible to use it to identify βb and γ.

G̃−1(Pr(Yit = 1|XC
it = xc, XB

it = 0, Yit−1 = 1, Qit = q)|q)− xcβc = γ (2.2)

G̃−1(Pr(Yit = 1|XC
it = xc, XB

sit = 1, XB
(−s)it = 0, Yit−1 = 0, Qit = q)|q)− xcβc = βbs

(2.3)

Recall that

G̃(xβ + γy|q) =

∫
g(xβ + γy + a|q)dF (a|q) (2.4)

where g(·|q) is a conditional pdf. G(xβ+γy|q) is a conditional CDF. Assumptions
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guarantee that the G(xβ + γy|q) is invertible with respect to the first argument.

Note that γ and βb are identified for each (x, y, q).

2.3 Proposed estimator

These objects can be estimated with either kernel or series estimators. Us-

ing kernels, it is possible to use a local constant estimator, local linear estimator

or a higher-order local polynomial estimator. Here, a kernel estimator is proposed.

This was chosen over a series estimator to be similar to estimation methods in the

transformation model literature. Asymptotically, the kernel and series estimators

are equivalent.

2.3.1 Local linear estimator

In particular, a local linear kernel estimator is used. This estimator has the

same asymptotic variance as the standard local constant estimator, but has two

advantages. It provides an estimator of both the conditional probability and the

derivative of the conditional probability with respect each x. Computationally this

is more straightforward that estimating the derivative of the conditional probabil-

ity analytically or using perturbation methods. Moreover, since estimation of βc

requires estimating derivatives of conditional probabilities and estimation of βb and

γ requires estimation of conditional probabilities, using the local linear estimator

reduces the complexity of the bandwidth selection problem. Instead of finding the

optimal exponent for two types of estimators (conditional density and derivative

of conditional density), it is possible to find it only for one. Also, the local linear

estimator may have lower bias than the local constant estimator.

This section will present a procedure for estimating β and γ for a particular

realization of (x, y, q). Methods of averaging across different realizations of (x, y, q)
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will be discussed in the next section.

The local linear estimator solves the minimization problem:

min
a,b,c,d

N∑
i=1

T∑
t=1

(Yit − a− (Xit − x)′b− (Yit−1 − y)′c− (Qit − q)′d−)
2
Kh(Xit, Yit−1, Qit, x, y, q)

where the generalized kernel K is the product kernel

Kh(Xit, Yit−1, Qit, x, y, q) =
dx

c∏
m=1

k

(
Xc
itm − xcm

h

)
1{Xb

it = xb}1{Yit−1 = y}
dq

c∏
n=1

k

(
Qcitn − qcn

h

)
1{Qit = qd}

(2.5)

for a univariate kernel k. Properties of k will be discussed in the next sec-

tion.

This minimization problem can be rewritten as a GLS problem and esti-
mated by


â

b̂

ĉ

d̂

 =


N∑
i=1

T∑
t=1

Kh(Xit, Yit−1, Qit, x, y, q)


1

Xit − x
Yit−1 − y
Qit − q

 (1 (Xit − x)′ Yit−1 − y (Qit − q)′)


−1

×
N∑
i=1

T∑
t=1

Kh(Xit, Yit−1, Qit, x, y, q)


1

Xit − x
Yit−1 − 1

Qit − q

Yit

Bandwidth selection using a cross-validation method is recommended for

this type of estimator.

Note that â(x, y, q) estimates Pr(Yit = 1|Xit = x, Yit−1 = y,Qit = q). This

quantity is used to estimate γ and βb.

As discussed in Fan and Gijbels (1996), b̂(x, y, q) estimates the vector of

derivatives corresponding to the derivative of Pr(Yit = 1|Xit = x, Yit−1 = y,Qit =

q) with respect to each component of Xc
it. These quantities are used to estimate βc.
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2.3.2 Estimator for βc

Let b̂s(x, y, q) denote the derivative of the conditional probability with re-

spect to xcs.

Then, it is possible to estimate βcs:

β̂s =
b̂s(x, y, q)

b̂1(x, y, q)
(2.6)

2.3.3 Estimator for βb and γ

Prior to the estimation of βb and γ, it is necessary to estimate G̃.

To do this, consider the subset of data for which Xb
it = 0 and Yit−1 = 0.

The conditional probability Pr(Yit = 1|Xc
it = xc, Xb

it = 0, Yit−1 = 0, Qit = q) can

be estimated with â(xc, xb = 0, y = 0, q), as described in Section 2.3.1.

Because

Pr(Yit = 1|Xc
it = xc, Xb

it = 0, Yit−1 = 0, Qit = q) = G̃(xcβc|q)

and one component of Xc
it has a large support, it is possible to trace out the con-

ditional CDF G̃(·|q) using the conditional probabilities by varying xc
∗

along across

the entire support. Then, it is possible to use the estimate of G̃(·|q) to estimate

βb and γ.

First consider estimation of γ. It is possible to estimate Pr(Yit = 1|XC
it =

xc, XB
it = 0, Yit−1 = 1, Qit = q) by α̂γ ≡ â(xc, xb = 0, y = 1, q).

Quantile estimation methods can be applied in order to estimate G̃−1, eval-

uated at the αthγ quantile.
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The estimator takes the form

ˆ̃G−1(α̂γ|q) = arg mink|α̂γ −
ˆ̃G(k|q)|

From here, it is possible to estimate γ by

γ̂ = ˆ̃G−1(α̂γ|q)− xcβ̂c (2.7)

Similarly, βbs can be estimated using the subset of data for which Xb
its = 1

and all other binary variables are equal to zero. It is possible to estimate Pr(Yit =

1|Xc
it = xc, Xb

sit = 0, Xb
(−s)it = 0, Yit−1 = 0, Qit = q) by α̂s ≡ â(xc, xbs = 1, xb−s =

0, y = 0, q).

Then as before, the estimator takes the form

ˆ̃G−1(α̂s|q) = arg mink|α̂s −
ˆ̃G(k|q)|

and, for each binary element of Xit, it is possible to estimate βbs by

β̂bs = ˆ̃G−1(α̂s|q)− xcβ̂c (2.8)

2.4 Asymptotic behavior

In the previous section, Equation (2.6), Equation (2.8) and Equation (2.7)

provide point estimators for βc, βb and γ (point estimator meaning an estimator

for each (x, y, q), not an average). However, these point estimators do not con-

verge at the
√
N rate because of the derivative associated with estimation of βc.

Since βc, βb and γ are identified for each (x, y, q), it is possible to average the point

estimates in order to achieve convergence at the
√
N rate (see Powell, Stock, and

Stoker (1989) for a detailed discussion of convergence rates of derivatives and av-

eraged derivatives).
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By averaging, it is possible to control for another potential problem related

to the ratio form of β̂c. When estimating ratios of densities, it is possible that

the denominator can be very close to zero, yielding erratic behavior in the esti-

mator. In the literature, two methods have been used to control this problem

- trimming and weighting. The trimming method excludes point estimates from

inclusion in the averaged estimator when the denominator is smaller than some

value (see Hardle and Stoker (1989) for an example in the average derivative con-

text). The weighting method excludes point estimates with small denominators by

giving them very little weight (see, for example, Horowitz (1996) and Chiappori,

Komunjer, and Kristensen (2011)). As suggested in Horowitz (1996), it is not

possible to achieve the
√
N convergence rate for an averaged estimator using the

trimming method, but it is possible to do so using the weighting method. For this

reason, the weighting method will be implemented here.

Another difficulty in considering the asymptotic behavior of the estimator

proposed in the previous section is that it requires one explanatory variable to have

a large support. Khan and Tamer (2009) discuss the limitations of “irregularly

identified” estimators. These models are characterized as models that

attain identification by requiring that covariate variables take support
in regions with arbitrary small probability mass. These identification
strategies sometimes lead to estimators that are weighted by a density,
a conditional probability or weights that take arbitrarily small values
on these regions of small mass.

Khan and Tamer (2009) discuss the difficulties of estimating models with

this type of estimation strategy, emphasizing that generally it is not possible to

attain the parametric rate. Using Lewbel (1997) paper on binary choice models as

an example, Khan and Tamer show that the rate of convergence depends on the

relative thicknesses of the tails of the distributions of the large support variable

and the error term. Generally, when the large support variable has fat tails (for

instance, if it has a Cauchy distribution) and the error term has thinner tails (like

logit or probit), then it is possible to achieve the
√
N rate. However, for gen-

eral or unspecified distributions, it is not possible to achieve the parametric rate
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of convergence. However, typically it is still possible to show asymptotic normality.

One approach to dealing with asymptotics in this situation is to assume

that the large support variable has fatter tails than the error term, and use this

assumption to show the parametric rate can be achieved.

Another approach would be to acknowledge that we generally do not achieve

the parametric rate with this sort of estimator, and use the method illustrated in

Khan and Tamer (2009). They show that although the parameter itself does not

converge at the parametric rate, a studentized version of the parameter does. This

may be a good approach if Khan and Tamer (2009) provide a feasible estimation

strategy. However, since the parameter estimate is used for estimation of the sec-

ond step, it will be necessary to figure out how the results for the studentized

estimator can be incorporated into the second-stage asymptotics.

The approach taken here exploits an aspect of this identification strategy

that is not present in Lewbel’s setup and not discussed by Khan and Tamer. Since

it is possible to calculate β for every value of (x, y, q), even though each estimate of

β(x, y, q) may not converge at the parametric rate because it is a derivative point

estimate, it may be possible to average across different values of (x, y, q) in order

to achieve the
√
N rate.

2.4.1 Asymptotic distribution of βc

Denote the average across βc(x, y, q) as

βc ≡
∫
X

∫
Y

∫
Q
w(x, y, q)βc(x, y, q)dxdydq (2.9)

where w(x, y, q) is the joint distribution of (x, y, q), and

β̂c =
1

NT

N∑
i=1

T∑
t=1

β̂c(xit, yit−1, qit) (2.10)
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where (xit, yit−1, qit) denotes the realization of (Xit, Yit−1, Qit) that individ-

ual i has at time t.

Assume the following assumptions hold, in addition to assumptions required

for identification:

Theorem 1 shows that this estimator has an asymptotically normal distri-

bution and converges at the
√
N rate.

Theorem 1 Asymptotic distribution of average continuous coefficients

√
n(β̂c − βc)→d N(0,Ω)

The proof is in the Appendix.

2.4.2 Estimation of binary variable coefficients

Asymptotic results for βb and γ are straightforward applications of argu-

ments made in the quantile estimation literature.

