
Lawrence Berkeley National Laboratory
LBL Publications

Title
Spatiotemporal upscaling errors of building stock clustering for energy demand 
simulation

Permalink
https://escholarship.org/uc/item/66c6f9pp

Authors
Eggimann, Sven
Vulic, Natasa
Rüdisüli, Martin
et al.

Publication Date
2022-03-01

DOI
10.1016/j.enbuild.2022.111844

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, available at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66c6f9pp
https://escholarship.org/uc/item/66c6f9pp#author
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


Energy & Buildings 258 (2022) 111844
Contents lists available at ScienceDirect

Energy & Buildings

journal homepage: www.elsevier .com/locate /enb
Spatiotemporal upscaling errors of building stock clustering for energy
demand simulation
https://doi.org/10.1016/j.enbuild.2022.111844
0378-7788/� 2022 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

⇑ Corresponding author.
E-mail address: sven.eggimann@empa.ch (S. Eggimann).
Sven Eggimann ⇑, Natasa Vulic, Martin Rüdisüli, Robin Mutschler, Kristina Orehounig, Matthias Sulzer
Urban Energy Systems Laboratory, Swiss Federal Laboratories for Materials Science and Technology, Empa, Dübendorf, Switzerland

a r t i c l e i n f o
Article history:
Received 21 September 2021
Revised 5 January 2022
Accepted 6 January 2022
Available online 11 January 2022

Keywords:
Clustering analysis
Energy demand
Statistical upscaling
Building simulation
Geospatial analysis
Energy signatures
a b s t r a c t

Energy demand of buildings forms a key component of energy system analyses. To integrate building
energy demand into energy system models, detailed simulation of every single building is impractical
and often computationally infeasible. Simulations are therefore typically performed on a sample of build-
ings for bottom-up analysis. For a simplified representation of the building stock, grouping and clustering
are widely applied. However, a spatiotemporal quantification of the resulting upscaling errors is however
lacking. Here, a grouping and clustering approach is performed for all Swiss buildings for bottom-up
energy demand analysis. The spatiotemporal simulation error is quantified at the national, regional
and neighbourhood (300�300 m) scales. Whereas national energy demands are well represented, the
error induced by the grouping and clustering is significant at the neighbourhood scale: simulated
demand is easily over or underestimated by double-digit percentages. Obtained regional full load hours
and daily load factor values by a grouping and clustering approach are comparable to a full simulation of
all buildings. However, careful consideration must be given to the used climate data if relying on cluster-
ing approaches. Our analysis reveals the challenge of representing peak demands well by aggregation of
building demand profiles, which is exacerbated by grouping and clustering. Bottom-up studies thus need
to consider errors arising from the grouping and clustering approach and distinguish between errors
resulting from the upscaling process and other sources of uncertainty such as data inputs or modelling
concepts. Finally, calculated energy signatures are shown to perform well as a fast and viable alternative
to grouping and clustering.

� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Detailed simulation of building energy demand is crucial for
informed policy decisions to realise the necessary sustainability
transition towards net-zero emissions [1,2]. Geospatially explicit
knowledge of building energy demand is indispensable, particu-
larly for planning future energy systems, integrating renewables
or designing energy infrastructure from the local to the national
level. Robust decision-making depends on knowing precise
building-specific and regional energy demands. Building energy
modelling programs are used to simulate buildings under changing
conditions such as climate change or for assessing changes in
demand due to building retrofit measures [3,4,5;6]. In contrast to
commonly used top-down approaches for national scale analysis,
bottom-up simulation approaches use detailed building represen-
tation [7]. This is crucial for capturing dynamic changes of the
building stock composition, to study the climatic impact on build-
ings and neighbourhoods [8] or for analysing urban densification
[9]. Representing spatiotemporal patterns at an urban or regional
scale based on simulation of building energy demand is, however,
complex due to the large amounts of required input data, the
diversity from occupancy or the urban built environment [10].

Energy demand in buildings is driven by diverse factors such as
the climate, building characteristics, or occupant behaviour
[11,12]. Thus, the integrated simulation at a high spatiotemporal
scale is computationally intensive. Detailed simulations for a large
number, i.e. thousands or millions of buildings, becomes time-
consuming and data-intensive when considering multiple climate,
weather or retrofit scenarios. To address the challenge of simulat-
ing building energy demands for a large number of buildings at a
regional or national scale, grouping and clustering techniques are
commonly applied. These techniques enable simulations on a sub-
set of representative buildings, also commonly referred to as build-
ing archetypes, which can then be used for upscaling. The
advantage of relying on a simplified building stock representation
is not only the reduced computational cost for the analysis but also
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the reduced need for detailed input data of individual buildings
which are often protected and difficult to obtain.

Relying only on a limited set of buildings for upscaling simula-
tion results will however inevitably lead to errors. Whereas in lit-
erature various clustering algorithms are compared [13], the
impact of grouping and clustering buildings used for upscaling is
far less studied and understood. With a few notable exceptions
[14,15], the quantification of this error source has largely been
ignored. Given the number of authors who rely on building stock
simplification, exploring the uncertainties arising from the upscal-
ing and the simplified building stock representation is obligatory.
Here, we aim to provide insights into how building energy simula-
tions based on a simplified Swiss building stock affects the assess-
ment of regional and national scale energy demand estimates.
1.1. Energy demand simulations using a generalized building stock

This section provides a brief overview of energy studies relying
on generalized building stock representations for Switzerland,
which is, however. representative of similar studies in other coun-
tries. This brief overview focuses on approaches that group and
cluster buildings for generating a simplified representation of the
building stock used for upscaling: In energy research, numerous
studies have used bottom-up techniques for national scale analysis
based on detailed building stock representation [7]. Necessary
national datasets on detailed building attributes are, however,
oftentimes not available, outdated or incomplete. Automated
approaches based on machine learning can be used to obtain more
complete building attribute datasets [16,17] that serve as a basis
for detailed clustering and grouping analysis.

