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Abstract 
 
Background:  

Comprehensive annotation and quantification of transcriptomes are outstanding problems in 

functional genomics. While high throughput mRNA sequencing (RNA-Seq) has emerged as a 

powerful tool for addressing these problems, its success is dependent upon the availability and 

quality of reference genome sequences, thus limiting the organisms to which it can be applied.  

Results: 

Here, we describe Rnnotator, an automated software pipeline that generates transcript models by 

de novo assembly of RNA-Seq data without the need for a reference genome. We have applied 

the Rnnotator assembly pipeline to two yeast transcriptomes and compared the results to the 

reference gene catalogs of these organisms. The contigs produced by Rnnotator are highly 

accurate (95%) and reconstruct full-length genes for the majority of the existing gene models 

(54.3%). Furthermore, our analyses revealed many novel transcribed regions that are absent from 

well annotated genomes, suggesting Rnnotator serves as a complementary approach to analysis 

based on a reference genome for comprehensive transcriptomics.  

Conclusions: 

These results demonstrate that the Rnnotator pipeline is able to reconstruct full-length transcripts 

in the absence of a complete reference genome.  
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Background 

RNA-Seq has emerged as a powerful tool for studying transcriptomes.  It aims to provide a 

comprehensive list of all transcripts and their expression levels from a given cell or cell 

population under a particular condition. A typical RNA-Seq experiment involves RNA isolation 

followed by conversion to a library of short cDNA fragments and sequencing using next 

generation sequencing technology [1, 2]. RNA-Seq data analysis typically involves aligning the 

short read sequences to a reference genome to reveal reads from exons, splicing junctions, or 

polyA ends. This information is used to  i) derive novel gene models or refine existing gene 

models, including exon structure and untranslated regions (UTRs) and ii) to determine gene 

expression levels from read count statistics [1, 3]. A few software packages have been developed 

to perform one or more of the above data analysis tasks, including TopHat/Cufflinks[4, 5], 

ERANGE [6] and Scripture [7]. This type of reference-based approach can be very successful if 

the reference genomes are good quality. However, except for a few model organisms, genome 

assemblies are often incomplete or unavailable. Similarly, sequencing RNA from complex 

microbial communities, or metatranscriptome sequencing, also poses considerable challenges for 

data analysis because the genomes for most of the organisms are not known. Thus, in many 

cases, reference-based analysis of RNA-Seq data is not possible.  

De novo assembly of RNA-Seq reads into transcripts has the potential to overcome the 

above limitations. However, short read assembly itself is very challenging. In general, next 

generation sequence data contains large numbers of reads with artifacts originating either from 

the library preparation step (e.g., PCR) or from the sequencing step (e.g., reads containing 

errors). These poor quality reads can result in fragmented assemblies or assembly errors. Also, 

the size of sequencing datasets produced is often very large, and therefore requires substantial 
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memory and long computing times, even for the very efficient De Bruijn graph-based assemblers 

[8-10]. There are additional challenges specific to assembly of RNA-Seq data. For example, the 

sequencing coverage among different transcripts can range over five orders of magnitude, 

depending on transcript abundance and sequencing depth. This causes most short read 

assemblers to be unsuitable for transcriptome assembly because they assume uniform coverage. 

Furthermore, a set of standard criteria to evaluate the quality of transcriptome assemblies 

remains an open question. 

To address these challenges, we developed an automated software pipeline, called 

Rnnotator, for preprocessing of RNA-Seq data followed by reference genome independent de 

novo assembly into transcriptomes. We also developed standards to evaluate transcriptome 

assemblies that can be generalized to many other transcriptomes. For transcripts with deep 

sequencing coverage we demonstrate that Rnnotator is capable of producing full-length 

transcript assemblies. Furthermore, we demonstrate that a de novo assembly approach can 

discover transcripts derived from sequences which are not present in the reference genome. 

 

Results 

The Rnnotator assembly pipeline 

Rnnotator takes short read sequences as input and outputs assembled transcript contigs. It 

consists of three major components: preprocessing of reads, assembly, and post-processing of 

contigs (Figure 1).  