Theorem 2 Asymptotic distribution of average binary coefficients

For each s = 1, ..., dx
c

√
n(β̂bs − βbs)→d N(0,Ω)
√
n(γ̂ − γ)→d N(0,Ω)

The proof is in the Appendix.

2.5 Discussion

Estimators for the dynamic binary choice model estimation strategy pro-

posed in Chapter 1 are proposed and discussed. It is possible to use standard kernel
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estimation techniques to estimate each β(x, y, q) and γ(x, y, q). These estimators,

averaged across the empirical distribution of (x, y, q) are shown to converge at the
√
n rate. A data-driven bandwidth selection strategy specific to the unique form

of this estimator is proposed.



Chapter 3

Application

Distinguishing between structural state dependence and other sources
of persistence is an important question in consumer choice data since
different types of persistence suggest different optimal pricing policies.
Typical strategies involve estimating a model with a flexible specifi-
cation of unobservable heterogeneity and including information about
lagged choice as an explanatory variable. It is common practice to
assume that variation in prices generates sufficient variation in past
choices to identify structural state dependence. For a simple model
with structural state dependence and unobserved heterogeneity, this
paper presents evidence suggesting that this is not the case. This
evidence motivates the need for a method with a clear strategy for
disentangling structural state dependence from unobservable hetero-
geneity. A novel semiparametric technique for identifying structural
state dependence in binary choice models, developed by the author in
a previous paper, is introduced in the consumer choice context. The
method incorporates other types of marketing data to provide a better
estimate of structural state dependence. Simulations show that this
method can provide better estimates of structural state dependence
than commonly-used techniques. An application of the new method to
a brand choice model with structural state dependence uses IRI data
from the milk product category. Results suggest that commonly-used
methods overestimate the amount of structural state dependence.

30
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3.1 Introduction

Persistence in consumer choice data has been observed often. For many con-

sumer packaged goods product categories, consumers are more likely to purchase

products they have purchased in the past. A simple explanation for this inertia

is that consumers tend to purchase the product that they prefer to the alterna-

tives. The product was purchased in the past because the consumer prefers it to

the alternatives, and it is repurchased later for the same reason. Inertia in choices

that is caused by persistence in unobservable preferences has been characterized as

“spurious” state dependence by Heckman (1981). Another possible explanation for

inertia in choices is structural state dependence. This occurs when a consumer’s

past decisions directly affect later choices through a causal mechanism. A variety

of structural state dependence mechanisms have been considered in the literature.

Dubé, Hitsch, and Rossi (2010) look for evidence of consumer search and learning

processes as mechanisms for structural state dependence. As an alternative, they

posit that experience with a product can induce a form of loyalty to the product

that may be manifested in future purchases.

Estimating the amount of structural state dependence in consumer choice

data is of interest because it has important implications for pricing. When state

dependence is structural, there are important dynamic pricing incentives (Dubé,

Hitsch, and Rossi (2009), Dubé, Hitsch, Rossi, and Vitorino (2008)). When state

dependence is spurious, however, a dynamic pricing strategy would be suboptimal.

Researchers typically estimate choice models that allow for persistence in

consumer behavior through both unobservable heterogeneity across households and

structural state dependence. Models allow for unobservable heterogeneity by al-

lowing each household to respond to marketing mix variables differently, and struc-

tural state dependence is incorporated by inclusion of lagged choice information.

Keane (1997) estimates a model of ketchup brand choice using first a model with

persistence only through structural state dependence, specifically a term of expo-
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nentially weighted lagged choices. Then, he estimates specifications that allow for

complex forms of unobservable heterogeneity too. Dubé, Hitsch, and Rossi (2010)

estimate brand choice models for orange juice and margarine using a model with a

flexible distribution of unobservable heterogeneity and state dependence through

a lagged choice indicator. These papers find that both unobservable heterogeneity

and structural state dependence are responsible for persistence in the data. Dubé,

Hitsch, and Rossi demonstrate that their flexible estimators fit the data better

than estimators with simpler forms of heterogeneity.

It is thought that when unobservable heterogeneity has been sufficiently

captured, structural state dependence can be identified by price variation that

induces variation in lagged choices. This paper argues that price variation is gen-

erally insufficient to identify structural state dependence using standard methods.

Lagged choice variables confound unobservable heterogeneity and structural state

dependence, even when flexible forms of unobservable heterogeneity are used. This

is because a consumer’s previous choices are influenced by both unobservable pref-

erences and the unobservable structural state dependence parameter. The lagged

choice variable is endogenous in the sense that it is correlated with the unob-

servable parameters. Methods that do not take this dependence into account can

provide misleading evidence about the nature of persistence in the data.

Intuitively, the variation in observed choices due to price promotions may

not provide enough information to explain how much of the persistence in the data

comes from structural state dependence. Suppose a consumer with fairly persistent

choices is observed. Because lagged choices depend on two unobservable factors,

unobservable heterogeneity in preferences and structural state dependence, it is

difficult to estimate how much persistence comes from each source. When the

consumer does not often respond to other items’ price promotions, it is not clear

if this is because the consumer has a strong preference for the item or because of

structural state dependence, based on variation in price data alone. It may be the

case that there are multiple combinations of unobservable parameter values that



33

are consistent with the observed choice and price data.

The approach of this paper is to demonstrate, for a binary choice model,

that this is a problem of practical importance, and then to propose a solution. A

semiparametric method for identifying and estimating structural state dependence

in the presence of unobservable heterogeneity developed in Chapter 1 and Chapter

2 is discussed in the context of consumer choice applications.

The simple binary choice model discussed here allows heterogeneity to enter

only through an additive term (consumers respond to marketing mix variables in

the same way and exhibit the same amount structural state dependence). The

additive term can be interpreted as a consumer’s unobservable preference for one

brand relative to the other. This simplification makes it possible to highlight how

the lagged choice variable can confound structural state dependence and unob-

servable heterogeneity, and explain the proposed solution in a concise manner.

However, the solution proposed in Chapter 1 can be extended to models in which

consumers have a heterogeneous response to marketing mix variables and exhibit

different amounts of structural state dependence.

Related Literature This work is closely related to Chintagunta, Kyriazidou,

and Perktold (2001). Chintagunta, Kyriazidou, and Perktold consider methods

for estimating binary choice models with unobservable heterogeneity in the form

of an additive fixed effect. They note that it is common in the marketing literature

to include include the lagged choice variable as if it were an exogenous explanatory

variable, and they discuss how this violates key assumptions of the methods and

leads to inconsistent parameter estimates. In simulations and an application, they

compare parameter estimates from these methods to estimates from a semipara-

metric method can accommodate both unobservable heterogeneity and a lagged

choice variable. The semiparametric method, developed by Honorè and Kyriazidou

(2000), uses a subset of the data to estimate model parameters using a strategy

that differences out the fixed effects, which are allowed to be correlated with other
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explanatory variables in an unspecified way. In an empirical application they find

that the semiparametric method seems to produce different estimates of structural

state dependence than the standard methods, and simulations show that the semi-

parametric method is estimating structural state dependence better than standard

methods. However, as the method uses less data than other methods and kernel

estimators, the standard errors are somewhat larger than with typical methods.

Proposed Solution The method discussed in this paper has several benefits

over Honorè and Kyriazidou’s method in the consumer choice context. It can be

extended to choice models in which each household is allowed to have different re-

sponses to marketing mix variables. In the econometrics literature, Browning and

Carro (2007) demonstrate that choice models allowing heterogeneity only through

the additive fixed effect are generally insufficient to capture heterogeneity in con-

sumer choice data. Many papers in the marketing literature have found that com-

plex patterns of unobservable heterogeneity induce a better model fit than simpler

heterogeneity structures (Keane (1997), Dubé, Hitsch, and Rossi (2010)). Another

advantage of the method demonstrated in this paper is that it uses extra infor-

mation to identify structural state dependence, rather than using only a subset of

data for which explanatory variables do not change for identification.

The key assumption in Chapter 1 that facilitates identification of structural

state dependence is an assumption that observable variables are independent of un-

observable heterogeneity, conditional on other available information. The idea of

using additional information to identify effects of interest in other dynamic choice

models has been discussed by Manski (2004). Manski encourages researchers to

augment statistical models with extra data in order to identify dynamic effects

whenever possible, instead of relying assumptions. Manski suggests survey data

in his examples. The method proposed in Chapter 1 allows for identification of

structural state dependence with preference survey data, and sometimes with data

that is usually available in consumer choice panels, like demographics. The method
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uses the additional data as conditioning variables. These variables are required to

explain the systematic portion of variation between observables and unobservables.

In other words, conditional on the extra data, “enough” of the variation between

observables and unobservable components of the model must be explained so that

the remaining variation between observables and unobservables is not systematic.

Examples of consumer choice scenarios that satisfy and do not satisfy this require-

ment are presented later in the paper.

Another advantage of the method proposed in Chapter 1 is that is allows for

identification of state dependence in the presence of some types of serial correlation

processes. Neither standard methods nor Honorè and Kyriazidou’s estimator are

credibly able to disentangle structural state dependence processes in the presence

of serially correlated errors. This can be problematic if, for instance, it is thought

that consumers might be able to predict variation in marketing mix variables. Re-

cent work by Misra, Roberts, and Handel (2012) suggests that methods that are

robust to serially correlated errors are important for empirical applications. Their

proposed method, however, cannot accommodate a lagged choice variable.

Like Misra, Roberts, and Handel (2012) and Dubé, Hitsch, and Rossi (2010),

the method presented here does not require distributional assumptions related

to the distribution of error terms. This flexibility eliminates the possibility that

misspecification of the error distribution will result in an incorrect estimate of

structural state dependence.

Outline Section 3.2 will illustrate how the endogeneity of lagged choice can be

problematic. Section 3.3 describes the semiparametric estimation strategy, and ex-

plains the meaning of the key assumption in the consumer choice context. Section

3.4 presents simulations results for the semiparametric estimator compared with

standard methods and known structural parameters. Section 3.5 is an application

of the estimator using IRI data.
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3.2 Endogeneity of lagged choice

3.2.1 Binary model

Consider a typical consumer choice panel data set-up in which choices of

i = 1, ..., N individuals are observed over t = 1, ..., T periods. Suppose that the

choice made by household i in period t is Yit ∈ {0, 1}. Xit can be a matrix of

marketing mix components, and for simplicity here is restricted to be the difference

between the natural logs of each alternative’s price. Suppose that β and γ, the

structural parameters describing the effect of Xit and the lagged choice variable

Yit−1 , are the same across households. Let Ai denote an unobservable, time-

invariant, household-specific effect. Let Uit denote an unobservable, household-

time-specific shock. Assuming a single-index structure, the choice problem can be

written as:

Yit = 1{Xitβ + γYit−1 + Ai + Uit > 0} (3.1)

Note that the lagged choice variable Yit−1 is a function of Ai and γ in

addition to the marketing mix variables and idiosyncratic shock from the previous

period. When Equation (3.1) is rewritten, the problem with incorporating the

lagged choice variable becomes evident:

Yit = 1{Xitβ + γYit−1(Ai, γ) + Ai + Uit > 0} (3.2)

When Ai is large in magnitude, lagged choices will be highly correlated

with Yit. A useful estimation strategy will distinguish between cases where there

is persistence in the data because Ai is large in magnitude and cases where there

is persistence in the data because γ is large in magnitude.