For Switzerland, Streicher et al. [18] perform a building stock
grouping to estimate national heating demands. Tardioli et al.
[19] use clustering and predictive modelling to obtain 67 represen-
tative buildings and associated clusters and Girardin et al. [20]
group buildings according to age and type for integrated energy
analysis for Geneva. Streicher et al. [21,22] develop a bottom-up
building stock model and explore retrofit pathways using building
archetypes. Silva et al. [23] apply supervised classification to dis-
tinguish between different types of buildings to explore passive
cooling opportunities. Murray et al. [24] investigate optimal trans-
formation strategies for Swiss buildings by finding representative
buildings and districts with clustering methods. Gupta et al. [25]
rely on a clustered building stock to study the deployment of
renewables and heat pumps for assessing the impact on the distri-
bution grid. These studies demonstrate that the energy demand of
buildings is driven by various factors and consequently many dif-
ferent features have been used for clustering and grouping the
building stock. De Jaeger et al. [14] provide a literature overview
of typical features used in energy demand simulation and Goy
et al. [15] provide an extensive overview of different building
grouping and clustering approaches. Typically, studies have so far
focused on the grouping and clustering of individual buildings,
even though the focus is recently shifting to neighbourhoods
[9,26,27]. Spatial or density-based clustering is furthermore com-
monly used, particularly related to district heating or other
network-based energy infrastructure [28]. Whereas such
approaches similarly divide and segment buildings into (spatial)
clusters, the motivation for clustering is different: the goal is typ-
ically simulating energy supply systems and speeding up the solv-
ing of energy optimization problems using network-based
infrastructure. Density-based clustering has, for example, been
used to divide cities into multiple districts to perform energy-
hub optimization [29,30]. We consider such spatially-driven build-
ing clustering approaches as distinct and do not review them
further.
2

Whereas we have shown that grouping and clustering are com-
monly used in building energy research, its validation is generally
lacking. If energy demand simulations are validated, typically no
clear distinction is made between the simulation error arising from
the energy simulation model and the upscaling methodology
[15,31]. More often, the quantification of uncertainty resulting
from simulation errors due to input data or input models is stud-
ied, which is however separate from upscaling errors [32]. This
study builds on a few notable exceptions, considering upscaling
uncertainties from grouping and clustering: De Jaeger et al. [14]
compare how the number of clusters affects the simulation of peak
and annual space heating demand. They find that randomly select-
ing buildings performs significantly worse than relying on a clus-
tering approach. In the absence of real-world measured data, De
Jaeger et al. [14] suggest analysing clustering performance by com-
paring obtained values based on the clustering with a full simula-
tion of all buildings. Since a full-scale comparison at the national
scale may not be possible due to the limited computational power,
such a comparison can typically only be done for a subset of the
data.

1.2. Original contribution

We note that energy demand studies typically use grouping and
clustering techniques for upscaling simulated energy demands to
regional or national scales without an in-depth analysis of upscal-
ing uncertainties. To address this research gap, we perform a spa-
tial and temporal explicit error assessment of grouping and
clustering the entire Swiss building stock. We evaluate the upscal-
ing at national, regional and neighbourhood levels for annual
demand and explore hourly (peak) demands and complications
arising from aggregation effects. The here outlined generic
methodology is replicable and equally well suited to other coun-
tries and only constrained by data availability.

The simulation results of all simulated buildings in this study
were condensed to provide building type and building age-
specific energy signatures. Energy signatures (also called change-
point regression models) [33] are regression models which allow
setting into relation outdoor climatic variables with a buildings
energy demand in a simple, robust and accurate way [34]. Energy
demand estimations are typically only based on specific annual
indicators (e.g. kWh/m2) and the dynamics considering tempera-
ture, radiation or construction properties are ignored. Even though
other studies have published energy signatures for Switzerland
[20,35,36], the here provided energy signatures are, to the best of
the authors’ knowledge, the most detailed, considering both heat-
ing and cooling demands across different building types and build-
ing construction ages.
2. Methods

Fig. 1 provides a schematic overview of the workflow to obtain
national scale heating, cooling, domestic hot water and electricity
demand profiles at an hourly time resolution based on upscaling
from individual Swiss buildings. For each building, energy
demands are calculated based on their floor area and simulated
cluster-specific energy demands that allow regional or national
upscaling.

2.1. Data collection and preparation

First, different spatial and non-spatial building databases and
weather data are collected for Switzerland. All datasets and their
use are summarized in Table 1. The data collection and preparation
methods are outlined in more detail in the following sections.



Fig. 1. Workflow of the grouping, clustering and sampling of the Swiss building stock.

Table 1
Datasets used to characterize the Swiss building stock for simulating energy
demands.

Name Information Source

GWR (Federal Building
Registry)

building type, building age,
floor level

BFS [37]

OpenStreetMap building footprint geometry OSM
contributors
[39]

swissBUILDINGS3D2.0 building height Swisstopo [41]
STATENT (company

structure statistics)
building type BFS [38]

CH2018 Swiss climate regions CH2018 [54]
– population data for

population weighting
BFS [45]

– data for generating weather
files

MeteoSwiss
[46]
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2.1.1. Building geometry and attributes
The most comprehensive national-scale building dataset is the

Federal Building Registry (GWR dataset) [37], which is used for
determining the building type, building age and floor level. Addi-
tionally, information based on the statistics of the company struc-
ture (STATENT) is used for detailed building characterization [38]
(see Fig. 2 for detailed attribute mapping). The here used energy
simulation framework CESAR-P (Section 2.5) requires georefer-
enced building data (LOD1) with an average building height and
a detailed footprint information [24]. The used building footprint
polygons are from OpenStreetMap [39]. Having detailed building
geometries available is critical for energy demand simulations
[40], and therefore the 3D swissBUILDINGS3D 2.0 dataset [41] is
used for calculating the building height; this is done by extracting
and calculating the average building height of each 3D building
based on the mean height of all roof patches of the building Multi-
Patches. A 3-meter offset is subtracted from the building height to
remove cellars, which are included in the raw dataset. This build-
ing height is then spatially merged to the building footprints
obtained from OpenStreetMap. OpenStreetMap data typically dis-
tinguishes between individual buildings, even if they are attached,
3

and thus provides individual building footprints. The information
on the number of floors is spatially merged from the GWR dataset.
In case floor level data are not available (20.9% of all buildings), the
floor level is estimated based on dividing the building height with a
standard height assumption and floor thickness. For residential
buildings (single- and multifamily homes) a height of 2.85 m is
assumed, for service buildings, the building height is assumed to
range between 2.75 m and 4 m (plus 50 cm floor slab thickness
per floor level), depending on the building footprint [42]. In case
of too low building heights (e.g. the building was under construc-
tion when the height measurement was recorded), the building
height is also corrected based on the number of floors and the same
floor level height assumptions.

