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Goodness-of-fit Assessment of Point Process Models

Based on K-function Variants

Alejandro Veen Frederic Paik Schoenberg

April 18, 2006

Abstract

This work presents an alternative derivation of the asymptotic dis-
tribution of Ripley’s K-function for a homogeneous Poisson process
and shows how it can be combined with point process residual analy-
sis in order to test for different classes of point process models. This
can be done with the mean K-function of thinned residuals (KM ) or
a weighted analogue called the weighted or inhomogeneous K-function
(KW ). The asymptotic distributions of KM and KW are derived for
inhomogeneous Poisson processes. Both statistics can be used as mea-
sures of goodness-of-fit for point process models.

Keywords: spatial point processes, K-function, thinning, model assess-
ment, goodness-of-fit
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1 Introduction

Ripley’s K-function, K(h), (Ripley 1976) is a widely used statistic to detect
clustering or inhibition in point process data. It is commonly used as a test,
where the null hypothesis is that the point process under consideration is a
homogeneous Poisson process and the alternative is that the point process
exhibits clustering or inhibitory behavior. Previous authors have described
the asymptotic distribution of the K-function for simple point process mod-
els including the homogeneous Poisson case (Silverman 1978, Heinrich 1988,
Ripley 1988, pp. 28–48).

The K-function has also been used in conjunction with point process
residual analysis techniques in order to assess more general classes of point
process models (Schoenberg 2003). Such model assessment involves two
steps. In the first step, the observed point pattern is transformed into a
residual process using a null hypothesis model. If the null hypothesis model
is correct, the resulting transformed process is homogeneous Poisson. In
the second step, the K-function is applied to the transformed process in
order to test whether the residuals appear to be well approximated by a
homogeneous Poisson process.

A different approach to model assessment is to modify the K-function
and define a new statistic which incorporates the null hypothesis model.
This approach was taken by Baddeley, Møller, and Waagepetersen (2000)
as well as Veen and Schoenberg (2005) who define the inhomogeneous or
weighted K-function. This weighted analog of the K-function provides a
direct test for the fit of point process models which does not require the
aforementioned two step methodology.

This Chapter will present Ripley’s K-function and derive some of its
distributional properties in Section 2 while Section 3 will describe how the
goodness-of-fit of point process models can be assessed using the K-function
and the weighted K-function.

2 Ripley’s K-function and an Alternative Deriva-
tion of its Distribution

2.1 Ripley’s K-function

Consider a homogeneous Poisson process N of intensity λ on a connected
subset A of the plane R2 with finite area A, and let the N points of the
process be labeled {p1, p2, . . . , pN}. The number of points N is therefore a
Poisson random variable with expectation and variance λA.
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Ripley’s K-function K(h) is defined as the expected number of further
points within distance h of any given point divided by the overall rate λ. It
is most simply estimated via

K̂(h) =
1

λ̂N

∑
r

∑

s6=r

1(|pr − ps| ≤ h), (1)

where λ̂ = N/A is an estimate of the overall intensity, 1(·) is the indicator
function, the Euclidian distance is denoted as | · |, and h is some inter-point
distance of interest. Note that K̂(h) is not defined for N = 0. Ripley’s
K-function can be written equivalently as

K̂(h) =
A

N2

∑
r

∑

s 6=r

1(|pr − ps| ≤ h). (2)

In applications, estimates of K(h) are typically calculated for several
different choices of h and compared to the true value of K(h) for a homo-
geneous Poisson process, which is πh2 if effects on the boundary of A are
ignored or corrected. Values which are higher than this expectation indicate
clustering of points, while lower values indicate inhibition (sometimes re-
ferred to as regularity or negative clustering). However, it should be noted
that a point pattern can be clustered at certain scales and inhibitory at
others (Schoenberg and Bolt (2000), for instance, find such features in seis-
mological point process data). Note also that two distinct point processes
may have identical K-functions, as K(h) only takes the first two moments
into account. An example of such a situation can be found in Baddeley
and Silverman (1984) who present a point process which has the same K-
function as a homogeneous Poisson process, yet is a different process. For a
homogeneous Poisson process with rate λ, K̂(h) is asymptotically Normal:

K̂(h) ∼: N

(
πh2,

2πh2

λ2A

)
, (3)

as the area of observation A tends to infinity (see Ripley (1988) pp. 28–48
and Cressie (1993) p. 642).

Several variations on K̂(h) have been proposed. Many deal with cor-
rections for boundary effects, as found in Ripley (1976, 1988), Ohser and
Stoyan (1981), and Ohser (1983). Variance-stabilizing transformations of
estimated K-functions have been proposed (Besag 1977), such as L̂(h) and
L̂(h)− h where

L̂(h) =

√
K̂(h)

π
. (4)
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The expectation of this quantity for a homogeneous Poisson process is h,
making it more easily interpretable in plots of L̂(h) or L̂(h) − h versus h.
Confidence bounds can be derived by transforming the confidence bounds
of K̂(h) accordingly.

2.2 Expectation and Variance of the Modified K-function
K̃(h)

As pointed out by Stoyan and Stoyan (2000), the K-function can also be
estimated using an estimator for the squared intensity λ̃2 = N(N − 1)/A2.
This leads to the following expression:

K̃(h) =
1

λ̃2A

∑
r

∑

s6=r

1(|pr − ps| ≤ h), (5)

which is defined only for N ≥ 2. K̃(h) can be expressed equivalently as

K̃(h) =
2A

N(N − 1)

∑
m

1m(h), (6)

where m ∈ {1, 2, . . . ,M} is an index for the pairs of points of which there
are M =

(
N
2

)
= 1

2N(N − 1). The expression 1m(h) denotes the indica-
tor function (i.e. Bernoulli random variable) that equals 1 if the Euclidian
distance between the two points for pair m is not larger than h and zero
otherwise. This representation suggests an interpretation in terms of pairs
rather than in terms of point counts within distance h. In this view, K(h) is
proportional to the fraction of pairs which are within distance h, normalized
by the area A.