Endogeneity of lagged choice Consider the type of variation present in mar-

keting mix variables compared to the lagged choice variable. Marketing mix vari-
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ables are typically thought to be exogenous to each household’s decision. Varia-

tion in price, feature and display induce households to switch between products.

In contrast, variation in the lagged choice variable is caused in part by the same

exogenous processes, but also by Ai and γ. Jointly, Ai and γ will determine how

sensitive each household is to price variation. For instance, price variation will

not induce a household with Ai that is large in magnitude relative to β to switch

products. Even for a household with a small value of Ai such that it can be easily

swayed by price promotions, there will still exist some correlation between current

choices and lagged choices as long as Ai is not zero. It is important that a statisti-

cal method recognizes that the lagged choice variable is correlated with Ai in this

way so it does not attribute the correlation between lagged choices and current

choices entirely to state dependence.

More price variation reduces the correlation between current choices and

lagged choices. However, it does not eliminate the problem that Ai has also influ-

enced past choices. Some correlation between lagged choices and current choices

is due to Ai and should not be attributed to structural state dependence.

Functional form Keane (1997) notes that it is not possible to nonparametrically

identify unobservable heterogeneity and structural state dependence. He empha-

sizes that estimates of structural state dependence are conditional on the assumed

functional form and discusses commonly-used specifications. The simulation and

application sections of this paper consider only the lagged choice functional form

of structural state dependence. This simplification is made in order to show that

when even the functional form of structural state dependence is correctly specified

and simple, it may not be identified from price variation alone. However, it is

important to note that the endogeneity concern discussed here is problematic in

all functional forms of structural state dependence. For example, it has been noted

by Anderson (2002) that the Guadagni-Little form of structural state dependence

confounds unobservable heterogeneity and state dependence. The identification

method presented in Chapter 1 can be extended to various functional forms for
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structural state dependence and allows for specification tests that can help dis-

tinguish between different parametric forms. For conciseness these topics are not

addressed in this paper.

3.2.2 Evidence from simulations

As motivation, this section provides evidence from simulations that illus-

trate how standard methods can provide misleading estimates when the endogene-

ity of the lagged choice variable is not considered.

Joint distribution of observable data In the marketing literature, it is com-

mon practice to assume that it is possible to distinguish between unobservable

heterogeneity and structural state dependence using the variation in lagged choices

generated by variation in marketing mix variables. A household may be induced to

switch away from their favored brand by another brand’s price promotion. Then,

if the household continues to purchase the less-favored brand after the price pro-

motion ends, it is thought that the household exhibits structural state dependence.

The difficulty in using price variation for identification arises because we do not

observe the “favored brand” and “less-favored brand” in the data. Rather, we

attempt to estimate the brand preferences and structural state dependence simul-

taneously.

The model is identified only if it is apparent from the observable data how

much persistence in choices comes from structural state dependence and how much

comes from preferences. Since preferences are unobserved and the lagged choice

variable confounds structural state dependence and unobservable heterogeneity, it

is not clear that the model is identified. Although we observe households switch-

ing between brands in response to price changes, it is not obvious how we would

distinguish between preferences and structural state dependence with this infor-

mation. For a particular realization of observed data, it may be the case that there

are multiple ways to split up the sources of persistence that would be consistent

with the observed choices. In other words, it is possible that different underlying
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data generating processes can generate distributions of observable data that are

very similar. For instance, it is possible that we observe data with persistence in

choices because households have strong preferences. It is also possible that data

with persistence could be the result of households having some preferences across

brands, but also some structural state dependence.

To demonstrate this problem, it is possible to show that simulated data

from models with different qualitative interpretations can generate very similar

joint distributions of observable data. Figure 3.1 summarizes data that has been

simulated for two qualitatively different specifications. In specification A, γ = 1

indicates structural state dependence in each household’s choice. In specification

B, γ = 0 indicates no structural state dependence. For specification A, the distri-

bution of Ai is standard normal (Figure 3.1b). Many households have a draw of

Ai close to zero, which gives them mild or no preference over the two alternatives.

For specification B, the distribution of Ai is bimodal, with a cluster of households

preferring one option, and another cluster of households preferring another option

(Figure 3.1c). Few households are indifferent between the two choices. In the

simulated data, overall transition probabilities and price variation are set to be

similar to values observed in a sample of milk purchases from the IRI Academic

Dataset used in Section 3.5.

Figure 3.1d and Figure 3.1e show that these data generating processes pro-

duce very similar distributions of observed choices, conditional on the past choice

and price. A range possible values for xit is ranging from 0.2 to 0.28 are along the

horizontal axis. The vertical axis represents the observed probability of choosing

Yit = 1, conditional on a particular price and the previous choice. Figure 3.1d

plots the probability of choosing Yit = 1 for households with Yit−1 = 0, for a range

of possible price differences. Figure 3.1e plots the same quantity for households

with Yit−1 = 1. Data generated from both Specification A and Specification B are

plotted. It is clear in both plots that the different specifications produce similar

marginal distributions of observable variables.
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Since different data generating processes generate very similar joint distri-

butions of observables, assumptions behind the statistical methods used to analyze

this data are crucial. Estimates of structural state dependence and unobservable

heterogeneity will depend on how the statistical method separates these two dis-

tinct sources of persistence. A useful method would estimate γ close to 1 with

data from Specification A and close to zero with data from Specification B. The

next section will show that commonly-used methods that treat lagged choice as

an exogenous variable does not do a good job estimating γ when the true value is

close to zero, as in Specification B, even price variation increases.

Estimates with increasing price variation Since it is common practice to

assume that price variation can be used to identify structural state dependence in

choice models with unobservable heterogeneity, this section will present evidence

from simulations showing that even as price variation increases, models that in-

clude a lagged choice variable without accounting for its endogeneity will tend to

overestimate state dependence for realistic amounts of price variation.

Consider the simulations summarized in Figure 3.2. Here, data are simu-

lated in accordance with Equation (3.1). Figure 3.2a summarizes the simulation

specifications. The price parameter is set so that β = −2, and structural state de-

pendence is set by γ = 0. This parameter value set the true amount of structural

state dependence to be zero for all households, and since the errors are generated

with an iid process, all persistence in the data comes through Ai. The question

investigated here is whether or not more price variation leads to better estimates

of structural state dependence, holding the distribution of unobservable hetero-

geneity in the data constant.

The difference in ln(price) between alternatives, xit, is drawn from a normal

distribution centered at 0 (the choices are on average the same price). The stan-

dard deviation of the distribution price is drawn from is varied between 0.05 and
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0.45. This range was set to be similar to the amount of price variation observed in

the IRI data used in Section 3.5 (standard deviation 0.18). For each price variance,

100 datasets are simulated.

The standard pooled logit (or random effects logit) is run treating the lagged

choice variable as any other explanatory variable. This method, along with the

conditional (fixed effects) logit approach, was discussed in Chintagunta, Kyriazi-

dou, and Perktold (2001). They explain how the lagged choice variable violates

necessary exogeneity conditions and how in the marketing literature, lagged choice

variables are commonly included as exogenous variables despite violating these as-

sumptions. In order for the pooled logit procedure to consistently estimate struc-

tural state dependence, it would be necessary to assume that the initial value of

the lagged choice variable (yi0) it is unrelated to unobservable components of the

model (Ai). In commonly-purchased product categories, it seems very unlikely

that each household’s first purchase in a typical scanner panel dataset is unrelated

to each household’s value of Ai. It is much more plausible that each household’s

first purchase is correlated with Ai.

Figure 3.2b and Figure 3.2c show average coefficient estimates across the

100 simulated datasets at each level of price variation. For all price variation levels,

the averaged estimated γ is larger than zero, the true value of γ. Moreover, the

averaged estimated value of γ does not get substantially closer to the true value

as the level of price variation increases. Note that as the amount of unobserv-

able heterogeneity increases between Figure 3.2b and Figure 3.2c, the estimated

amount of structural state dependence also increases even though the true value

stays the same. Intuitively, this is because the correlation between past choices

and current choices increases as draws of Ai increase and yi0 is more influenced by

Ai. However, when estimating structural state dependence, we are not interested

in knowing how strong the correlation between current choices and lagged choices

is, but rather how much of the correlation can be explained by a structural state

dependence mechanism rather than unobservable heterogeneity across households.
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From these simulations, it is evident that identification of structural state

dependence is a problem of practical importance. If the objective of estimation is

to determine if a firm has a dynamic pricing incentive, a firm would be misled by

estimates of structural state dependence using a method that does not incorporate

the endogeneity of lagged choice. Section 3.3 presents a method for estimating

Equation (3.1) with a clear strategy for disentangling structural state dependence

from unobservable heterogeneity.

3.3 Accommodating the endogeneity of lagged

choices

It is evident that estimating models with unobservable heterogeneity and

structural state dependence must be done with care, in order to account for the cor-

relation of lagged choices with unobservable quantities. Although the technique

presented in Chintagunta, Kyriazidou, and Perktold (2001) seems to provide a

feasible semiparametric method for estimating Equation (3.1), its appropriateness

for the marketing context is limited since it cannot be extended to models with

household-specific parameters. The method presented here is an alternative to

their method in the context of Equation (3.1), yet it is more useful in the marketing

literature since it can be extended to models with household-specific parameters.

This section will discuss the key identifying assumption in the context of

consumer choice analysis, and other important aspects of the estimation procedure.

Full details can be found in Chapter 1.

3.3.1 Key identifying assumption in practice

This method is able to distinguish between structural state dependence and

unobservable heterogeneity though Ai using additional information, denoted Qit.

Qit is selected by the researcher so that, conditional on Qit, the joint distribution of
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the unobservable elements of the model is independent from the joint distribution

of observables. It is possible to decompose this assumption into two components.