2.1.2. Weather data processing
Different climatic parameters are required to capture the effect

of weather or climate change on building energy demand. Regional
population-weighted weather data have been proposed to consider
the spatial distribution of buildings and to capture regional cli-
matic effects [43,44]. We generate population-weighted weather
files for each climate region (Fig. 3). They provide the building
energy simulation software with all required climatic input vari-
ables. As outlined in Mutschler et al. [35], an hourly population-
weighting was performed for the most important climate parame-
ters (j) for each climate zone and each climate parameter sepa-
rately, calculated as follows:

Pj ¼
Xn

i¼1

wi � Pj
i; wi ¼ piPn

i¼1pi

ð1Þ

whereby the local weather-station (i) based parameter Pi is
weighted by the population weighting factor (wi) given by the frac-
tion of the population for the weather station (pi) within the total
population of the climate zone (

Pn
i¼1pi). The population statistics

used for population weighting are obtained from household statis-
tics at a 2x2 km resolution [45]. The temperature data were
obtained from the Swiss Federal Office of Meteorology [46] for the
year 2016, which was one of the warmest ever recorded years
and was 0.7 �C milder than the 1981–2010 norm [47]. The data is



Fig. 2. Workflow of how building types are derived using the GWR (Federal Building Registry) and STATENT (company structure statistics) dataset. For STATENT, the attribute
NOGA08_SECTOR is used, for the GWR dataset, the attribute GKLAS.

Fig. 3. Swiss climate regions used for grouping the building stock and for generating population-weighted weather data. All used weather stations are shown.
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provided from SwissMetNet, consisting of about 160 fully auto-
mated weather stations [48]. Missing measurement values are lin-
early interpolated. As the direct normal irradiance (DNI) profiles
are not measured at any of the stations, they were derived from
measured global horizontal irradiance (GHI) and diffused horizontal
irradiance (DHI) using

DNI ¼ GHI � DHI
cosðhzÞ ð2Þ

where hz is the zenith angle [49]. In cases of missing DHI profiles
(about 50% of the stations), DNI profiles were calculated using the
DIRINT model [50,51] which is implemented in the python package
pvlib [52]. Finally, only weather stations up to an elevation of
10200 m are considered. For 2016, these processing steps resulted
in 79 viable weather stations, which are distributed across the dif-
ferent climate regions and are shown in Fig. 3.

2.2. Grouping

The entire Swiss building stock is segmented and grouped
according to building type, building age and climate region, which
are very commonly used features in urban simulation studies [14].
As this grouping is purely done on attributes without any cluster-
ing algorithm and in a fully supervised way [15], we use the termi-
4

nology of group (as opposed to cluster) for the segmentation
results. Goy et al. [15] point out that typically the selection of
grouping technique lacks justification. For upscaling results in
the energy domain, we argue that grouping along key drivers of
energy demands (i.e. building type, building age and climate) is a
plausible methodological approach.
2.2.1. Building type
Building geometry and building use typically characterise the

building type. Single-family homes, for example, are buildings with
a relatively small building footprint and show very different occu-
pancy profiles or appliance use compared to, for example, shops.
The building type classification is based on the GWR dataset (Fed-
eral Building Registry), which contains building type information
for residential and mixed-use buildings, and the STATENT dataset,
which provides information for non-residential buildings. For each
building, the closest GWR data points within a 20 m radius is used
to define the building type. After this step, 6.8% of all buildings
have no data assigned from the GWR database and spatial interpo-
lation is applied by attributing the most frequent building type of
the 40 closest buildings. This spatial interpolation is justified by
the assumption that districts are typically developed within a sim-
ilar period and building types and ages are highly spatially corre-
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lated. We only show aggregated results of the used GWR and STA-
TENT datasets to prevent privacy infringements.

Nine different building types are considered here, namely
single-family homes (SFH), multi-family homes (MFH), restaurants
and hotels, shops, offices, hospitals, schools, industrial buildings
and other buildings. The method for the building type classification
based on the two datasets is specified in Fig. 2 (see Appendix C for
detailed attribute mapping). All buildings classified as ’other’ and
’industry’ are not further considered for this study.

2.2.2. Buildling age
Building energy demand is closely linked to the building age

and, typically construction periods are used [53,21], which allows
assigning construction properties to characterize the buildings
within the energy simulation software [6]. For upscaling and sim-
plification purposes, we only consider five different building age
classes (Table 2). When building age information is unavailable
(11.3% of all buildings), we perform the same spatial interpolation
as for the building type. For the sampling process in Section 2.4, we
always randomly assign a specific year within the building age
class period.

2.2.3. Climate region
Climate regions are obtained from the CH2018 [54] dataset to

geographically group the buildings and calculate regional climate
weather files. We ignore large urban agglomerations in the
Southern and Eastern parts of Switzerland so that all urban
agglomerations roughly fall in a similar climate zone (Fig. 3).
The reason for this simplification is to obtain a weather file that
represents the specific climate within each climate zone, for
which we make the simplifying assumption that the climate is
comparable within the total extent of each climate region.
Within each climate zone, weather data are processed as out-
lined in Section 2.1.2.

2.3. Clustering

After the grouping using building types, building ages and cli-
mate regions, all buildings of the same group are further parti-
tioned by clustering. Whereas the first grouping (Section 2.2)
was directly performed without any clustering algorithm, the
follow-up clustering is based on feature variables that first need
to be calculated (Section 2.3.1) before applying the k-medoids
algorithm (Section 2.3.2).