The preprocessing step removes highly redundant reads and low quality sequences found 

in most RNA-Seq data sets. Large numbers of identical reads may originate from PCR 

amplification or from abundant transcripts and do not contribute to the assembly. Consolidation 
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of identical reads into a single representative sequence prior to assembly reduces the 

computational resource requirements for the assembly. Low quality reads containing sequencing 

errors are also filtered out using a k-mer based approach (Methods). We found that preprocessing 

the raw reads reduced the variation of gene coverage while improving the computational 

performance of the assembly significantly. The variance of gene coverage was reduced by 300 

fold in Candida albicans (Figure 2). These preprocessing steps also reduced the total read count 

from 186 to 21 million (a reduction of 89%) in the Candida albicans SC5314 dataset, which 

reduced the memory required for one run of Velvet from 46 GB to 5 GB.  

For assembling the filtered reads Rnnotator uses Velvet [10] as the default assembler. To 

obtain an optimal set of assembly parameters we tried several different parameter sets and 

evaluated their performance. Since there is no single parameter set that can give the best results 

for all genes, we executed multiple Velvet assemblies and then merged the resulting contigs 

using the Minimus2 assembler from the AMOS package [11]. Merging the Velvet assembled 

contigs resulted in a much better assembly (an example is shown in Figure 3A). 

Rnnotator takes special consideration of the direction of transcription. To determine the 

transcription direction as well as resolve overlapping transcripts that originate from opposing 

DNA strands (Figure 3A) Rnnotator incorporates information from strand-specific RNA-Seq 

reads (Figure 3B, Table 2). It does this by aligning the strand-specific reads to each contig and 

then splitting contigs at the strandness transition point which signifies the boundary of adjacent 

transcripts. For genomic regions that have reads from both orientations, indicative of transcript 

overlap, both strands of the contig are retained after separation (Methods). Finally, single base 

errors in the assembled contigs are corrected by aligning the reads back to each contig to 

generate a consensus nucleotide sequence.  
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Evaluation of Rnnotator’s performance 

The ultimate goal of transcriptome assembly from RNA-Seq data is to compile short 

reads into a set of contigs, each of which represents a full-length transcript, without miss-joining 

elements of different transcripts or losing the correct representation of the expressed genes. To 

this end we have developed four criteria: accuracy, completeness, contiguity, and gene fusions to 

evaluate the quality of the assemblies. Accuracy is a measure of the correctness of the assembly 

and is estimated by aligning each contig to the reference genome. Completeness measures the 

degree to which the transcriptome is covered by the assembled contigs and is estimated by 

calculating the percentage of genes in the annotated gene catalog that are covered at >80% of the 

gene length. Contiguity measures the likelihood that a full-length transcript is represented as a 

single contig and is estimated by calculating the percentage of complete genes covered by a 

single contig to >80% of the gene length. Finally, gene fusions measures the number of contigs 

which contain two genes assembled into a single contig. Using these criteria, we evaluated the 

performance of Rnnotator against transcriptome assemblies from two strains of a pathogenic 

yeast species, Candida albicans (SC5314 and WO1).  

To evaluate the accuracy of Rnnotator, we aligned the assembled contigs to the reference 

genome. For all of the data sets, over 95.0% of the assembled contigs align to the genome at over 

95% of the contig length. There is not much difference between the accuracy of Rnnotator and a 

single Velvet assembly, suggesting that Rnnotator produces highly accurate contigs (Table 2 and 

Figure 4A and D). The accuracy of contigs is not clearly correlated with sequencing depth. Our 

estimate of accuracy is likely an underestimate of the true accuracy since contigs that represent 

trans-splicing, which are not straightforward to estimate, are also counted as “misassembled”. 
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Rnnotator also determines the orientation for each transcript. This further improves the accuracy, 

especially in the Candida genome where overlapping transcription from opposite strands is very 

common. For example, from Candida SC5314 stranded RNA-seq data, Rnnotator resolved 375 

pairs of overlapping transcripts (~10% of the total number of annotated genes). 

To evaluate the completeness of the assembly, we compared the Rnnotator assembly 

with a set of previously annotated genes for each organism. In general, the Rnnotator contigs 

cover 10-20% more known genes than those from a single Velvet assembly (Table 2); the 

difference is more pronounced for genes with contigs covering the entire gene length (Figure 

4B). As expected, the completeness of the assembly is correlated with the sequencing depth (or 

expression level) of each gene (Figure 4E). For the ultra-deep sequenced Candida SC5314 

transcriptome, where the median sequencing coverage of annotated protein coding genes is 

175X, 4988 out of 6205 genes (80.4%) have contigs covering at least 80% of their length, 

demonstrating that Rnnotator is able to produce transcript sequence for the majority of the 

known yeast genes (Table 2).  