Uit ⊥ Xit, Yit−1, Ai | Qit (3.3)

Ai ⊥ Xit, Yit−1 | Qit (3.4)

In the marketing context, it is typically assumed that Uit ⊥ Xit, Yit−1, Ai

holds without conditioning on Qit. Household-specific shocks are assumed to be

unrelated to marketing mix variables, and shocks are assumed to be iid across

periods. For this reason, the discussion will focus on data available to marketing

researchers that could be included in Qit in order to satisfy Equation 3.4.

Intuitively, to satisfy Equation 3.4, Qit must be selected so that “enough”

of Ai is explained to disentangle the effect of Ai from structural state dependence.

Unlike parametric methods, it is not necessary to model Ai explicitly by specifying

a functional form for Ai as a function of Qit — instead, Qit enters only as a matrix

of conditioning variables.

Lagged prices as conditioning variables In typical marketing applications,

it is believed that variation in past prices generates variation in lagged choices that

can disentangle state dependence from unobservable heterogeneity. As discussed

above, this variation cannot be used to identify structural state dependence. How-

ever, it is an interesting exercise to consider what we would have to believe about

the nature of unobservable heterogeneity in order to believe that Qit composed

of just prices could identify structural state dependence. The key condition this

implies is:

Ai ⊥ Yit−1 | Pit−1, Pit−2, Pit−3, ... (3.5)

For price variation alone to identify model parameters, it would be necessary
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to believe that among households that were exposed to the same sequence of prices

in the past, there is no systematic relationship between Ai and Yit−1. This seems

implausible since we might think that even among households that were exposed

to the same sequence of past prices, households with a strong preference for Brand

1 (large Ai) would tend to have a realization of Yit−1 that is Brand 1. For this

reason, it is necessary to consider other types of conditioning data.

Demographics Consumer choice datasets contain information about the house-

holds. These variables can range from basics like household size to more detailed

information like household income and education levels. In the context of the model

described in Equation (3.1), it is interesting to consider how this information can

help to disentangle the effect of structural state dependence from unobservable

heterogeneity. Suppose, as an example, information about the age of the primary

shopper and household income is available as conditioning variables. The key

condition then becomes

Ai ⊥ Yit−1 | ageit, incomeit (3.6)

Is it plausible that among households with the same age and income, Ai

and Yit−1 are independent, or would we expect a systematic relationship between

them? Suppose we consider all households with a shopper age 65-70 and income

of $150,000+. In this subset, do we still expect to see a systematic relationship

between Ai and Yit−1? If we believe that people with the same conditioning vari-

ables are similar enough in Ai that we expect to see a distribution of Yit−1 that is

not systematically related to Ai, then the assumption is satisfied. Another way of

thinking about this is that if we could observe Yit−1 for the group specified by the

conditioning variable, would it provide any additional information about Ai? The

answers to these questions depend on the particular application. To clarify this,

two specific applications will be discussed - one in which it seems reasonable that

this assumption is satisfied, and one in which it does not seem to be satisfied.

Suppose the application is a brand choice model in which consumers choose
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between national brand products and private label products. Suppose that Ai

denotes the unobservable relative propensity for household i to purchase the na-

tional brand over the private label brand. The key assumption is satisfied when we

believe that for subsets of the population with the same observable characteristics

Qit, observing Yit−1 doesn’t give us any information about Ai. There is evidence

that older people tend to associate private label products with low quality, and

younger people may not even be aware that a private label brand is not a national

brand. So, if we consider households headed by a 65-70 year old shopper with

a high income, we can assume that generally these people will be uninterested

in private label brands. If in the data these people usually purchase a national

brand, it does not tell us much about any individual’s Ai. This does not mean we

are assuming that all people in a particular age range and income level have the

same preference — each household within the set of households specified by the

conditioning variables has a draw of Ai from a random, unspecified distribution.

However, the assumption is that observable information tells us enough about Ai

that we cannot infer anything else about it from observing Yit−1.

Variation in price and other marketing mix variables can aid identification

here. When there is a lot of variation in these variables and households are switch-

ing frequently, Yit−1 will not provide much information about Ai since any value

of Yit−1 may be due to price variation or preferences. The conditional exogeneity

assumption will be satisfied more easily with more price variation.

Another type of demographic data that might be useful for satisfying the

conditional exogeneity assumption is the type used in Bronnenberg, Dubè, and

Gentzkow (forthcoming). Bronnenberg, Dubè, and Gentzkow find that a house-

hold’s migration history seems to explain some of the household’s brand preferences

in the new location. Including this information in Qit would help with identifica-

tion of structural state dependence by alleviating some endogeneity.

One application where demographics are insufficient conditioning variables
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is choice of flavor. Suppose households are choosing between strawberry and peach

yogurt. It is unlikely that demographic data could explain enough of each house-

hold’s Ai that it is plausible that Equation (3.4) holds. Looking at Equation (3.6),

it is unlikely that age and income provide enough information about Ai that look-

ing at a subpopulation we would feel comfortable assuming that Ai and Yit−1 are

independent.

Survey data The flexibility in choosing Qit enables this method to incorporate

other types of marketing research that might be informative about unobservables.

There are many ways in which marketing researchers have solicited information

about preferences from consumers — from studies asking households for their will-

ingness to buy or pay for products, to conjoint studies that evaluate consumers’

trade-off between product features. If this type of preference information can be

correlated with demographic information that is also available in scanner datasets,

it would be possible to use it as a proxy for preferences in Qit to satisfy the con-

ditional exogeneity condition.

3.3.2 Serially correlated errors

The previous sections discussed how researchers can choose Qit to satisfy the

conditional exogeneity assumption when errors are iid. In some cases, it is possible

to incorporate other information into Qit so that some types of serial correlation

can be accommodated. Incorporating serially correlated errors in choice models

with structural state dependence is difficult. Even without serial correlation, it

is difficult to distinguish between unobservable heterogeneity and the effect of a

lagged choice variable. Allowing for another avenue for persistence over time com-

plicates the problem substantially — intuitively, how can we distinguish between

the effect of the lagged choice variable and the effect of a persistent shock? Typical

methods that can identify structural state dependence in panel choice models do

not allow for serial correlation (e.g. Honorè and Kyriazidou (2000)), and methods

that allow for serial correlation typically do not allow for structural state depen-

dence (e.g. Misra, Roberts, and Handel (2012)).
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The method presented in Chapter 1 allows for a lagged choice variable and

serially correlated errors concurrently, provided that a suitable Qit can be found.

If a shock that occurred in the t−1 period is still present in the t period, Equation

(3.3) is violated if there is nothing in Qit that provides some information about the

serial correlation process. The cost of incorporating both structural state depen-

dence and serial correlation into this model is that one must have some economic

interpretation of the preference process, state dependence process and serial cor-

relation process. However, researchers may prefer this to simply ruling out one

or two routes of persistence and estimating the remaining process without many

assumptions.

Although it is not possible to account for general types of serial correlation,

there may be circumstances in which it is possible to account for certain types.

For instance, holidays may be considered as conditioning variables since household

behavior tends to change at that time, and subsequent weeks may be affected. For

instance, households may purchase more candy than usual prior to Halloween, then

less candy than usual for several weeks after in a deviation from typical behavior

related to inventory and responsiveness to price promotions. Incorporating this

information in Qit can alleviate the need to assume that shocks like Halloween last

only one week (an assumption required by current methods), or the need to throw

out data around holidays. Another possibility for a variable containing information

about serial correlation processes in scanner data could be when a household is

observed starting to purchase diapers. The arrival of a newborn could have a

lingering influence on purchase behavior in other product categories (for instance,

organic products or convenience foods).

3.3.3 Implementation of the semiparametric method

A short summary of the semiparametric method presented in Chapter 1 and

Chapter 2 follows. Suppose that Xit = [X1it X2it] are two continuous explanatory

variables with corresponding parameters β = [β1 β2].
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Identification The key assumption, conditional exogeneity, described above,

makes it possible to equate observable conditional probabilities, Pr(Yit = 1|Yit=1 =

y,Xit = x,Qit = q), with an unobservable quantity that is a function of both the

distribution of error terms and the distribution of unobservable heterogeneity. Us-

ing methods from the transformation model literature and a large support regressor

assumption, it can be shown that the ratio of coefficients (β2/β1) can be written as

the derivative of the the conditional probability, evaluated at some (x, y, q). Then,

using the sample of data for which Yit−1 = 1, it is possible to plot the unobserv-

able quantity discussed above and, under mild regularity conditions on the joint

distribution of unobservables, invert it to find an equation for γ as a function of

observed conditional probabilities and β from the first step. Discrete Xit can be

accommodated in the same way, if necessary.

Estimation The proposed estimation strategy follows the identification strat-

egy closely. Conditional probabilities and derivatives of conditional probabilities

are estimated with a local linear kernel estimator. Standard quantile estimation

methods are used to trace out the unobserved component and estimate γ.

As with all methods employing kernel estimation strategies, results seem

to be somewhat sensitive to the choice of bandwidth. The usual “rule of thumb”

bandwidth is not a plausible option since the estimation strategy requires at least

two continuous variables (the “rule of thumb” bins would be too small for reliable

estimation). There is not an obvious “optimal” bandwidth given the two-stage

estimation procedure. The difficulty in choosing a bandwidth is a limitation of

the proposed method, although techniques like cross-validation have been show

to produce reasonable guidance for selecting a bandwidth for similar problems.

Another limitation is that the performance of kernel estimators tends to decline as

more variables are included in Xit and Qit.
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3.4 Evidence from simulations

The simulations presented in Section 3.2.2 indicated that standard methods

tend to overestimate structural state dependence. This section compares semipara-

metric estimates that account for endogeneity of lagged choices to standard pooled

logit estimates that do not account for endogeneity.

Twenty-five datasets are simulated in accordance with Equation (3.1) for

known parameter values. Since the semiparametric method requires at least two

continuous variables, the simulation specification is changed slightly from Section

3.2. In addition to a continuous variable representing the difference in ln prices, an-

other variable is added representing the difference in proportions of SKUs that are

featured. In the application, this variable will include frequent shopper/members

only features, small, medium and large ads, retailer coupons, and rebates.

The matrix of conditioning variables, Qit, is generated from Ai. To get an

idea of the semiparametric estimator’s performance in actual applications, Qit is

generated in such a way that it is not a perfect proxy for Ai. Rather, values of

Qit are simulated to fall into 16 discrete values. This mimics the discrete form

of demographic variables that is often found in scanner data, for instance in the

IRI data used in the application in Section 3.5. In this set-up, Qit provides much

information about the size of Ai. However, if Ai is thought to be continuous, a

discrete value of Qit will not provide information about the magnitude of Ai within

each discrete category. In this case, the conditional exogeneity assumption may

not hold strictly. It is worthwhile to evaluate simulations for this type of data

generating process since it is uncommon to have continuous data related to unob-

servable components of the model in real applications.