Assuming that the inter-point distance h is sufficiently small in relation
to the area of observation A and further assuming that the boundary of
A is sufficiently regular, edge effects can be disregarded. In the following,
approximations regarding such boundary effects will be denoted as '. Re-
stricting our attention to observed point patterns which have at least one
pair of points (N > 1), it can be shown that K̃(h) is less biased for an
homogeneous Poisson process than the the traditional estimator K̂(h). This
follows from

E
(
K̃(h)

∣∣∣ N > 1
)

' E

(
2A

N(N − 1)
· 1
2
N(N − 1) · πh2

A

∣∣∣∣∣ N > 1

)

= πh2,
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since there are 1
2N(N − 1) pairs of points and the expectation of 1m(h) is

the ratio of the area of a disc with radius h and the area of observation
A. It follows that K̂(h), on the other hand, slightly underestimates the K-
function since the denominator in (2) is N2 instead of N(N − 1). However,
the asymptotic behavior of K̂(h) and K̃(h) is the same as N gets large.

As the inter-point distances of two distinct pairs of points are uncorre-
lated, so are 1m(h) and 1m′(h). This is also true if the pairs m and m′

have one point in common. Notice, however, that the inter-point distance
of a third pair of points may indeed depend on the inter-point distances
of two other pairs. Consider for instance three points p1, p2, p3; while the
inter-point distances |p1 − p2| and |p1 − p3| are uncorrelated, the distance
|p2 − p3| will depend on the previous two distances. Inter-point distances
can therefore be regarded as uncorrelated random variables, though their
joint distribution is not independent.

In order to find an expression for the variance of K̃(h), it is useful to view
the indicator function 1m(h) as a Bernoulli random variable with parameter
p = πh2

A . The expectation of the product of Bernoulli variables, such as
1m(h) · 1m′(h), can be written as

E (1m(h) · 1m′(h)) '
{

p for m = m′

p2 for m 6= m′,

Therefore, the variance of
√

AK̃(h) can be approximated as

V ar
(√

AK̃(h)
∣∣∣ N > 1

)
= E

(
AK̃2(h)

∣∣∣ N > 1
)
−E2

(√
AK̃(h)

∣∣∣ N > 1
)

' E

(
4A3 ·∑m

∑
m′ 1m(h) · 1m′(h)

N2(N − 1)2

∣∣∣∣∣ N > 1

)
−Aπ2h4

' 2πh2

λ2

(
1− πh2

A

)
· E

(
λ2A2

N(N − 1)

∣∣∣∣∣ N > 1

)
(7)

≈ 2πh2

λ2
· E

(
λ2A2

N(N − 1)

∣∣∣∣∣ N > 1

)

≈ 2πh2

λ2
. (8)

Step (7) once again disregards edge effects and follows from the fact that
each sum has 1

2N(N−1) terms. The two following approximations hold for a
large area of observation A and the result in (8) is true since the conditional
expectation will be close to unity as shown in the following lemma.
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Lemma 2.1 Let N(n) be a sequence of homogeneous Poisson processes with
intensity λ > 0 defined on connected subsets A(n) ⊂ R2 of finite areas A(n)

and suppose that A(n) −→∞, as n −→∞. Further, let

X(n) =
N (n)(N (n) − 1)

λ2
(
A(n)

)2

and define the bounded measurable function

ϕ (x) =

{
1
x for x ≥ b, 0 < b < 1

0 for x < b.

Then,
E

(
ϕ

(
X(n)

))
n−→ 1

and
E

(
ϕ

(
X(n)

)
| X(n) > 0

)
n−→ 1

Proof.
The proof will use a version of the Helly-Bray theorem which describes the
convergence of expectations (see for instance Ferguson (1996) p. 13). The
sequence X(n) converges in law to the constant 1, since

E
(
X(n)

)
= 1

V ar
(
X(n)

)
=

4
λA(n)

+
2

λ2
(
A(n)

)2

n−→ 0,

which makes use of the following expressions for the first four moments for
the Poisson distribution:

E
(
N (n)

)
= λA(n),

E

((
N (n)

)2
)

= λA(n)
(
1 + λA(n)

)
,

E

((
N (n)

)3
)

= λA(n)

(
1 + 3λA(n) + λ2

(
A(n)

)2
)

,

E

((
N (n)

)4
)

= λA(n)

(
1 + 7λA(n) + 6λ2

(
A(n)

)2
+ λ3

(
A(n)

)3
)

.

The Helly-Bray theorem requires that the function ϕ be measurable,
bounded, and continuous at the limit of X(n). Without loss of generality,
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let b = 1
2 . All these conditions are met since ϕ is measurable, bounded

below by 0, bounded above by 1
b = 2, and since ϕ is continuous at the limit

of X(n) which is 1. Hence, the expectation of the function of the sequence,
converges to the expectation of the function of the limit which is unity:

E
(
ϕ

(
X(n)

))
n−→ E (ϕ (1)) = 1.

The conditional expectation can be expressed in terms of the uncondi-
tional expectation, since

E
(
ϕ

(
X(n)

)
| X(n) > 0

)
=

E
(
ϕ

(
X(n)

))− ϕ (0) · prob(X(n) = 0)
1− prob(X(n) ≤ 0)

n−→ 1.

This is true, since ϕ(0) is defined as 0 and prob(X(n) ≤ 0) = prob(X(n) =
0) = prob(N (n) ≤ 1) is the probability of observing a point pattern with
less than two events. This probability converges to zero in probability as
the area of observation approaches infinity.

q.e.d.