2.3.1. Clustering feature value calculation
For the clustering analysis, three feature values (Fig. 4) are cal-

culated for every building that are most interesting building fea-
tures that drive energy demand:

� Building compactness (fc): A full range of morphological building
measures have been proposed considering only the building
footprint [55]. Other authors propose compactness measures
Table 2
Building age classification into building age classes accord-
ing to the GWR (Federal Building Registry) dataset with the
GBAUP attribute.

Building age class GWR (GBAUP)

< 1945 8011, 8012
1945–1960 8013
1961–1985 8014, 8015, 8016
1986–2010 8017, 8018, 8019, 8020, 8021
>2011 8022, 8023

5

based on 3-dimensional geometries [56]. The compactness ratio
provides information on the heated room and the associated
external surfaces through which energy flows and describes
well the thermal behaviour of a building. The most common
compactness indicator is the surface-to-volume ratio, which is
derived by dividing the surface of a building by its volume.

� Building density (fd): The building footprint coverage in the
neighbourhood of every building is calculated. This measure
indicates the urban density or structural density, i.e. the degree
to which a building is embedded in the urban built environ-
ment. This feature is interesting from an energy point of view,
as it provides information on the solar radiation exposure of
the façades or the geothermal potential. Exposed façades influ-
ence both heating and cooling demands through passive solar
gains [57–58] or enable effective solar energy harvesting on
façades. With a high density of buildings, the specific geother-
mal supply capacity for heating and cooling is reduced
[59,60]. At a given borehole depth, the energy density or build-
ing density determines what proportion of the energy demand
can be met with geothermal energy. For calculation, the build-
ing footprint is first buffered with a radius (r) to obtain a buffer
area (A). To capture the effect of solar irradiation on the build-
ing, the neighbourhood is limited to the area that potentially
affects the building by shading. The buffer radius depends on
the building height (h) and the inclination angle (a):

r ¼ h
tanðaÞ ;a ¼ 20

� ð3Þ

An angle of 20� is assumed for the inclination angle, approxima-
tively representing the inclination of the sun at 1 pm CET on the
20th of December in Zürich, Switzerland. The building buffer is
then intersected with neighbouring building footprints and the
percentage of the buffer area covered with buildings (Ab) is divided
by the total buffer area:

f d ¼
Ab

A
ð4Þ

� Building size (fs): Building floor area is assumed to be an approx-
imation of the energy reference area (see Section 3.3 where we
correct for this assumption). The floor area is derived by multi-
plying the floor number by the building footprint. The floor
number can either be calculated based on available floor level
information or by dividing the building height with floor level
assumptions considering floor thickness (cf. Section 2.1.1).

2.3.2. Clustering algorithm
The k-medoids algorithm is applied for partitioning buildings

within a group of buildings into different sub-groups. Medoids
are the objects in each cluster that minimize the sum of dissimilar-
ities, i.e. distances, from the medoids to all other objects in the
cluster [61]. The k-medoids clustering is closely related to the k-
means algorithm, which is however more robust to noises and out-
liers [62]. This is crucial here to exclude non-conventional build-
ings that are least representative. The clustering is performed in
3-dimensional feature space with the previously outlined features.
Because the used variables are measured on a continuous scale and
in different units, we standardize each variable to unit variance
[63]. Before clustering, scaled values (Z) are calculated for all val-
ues (x), as described in Eq. 4, where u represents the mean feature
value and s the standard deviation.

Z ¼ x� u
s

ð5Þ



Fig. 4. Visualization of the calculated features used for clustering for an example region.
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The number of clusters for the k-medoids cluster is set a priori
to four per building group. If a group has less than 100 buildings,
all buildings are assigned to a single cluster. The scikit-learn pack-
age is used for scaling and clustering [64].

2.4. Sampling

Simulating all buildings within each cluster to obtain averaged
results is computationally expensive. Therefore, averaged specific
energy demands (kWh/m2) are calculated for each cluster based
on a number of sampled buildings. The calculations to obtain
specific energy demands are based on 50 buildings per cluster.
The computational cost increases with an increasing number of
building samples. The conceptual assumption is that buildings
whose feature values have the smallest distance to the cluster fea-
ture mean are most representative of the entire cluster. Buildings
within each cluster are therefore sampled according to the distance
to the cluster mean of all clustering feature variables. To explore
the sensitivity of selecting only a limited number of buildings,
we analyse how the specific energy demand changes by increasing
the sample size (see Appendix A, Note B).

2.5. Energy simulation

Only useful energy demand is considered here, i.e. efficiencies
of technologies or how energy demands are met is not considered.
To simulate useful heating, cooling and electricity energy demands,
the Combined Energy Simulation and Retrofit in Python (CESAR-P)
software [65,6] is used. CESAR-P is an urban building energy sim-
ulation framework based on EnergyPlus [66]. A predecessor of
CESAR-P was validated and compared to measured data by 6,67.
For building element characterization, CESAR-P assigns typical val-
ues based on the building age class. Cooling and heating setpoints
are according to the design parameters in the SIA 2024 standard
[68]. As the simulation software assumes infinitesimally thin floor
slab thickness, a slab thickness (30 cm for SFH and MFH, 50 cm for
all other building types) per floor level is assumed and deducted
when setting up the building geometry for the energy simulation.
Accounting for the slab thickness is necessary when calculating the
building volume which needs to be heated or cooled. Analogously,
a 40 cm external wall buffer is assumed. Buildings within a radius
of 100 m are considered to capture the effect of shading and reflec-
tions from surrounding buildings. CESAR-P relies on weather files
that are used for building performance simulation (Section 2.1.2).
6

The entire analysis of this study, i.e. the simulation of energy pro-
files and the spatiotemporal analysis, is performed for the year
2016.

