UCLA

Posters

Title

Toward Precise Control of a Robotic Boat

Permalink

https://escholarship.org/uc/item/66d03778

Authors

Vedantam, Satish Zhang, Wenyi Mitra, Urbashi et al.

Publication Date

2007-10-10

Peer reviewed

Toward Precise Control of a Robotic Boat

Arvind Menezes Pereira, Jnaneshwar Das, Amit Dhariwal, Bin Zhang, Beth Stauffer, Xuemei Bai, Lindsay Darjany, Carl Oberg, David Caron & Gaurav Sukhatme

Robotic Embedded Systems Lab, University of Southern California - http://robotics.usc.edu/~namos

Need for Precise Control

Introduction

Unmanned surface vehicles (USVs)

- Subjected to external forces
 - wind
 - · water currents
 - waves
 - challenging control problem.
- Typical problems in USV control
 - navigation
 - trajectory tracking
 - station keeping.

Task	Requirements
Vertical profiling which involves dwell time and sampling rate at multiple depths.	Hold position for ~10mins in the presence of drift.
Efficient <i>bathymetry</i> with profiling sonar.	Heading control for efficient scanning.
	Regular and dense scan patterns involve planning of trajectory in position and velocity. □
Docking to recharge for long term deployments.	Docking maneuver.
Collaborative missions involving multiple boats.	Multi-robot missions and formations.

Platform and Methodology

System Dynamics

$$M\acute{\mathbf{Y}} + C(v)v + D(v)v + g(\eta) = \left[\frac{\tau}{0}\right]$$

$$\acute{\mathbf{Y}} = J(\eta)v$$

- M = inertia matrix
- C = coriolis and centripetal matrix
- D = hydrodynamic damping matrix
- $G = gravitation \ and \ buoyancy \ vector$
- $v = velocity\ vector\ in\ body\ frame$ $\eta = velocity\ vector\ in\ global\ frame$
- J = kinematic tranformation matrix

System Identification

- · Identify the dynamics of the boat
- Empirically determine unknown parameters by observing response of the system to specific inputs.

State Estimator

Sensors are noisy. A good state estimator (location and orientation) is essential for precise control. We use an Extended Kalman filter.

Controller Design

- Feedback controllers for heading and speed.
- Feedforward controller for correcting the effect of wind.

Design Details and Preliminary Results

Simulation Results

- A initial position of the boat oriented at 0°.
- B align with the wind.
- C Minimize error to the target while maintaining alignment.

Problem - Wind results in position drift.

Proposed solution

- Monitor wind direction and speed using an anemometer.
- Estimate effect of wind on the boat using a wind model
- Align boat to the wind direction.
- Compensate for wind using Feedforward control.
 - adjust heading and speed to hold position.
- Learn set of gains for robust position regulation.