All the aforementioned approximations hold for large A and therefore
this section can be summarized in following theorem on the asymptotic
expectation and variance of K̃(n)(h).

Theorem 2.2 Let N(n) be a sequence of homogeneous Poisson processes
with intensity λ > 0 and K-functions K̃(n)(h), h > 0, defined on connected
subsets A(n) ⊂ R2 of finite areas A(n). Suppose that h2/A(n) → 0 and
A(n) → ∞, as n → ∞. Further, assume that the boundaries of A(n) are
sufficiently regular so that the previous approximations regarding boundary
effects hold for large A(n). For the normalized K-function

κ̃(n)(h) =
K̃(n)(h)− πh2

√
2πh2

λ2A(n)

,

the asymptotic expectation and variance are

E
(
κ̃(n)(h)

)
n−→ 0,

and
V ar

(
κ̃(n)(h)

)
n−→ 1.

This result coincides with the asymptotic expectation and variance of K̂(h)
in (3).
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2.3 A Caveat Concerning Simulation Studies

As is pointed out by Stoyan and Stoyan (2000), it is crucial to use an estimate
of λ or λ2 rather than their true values, even if they are known. Situations
where the true intensity is known can arise in simulation studies, as it may
be tempting to use the true value for the intensity in the definitions of the
K-function estimates (1) and (5). Somewhat surprisingly, using the true
value for λ or λ2 will actually inflate the variance of K̂(h) and K̃(h) by a
factor of (1 + 2πh2λ). Consider for instance the modified estimator Ǩ(h)
which is defined analogously to K̃(h) but uses the true value for λ:

Ǩ(h) =
2

λ2A

∑
m

1m(h).

The expectation can be derived straightforwardly as

E
(
Ǩ(h) | N > 1

) ' πh2

λ2A2
E (N(N − 1) | N > 1)

=
πh2

1− prob(N ≤ 1)
≈ πh2, (9)

which requires expressions for the first and second moments of N (see
Lemma 2.1) and the approximation in (9) works well for large A so that
the probability of obtaining a point pattern with less than two points is
negligible.

In order to find the variance of
√

AǨ(h), consider

V ar
(√

AǨ(h)
∣∣∣ N > 1

)
= E

(
AǨ2(h)

∣∣∣ N > 1
)
−E2

(√
AǨ(h)

∣∣∣ N > 1
)

' E

(
4 ·∑m

∑
m′ 1m(h) · 1m′(h)

λ4A

∣∣∣∣∣ N > 1

)
−Aπ2h4

=
4

λ4A
E

(
π2h4

A2

1
4
N2(N − 1)2

+
πh2

A

(
1− πh2

A

)
1
2
N(N − 1)

∣∣∣∣∣ N > 1

)

−Aπ2h4

≈ 2πh2

λ2

(
1 + 2πh2λ

)
, (10)
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again assuming in (10) that prob(N ≤ 1) is negligible as the area of obser-
vation approaches infinity. This variance is larger than the variance of K̃(h)
as shown in (8) by a factor of

(
1 + 2πh2λ

)
. A similarly inflated variance is

obtained when using the true λ instead of the estimate λ̂ in the definition
of K̂(h). Heinrich (1988) derived a similar result in Rd.

2.4 An Alternative Derivation of the Asymptotic Distribu-
tion of the K-function for a Homogeneous Poisson Process

Theorem 2.3 Let N(n) be a sequence of homogeneous Poisson processes
with intensities λ(n) and K-functions K̃(n)(hn), defined on connected subsets
A(n) ⊂ R2 of finite areas A(n) and let N (n) denote the number of points.
Suppose that for each n, the observed region A(n) can be broken up into
disjoint subregions A(n)

1 ,A(n)
2 , . . . ,A(n)

In
each having area A

(n)
i = A(n)/In and

let N
(n)
i be the number of points in area i. Suppose also that for some scalar

λmin, 0 < λmin ≤ λ(n) < ∞ for all n. In addition, suppose that, as n →∞,
In →∞ and h2

n/A
(n)
i → 0. Further, assume that the boundaries of A(n)

i are
sufficiently regular that the asymptotic expectation and variance of K̃(n)(hn)
can be derived as done in Theorem 2.2 and that the number of pairs of points
(pr, ps) with |pr − ps| ≤ hn such that pr and ps are in distinct subregions is
small, satisfying R(n) := 2A(n)

N(n)(N(n)−1)

∑
pr,ps

1(|pr − ps| ≤ hn)1(i 6= j) → 0 in

probability as n →∞, where the sum is over all pr ∈ A
(n)
i , ps ∈ A

(n)
j . Then

the normalized quantity

κ̃(n)(hn) =
K̃(n)(hn)− πh2

n√
2πh2

n

(λ(n))2
A(n)

,

is asymptotically Normal as n →∞:

κ̃(n)(hn) ∼: N (0, 1) .