The spatial aggregation of multiple simulated building demand
profiles bears the challenge of representing peak demands well.
Accurate peak representation is particularly challenging for
bottom-up approaches [69] as aggregating multiple identical pro-
files does not capture well the occupancy or behaviour variability
[70,71]. The coincidence, load and diversity factors, which are typ-
ically generated out of empirical studies or observations, are com-
monly used metrics to describe the variability in the temporal
shape or characteristics of energy demands profiles [72]. Typically,
different profiles are assumed and a selection of pre-defined pro-
files is chosen to introduce variability [73]. CESAR-P allows simu-
lating buildings using nominal and variable schedules. In the case
of nominal schedules, buildings having the same characteristics
(e.g. building type, building age etc.) are all run with the same
default parameters and same occupancy schedules. In the case of
variable schedules, the occupancy schedules, together with heating
and cooling, lighting, and electricity schedules, are randomly
selected from a library of 100 schedules to capture inter-building
variability for each of the obtained clusters. For a full description
of the method of randomizing profiles, we refer the reader to Wang
et al. [6]. No variability in absolute demands is considered and only
the impacts of horizontal variability are simulated, i.e. variability
related to the time of energy use. Nominal schedules are used for
calculating average demands per cluster (Section 2.4) and for com-
paring annual demands at neighbourhood and regional levels
(Figs. 8-9). Variable profiles are used to investigate the aggregation
effects at the national-scale (Section 3.3).
2.6. Upscaling analysis

With the help of the cluster-specific energy demands (kWh per
m2), obtained by averaging across all sampled buildings per clus-
ter, total building energy demands are calculated based on their
floor area (Fig. 6). The multiplication of specific energy demands
by floor space area at the building level can be aggregated at differ-
ent scales (e.g. municipal, district, cantonal, national). Industrial
buildings are excluded as industrial processes are often dominat-
ing compared to heating and cooling and require a different mod-
elling approach.
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2.7. Spatiotemporal validation

For three sample communities, we run simulations for
archetypical buildings and upscale results to the neighbourhood
and community scale. Additionally, we simulate each building
individually (i.e. full simulation) to assess upscaling errors. This
enables the determination of the error from the grouping and clus-
tering approach by comparing the full simulation to bottom-up
clustering demand estimation. Because the full simulations are
computationally intensive, this validation was only performed for
selected communities, namely Brig-Glis (20731 buildings), Muri
bei Bern (30874 buildings) and Chur (50265 buildings). They reflect
different climate zones, types and sizes of communities across
Switzerland. The spatial comparison of the full simulation and
the upscaling result was performed across the communities on a
300�300 m grid to gain insight into the spatial characteristics
and dimensionality of the upscaling error. This spatial extent was
chosen to reflect differences at urban neighbourhood scales. For
this analysis, two types of weather data are used: (1) weather data
is selected from the geographically closest weather station and (2)
the same population-weighted weather data is used in obtaining
average clustering results. The spatial comparison is performed
using nominal schedules for the full-simulation approach. For com-
parison, all ’other’ and ’industrial’ buildings were excluded for
which no simulation was performed, as well as raster cells with
less than two buildings. Additionally, building polygons are
ignored which have inner polygon rings (i.e. courtyards), as this
otherwise resulted in errors in the simulation process since
CESAR-P currently does not support such geometries.

We rely on different measures to compare and validate the sim-
ulated building load profiles results with the clustering simulations
(see results in Sections 3.4 and 3.5). Load factors are used, which
are defined by dividing average daily demand by daily peak
demand. Additionally, annual full load hours are used, which are
defined by dividing the annual by the maximum hourly peak
demand. The analysis is performed over the entire year, i.e. peak
hourly demand represents the hour with the highest aggregated
demands in a year over a case study area (i.e. hourly demand is
summed over all buildings). However, as a practical approach to
remove outliers and account for uncertainties from aggregation,
the 95th percentile value of all hourly values is used to define
the annual peak demand. We limit ourselves to regional (commu-
nity) peak comparison since we consider the uncertainty to be too
high in the case of aggregating hourly profiles for a limited number
of buildings at the neighbourhood level.
3. Results and discussion

3.1. Grouping and clustering

Of the 2.3 million Swiss buildings in our dataset, about 4.7%
were classified as industrial buildings and 21.8% as ’other’ (e.g.
silos, very small buildings, sheds, barns) and therefore ignored. In
total, 1.72 million remaining buildings were grouped into 270
groups of buildings. We obtain the theoretical maximum of 270
groups (5 building ages * 6 climate zones * 9 building types) as
buildings are available for all possible combinations. Fig. 5 shows
detailed statistics of the grouping results. The average number of
buildings within one group is about 80600 (median about 10800).
The most frequent building types are single-family (41.4%) and
multi-family homes (23.2%). The distribution according to age class
shows that the historic building stock (<1945) is considerable
(36.0%). Most buildings are found in the densely populated Central
Plateau (35.6%) according to the climate zone definition in Fig. 3.
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The mean values of each group, obtained by grouping based on
age, climate and building type, are visualized in Appendix B, which
reveals that a simple grouping enables to obtain distinctive groups
of buildings. Whereas some of the obtained groups only contain a
few buildings, other groups contain thousands of buildings. After
the grouping step, clusters are calculated for each group as out-
lined in Section 2.3. This clustering step results in a total of 756
clusters for which we calculate average energy demands based
on 50 sampled buildings (cf. Appendix A, Note B). The sampling
methodology is outlined in Section 2.4.

3.2. Energy demands

3.2.1. Heating and cooling signatures
Energy signatures provide valuable information for approximat-

ing energy demand relying only on ambient temperature and
assumptions on building type and building age information.
Energy demand signatures are obtained from all energy simula-
tions across all climate zones (360616 buildings) per building type
and building age and calculated with averaged cluster-specific
energy demands (Fig. 6). Fig. 6 shows energy signatures based on
mean daily temperatures. For hourly signatures, see Appendix A,
Note 1. We note that the differences between the intersection
points of heating and cooling for different age classes reveal that
heating demand is not only lower for newer buildings, but also that
the duration of the heating and cooling season depends on the
building age. The heating period is longer for older buildings,
which require heating at higher temperatures. The cooling period
is longer for newer buildings as cooling needs are required for
lower outdoor temperatures. The energy signatures were calcu-
lated across all different climate zones, thus differences in irradia-
tion are not distinguished and the signatures are only a
comprehensive approximate. The linear approximation works bet-
ter for heating than for cooling, as indicated by the coefficients of
performance (Appendix D). It needs to be noted that using temper-
ature alone to approximate cooling demand is a simplified
approach [74], as other factors such as solar radiation play a promi-
nent role in cooling compared to heating.