As described in the previous section, the semiparametric method and the

parametric method use different scale normalizations, so only ratios of the coeffi-

cient estimates can be compared across models. To evaluate the estimated amount



50

of structural state dependence, the ratio of γ to βp, the price parameter, will be

compared across methods.

Figure 3.3 shows estimation results for the semiparametric estimator and

the pooled logit estimator. The true value of γ/βp in the underlying data gen-

erating process is 0, denoted by the vertical line. For each simulated dataset,

coefficients are estimated using both the pooled logit method and the semipara-

metric method. For both methods, the estimated ratios of coefficients are reported

in a histogram.

Figure 3.3a shows the estimated ratios of coefficients when data are simu-

lated to have the same amount of price variation observed in the IRI data used in

Section 3.5. The pooled logit estimator consistently overestimates structural state

dependence. The semiparametric estimator sometimes overestimates structural

state dependence, but to a lesser extent. The better estimate of structural state

dependence is due to the incorporation of extra information from the conditioning

variables. The semiparametric method estimates the ratio of coefficients well, even

though the conditioning variable Qit is not a perfect proxy for Ai.

Figure 3.3b and Figure 3.3c show the performance of the estimators as

price variation increases. The data simulated to produce Figure 3.3b have five

times more price variation than the IRI data used in Section 3.5. The performance

of the pooled logit estimator improves, but it still overestimates structural state

dependence. The semiparametric estimator still does well in the presence of addi-

tional price variation. Figure 3.3c shows that the pooled logit estimator does not

estimate structural state dependence well, even in the presence of an unrealistic

amount of price variation.

Although the pooled logit estimates improve as the amount of price vari-

ation increases, the semiparametric estimator performs well at all levels of price

variation. From Figure 3.3, it is apparent that methods that ignore the endogene-
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ity of lagged choices perform well only when there is so much price variation that

past choices are uncorrelated with current choices — when brand preferences are

insignificant. In realistic situations where past choices are correlated with current

choices because brand preferences are important to consumers, the semiparametric

method outperforms the parametric method.

3.5 Application to IRI data

As a demonstration, the estimator proposed in Chapter 1 is used to esti-

mate the model described in Equation (3.1) for real brand choice data. Unlike the

simulated data in previous sections, here it is not clear that the simple form of

Equation (3.1) is sufficient to capture all the heterogeneity in household behavior.

There is much evidence in the marketing literature that a richer model is necessary

to capture relevant aspects of consumer behavior (for instance, varying price sensi-

tivity across households). With this limitation in mind, estimates from the method

described above will be compared with other methods as an approximation for the

average of parameters across households.

Data The estimation method is applied to a sample of IRI data from the milk

product category. The sample is take from a large store in Pittsfield, MA, between

2003 and 2005. For each household’s purchase occasion, the brand choice variable

is set to be 1 if a household chooses the national brand and 0 if a household chooses

the private label brand. Milk is thought to be a suitable product category for this

application since a substantial number of households purchase the private label

brand and national brands seem to be fairly stable over the time period consid-

ered. The timing of purchases is assumed to be exogenous.

The two continuous explanatory variables considered are price (difference

between ln(national brand price) and ln(private label price)) and feature (differ-

ence between the proportion of national brand SKUs featured and the proportion

of private label SKUs featured). The price trends are graphed in Figure 3.4. Since
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few milk products have promotional displays in this store, display information is

not incorporated. Persistence in purchase behavior is allowed through a household-

specific unobservable fixed effect and through the effect of the lagged brand choice

variable.

In order to disentangle the effect of lagged brand choice and the fixed effect,

age and income are used as conditioning variables. As described in Section 3.3,

this information allows us to assume conditional exogeneity of unobservables and

observables. In order to ensure that there are sufficient data for the kernel esti-

mator to perform well, age and income categories with very few observations are

combined with adjacent groups in order to construct 16 age-income combinations

for use as conditioning variables.

For this application, it is assumed that there is not serial correlation in the

error terms.

Results Three models are estimated using the data described above. Two mod-

els, the conditional logit and pooled logit, incorporate the lagged choice variable

in the same way as the other explanatory variables, despite violating crucial exo-

geneity assumptions. The third method accommodates the endogeneity of lagged

brand choice, as described above. Since the models are identified only to scale, the

relative sizes of coefficients are presented.

The results in Figure 3.5 show that each method produces parameter es-

timates with the expected sign for the marketing mix parameters. The ‘feature’

variable has a positive effect on purchase probability, and higher price has a nega-

tive effect on purchase probability. All three methods estimate a positive amount

of structural state dependence.

The relative magnitudes of coefficient estimates differ widely across estima-

tion methods. The pooled logit method estimates βp to be dramatically larger in



53

magnitude than βf . The conditional logit, on the other hand, estimates βp to be

slightly smaller in magnitude than βf . The semiparametric method estimates βp to

be around the same magnitude as βf . The conditional logit method estimates that

the structural state dependence and price coefficients have the same magnitude.

However, the pooled logit and semiparameteric methods estimate that the state

dependence magnitude is less than half the magnitude of the price effects. The

semiparametric method estimates less state dependence than the other methods.

These results must be interpreted with several caveats. Most importantly,

it is likely that there is much more heterogeneity in the data than the estimated

model accounts for. Marketing models typically assume that βp, βf and γ differ

across households. Also, it is possible that the true error term does not have a lo-

gistic distribution. The semiparametric method would be robust to this possibility,

while the pooled logit and conditional logit methods would provide inconsistent

estimates for the parameters if the logit assumption is violated. For this rea-

son, the differences between the relatives magnitudes of coefficients should not

be attributed entirely to assumptions related to the lagged brand choice variable.

However, in light of the fact that the semiparametric method has more plausible

assumptions about the lagged choice variable and is more robust to misspecifica-

tion of unobservables, it seems that the method should be preferred to parametric

methods.

3.6 Discussion

This paper argues that estimation of structural state dependence in bi-

nary choice models requires more than allowing for a flexible form of unobservable

heterogeneity. Price variation in earlier periods that induces variation in lagged

choices cannot disentangle structural state dependence from unobservable hetero-

geneity completely. Simulations show that one should take caution in interpret-

ing results from previous studies suggesting that both structural state dependence

and unobservable heterogeneity contribute to the observed persistence in consumer
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choice data.

The semiparametric technique for binary choice models presented in this

paper allows for both structural state dependence and unobservable heterogene-

ity. The method requires additional data and economic theory to satisfy the key

assumption. For some marketing applications, researchers can incorporate infor-

mation from other data sources to improve estimates of structural state depen-

dence. Although computationally more difficult than standard techniques, this

method can provide a much more accurate picture of structural state dependence

than methods that treat the lagged choice variable as exogenous in the presence

of unobservable heterogeneity.

The identification and estimation method presented here can be extended

to accommodate household-specific price, feature and lagged choice parameters.

However, comparing results from the semiparametric method to typical Bayesian

procedures is difficult. Although both methods use shrinkage-style estimators,

it is hard to compare the results because the semiparametric method discussed

here produces point estimates of the parameters while the Bayesian method pro-

duces probabilistic distributions. Ongoing work aims to incorporate the structural

state dependence identification strategy described here into a Bayesian estimation

framework.
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Specification A Specification B
β -2 -2
γ 1 0

For both specifications, ln(price1) - ln(price2)
∼ U[0.18, 0.28]. T=4. Yi0 positively correlated

with FE. Logit errors with var=1

(a) Simulation specifications

(b) Specification A - Ai

Figure 3.1: Different DGPs generate similar observable joint distributions
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(c) Specification B - Ai

(d) Conditional distribution of Yit

Figure 3.1: Different DGPs generate similar observable joint distributions, contd.
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(e) Conditional distribution of Yit

Figure 3.1: Different DGPs generate similar observable joint distributions, contd.
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panel (b) panel (c)
β -2 -2
γ 0 0
N 100 100
T 4 4
Ai ∼U[-1,1] ∼U[-2,2]
Xt ∼N(0, Ω) ∼N(0, Ω)

for Ω ∈ [0.05, .45] for Ω ∈ [0.05, .45]

100 draws of data for each Ω, estimated with xtlogit

(a) Simulation specifications

(b) Simulation results — variance of Ai = 1/3

Figure 3.2: Price variation when lagged choice is treated as exogenous
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(c) Simulation results — variance of Ai = 4/3

Figure 3.2: Price variation when lagged choice is treated as exogenous, contd.
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(a) Price variation matches IRI data

(b) Five times more price variation than IRI data

Figure 3.3: Estimated structural state dependence
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(c) Twenty five times more price variation than IRI data

Figure 3.3: Estimated structural state dependence, contd.

Figure 3.4: Price trends
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Pooled logit Conditional logit Semiparametric
βp/βf -17.50 -0.86 -1.06
γ/βp -0.40 -1.00 -0.34
γ/βf 7.04 0.86 0.36

Figure 3.5: Comparison of estimates



Appendix A

Proofs

A.1 Theorem 2

When additional assumptions hold, it is possible to show identification using

a strategy that incorporates more data than the method described in Theorem 1.

Consider an extension of the conditional exogeneity assumption:

A7 Additional assumptions related to conditioning instruments

(i) Qit includes Qit−1

(ii) Xc
it−1, Yit−2, Ai, Uit−1 ⊥ Xc

it | Qit

(iii) (Yit−1, X
b
it`) ⊥ Xc

it | Qit

Theorem 2 Assume A1 - A6. β and γ can be identified using more information

than Theorem 1 when

(i) in addition, A7 (i) and A7 (ii) holds. It is possible to incorporate
information from both Yit−1 = 1 and Yit−1 = 0 into identification of β
and γ.

(ii) in addition, A7 (iii) holds. It is possible to incorporate information
from both Xb

it` = 1 and Xb
it` = 0 into identification of β and γ.

The proof of Theorem 2 closely follows the proof of Theorem 1, with the

exception of identifying βc. Section A.1.1 and Section A.1.2 illustrate adjustments

63



64

that must be made to the identification strategy proposed above in order to incor-

porate more information. Section A.1.3 discusses identification of G̃, γ and βb for

a general case where A7 holds for all Xb
it` in Xb

it.