Proof.
First note that K̃(n)(hn) can be represented as the arithmetic mean of K-
functions computed individually on each of the subregions i = 1, 2, . . . , In,
plus the remainder term R(n) defined above:

K̃(n)(hn) =
2A(n)

N (n)(N (n) − 1)

∑
m

1m(hn)
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= 2A(n)
In∑

i=1

{
1

N
(n)
i (N (n)

i − 1)

∑
mi

1mi(hn)

}
+ R(n)

=
1
In

In∑

i=1

{
2A

(n)
i

N
(n)
i (N (n)

i − 1)

∑
mi

1mi(hn)

}
+ R(n) (11)

=
1
In

In∑

i=1

{
K̃

(n)
i (hn)

}
+ R(n), (12)

where mi indexes the pairs of points in subregion i. Step (11) follows from
A

(n)
i = A(n)/In as defined in the theorem and R(n) converges to zero in

probability by assumption. It follows that the distribution of K̃(n)(hn) is
equivalent to that of the mean of In K-functions as shown in (12). By the
central limit theorem, this mean is asymptotically Normal and the variance
of K̃(n)(hn) can be computed as

V ar
(
K̃(n)(hn)

)
= V ar

(
1
In

In∑

i=1

K̃
(n)
i (hn)

)
+ o(n)

=
1
I2
n

In∑

i=1

V ar
(
K̃

(n)
i (hn)

)
+ o(n)

=
1
I2
n

In∑

i=1

2πh2
n

(λ(n))2A(n)
i

+ o(n)

=
2πh2

n(
λ(n)

)2
A(n)

+ o(n). (13)

q.e.d.

Corollary 2.4 Under the conditions of Theorem 2.3, K̂(n)(h(n)) defined as
in (1) is asymptotically Normal. The standardized quantity

κ̂(n)(hn) =
K̂(n)(hn)− πh2

n√
2πh2

n

(λ(n))2
A(n)

,

approaches the standard Normal distribution as n →∞:

κ̂(n)(hn) ∼: N (0, 1) .
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Proof.
Ripley’s K-function can be written as K̂(n)(h(n)) = K̃(n)(h(n))·N(n)−1

N(n) , N (n) >

1. Since N(n)−1
N(n)

n−→ 1 in probability, K̂(n)(h(n)) approaches the same as-
ymptotic distribution as K̃(n)(h(n)) by Slutsky’s Theorem (see for instance
Ferguson (1996) p. 39).

q.e.d.

3 Model Assessment Using the K-function and its
Weighted Analog KW

3.1 Residual Analysis of Point Process Models Using Rip-
ley’s K-function

The assessment of point process models using residual analysis involves two
steps. In the first step, the a hypothesized point process model is used to
transform an observed point pattern. The transformation is such that the
transformed process – called the residual process or simply the residuals –
will be homogeneous Poisson if the hypothesized model is correct, i.e. if the
observed data were indeed generated by the null hypothesis model. The
second step of this procedure, involves analyzing the residual process. If
the residual process is homogeneous Poisson, the hypothesized model seems
to describe the data well. Otherwise, the null hypothesis is rejected and a
further analysis of the residual process may provide clues as to where the
null hypothesis model ought to be improved.

The expression “residual analysis” can be understood in analogy to re-
gression as the transformation converts the observed point pattern (in re-
gression this would be the observed dependent variable) into a new process
by somehow compensating for the model in question. The resulting residual
point process then represents the inherent randomness in the data as well as
those features, which are not captured by the model used for the transfor-
mation. In regression analysis the transformation means that the predicted
dependent variable is subtracted from its observed value. In the realm of
point processes, the observed point pattern can be re-scaled or thinned in
order to generate a residual process. To complete the analogy, regression
analysis expects the residuals to be “white noise” (mostly defined as an i.i.d.
Normal random variables) if the null hypothesis model is correct. The white
noise of point processes is the homogeneous Poisson process and similarly the
transformation of observed point patterns generates a homogeneous Poisson
process if the null hypothesis model is correct.
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A well established method of generating residual point processes is re-
scaling. This methodology is based on a result by Meyer (1971) and appli-
cations of point process residual analysis based on re-scaling can be found
in Ogata (1988) Merzbach and Nualart (1986) and Schoenberg (1999).

A second popular method is thinning, which is based on a technique
originally designed to simulate inhomogeneous Poisson processes (Lewis and
Shedler 1979). This procedure has been generalized by Ogata (1981) for the
simulation of more general classes of point process models. A reversal of
this methodology allows the transformation of an observed point pattern
into a homogeneous Poisson process by deleting certain points of the data
set (see for instance Schoenberg (2003) for an application of this method to
earthquake occurrence data).

Thinning can be applied to a wide range of point process models. For
an inhomogeneous Poisson process with rate λ(x, y) > 0 on A ∈ R2, a
homogeneous Poisson process with rate λ∗ can be generated by retaining
each point (x, y) of the observed point pattern with probability λ∗/λ(x, y),
where the quantity λ∗ ought not be larger than the infimum of the observed
rate, i.e. 0 < λ∗ ≤ inf(x,y)∈A λ(x, y).

After transforming an observed point pattern either by re-scaling or thin-
ning, the K-function can be applied to the residual process in order to inves-
tigate the homogeneity of the residuals. The result can be interpreted as a
test of the goodness-of-fit of the point process model in question. Inference
can be performed either by Monte Carlo simulation or by using the results
for the asymptotic distribution of the K-function for a homogeneous Poisson
process as presented in the previous section.

Other methods for assessing the homogeneity of a point process exist,
including tests for monotonicity (Saw 1975), uniformity (Dijkstra, Rietjens,
and Steutel 1984, Lawson 1988, Lisek and Lisek 1985), and tests on the
second and higher-order properties of the process (Bartlett 1964, Davies
1977, Heinrich 1991). Likelihood statistics, such as Akaike’s Information
Criterion (AIC) (Akaike 1974) and the Bayesian Information Criterion (BIC)
(Schwartz 1979) are often used to assess more general classes of models
including space-time point process models. See for instance Ogata (1998)
for an application to earthquake occurrence models.

3.2 Point Process Model Assessment Using the Mean K-
function of Thinned Residuals KM(h)

Suppose that a given planar point process in a connected subset A of R2

with finite area A may be specified by its conditional intensity with respect
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to some filtration on A, for (x, y) ∈ A (Daley and Vere-Jones 2003). The
point process need not be Poisson; in the simple case where the point process
is Poisson, however, the conditional intensity and ordinary intensity coin-
cide. Suppose that the conditional intensity of the point process is given by
λ(x, y).