For validation purposes, the simulated heating and cooling sig-
natures for MFH and Offices for the age class > 2010 are compared
to measured values of a building demonstrator (NEST) at Empa in
Dübendorf [75]. NEST consists of residential and office units for
which high-quality measurement data are obtained under realistic
conditions. Compared to NEST, the simulated crossing point of the
heating and cooling curve is less pronounced [35]. The measured
heating demand starts at higher outdoor temperatures and hence
the crossing point is more pronounced in the measured values.
Furthermore, the measured slope for the heating signature is stee-
per, particularly for offices.

3.2.2. Specific energy demands per building type and age
Specific heating and cooling useful energy demands per age

class and building type for the year 2016 are shown in Table 3.
To compare specific cooling and heating demand to values from
other years, we recommend scaling based on heating- or cooling
degree-day differences [76]. The results are consistent with
obtained results in 6,67, where the simulations were based on
the same simulation software. A cross-comparison with Streicher
et al. [21] however shows that heating demands are overestimated
for older buildings. This can be explained by the combination of a
colder year and unaccounted retrofits of older buildings (<1970),
where portions of retrofitted building elements, specifically ground
roof, and window, were shown to be frequently above 50% [18].
Comparing the heating energy demands for SFH and MFH to Stre-
icher et al. [21], the simulated values for buildings built after 2010
are by at least a factor of two lower. This is, however, within the



Fig. 5. Swiss building stock grouped according to building type, building age and climate region (percentages are provided on top of the bars).
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expected range for newer buildings according to Wang et al. [67].
Comparing the results of older age classes of MFH with Streicher
et al. [21], heating energy demands are slightly lower in our simu-
lation for the 1986–2010 building age category and higher for
buildings older than 1961. For SFH older than 1961, our values
are in a comparable range and values but lower for the 1986–
2010 age class. Simulations are furthermore compared to data
from the year 2019 of the building demonstrator NEST (Sec-
tion 3.2.1), which was on average approximatively 0.3 �C warmer
compared to the reference year 2016. The residential NEST units
correspond to a modern (>2010) multi-family home and the speci-
fic space heating demand of 38 kWh/m2/year is significantly higher
than the simulated value of 13.8 kWh/m2/year (Table 2). This dif-
ference may be explained by the different choice of year or differ-
ences in setpoints, as the setpoints in the SIA norms are lower
compared to those at NEST. In summary, the energy analysis can
be improved by revisiting the parametrization of CESAR-P to better
account for past energy retrofits or U-values.

For cooling, we simulate the highest demands in modern SFH
and shops. New buildings show considerably higher cooling loads
due to high glazing ratios and low infiltration rates [23]. Most sim-
ulated cooling demand is currently not serviced by mechanical
cooling technologies as particularly in the residential sector, cool-
ing only plays a minor role but could change with climate change
[35]. Compared to Streicher et al. [21], the measured and simulated
values for residential cooling are comparable. Similarly, for offices,
the simulated values for heating differ significantly for newer
(>2010) offices (17.8 kWh/m2/year compared to 60 kWh/m2/year).
The cooling energy demand for offices is again comparable.

Electricity demand and domestic hot water statistics are shown
in Table 4. Electricity demands do not include electricity used for
space heating, such as electricity consumption from heat pumps.

3.3. National upscaling

National electricity, cooling and heating energy demands are
calculated based on the grouping and clustering analysis and
respective simulated building-specific energy demands (Sec-
tion 2.6). The upscaling is based on the 360616 simulated buildings,
8

which represent in numbers about 2% of all considered buildings
for which the demand is estimated. Fig. 7a compares the calculated
Swiss floor area with energy reference area (ERA) estimates of
other studies. To validate the obtained bottom-up results, we use
national energy statistics provided by SFOE [77]. The ERA is
deduced from the total simulated floor area assuming an average
heated area factor of 0.9, which is a conservative estimation
according to pom+ [78]. For the simulation year 2016, we obtain
combined residential and service national annual demands of
82.6 TWh for heating, 10.9 TWh for domestic hot water, 24.4
TWh for electricity, and 4.2 TWh for cooling (Fig. 7b). Electricity
demand excludes electrified space heating, domestic hot water,
and space cooling. The electricity demand for cooling from SFOE
[77] is converted into space cooling demand assuming a COP value
of 3.

Comparing our calculated ERA values (Fig. 7a), we overestimate
the combined residential and service ERA by about 9% compared to
the SFOE statistics. In the residential sector, we fall in the upper
20% of the main reviewed studies and overestimate the ERA by
around 6%. In the service sector, with a smaller number of available
studies, compared to Schneider et al. [27], our results are 54%
higher, which could be due to classification differences of building
types. Nevertheless, there is a smaller difference (17%) compared
to the SFOE study. Concerning the total national demands
(Fig. 7b), the highest discrepancy occurs for the space heating
demand (about 27%). Residential heating demand is, in general,
higher compared to all the main studies, with the largest deviation
(about 35%) compared to the SFOE study. In the service sector, the
heating demand is within 8.8%. For both the residential and the
service sectors, the higher estimated heating demand is likely
due to a combination of the higher floor area estimates, as well
as not accounting for retrofitting of older buildings as evidenced
by the higher specific heating demands (see Table 3). When consid-
ering the residential heating demand of other studies [79,80,18], all
overestimate the demand compared to the SFOE, while, at the
same time, underestimating the ERA. In other words, the average
specific heating demand in the residential sector in the SFOE study
is significantly lower compared to the literature with a value of
86 kWh/m2/year. Additionally, while the deviations in the domes-



Fig. 6. Building type and building age class-specific energy signatures of all heating and cooling energy simulations across all climate zones. Linear fitting parameters are
provided in Appendix D. Hourly energy signatures are also provided in Appendix A.
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tic hot water and electricity demand are within 9% of the SFOE val-
ues, deviations within each sector can be significant (Fig. 7b). Sim-
ilarly, for the cooling demand, while we are within 15% of the total
demand, we grossly overestimate residential demands (about
10400%) since the majority of the cooling demand in Switzerland
is unmet, as most households do not use mechanical cooling. In
the service sector, the cooling demand is significantly underesti-
mated (close to 63%). However, differences in internal heat gain
from occupancy and equipment, solar heat gain through the win-
dows, as well as temperature set points, can significantly alter
cooling demands. Finally, a further source of uncertainty is that
the building footprints from OpenStreetMap used in this study
9

sometimes include roof overhangs and thus overestimate the
actual footprint area. The difference between the national-scale
upscaling results and the data used for validation provided by SFOE
[77] is also summarized in Appendix Note E.