A.1.1 Proof of Theorem 2(i)

Identification of βc First consider the case in which the model contains only

continuous variables and the lagged dependent variable (no other binary variables).

It is possible to extend the identification strategy in order to average across both

possible values of Yit−1, incorporating more data than what is used when βc is

identified for any particular y when A7(i) holds. Note that

Pr(Yit = 1 | Xc
it = xc, Qit = q)

= Pr(Yit = 1 | Xc
it = xc, Yit−1 = 1, Qit = q)Pr(Yit−1 = 1 | Xc

it = xc, Qit = q)

+ Pr(Yit = 1 | Xc
it = xc, Yit−1 = 0, Qit = q)Pr(Yit−1 = 0 | Xc

it = xc, Qit = q)

= G̃(xcβc + γ, q)Pr(Yit−1 = 1 | Xc
it = xc, Qit = q)

+ G̃(xcβc, q)Pr(Yit−1 = 0 | Xc
it = xc, Qit = q)

Taking the derivative as before,

∂

∂xc`
Pr(Yit = 1 | Xc

it = xc, Qit = q) =
∂

∂xc`

[
G̃(xcβc + γ, q)Pr(Yit−1 = 1 | Xc

it = xc, Qit = q)
]

+
∂

∂xc`

[
G̃(xcβc, q)Pr(Yit−1 = 0 | Xc

it = xc, Qit = q)
]

= G̃(xcβc + γ, q)
∂

∂xc`
Pr(Yit−1 = 1 | Xc

it = xc, Qit = q)

+
∂

∂xc`
G̃(xcβc + γ, q)Pr(Yit−1 = 1 | Xc

it = xc, Qit = q)

+ G̃(xcβc, q)
∂

∂xc`
Pr(Yit−1 = 0 | Xc

it = xc, Qit = q)

+
∂

∂xc`
G̃(xcβc, q)Pr(Yit−1 = 0 | Xc

it = xc, Qit = q)

When the derivatives of Pr(Yit−1 = 1 | Xc
it = xc, Qit = q) and Pr(Yit−1 =

0 | Xc
it = xc, Qit = q) do not depend on xc, it will be possible to isolate βc as in

the proof of Theorem 1. Generally it is not the case that Pr(Yit−1 = 1 | Xc
it =

xc, Qit = q) = Pr(Yit−1 = 1 | Qit = q). To proceed, it is necessary to show
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Pr(Yit−1 = 1 | Xc
it = xc, Qit = q) = Pr(Yit−1 = 1 | Qit = q) (A.1)

and

Pr(Yit−1 = 0 | Xc
it = xc, Qit = q) = Pr(Yit−1 = 0 | Qit = q) (A.2)

Note that

Pr(Yit−1 = 1 | Xc
it = xc, Qit = q) = Pr(Xc

it−1β
c + γYit−2 +Ai + Uit−1 ≥ 0 | Xc

it = xc, Qit = q)

= Pr(Xc
it−1β

c + γYit−2 +Ai ≥ −Uit−1 | Xc
it = xc, Qit = q)

In order to rewrite this in terms of G(·, q) as in Equation (1.4), it must

be the case that A4 holds for the t − 1 period. This means that (Uit−1, Ai) ⊥
Xc
it−1, Yit−2 | Qit−1 must hold. This holds when A7(i) holds so that Qit includes

Qit−1. Additional conditioning variables, Xit, do not prevent A7(i) from inducing

A4 to hold in this situation.

In some cases, for instance when Qit and Qit−1 contain only time-invariant

variables, this it trivial and the cost of incorporating more information into the

identification strategy is negligible. However, in other cases where more compli-

cated, time-variant Qit is required in order to satisfy A4, this is more restrictive.

So, by A7(i) and A4,

Pr(Yit−1 = 1 | Xc
it = xc, Qit = q) = G(Xc

it−1β
c + γYit−2 + Ai | Xc

it = xc, Qit = q)

(A.3)

Assuming it is also the case that A7(ii) holds,

Pr(Yit−1 = 1 | Xc
it = xc, Qit = q) = G(Xc

it−1β
c + γYit−2 + Ai | Xc

it = xc, Qit = q)

= G(Xc
it−1β

c + γYit−2 + Ai | Qit = q)

= Pr(Yit−1 = 1 | Qit = q) (A.4)
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Although possibly restrictive, A7(ii) allows Equation (A.1) and Equation

(A.2) to hold. Then,

∂

∂xc`
Pr(Yit−1 = 1 | Xc

it = xc, Qit = q) =
∂

∂xc`
Pr(Yit−1 = 1 | Qit = q) = 0

and

∂

∂xc`
Pr(Yit−1 = 0 | Xc

it = xc, Qit = q) =
∂

∂xc`
Pr(Yit−1 = 0 | Qit = q) = 0

These assumptions simplify the derivative of the conditional probability in

such a way that βc` can be isolated.

∂

∂xc`
Pr(Yit = 1 | Xc

it = xc, Qit = q) =
∂

∂xc`
G̃(xcβc + γ, q)Pr(Yit−1 = 1 | Xc

it = xc, Qit = q)

+
∂

∂xc`
G̃(xcβc, q)Pr(Yit−1 = 0 | Xc

it = xc, Qit = q)

= βc
` G̃
′(xcβc + γ, q)Pr(Yit−1 = 1 | Xc

it = xc, Qit = q)

+ βc
` G̃
′(xcβc, q)Pr(Yit−1 = 0 | Xc

it = xc, Qit = q)

= βc
`

[
G̃′(xcβc + γ, q)Pr(Yit−1 = 1 | Xc

it = xc, Qit = q)

+ G̃′(xcβc, q)Pr(Yit−1 = 0 | Xc
it = xc, Qit = q)

]
Then, as before, it is possible to identify β` using the normalization β1 = 1.

∂
∂xc

`
Pr(Yit = 1 | Xc

it = xc, Qit = q)

∂
∂xc1

Pr(Yit = 1 | Xc
it = xc, Qit = q)

=

=
βc`
[
G̃′(xcβc + γ, q)Pr(Yit−1 = 1 | Xc

it = xc, Qit = q) + G̃′(xcβc, q)Pr(Yit−1 = 0 | Xc
it = xc, Qit = q)

]
βc1
[
G̃′(xcβc + γ, q)Pr(Yit−1 = 1 | Xc

it = xc, Qit = q) + G̃′(xcβc, q)Pr(Yit−1 = 0 | Xc
it = xc, Qit = q)

]

=
βc`
βc1

= βc` (A.5)

Note that it is not possible to average over Qit without making further

assumptions. Although it would be desirable to alleviate the need to chose a specific

Qit = q to identify β, it is not possible without specifying a joint distribution for
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Xc
it and Qit. In applications where a specification of this sort is reasonable (for

instance, in situations in which control function approaches involving parametric

specification of the endogenous variables are considered appropriate), it would be

straightforward to extend this method to use Pr(Yit = 1 | Xc
it = xc) to identify β,

rather than Pr(Yit = 1 | Xc
it = xc, Qit = q).

A.1.2 Proof of Theorem 2 (ii)

Identification of βc When the model includes other binary variables, it may

be possible to average over other binary variables, in addition to the lagged de-

pendent variable. This averaging is desirable since it eliminates the need for the

researcher to specify whether βc is identified from Xb
it` = 0 or Xb

it` = 1, increasing

the information used in identification.

This section will outline the strategy when there are two binary variables -

the lagged dependent variable and one other binary variable. It is assumed that

A7(i) and A7(ii) hold so it is possible to average across the lagged dependent

variable, and also A7(iii) holds for so it is possible to average across the other

binary variable. However, if A7(i) and A7(ii) did not hold, it would be possible

to average across just the other binary variable as long as A7(iii) holds.

The equation for Pr(Yit = 1|Xc
it = xc, Qit = q) becomes:

Pr(Yit = 1|Xc
it = xc, Qit = q) =

1∑
j=0

1∑
k=0

G̃(xcβc + βbj + γk)Pr(Xb
it = j ∩ Yit−1 = k|Xc

it = xc, Qit = q)

=

1∑
j=0

1∑
k=0

G̃(xcβc + βbj + γk)Pr(Xb
it = j ∩ Yit−1 = k|Qit = q)

The second equality is a consequence of A7(iii). Taking the derivative with
respect to xc as before,

∂

∂xc`
Pr(Yit = 1 | Xc

it = xc, Qit = q)

= βC`

 1∑
j=0

1∑
k=0

G̃′(xcβc + βbj + γk)Pr(Xb
it = j ∩ Yit−1 = k | Qit = q)


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From here, as above, it is possible to identify βc` using the ratio of derivatives
using the normalization β1 = 1.

∂
∂xc

`
Pr(Yit = 1 | Xc

it = xc, Qit = q)

∂
∂xc1

Pr(Yit = 1 | Xc
it = xc, Qit = q)

=
βc`

[∑1
j=0

∑1
k=0 G̃

′(xcβc + βbj + γk)Pr(Xb
it = j ∩ Yit−1 = k | Qit = q)

]
βc1

[∑1
j=0

∑1
k=0 G̃

′(xcβc + βbj + γk)Pr(Xb
it = j ∩ Yit−1 = k | Qit = q)

]
=
βc`
βc1

= βc` (A.6)

Extensions of this strategy for more than one binary explanatory variable is straight-

forward.

A.1.3 Identification of G̃, βb and γ

Identification results for βb and γ follow immediately from Section 1.2.2.

A.2 Proof of Theorem 3

Denote Zit = (Xit, Yit−1, Qit) and z = (x, y, q). Let Z represent the support

of Zit.

Recall that bs(z) denotes the derivative of the conditional probability

Pr(Yit = 1|Xit = x, Yit−1 = y,Qit = q) with respect to the sth element of xc, xcs.

Object of interest:

βcs = E [w(z)βcs(z)]

= E

[
w(z)

bs(z)

b1(z)

]
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Denote estimator:

β̂cs =

∫
Z
w(z)β̂cs(z)dz

=

∫
Z
w(z)

b̂s(z)

b̂1(z)
dz

where β̂s(z) and β̂1(z) defined in Equation...

Approach

• Use a Taylor series expansion to approximate β̂s(z)

β̂1(z)
by a linear functional of

kernel estimators.

• Show that the error made by the linear approximation is oP (n−1/2)

• Use the uniform law of large numbers to show that the quantity observed

by replacing β̂s(z)

β̂1(z)
with the linear approximation is asymptotically equivalent

to an empirical process after centering and normalization (i.e. it is asymp-

totically equivalent to a sum of the form n−1/2
∑N

i=1[Φ(Zit − EΦ(Z)] for a

suitable function Φ)

• Show that the empirical process converges in distribution

Expand β̂ around β.