The mean K-function of thinned residuals (KM (h)) is the average of T
ordinary K-functions, denoted as K̃t(h) with t = {1, 2, . . . , T}, each com-
puted on of the T residual processes generated by thinning the observed
point pattern:

KM (h) =
1
T

T∑

t=1

K̃t(h).

Notice that KM (h) could be defined similarly as the average of K̂(h).
It is important to realize that K̃t(h) and K̃τ (h) are not independent of

one another for different iterations of thinning (t 6= τ). A derivation of the
asymptotic distribution of KM (h) will therefore require an expression for
this dependence.

Consider a homogeneous Poisson process N on connected subsets A ∈
R2 of area A, rate λ ≥ λ∗ > 0, and sufficiently well-behaved boundaries
as required in the preceding sections. Generate the thinned process N1

by retaining each point of N with probability λ∗/λ. The K-function of
process N1, which has N1 retained points, will be denoted as K̃1 and has
the following expectation and variance

E(K̃1) ' πh2 (14)

V ar(
√

AK̃1) ' 2πh2

λ2∗
, (15)

since the the process N1 is homogeneous Poisson with rate λ∗ and the ex-
pressions for the expectation and variance in Theorem 2.2 can be used.

Similarly, generate a thinned process N2 with N2 points and K-function
K̃2 and notice that the expectation and variance of K̃2 coincides with the
respective expressions for K̃1. Denote the number of points which are in
the overlap of the thinned processes N1 and N2 as NO. Further, let mO =
{1, 2, . . . , 1

2NO(NO − 1)} be an index for the pairs of points in this overlap.
The covariance of

√
AK̃1 and

√
AK̃2 can then be computed as

Cov
(√

AK̃1,
√

AK̃1

∣∣∣ NO > 1
)

= E
(
AK̃1K̃2

∣∣∣ NO > 1
)
− E

(√
AK̃1

∣∣∣ NO > 1
)

E
(√

AK̃2

∣∣∣ NO > 1
)
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' E


4A3 ·∑mO

πh2

A

(
1− πh2

A

)

N1(N1 − 1)N2(N2 − 1)

∣∣∣∣∣ NO > 1




= E


4A3 ·∑mO

πh2

A

(
1− πh2

A

)

NO(NO − 1)
NO(NO − 1)

N1(N1 − 1)N2(N2 − 1)

∣∣∣∣∣ NO > 1




=
2πh2

λ2

(
1− πh2

A

)
E

(
λ2A2 NO(NO − 1)

N1(N1 − 1)N2(N2 − 1)

∣∣∣∣∣ NO > 1

)

≈ 2πh2

λ2
, (16)

where the approximation in step (16) works for large A and uses the following
Lemma 3.1 which proves that the conditional expectation approaches unity
in this case. Note that conditioning on NO > 1 implies that N1, N2 > 1,
since there cannot be more points in the overlap than in each of the thinned
processes. This guarantees that none of the denominators attain a value
of zero. This result for the covariance implies that the correlation between
K-functions of independently thinned homogeneous Poisson processes is

ρ(
√

AK̃1,
√

AK̃2) =
Cov(

√
AK̃1,

√
AK̃2)√

V ar(
√

AK̃1) · V ar(
√

AK̃2)
=

λ2∗
λ2

.

Lemma 3.1 Let N(n), be a sequence of homogeneous Poisson processes with
intensity λ > 0 defined on connected subsets A(n) ⊂ R2 of finite areas A(n)

and suppose that A(n) −→ ∞, as n −→ ∞. Let 0 < λ∗ < λ and let N(n)
1

and N(n)
2 be thinned processes in which each point of N(n) is retained with

probability λ∗/λ as described above. Let N
(n)
1 and N

(n)
2 denote the number of

retained points in the thinned processes N(n)
1 and N(n)

2 and let N
(n)
O denote

the number of points which are common to both thinned processes. Further,
let ~X(n) be a sequence of vectors defined as

~X(n) =




X
(n)
1

X
(n)
2

X
(n)
O


 =




N
(n)
1 (N

(n)
1 −1)

λ2(A(n))2

N
(n)
2 (N

(n)
2 −1)

λ2(A(n))2

N
(n)
O (N

(n)
O −1)

λ2(A(n))2 ,




14



and define the bounded measurable function ϕ(~x), ~x = (x1, x2, xO), such that

ϕ (~x) =





c for xO
x1x2

≥ c, 1 < c < ∞
0 for x1x2 = 0

xO
x1x2

otherwise.

Then,
E

(
ϕ

(
~X(n)

))
n−→ 1

and
E

(
ϕ

(
~X(n)

) ∣∣∣ X
(n)
1 ·X(n)

2 > 0
)

n−→ 1

Proof.
This proof is similar to the proof of Lemma 2.1 as it uses the Helly-Bray
theorem, as well. The vector sequence ~X(n) converges in law to a constant
vector

~X(n) n−→ ~X =




X1

X2

XO


 =




λ2∗
λ2

λ2∗
λ2

λ4∗
λ4


 ,

which can be shown using a similar argument as in the proof of Lemma 2.1.
The conditions of the The Helly-Bray theorem on the function ϕ are all met,
as it is measurable, bounded between zero and c (without loss of generality,
let c = 2, for instance) and continuous at the limit of the vector sequence
which is ~X. Hence, the expectation of the function of the vector sequence,
converges to the expectation of the function of the limit:

E
(
ϕ

(
~X(n)

))
n−→ E

(
ϕ

(
~X

))
= E


ϕ




λ2∗
λ2

λ2∗
λ2

λ4∗
λ4





 = 1.