Fig. 8 shows hourly aggregated Swiss demands based on the
grouping and clustering analysis. Considerable peaks and unrealis-
tic ramping behaviour are observed when nominal profiles are
assumed. It has been established, that demand in a district is differ-
ent to the sum of individual buildings’ demand [10]: when we
introduce variability in the profiles, where each cluster is repre-
sented by the average of up to 50 different variable profiles, the
effect of variability is maintained and peak coincidence reduced



Table 3
Simulated building type and building age class-specific cooling and heating energy demands for the year 2016.

Table 4
Specific domestic hot water and electricity energy demands.

Building type Electricity
(kWh/m2/year)

Domestic hot
water (kWh/m2/year)

Single-family home 19.2 11.7
Multi-family home 19.4 15.2
School 28.2 4.3
Restaurant and Hotel 73.8 69.0
Hospital 39.9 31.3
Shop 104.2 1.6
Office 38.5 2.6
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at least to some degree when the profiles are upscaled, which can
also be seen from the lower values of the coefficients of variation.
Fig. 7. Comparison of (a) estimated energy reference areas (ERA) and (b) total Swiss de
study and SFOE [77] are marked.
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However, in the case of aggregating clustering results for a large
number of buildings, as is the case here, peak demands could still
be overestimated. The mechanism behind a potential overestima-
tion is that identical profiles are aggregated for each building
assigned to the same cluster. This effect of overlaying peaks is
expected even in the case of using 50 variable electricity profiles
when aggregating thousands of buildings, let alone millions of
buildings. We note a reduction in peak demand when using vari-
able load profiles. This effect is also captured in the coefficient of
variation (defined by dividing the standard deviation by the mean)
for each of the annual profiles (see table inset in Fig. 8). Peak reduc-
tion is highest for electricity, followed by cooling demand. This is
to be expected, as electricity and cooling demand contain an over-
all higher number of variable profiles, with electricity and cooling
demand more evenly split between the residential and service sec-
tors. On the other hand, higher fluctuations for both space heating
mands with literature [89,79,27,77,80,18]. The percentage differences between our



Fig. 8. Comparison of the aggregated (i.e. upscaled) hourly demand profiles for the Swiss building stock using variable (red lines) and nominal (grey lines) load profiles. The
table inset summarises the coefficients of variation (CVs) for each of the profiles: Electricity (EL), domestic hot water (DHW), space heating (SH) and space cooling (SC). The
total annual demands are equal for the nominal and variable profiles. For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.

S. Eggimann, N. Vulic, M. Rüdisüli et al. Energy & Buildings 258 (2022) 111844
and domestic hot water demand are observed, as they are domi-
nated by residential demand and therefore contain an overall
lower number of variable profiles. For weather-dependent energy
demand, particularly heating, a combination of coinciding occu-
pancy and lowest temperatures in the early morning hours, domi-
nated by the residential sector, lead to high ramp rates during this
time.

The degree of hourly peak overestimation at a national scale (cf.
Section 3.4 for a discussion of this issue at regional scale) is out of
scope here. To account for and correct for this aggregation prob-
lem, further procedures would need to be developed and applied,
which is however addressed and studied elsewhere [10,81].

3.4. Regional and neighbourhood upscaling errors

For a selection of Swiss communities, simulated annual energy
demands for each individual building (‘‘full-simulation”) and the
energy demands for each building obtained based on the grouping
and cluster approach (‘‘clustering”) are compared at the neigh-
bourhood and regional scale. For neighbourhood analysis, the dif-
ferences between the two approaches are calculated across all
buildings that are within the same cell of a 300�300 m grid.
Population-weighted climate data and nominal occupancy profiles
are used for the clustering and full-simulation. For comparing
annual demands, the error can be equally assessed either with
11
nominal or variable occupancy profiles. Analysing the spatial
upscaling errors for all neighbourhoods in Fig. 9, we note that
the errors generally are within a plus-minus range of 25%. A com-
bination of building type and building density is likely to result in
these differences. In the case of large building coverage, the annual
upscaling error at neighbourhood scale is oftentimes below 10%.
Cells with only a limited number of buildings (<20) show the high-
est error. Larger differences between the two approaches are, how-
ever, to be expected in case only very few buildings are compared.
If energy demands are aggregated across an increasing number of
buildings, e.g. by selecting a larger cell size, the error diminishes.

The impact of using different weather data is shown in Fig. 10,
i.e. the differences in energy demands of using population-
weighted weather data (capturing weather of the entire climate
zone) versus using specific local weather data of each community.
If using the geographically closest weather station for each com-
munity, the error between the two approaches is larger. This is
to be expected, as population-weighted weather data representing
an entire climate region is used in the grouping and clustering
approach. Therefore, to isolate the error resulting from two
approaches from the error arising from using different climate
data, the same analysis is performed using identical climate data.
Fig. 9 and Fig. 10 allow to draw several conclusions: The choice
of the weather station is critical to obtain sensible regional results
[82,83]. Not surprisingly, using local climate data leads to bigger



Fig. 9. Visualization of the upscaling error at the neighbourhood scale. Annual heating demands of the clustering (clustered) are compared to full-simulation results (full) for
different Swiss communities on a 300�300 m grid. Only raster cells with a minimum of two buildings are considered.