β̂cs − βcs =

∫
Z
w(z)

[
b̂s(z)

b̂1(z)
− bs(z)

b1(z)

]
dz

=

∫
Z
w(z)

1

b1(z)

(
b̂s(z)− bs(z)

)
dz −

∫
Z
w(z)

bs(z)

b1(z)2

(
b̂1(z)− b1(z)

)
dz

+O(||b̂s(z)− bs(z)||2∞) +O(||b̂1(z)− b1(z)||2∞)

where || · ||∞ denotes the supremum norm over Z.
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As shown in Lemma 1 and Lemma 2, the first two terms can be rewritten

as a U-statistic.∫
Z
w(z)

1

b1(z)

(
b̂s(z)− bs(z)

)
dz −

∫
Z
w(z)

bs(z)

b1(z)2

(
b̂1(z)− b1(z)

)
dz

= U1(Z) + U2(Z) = U(Z)

Lemma 3 shows that O(||b̂s(z) − bs(z)||2∞) = oP (1/
√
n) and O(||b̂1(z) −

b1(z)||2∞) = oP (1/
√
n) .

Then,

√
N(β̂ − β) =

1√
N

N∑
i=1

T∑
t=1

U(Zit) + oP (1) (A.7)

Pointwise weak convergence follows from the CLT for iid sequences.

Lemma 1

1

b1(z)

(
b̂s(z)− bs(z)

)
dz− bs(z)

b1(z)2

(
b̂1(z)− b1(z)

)
dz

= ∇fβ(z){f̂(z)− f(z)}+∇gβ(z){ĝ(z)− g(z)}+R

Proof:

Recall that bs(z) is the local linear estimator of the derivative of the con-

ditional probability with respect to xcs. This proof will use the local constant

estimator to derive the asymptotic distribution and variance.

• The formula for the s+1th element of the local linear estimator is intractable.

• Although Hansen (2008) presents convergence results for the local constant

estimator and the local linear estimator, the local linear estimator results

pertain only to a(z), not b(z). It is not clear how to derive results for b(z)

due to the first point.
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Asymptotically, the local constant and local linear estimators have the same dis-

tribution and variance. This approach requires some additional notation.

Suppose g(z) denotes the joint distribution of Yit, Xit, Yit−1 and Qit. Let

f(z) denote the marginal distribution of Xit, Yit−1 and Qit. Then,

Pr(Yit = 1|Xit = x, Yit = y,Qit = q) =
g(z)

f(z)

Then, the analytical derivative of the conditional probability with respect

to xcs

bs(z) =
∂

∂xcs
Pr(Yit = 1|Xit = x, Yit = y,Qit = q) =

1

f(z)

[
∂g(z)

∂xcs
− g(z)

f(z)

∂f(z)

∂xcs

]
(A.8)

The kernel estimator for g(z) is

ĝ(z) =
1

NT

T∑
t=1

N∑
i=1

YitK(Zit, z) (A.9)

with derivative

ĝs(z) =
∂ĝ(z)

∂xcs
=

1

NT

T∑
t=1

N∑
i=1

Yit
∂K(Zit, z)

∂xcs
(A.10)

The kernel estimator for f(z) is

f̂(z) =
1

NT

T∑
t=1

N∑
i=1

K(Zit, z) (A.11)

with derivative

f̂s(z) =
∂f̂(x, y, q)

∂xcs
=

1

NT

T∑
t=1

N∑
i=1

∂K(Zit, z)

∂xcs
(A.12)

The local constant estimator for bs(z) is defined by substituting Equation
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(A.9), Equation (A.10), Equation (A.11) and Equation (A.12) into Equation (A.8).

Expand b̂s(z) around bs(z):

b̂s(z)− bs(z) =
1

f̂(z)

[
ĝs(z)−

ĝ(z)

f̂(z)
f̂s(z)

]
−

1

f(z)

[
gs(z)−

g(z)

f(z)
fs(z)

]
=

[
2g(z)fs(z)

f(z)3
−
gs(z)

f(z)2

]
{f̂(z)− f(z)}+

[
−
fs(z)

f(z)2

]
{ĝ(z)− g(z)}

+

[
−
g(z)

f(z)2

]
{f̂s(z)− fs(z)}+

[
1

f(z)

]
{ĝs(z)− gs(z)}

+O(|f̂(z)− f(z)|2) +O(|ĝ(z)− g(z)|2) +O(|f̂s(z)− fs(z)|2) +O(|ĝs(z)− gs(z)|2)

This holds for all s = 1, ..., qx
c
.

From the previous expansion, note that

1

b1(z)

[
b̂s(z)− bs(z)

]
=

1

b1(z)

[
2g(z)fs(z)

f(z)3
−
gs(z)

f(z)2

]
{f̂(z)− f(z)}+

1

b1(z)

[
−
fs(z)

f(z)2

]
{ĝ(z)− g(z)}

+
1

b1(z)

[
−
g(z)

f(z)2

]
{f̂s(z)− fs(z)}+

1

b1(z)

[
1

f(z)

]
{ĝs(z)− gs(z)}

+O(|f̂(z)− f(z)|2) +O(|ĝ(z)− g(z)|2) +O(|f̂s(z)− fs(z)|2) +O(|ĝs(z)− gs(z)|2)

and

bs(z)

b1(z)2

[
b̂1(z)− b1(z)

]
=

bs(z)

b1(z)2

[
2g(z)f1(z)

f(z)3
−
g1(z)

f(z)2

]
{f̂(z)− f(z)} +

bs(z)

b1(z)2

[
−
f1(z)

f(z)2

]
{ĝ(z)− g(z)}

+
bs(z)

b1(z)2

[
−
g(z)

f(z)2

]
{f̂1(z)− f1(z)} +

bs(z)

b1(z)2

[
1

f(z)

]
{ĝ1(z)− g1(z)}

+ O(|f̂(z)− f(z)|2) + O(|ĝ(z)− g(z)|2) + O(|f̂1(z)− f1(z)|
2
) + O(|ĝ1(z)− g1(z)|

2
)

Combining :

1

b1(z)

[
b̂s(z)− bs(z)

]
−

bs(z)

b1(z)2

[
b̂1(z)− b1(z)

]
=

1

b1(z)

[
2g(z)fs(z)

f(z)3
−
gs(z)

f(z)2

]
{f̂(z)− f(z)}+

1

b1(z)

[
−
fs(z)

f(z)2

]
{ĝ(z)− g(z)}

+
1

b1(z)

[
−
g(z)

f(z)2

]
{f̂s(z)− fs(z)}+

1

b1(z)

[
1

f(z)

]
{ĝs(z)− gs(z)}

−
bs(z)

b1(z)2

[
2g(z)f1(z)

f(z)3
−
g1(z)

f(z)2

]
{f̂(z)− f(z)} −

bs(z)

b1(z)2

[
−
f1(z)

f(z)2

]
{ĝ(z)− g(z)}

−
bs(z)

b1(z)2

[
−
g(z)

f(z)2

]
{f̂1(z)− f1(z)} −

bs(z)

b1(z)2

[
1

f(z)

]
{ĝ1(z)− g1(z)}

+O(|f̂(z)− f(z)|2) +O(|ĝ(z)− g(z)|2) +O(|f̂1(z)− f1(z)|2) +O(|ĝ1(z)− g1(z)|2)



73

Collecting terms :

1

b1(z)

[
b̂s(z)− bs(z)

]
−

bs(z)

b1(z)2

[
b̂1(z)− b1(z)

]
={

1

b1(z)

[
2g(z)fs(z)

f(z)3
−
gs(z)

f(z)2

]
−

bs(z)

b1(z)2

[
2g(z)f1(z)

f(z)3
−
g1(z)

f(z)2

]}
{f̂(z)− f(z)}

+

{
1

b1(z)

[
−
fs(z)

f(z)2

]
−

bs(z)

b1(z)2

[
−
f1(z)

f(z)2

]}
{ĝ(z)− g(z)}

+
1

b1(z)

[
−
g(z)

f(z)2

]
{f̂s(z)− fs(z)}+

1

b1(z)

[
1

f(z)

]
{ĝs(z)− gs(z)}

−
bs(z)

b1(z)2

[
−
g(z)

f(z)2

]
{f̂1(z)− f1(z)} −

bs(z)

b1(z)2

[
1

f(z)

]
{ĝ1(z)− g1(z)}

+O(|f̂(z)− f(z)|2) +O(|ĝ(z)− g(z)|2) +O(|f̂1(z)− f1(z)|2) +O(|ĝ1(z)− g1(z)|2)

+O(|f̂s(z)− fs(z)|2) +O(|ĝs(z)− gs(z)|2)

Define functionals for some function m(z):

∇fβ(z){m(z)} =
(

1

α1(z)

[
2g(z)fs(z)

f(z)3
−
gs(z)

f(z)2

]
−

αs(z)

α1(z)2

[
2g(z)f1(z)

f(z)3
−
g1(z)

f(z)2

])
{m(z)}

−
g(z)

α1(z)f(z)2

{
∂

∂xs
m(z)

}
+

αs(z)g(z)

α1(z)2f(z)2

{
∂

∂x1
m(z)

}
=: ζ(z)m(z) + ζs(z)ms(z) + ζ1(z)m1(z)

∇gβ(z){m(z)} =
[
αs(z)f1(z)

α1(z)2f(z)2
−

fs(z)

α1(z)f(z)2

]
{m(z)}+

1

α1(z)f(z)

{
∂

∂xs
m(z)

}
−

αs(z)

α1(z)2f(z)

{
∂

∂x1
m(z)

}
=: ξm(z) + ξs(z)ms(z) + ξ1(z)m1(z)

Define the remainder:

R = O(|f̂(z)− f(z)|2) +O(|ĝ(z)− g(z)|2) +O(|f̂1(z)− f1(z)|2) +O(|ĝ1(z)− g1(z)|2)

+O(|f̂s(z)− fs(z)|2) +O(|ĝs(z)− gs(z)|2)

Then

= ∇fβ(z){f̂(z)− f(z)}+∇gβ(z){ĝ(z)− g(z)}+R

Assumptions imply that R = oP (1/
√
n).
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Assumption (Weakly dependent data)

{Yit, Xit, Yit−1, Qit} is strictly stationary and strong mixing with mixing

coefficients αm that satisfy

αm ≤ Am−δ (A.13)

where A <∞ and δ > 2. Also, the marginal density of Zit, f(z), must satisfy

sup
z
f(z) ≤ B0 <∞ (A.14)

The joint density of zi1t1 and zi2t2 is also bounded.