For the same reason as in the proof of Lemma 2.1, the conditional expecta-
tion will be the same as the unconditional expectation as the probability of
observing an overlap with less than two events rapidly converges to zero as
the area of observation approaches infinity.

q.e.d.

The result for the covariance of K-functions K̃1 and K̃2, computed on
thinned residual processes will be used in the following theorem stating that

15



the mean K-function of thinned residuals (KM (h)) is asymptotically Normal
for inhomogeneous Poisson processes. This allows the use of KM (h) for
assessing the goodness-of-fit of point process models in the inhomogeneous
case.

Theorem 3.2 Let N(n) be a sequence of inhomogeneous Poisson processes
with intensities λ(n) defined on connected subsets A(n) ⊂ R2 of finite areas
A(n) and let N (n) denote the number of points. Suppose that for each n, the
observed region A(n) can be broken up into disjoint subregions A(n)

1 ,A(n)
2 , . . . ,A(n)

In

each having area A
(n)
i = A(n)/In with N

(n)
i points, and that the inten-

sity λ
(n)
i is constant within A(n)

i . Let λ
(n)
∗ denote the step n infimum of

the intensity, λ
(n)
∗ = infA(n) λ(n), and let there be a scalar λmin such that

0 < λmin ≤ λ
(n)
∗ ≤ λ

(n)
i for all i, n. Let K

(n)
M , denote the mean K-

function of thinned residuals, defined as the arithmetic mean of Tn K-
functions K̃

(n)
t , t = {1, 2, . . . , Tn}, each computed on the thinned processes

N(n)
t , generated such that N(n)

t is a homogeneous Poisson processes with
rate λ

(n)
∗ . Moreover, let N

(n)
t denote the number of points of the thinned

process and let N
(n)
ti denote the number of points in subregion i of the thinned

process. In addition, suppose that, as n → ∞, In → ∞, Tn → ∞, and
h2

n/A
(n)
i → 0. Further, assume that the boundaries of A(n)

i are sufficiently
regular that the number of pairs of points (ptr, pts) with |ptr− pts| ≤ hn such
that ptr and pts are in distinct subregions is small for each thinned process
N(n)

t , satisfying R
(n)
t := 2A(n)

N
(n)
t (N

(n)
t −1)

∑
ptr,pts

1(|ptr − pts| ≤ hn)1(i 6= j) → 0

in probability as n → ∞, where the sum is over all ptr ∈ A
(n)
i , pts ∈ A

(n)
j .

Then the normalized quantity

κ
(n)
M (hn) =

K̃
(n)
M (hn)− πh2

n√
2πh2

n

H((λ(n))2)A(n)

,

is asymptotically Normal as n →∞:

κ
(n)
M (hn) ∼: N (0, 1) ,

where H
(
(λ(n))2

)
represents the harmonic mean of the squared intensity

within the observed region A(n).

Proof.
Using a similar representation of as done in (12), K

(n)
M (short for K

(n)
M (hn))

16



can be written as an arithmetic mean of In local K
(n)
Mi -functions each com-

puted as the mean of Tn local K̃
(n)
ti -functions (short for K̃

(n)
ti (hn)) of the

thinned process N(n)
t restricted to the subregion i in addition to a sum over

the remainder term R
(n)
t defined above:

K
(n)
M =

1
Tn

Tn∑

t=1

K̃
(n)
t

=
1
Tn

Tn∑

t=1

{
1
In

In∑

i=1

K̃
(n)
ti + R

(n)
t

}

=
1
In

In∑

i=1

{
1
Tn

Tn∑

t=1

K̃
(n)
ti

}
+

1
Tn

Tn∑

t=1

R
(n)
t

=
1
In

In∑

i=1

{
K

(n)
Mi

}
+

1
Tn

Tn∑

t=1

R
(n)
t

=
1
In

In∑

i=1

{
K

(n)
Mi

}
+ o(n), (17)

where the last step follows from the condition of the theorem that the re-
mainder term R

(n)
t converges to zero in probability for each thinned process

N(n)
t . The next step involves finding expressions for the expectation and

variance of the local K
(n)
Mi -functions.

E
(
K

(n)
Mi

)
= E

(
1
Tn

Tn∑

t=1

K̃
(n)
ti

)

=
1
Tn

Tn∑

t=1

E
(
K̃

(n)
ti

)

= πh2,

since the expectation of each a local K̃
(n)
ti -function is πh2 for each individual

thinning (see (14)). The variance of K
(n)
Mi is

V ar

(√
A

(n)
i K

(n)
Mi

)
= V ar

(
1
Tn

Tn∑

t=1

√
A

(n)
i K̃

(n)
ti

)

=
1
T 2

n

Tn∑

t=1

V ar

(√
A

(n)
i K̃

(n)
ti

)

17



+
1
T 2

n

Tn∑

t=1

Tn∑

τ=1,τ 6=t

Cov

(√
A

(n)
i K̃

(n)
ti ,

√
A

(n)
i K̃

(n)
τi

)

=
1
T 2

n

Tn
2πh2

n(
λ

(n)
∗

)2 +
1
T 2

n

Tn(Tn − 1)
2πh2

n(
λ

(n)
i

)2

which follows from the expressions for the variance and covariance of K-
functions computed on thinned point patterns in (15) and (16), respectively.
Notice that K

(n)
Mi is computed locally, i.e. the on the subregion i with area

A
(n)
i = A(n)/In. In the limit, i.e. as the number of thinning iterations Tn

approaches infinity, the variance of K
(n)
Mi is therefore

lim
n−→∞V ar

(√
A

(n)
i K

(n)
Mi(hn)

)
=

2πh2
n(

λ
(n)
i

)2 <
2πh2

n(
λ

(n)
min

)2 ,

which is bounded above by assumption. This allows applying the Lindeberg-
Feller Central Limit Theorem in (17), meaning that K

(n)
M is asymptotically

Normal with expectation πh2
n and asymptotic variance

lim
n−→∞V ar

(√
A(n)K

(n)
M (hn)

)
= lim

n−→∞V ar

(
1
In

In∑

i=1

√
A(n)K

(n)
Mi

)

= lim
n−→∞V ar

(
1
In

In∑

i=1

√
InA

(n)
i K

(n)
Mi

)

= lim
n−→∞

1
In

In∑

i=1

2πh2
n(

λ
(n)
i

)2

=
2πh2

n

H
(
(λ(n))2

) . (18)

q.e.d.