We next evaluated the contiguity of the assembly, or how likely a known gene is to be 

assembled into a single contig covering the full length of the gene. Compared to the results from 

a single Velvet assembly, Rnnotator assembled many more genes with a single contig covering 

the entire gene length. In the Rnnotator Candida SC5314 assembly 2,893 genes are covered at 

over >80% of their length by a single full-length contig, compared to only 1,928 genes from a 

single velvet assembly (Figure 4C). Like completeness, contiguity also improves with increasing 

sequencing coverage (Figure 4F). 

We also evaluated the number of contigs containing a gene fusion event. Genes with 

overlapping UTRs may be joined into a single contig during the assembly process. The 
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Rnnotator contigs exhibited far fewer gene fusion events than the Velvet contigs (Table 2). In the 

SC5314 assembly, 0.3% of the Rnnotator contigs contained gene fusion events, while 1.2% of 

the Velvet contigs contain fused genes. Rnnotator is able to drastically reduce the number of 

fused genes by splitting incorrectly assembled contigs using stranded reads. 

In addition to comparing Rnnotator to a single-run of Velvet, we also compared 

Rnnotator to two other transcriptome assembly strategies: Oases [12] and Multiple-k [13]. For 

the two Candida data sets tested here, Rnnotator produced contigs with the highest contiguity 

among the three while its accuracy and completeness are comparable to the other two (Table 2). 

These results suggest that full-length transcripts can be accurately de novo assembled 

from ultra-deep RNA-Seq datasets using Rnnotator, and that this tool will be of great value in 

functional annotation of genes from organisms without sequenced genomes.  

 

Novel transcribed regions discovered only by de novo assembly 

 A de novo transcriptome assembly has the potential to detect novel transcripts that are not 

present in the reference genome assembly, or even parasite transcripts that do not originate from 

the host genome. Of the 18,633 assembled transcripts from the Candida SC5314 strain, 150 

contigs do not align to the reference genome. However, 97 of these contigs do align to the 

reference genome of the WO1 strain, suggesting that these contigs are not the result of transcript 

misassembly or contamination of a foreign species, but instead that the SC5314 genome 

assembly is incomplete, and/or contains misassemblies. Of the remaining 53 contigs, 23 have 

BLAST hits to the NCBI non-redundant database (mostly to retrotransposons and hypothetical 

proteins from Candida species). It is possible that these transcripts are derived from the 

unassembled part of the genome, or they might represent recent genetic additions to the strain 
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used for the experiments. Further experiments are required to resolve these possibilities. The 

remaining 30 contigs have low complexity and likely originate from sequencing artifacts. 

   

Discussion 

Apart from annotation of the transcriptome, another major goal of RNA-Seq studies is to 

quantify transcript levels [14]. When a reference transcriptome is available, standard RNA-Seq 

counting procedures align reads from each sample to the reference gene catalog and the number 

of reads that align to each gene is used to determine gene expression levels [14].  In the absence 

of a reference transcriptome, Rnnotator is able to produce a set of transcripts directly from RNA-

Seq reads which can serve as the reference, therefore potentially extending the application of 

gene expression profiling to organisms or metagenome communities that do not have existing 

transcriptome annotations.  

With the sequencing depth used in this study Rnnotator is unable to fully assemble poorly 

expressed genes that have insufficient sequencing coverage. In cases where there are reference 

genomes present, this limitation can be partially removed by combining the result from a 

reference-based transcriptome assembly (such as TopHat followed by Cufflinks [4, 5]). While the 

reference-based assembly will miss transcripts that are derived from unassembled portions of the 

genome, in the future one would combine these two complementary approaches for a 

comprehensive annotation of the transcribed regions. Additionally, Rnnotator cannot currently 

resolve transcripts from duplicated genomic regions, or transcripts produced from polymorphic 

alleles. A complete re-sequencing of the lab strain used in the manuscript will be required to 

determine how Rnnotator deals with transcripts from duplicated genomic regions. We assume 

that near identical transcripts (including those from duplicated regions) will be assembled into 
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one. How transcripts from polymorphic alleles are assembled is also an open question. We 

assume less abundant alleles will be “corrected” to their abundant counterparts based on how 

Rnnotator works. However, allele information should be inferred by mapping raw reads back to 

the transcripts from those assembled by Rnnotator, a topic that is worth more in depth 

exploration. In principle, both of these challenges will be overcome by the increased sequence 

depth and read length expected from ongoing improvements to DNA sequencing technology. 