Assumption (Differentiable kernel) Univariate kernel k is differen-

tiable. There are constants C, η > 0 such that, for the ith derivative ki(z)

• |k(z)| ≤ C|z|−η

• |k′(z)| ≤ C|z|−η (bounded derivative)

• |k(z)− k(z′)| ≤ C|z − z′|

• |k′(z)− k′(z′)| ≤ C|z − z′|

•
∫∞
−∞ k(z)dz = 1

•
∫∞
−∞ z

jk(z)dz = 0 when1 ≤ j ≤ m− 1 (higher order kernel)

•
∫∞
−∞ |z|

mk(z)dz <∞

Assumption (Sufficiently smooth data) The joint density g(z) is

• bounded

• m times differentiable with respect to each component

• with bounded derivatives
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• the mth order partial derivatives are uniformly continuous

• supz∈Z ||z||bg(z) <∞ for some constant b > 0 Sufficient conditions:

– E[||X||b] <∞

– E[||Q||b] <∞

– No condition necessary on Y since it is binary.

These two assumptions allow us to apply standard results from the literature

on iid kernel density smoothers. The following results are taken from Hansen

(2008), Theorem 6.

||f̂(z)− f(z)||∞ = OP (hm) +OP

(√
log n

nhdx
c+dqc

)

||ĝ(z)− g(z)||∞ = OP (hm) +OP

(√
log n

nhdx
c+dqc

)

||f̂1(z)− f1(z)||∞ = OP (hm) +OP

(√
log n

nhdx
c+dqc+2

)

||ĝ1(z)− g(z)||∞ = OP (hm) +OP

(√
log n

nhdx
c+dqc+2

)

||f̂s(z)− fs(z)||∞ = OP (hm) +OP

(√
log n

nhdx
c+dqc+2

)

||ĝs(z)− gs(z)||∞ = OP (hm) +OP

(√
log n

nhdx
c+dqc+2

)

Note: this is written for common bandwidths. In the more realistic case

where different bandwidths are selected for each variable, the first component

would look like OP (max(hxc1 , ..., hxcd , hqc1 , ..., hqcd)
m) instead of OP (hm).

Assumption (bandwidth/n rate) Suppose for ease of exposition that the

same bandwidth is appropriate for all variables: hxc1 = ... = hqc1 = ... = h. Data-
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driven bandwidth selection methods are discussed in Section 2.3.1. Bandwidth h

refers to a sequence of bandwidth hn that shrinks to zero as n→∞.

•
√
nh2 → 0

•
√
nhd+2/log(n)→ 0

This implies that R = oP (1/
√
n), and therefore

= ∇fβ(z){f̂(z)− f(z)}+∇gβ(z){ĝ(z)− g(z)}+ oP (1/
√
n)

Lemma 2

∇fβ(z){f̂(z)− f(z)}+∇gβ(z){ĝ(z)− g(z)} = U1(Zit) + U2(Zit) = U(Zit)

(A.15)

Recall:

∇gβ(z){m(z)} =

[
αs(z)f1(z)

α1(z)2f(z)2
− fs(z)

α1(z)f(z)2

]
{m(z)}+

1

α1(z)f(z)

{
∂

∂xs
m(z)

}
− αs(z)

α1(z)2f(z)

{
∂

∂x1
m(z)

}
=: ∇(1)

g β(z){m(z)}+∇(2)
g β(z){m(z)}+∇(3)

g β(z){m(z)}

For each component, substitute kernel estimator in, then integrate over z across

entire support Z, using weighting function w(z).

First component

∇(1)
g β(z){ĝ(z)} =

[
αs(z)f1(z)

α1(z)2f(z)2
− fs(z)

α1(z)f(z)2

]
{ĝ(z)}

=
1

NT

T∑
t=1

N∑
i=1

YitK(Zit, z)

[
αs(z)f1(z)

α1(z)2f(z)2
− fs(z)

α1(z)f(z)2

]
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Averaging:

∫
Z
w(z)∇(1)

g β(z){ĝ(z)}dz =
1

NT

T∑
t=1

N∑
i=1

Yit

∫
Z
w(z)K(Zit, z)

[
αs(z)f1(z)

α1(z)2f(z)2
−

fs(z)

α1(z)f(z)2

]
dz

=
1

NT

T∑
t=1

N∑
i=1

Yitw(Zit)

[
αs(Zit)f1(Zit)

α1(Zit)2f(Zit)2
−

fs(Zit)

α1(Zit)f(Zit)2

]
× [1 +OP (h

m
z )]

Second component

∇(2)
g β(z){ĝ(z)} =

1

α1(z)f(z)
{ĝs(z)}

=
1

NT

T∑
t=1

N∑
i=1

Yit
∂K(Zit, z)

∂xcs

1

α1(z)f(z)

Averaging:

∫
Z
w(z)∇(2)

g β(z){ĝ(z)}dz =
1

NT

T∑
t=1

N∑
i=1

Yit

∫
Z
w(z)

∂K(Zit, z)

∂xcs

1

α1(z)f(z)
dz

change of variables

=
−1

NT

T∑
t=1

N∑
i=1

Yit

∫
Z
K(Zit, z)

∂

∂xcs

[
w(z)

α1(z)f(z)

]
dz

=
−1

NT

T∑
t=1

N∑
i=1

Yit
∂

∂xcs

[
w(Zit)

α1(Zit)f(Zit)

]
[1 + OP (h

m
z )]

=
−1

NT

T∑
t=1

N∑
i=1

Yit

α1(Zit)f(Zit)ws(Zit)− w(Zit)
∂

∂xc
s
[α1(Zit)f(Zit)]

α1(Zit)2f(Zit)2
[1 + OP (h

m
z )]

=
−1

NT

T∑
t=1

N∑
i=1

Yit
α1(Zit)f(Zit)ws(Zit)− w(Zit)α1(Zit)fs(Zit)− w(Zit)α1s(Zit)f(Zit)

α1(Zit)2f(Zit)2
[1 + OP (h

m
z )]

Third component

∇(3)
g β(z){ĝ(z)} = − αs(z)

α1(z)2f(z)
{ĝ1(z)}

=
−1

NT

T∑
t=1

N∑
i=1

Yit
∂K(Zit, z)

∂xc1

αs(z)

α1(z)2f(z)
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Averaging:

∫
Z
w(z)∇(3)

g β(z){ĝ(z)}dz =
−1

NT

T∑
t=1

N∑
i=1

Yit

∫
Z
w(z)

∂K(Zit, z)

∂xc1

αs(z)

α1(z)2f(z)
dz

=
1

NT

T∑
t=1

N∑
i=1

Yit

∫
Z
w(z)K(Zit, z)

∂

∂xc1

[
αs(z)

α1(z)2f(z)

]
dz

=
1

NT

T∑
t=1

N∑
i=1

Yit
∂

∂xc1

[
αs(Zit)w(Zit)

α1(Zit)2f(Zit)

]
[1 + OP (h

m
z )]

=
1

NT

T∑
t=1

N∑
i=1

Yit[
α1(Zit)

2f(Zit)(αs(Zit)w1(Zit) + w(Zit)αs1(Zit)

α1(Zit)4f(Zit)2

·
−αs(Zit)w(Zit)(α1(Zit)

2f1(Zit) + 2f(Zit)α1(Zit)α11(Zit)

α1(Zit)4f(Zit)2
][1 + OP (h

m
z )]

So, under appropriate conditions,

∇gβ(z){ĝ(z)} =

Since
√
N [hmx ] = o(1)

Lemma 3 ||α̂s(x, y, q)− αs(x, y, q)||2 = oP (1/
√
n) and ||α̂1(x, y, q)− α1(x, y, q)||2 = oP (1/

√
n)
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Honorè, B., and E. Tamer (2006): “Bounds on Parameters in Panel Dynamic
Discrete Choice Models,” Econometrica, 74(3), 611–629.

Horowitz, J. (1996): “Semiparametric Estimation of a Regression Model with
an Unknown Transformation of the Dependent Variable,” Econometrica, 64(1),
103–137.

Hyslop, D. (1999): “State Dependence, Serial Correlation and Heterogeneity
in Intertemporal Labor Force Participation of Married Women,” Econometrica,
67(6), 1255–1294.

Imbens, G., and W. Newey (2009): “Identification and estimation of triangular
simultaneous equations models without additivity,” Econometrica, 77(5), 1481–
1512.

Keane, M. (1997): “Current Issues in Discrete Choice Modeling,” Marketing
Letters, 8(3), 307–322.

Khan, S., and E. Tamer (2009): “Irregular Identification, Support Conditions,
and Inverse Weight Estimation,” Working Paper.

Knight, S., M. Harris, and J. Loundes (2002): “Dynamic Relationships
in the Australian Labour Market: Heterogeneity and State Dependence,” Eco-
nomic Record, 78, 284–298.

Lee, M.-J., and Y.-H. Tae (2005): “Analysis of Labour Participation Behavior
of Korean Women with Dynamic Probit and Conditional Logit,” Oxford Bulletin
of Economics and Statistics, 67(1).

Lewbel, A. (1997): “Semiparametric estimation of location and other discrete
choice moments,” Econometric Theory, 13, 32–51.

(2000): “Semiparametric qualitative response model estimation with un-
known heteroscedasticity or instrumental variables,” Journal of Econometrics,
97, 145–1777.

Magnac, T. (2004): “Panel binary variables and sufficiency: generalizing condi-
tional logit,” Econometrica, 72(6), 1859–1876.

Manski, C. (1987): “Semiparametric analysis of random effects linear models
from binary panel data,” Econometrica, 55(2), 357–362.

(2004): “Measuring Expectations,” Econometrica, 72(5), 1329–1376.



82

Misra, K., J. Roberts, and B. Handel (2012): “Robust firm pricing with
panel data,” Working paper.

Powell, J., J. Stock, and T. M. Stoker (1989): “Semiparametric estimation
of index coefficients,” Econometrica, 57, 1403–1430.

Rasch, G. (1960): Probabalistic Models for Some Intelligence and Attainment
Tests. Paedagogiske Institut, Copenhagen, Denmark.

Ridder, G. (1990): “The Nonparametric Identification of Generalized Acceler-
ated Failure-Time Models,” Review of Economic Studies, 57, 167–182.

Wooldridge, J. (2005): “Simple Solutions to the Initial Conditions Problem
in Dynamic, Nonlinear Panel Data Models with Unobserved Heterogeneity,”
Journal of Applied Econometrics, 20, 39–54.