Note that KM (h) may be used to test a quite general class of null hy-
pothesis models without having to assume homogeneity (like the original
K-function does) and without the need to re-scale the observed point pat-
tern. Re-scaling often introduces problems of highly irregular boundaries
and such problems are discussed in Schoenberg (2003).
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For the purpose of plotting, the KM (h) can be transformed into a quan-
tity LM (h) with expectation h. This is done in analogy to (4) which trans-
forms Ripley’s original K-function into the L-function.

LM (h) =

√
KM (h)

π
. (19)

3.3 Point Process Model Assessment Using the Weighted K-
function KW (h)

This section presents the weighted K-function, KW (h), and derives its distri-
butional properties under certain conditions. KW (h) is a weighted analogue
of Ripley’s K-function, which was first introduced as the inhomogeneous
K-function in Baddeley, Møller, and Waagepetersen (2000). It provides a
direct test for goodness-of-fit, without having to transform the points us-
ing residual analysis. The Mean K-function of Thinned Residuals KM (h) is
able to avoid some of the problems encountered when re-scaling an observed
point pattern. However, repeated thinning iterations are required to com-
pute KM (h) which can introduce a large degree of sampling variability when
the conditional intensity in question is highly variable (Schoenberg 2003).

As in the case of KM (h), suppose that a given planar point process
in a connected subset A of R2 with finite area A may be specified by its
conditional intensity with respect to some filtration on A, for (x, y) ∈ A.
The conditional intensity is given by λ(x, y) and the weighted K-function,
used to assess the model λ0(x, y), may be defined as

KW (h) =
1

λ2∗A

∑
r

wr

∑

s 6=r

ws1(|pr − ps| ≤ h) (20)

where λ∗ := inf{λ0(x, y); (x, y) ∈ A} is the infimum of the conditional in-
tensity over the observed region for the model to be assessed and wr =
λ∗/λ0(pr), where λ0(pr) is the modelled conditional intensity at point pr.

The weighted K-function integrates the two steps needed to compute
KM (h) into one step. KM (h) is computed by estimating Ripley’s K-function
repeatedly on thinned data and then taking the average. The computation of
the weighted K-function on the other hand uses the retaining probabilities
of the thinning procedure as weights for the points in order to offset the
inhomogeneity of the process. By incorporating all pairs of the observed
point pattern, rather than only the ones that happen to be retained after an
iteration of random thinning, the statistic KW (h) eliminates the sampling
variability in any finite collection of random thinnings.
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Provided the conditional intensity λ is sufficiently smooth, it can be
conjectured that KW (h) will be asymptotically Normal as the area of obser-
vation A approaches infinity. Indeed, for the Poisson case where λ is locally
constant on distinct subregions whose areas A

(n)
i are large relative to the

inter-point distance hn, the following result can be obtained.

Theorem 3.3 Let N(n) be a sequence of inhomogeneous Poisson processes
with intensities λ(n) and weighted K-functions K

(n)
W , defined on connected

subsets A(n) ⊂ R2 of finite areas A(n). Suppose that for each n, the observed
region A(n) can be broken up into disjoint subregions A(n)

1 ,A(n)
2 , . . . ,A(n)

In

each having area A
(n)
i = A(n)/In, and that the intensity λ

(n)
i is constant

within A(n)
i . Suppose also that for some scalar λmin, 0 < λmin ≤ λ

(n)
i < ∞

for all i, n. In addition, suppose that, as n →∞, In →∞ and h2
n/A

(n)
i → 0.

Further, assume that the boundaries of A(n)
i are sufficiently regular that the

number of pairs of points (pr, ps) with |pr−ps| ≤ hn such that pr and ps are in
distinct subregions is small, satisfying R(n) := 1

A(n)

∑
pr,ps

1(|pr−ps|≤hn)1(i6=j)

λ
(n)
i λ

(n)
j

→

0 in probability as n → ∞, where the sum is over all pr ∈ A
(n)
i , ps ∈ A

(n)
j .

Then the normalized quantity

κ
(n)
W (hn) =

K̃
(n)
W (hn)− πh2

n√
2πh2

n

H((λ(n))2)A(n)

,

is asymptotically Normal as n →∞:

κ
(n)
W (hn) ∼: N (0, 1) ,

where H
(
(λ(n))2

)
represents the harmonic mean of the squared intensity

within the observed region A(n).

Proof.
We first show that K

(n)
W (hn) can be represented as the arithmetic mean of

K-functions computed individually on each of the squares i = 1, 2, . . . , In,
plus the remainder term R(n) defined above:

K
(n)
W (hn) =

1
λ2∗A(n)

∑
r

wr

∑

s6=r

ws1(|pr − ps| ≤ hn) (21)

=
1

λ2∗A(n)

In∑

i=1

λ2∗
(λ̂(n)

i )2

∑
ri

∑

si 6=ri

1(|pri − psi | ≤ hn) + R(n)(22)
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=
1
In

In∑

i=1

1

(λ̂(n)
i )2A(n)

i

∑
ri

∑

si 6=ri

1(|pri − psi | ≤ hn) + R(n)

=
1
In

In∑

i=1

K̂
(n)
i (hn) + R(n) (23)

Since the intensity λ
(n)
i is constant on each square A(n)

i , the weights wr, ws

assigned to a pair of points in A(n)
i within distance hn are each λ∗/λ̂

(n)
i ,

which is used in going from (21) to (22). Thus, since R(n) converges to zero
in probability by assumption, the distribution of the weighted K-function is
equivalent to that of the mean of the In ordinary K-functions in (23).