Finally, it is unknown how alternative splicing will affect transcript assembly. Currently 

we have not explored transcriptome assembly from an organism in which alternative splicing is 

prevalent, neither have we had a good reference set that contains a comprehensive list of 

alternatively spliced transcript variants for evaluation of such effects.  

 

Conclusion 

Here we described a systematic method to assess transcriptome assembly quality by 

assessing the accuracy, completeness, contiguity, and gene fusion events in transcriptome 

assemblies. Using these criteria as guidelines, we developed a de novo transcriptome assembly 

pipeline to reconstruct high quality transcripts from short read sequences independent of an 

existing reference genome, which potentially enables RNA-Seq studies in any organism, simple 

or complex. We also demonstrated that transcriptome assembly is complementary to reference-

based analysis when reference genomes are incomplete. In addition, assembly of RNA-Seq reads 

also provides an opportunity to discover new types of RNA not encoded in reference genomes.  

 

Methods 

Library construction and sequencing 
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The Candida RNA-Seq library construction and sequencing are described elsewhere [15]. 

Read quality filtering and duplicate read removal 

Condition-specific reads were pooled together and identical reads were removed. After 

removing duplicate reads, read error filtering was performed using a rare k-mer filtering 

approach. The frequency of each k-mer was calculated using a hash table and reads containing 

rare k-mers were not used in the assembly. Rare k-mers were defined as those that occurred less 

than three times in the set of unique reads. 

Several rare k-mer read filtering strategies were tested in order to determine the effect of 

the read filtering. The three filtering strategies were: i) no filter applied, ii) filter applied after 

removing duplicate reads, and iii) filter applied before removing duplicate reads (r=3) 

(Additional file 1). The order of filtering and duplicate read removal is significant since a k-mer 

is more likely to be a low abundant k-mer after duplicate read removal than before. We 

discovered that filtering reads prior to assembly reduces the runtime and memory required by the 

assembly at the cost of slightly decreasing the assembly quality.  

Multiple Velvet assembly 

For assembly of short read Illumina sequences, the Velvet assembler was used in 

conjunction with the AMOS assembly package [10, 11]. Eight runs of velveth were executed in 

parallel (once for each hash length, 19 through 33). Next eight runs of velvetg were run in 

parallel with parameters: cov_cutoff=1, exp_cov=auto. Prior to merging contigs, all duplicates 

were removed and contigs were combined into a single FASTA file. The minimus2 pipeline [11], 

a lightweight assembler which is part of the AMOS package, was run using REFCOUNT=0 

(other parameters default). 

Splitting contigs using stranded RNA-Seq 
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The protocol used to split misassembled contigs using stranded RNA-Seq reads includes: 

i) splitting contigs with long stretches of less than three mapped reads which are longer than one 

read length, ii) orienting contigs in the correct mRNA sense strand orientation, iii) generating a 

consensus contig by counting the number of A,C,G,T residues at each base position. BWA [16] 

was used to align the reads to the assembled contigs. 

Aligning contigs to the reference 

The UCSC Blat software [17] was used to align contigs to both genome and 

transcriptome references. For yeast datasets the maximum intron size was set to 5,000. In all 

cases, only the best hits were taken, unless there were multiple best-scoring hits. The score of 

each alignment was calculated by the formula: s = matches – mismatches, as recommended. A 

similar strategy was used when aligning gene models to contigs (SC5314), again only taking the 

best scoring hits. 

Detecting gene fusion events 

 Gene fusion events were detected by first aligning contigs to the reference genome 

(outlined above). Genomic coordinates for each aligned contig were compared with the genomic 

coordinates of every annotated gene. A contig and gene were considered overlapping if they 

shared an overlap which was longer than 50% of the gene length. Contigs containing two or 

more such genes were identified as containing a gene fusion event. 

Comparing with other assemblers 

 When performing the single-run Velvet assemblies and the Oases assemblies hash length 

21 was used (28 to 34 base pair read lengths). All other parameters were set to the default 

parameter set. Contigs >= 100 bp in length were used for comparison against other assemblers.  
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 For the Multiple-k assemblies, eight Velvet assemblies were first performed. In order to 

have a fair comparison against the Rnnotator assemblies, the same hash lengths were used when 

running Velvet (i.e., 19, 21, 23, 25, 27, 29, 31, 33). The Multiple-k script was then run using the 

eight Velvet assemblies as input.  

Software Availability:  

The source code for Rnnotator is available from Lawrence Berkeley National Laboratory under 

an End-User License Agreement for academic collaborators and under a commercial license for 

for-profit entities. If you would like to receive this code please contact Virginia de la Puente at 

vtdelapuente@lbl.gov for details. 
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Figure titles and legends 
 

Figure 1. A summary of the Rnnotator assembly pipeline. 

 

Figure 2. Read dereplication and filtering greatly reduces the coverage unevenness among genes 

in RNA-Seq data. Coverage of reference genes was calculated using raw reads, dereplicated 

reads, and filtered reads. 

 

Figure 3. An example of the assembled transcripts by the Rnnotator pipeline. A) A GBrowse 

snapshot of assembled transcripts illustrating the effect of different Velvet k-mer parameters. 

Current annotated genes are shown on top, genes from forward and reverse strand are 

represented in red and blue, respectively. In grey the assembled contigs for five k-mer lengths are 

shown. The merged contigs are shown at the bottom. B) Contigs are split according to stranded 

RNA-Seq read coverage (bottom) into transcripts from opposite strands (top). Read coverages 

are shown in log2 scale, reads originated from the forward strand are shown in red and those 

from reverse strand are shown in blue. 

 

Figure 4. Accuracy, completeness, and contiguity of assembled transcripts for Candida albicans 

SC5314 are shown in panels (a,d), (b,e), and (c,f), respectively. For contiguity only genes with > 

80% completeness are shown. In panels d), e), and f) a box plot of median gene coverage by 

unique reads is shown for genes falling into each bin. Open circles above each boxplot depict 

outliers in the coverage distribution 
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Table 1. Summary of the datasets used in this study 

Sequencing Statistics 
C. albicans 
(SC5314) 

C. albicans 
(W0-1) 

Number of Lanes 35 26 
Read Length 28,34 34 
Number of reads 186,148,364 318,539,427 
     non strand-specific 146,427,272 124,495,811 
     strand-specific 39,721,092 194,043,616 
Unique reads 40,800,738 41,402,683 
Median gene coverage 
of ref. genes 

175x 358x 
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Table 2. A comparison of the performance between the Rnnotator assembly and a single Velvet 
assembly.  
 
 

 Rnnotator 
(non-

stranded) 

Rnnotator Velvet Oases Multiple-k 

C. albicans SC5314      
     Accuracy1 94.0 95.0 97.4 92.3 96.6 
     Completeness2 81.9 80.4 66.7 79.9 85.9 
     Contiguity3 58.4 58.0 46.6 47.9 37.3 
     Gene fusions4 1.73 0.26 1.18 1.31 0.20 
      
C. albicans WO1      
     Accuracy 92.8 94.6 96.6 89.1 96.0 
     Completeness 82.9 82.2 74.0 82.1 88.2 
     Contiguity 59.1 59.4 43.3 48.6 48.7 
     Gene fusions 2.06 0.65 1.38 1.61 0.46 
      

 
Note:  
1Accuracy is defined by the percentage of contigs that share at least 95% identity with the 
reference genome; 
 2Completeness is the percentage of known genes covered by the contigs to at least 80% of the 
gene length;  
3Contiguity is the percentage of complete genes covered by a single contig over at least 80% of 
the gene length.  
4Gene fusions are the percentage of contigs that contain more than 50% of two or more annotated 
genes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



18 
 

Additional files 

Additional file 1 
 
Title: Supplementary Table S1 
Description: Effect of k-mer filtering on assembly quality. Comparisons were performed using 
the SC5314 dataset. 
 
 