Under the conditions of the theorem, K̂
(n)
i is asymptotically Normal from

(Ripley 1988), and since the point process on A(n)
i is homogeneous Poisson

with rate λ
(n)
i ≥ λmin > 0, the variance of K̂

(n)
i is bounded above by the

variance of a homogeneous Poisson process on A(n)
i with rate λmin. This

implies that the collection of random variables





K̂
(n)
i (hn)−πh2

n

In

r
V ar

�
K̂

(n)
i (hn)

�


 satisfies

the Lindeberg condition (see e.g. Durret (1991) p. 98), and therefore the
mean 1

In

∑In
i=1 K̂

(n)
i (hn) is asymptotically Normal. The variance of K

(n)
W (h)

is V ar
(

1
In

∑In
i=1 K̂

(n)
i (h)

)
+ o(n), which can be computed as

V ar

(
1
In

In∑

i=1

K̂
(n)
i (h)

)
=

1
I2
n

In∑

i=1

V ar
(
K̂

(n)
i (h)

)

=
1
I2
n

In∑

i=1

2πh2

(λ(n)
i )2A(n)

i

=
2πh2

A(n)H
(
(λ(n))2

) , (24)

where (24) follows from the fact that A
(n)
i = A(n)/In.

q.e.d.

Note that a variance-stabilized version of the weighted K-function can
be defined in analogy with (4), namely:

LW (h) =

√
KW (h)

π
. (25)

21



0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a)

x

y

λ3 = 750

λ4 = 500

λ2 = 1500

λ1 = 1000

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b)

x

y

λ(x, y) = 500 + 600x + 600y2

Figure 1: Intensity models used in the simulation study. Model (a)
has a constant intensity in each quadrant, but it varies across the quadrants.
Model (b) on the other hand varies smoothly following a parabolic plane
defined as λ(x, y) = 500 + 600x + 600y2.

3.4 Simulation Study Comparing KM(h) and KW (h)

In this simulation study, we will compare the empirical distributions of
KM (h) and KW (h) to the theoretical results of the previous sections (no-
tice that the theoretical distributions are the same for KW (h) and for
KM (h)). This comparison will be done for two different inhomogeneous
Poisson processes on the unit square. In Model (a), the intensity is con-
stant on each of the four quadrants of the unit square, but varies across the
quadrants. In Model (b), the intensity will vary smoothly according to a
parabolic plane. The specification of the models is described in Figure 1.

In order to obtain empirical confidence bounds for the distributions of
KW (h) and KM (h), 1000 point patters are simulated using Model (a) and
similarly 1000 point patterns are simulated in accordance with Model (b).
For both models, KW (h) and KM (h) are then computed for each of the
1000 generated data sets and the empirical 2.5 and 97.5 percentiles are used
for computing the empirical confidence bounds. The calculation of KM (h)
requires multiple iterations and is based on T = 400 thinnings for each of
the simulated point patterns.

Figure 2 shows that the theoretical results of the theorems on the dis-
tributions of KM (h) and KW (h) provide good predictions of the simulated
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Figure 2: Empirical 95% confidence bounds of KW (h) and KM (h) for
small values of h. For small values of h, the theoretical bounds are very
close to the simulated bounds. The bounds based on the theorem work well
for model (a) as well as for model (b) and for both KM (h) and KW (h). The
expectation as well as the theoretical bounds are shown as dotted lines, the
simulated bounds for KM (h) are solid and the ones for KW (h) are dashed.
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Figure 3: Histograms of KW (h) and KM (h) for h=0.005. For small
values of h, the theoretical bounds are very close to the simulated bounds
(this is true for both models). The solid line is the expected distribution
based on the results of the theorems.
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Figure 4: Empirical 95% confidence bounds of KW (h) and KM (h) for
larger values of h. For larger values of h, the simulated bounds of KM (h)
are still well in line with the theoretical bounds. However, the simulated
bounds bounds of KW (h) start to be larger than predicted theoretically,
indicating that the conditions of the theorem require a small inter-point
distance h (this is true for both, model (a) and (b)). The expectation as well
as the theoretical bounds are shown as dotted lines, the simulated bounds
for KM (h) are solid and the ones for KW (h) are dashed.

confidence bounds for small values of h (see also the histograms for h = 0.005
in Figure 3).

The theorem for KM (h) also holds for larger values of h, though this
is not the case for KW (h) (see Figure 4 and the histograms in Figure 5
for h = 0.02). The theorem for KW (h) makes the crucial assumption that
the intensity be approximately constant on each disc with area πh2. If the
radius h is too large, the intensity will vary on each disc which violates the
conditions of the theorem. While the theorem on the distribution of KW (h)
is more restrictive and is only valid for very small h, the use of KW (h)
has the practical advantage that it can be computed directly and does not
require repeated sampling. Any test involving KM (h), on the other hand,
will always include some degree of sampling variability, that will reduce the
power of the test.
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Figure 5: Histograms of KW (h) and KM (h) for h=0.02. For larger
values of h, the theoretical bounds of KM (h) are very close to the simulated
bounds (again this is true for both models). However, the variance of KW (h)
is larger than predicted by the theorem (solid line).
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