Fig. 10. Comparison of annual heating and cooling demand of the clustering approach with the full simulation using the closest weather station to each case study region (C)
or population-weighted weather files (W). Each black point represents a 300�300 m neighbourhood. Only neighbourhoods with a minimum of two buildings are considered.
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differences between the two approaches and calculations based on
local climate data outperforms the clustering approach. However,
we note, that independently of the choice of weather stations,
the variability resulting from the methodological upscaling errors
is significant at the neighbourhood scale. Whereas the regional dif-
ferences across the entire Swiss communities are reasonable, par-
ticularly if using the same climate data, errors at the
neighbourhood scale can be in the double-digit percentage range.
However, the annual error at urban neighbourhood level between
the full simulation and clustering approach depends on urban den-
sity and is frequently in the ±10% range. Therefore the use of clus-
tering and grouping represents the energy demands considerably
well. Extreme outliers in Fig. 10 could be omitted with a more real-
istic neighbourhood representation instead of a grid. The regional
deviation across the case studies is comparable (red points). The
error at the neighbourhood scale is largest for cooling and negligi-
ble for electricity and domestic hot water. Green points show the
error of the full simulation to a calculation based on the calculated
energy signatures. For cooling, the energy signatures based calcu-
lations are less accurate, as cooling depends also on many other
factors than temperature. However, the generated energy signa-
tures in combination with local weather data is a fast and viable
alternative to the grouping and clustering approach.

In summary, even though the grouping and clustering approach
is powerful to approximate regional demands to then represent
demand at a national scale, careful consideration is necessary in
the case of neighbourhood simulations. Energy signatures thus
allow obtaining very similar results, particularly for heating.
3.5. Peak demand analysis

Peak demands are critical for system dimensioning and require
special attention [84]. The differences in hourly peak demands
between the full-simulation and clustering approach are shown
in Fig. 11 for the case study region Chur (see Appendix A for all
results). Daily heating and cooling load factors are plotted at the
regional scale to compare the overall shape of the energy demand
profiles. Additionally, the full load hours and the difference
between the maximum peak hour of the full simulation and the
clustering approach are calculated. Full load hours are a common
indicator that provides valuable information for choosing tech-
nologies as well for their economic efficiency at the system level.

Fig. 11 reveals that even though the load factor distribution dif-
fers between the two approaches, the overall pattern is in overall
good agreement for heating. For cooling, the daily differences are
more pronounced between the full simulation and the clustering
analysis, where more distinct differences arise from overall lower
Fig. 11. Comparison of daily load factors, full load hours and difference in maximum
simulation for the case study region Chur.
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cooling demands which impact the calculation of the load factors.
The same observations hold for all case studies (Appendix A). Also,
the calculated full load hours are comparable: for heating, the dif-
ferences are smaller than 2% across the different case studies, for
cooling the maximum difference is 6.7%.

Typical full load hours for heating in a Swiss residential building
are between 10800–20700 [85,86] depending on the building type,
building age and climate zone. For cooling, the typical full load
hours for an office are between 800 and 10500 [87]. Our obtained
full load hours are significantly overestimated in case of encounter-
ing the aggregation effects of the energy demand profiles (Sec-
tion 3.3) and as our national profile includemultiple building types.

When comparing the absolute maximum annual peak hour
demand for the nominal profiles, we note significant differences
between the full simulation and the clustering approach, showing
the aggregation challenge discussed before. For Chur and Brig-Glis,
the clustering approach resulted in higher maximum peak
demands for heating (Chur: 14.2%, Brig-Glis: 14.7%) and cooling
(Chur: 19.2%, Brig-Glis: 22.8%). For Muri bei Bern, peak demand
is lower by grouping and clustering for heating (3.8%) and cooling
(1.4%). These difference in peak demands resulting from the aggre-
gation effect can be explained by the respective diversity of the
building stock of the different case studies. We argue that the chal-
lenge of aggregating demands exists for the full simulation as well
as the grouping and clustering approach, as in both cases the
aggregated demands are calculated based on a limited number of
occupancy profiles. However, grouping and clustering resulted in
significantly higher peaks for Brig-Glis and Chur. Consequently,
clustering and grouping amplify the outlined temporal aggregation
problem, particularly in case of homogeneous building stocks.
3.6. Limitations and research needs

Several further research needs arise from the limitations of this
study. For more detailed and realistic energy demand simulations,
recent data collection efforts of 3D buildings increasingly allow
moving away from abstracted building geometries to detailed
building geometries and can be included in bottom-up approaches
[40]. More research effort also needed to address the problem of
variability in the case of aggregating individual building energy
demands. This includes better capturing the heterogeneity of build-
ings and their demands within an archetype [40]. Whereas our
focus was to analyse annual energy demands at the neighbourhood
scale, we have argued that the complexity considerably increases
when aiming at capturing peak demands, particularly in the case
of spatial and temporal high-resolution (hourly). Finally, whereas
we validated the grouping and clustering approach a the national
peak hour demand between the grouping and clustering approach and the full
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scale, we did not provide a regional validation as typically mea-
sured data at regional scales are not readily available [88].

Quantifying the error contribution in energy demand simula-
tions from the complexity of the numerous used data, algorithms
or model inputs is highly challenging. Whereas we do not provide
easy solutions for such a quantification, we could, in this work, iso-
late the potential errors of relying on a simplified building stock
representation due to grouping and clustering. Other approaches
such as sensitivity analysis are required to explore and quantify
other sources of errors.
4. Conclusion

We have argued that grouping and clustering a heterogeneous
building stock with thousands or millions of buildings for energy
system analysis is commonly performed without detailed analysis
of upscaling errors. Our bottom-up energy demand analysis of
Switzerland shows that simulations on a limited set of buildings
leads to systematic errors. An uncertainty quantification was
achieved by comparing the clustering results with full-scale simu-
lations at the neighbourhood (300�300 m) and regional scale.
Whereas national or regional scale demand estimates are plausible
based on grouping and clustering, considerable upscaling errors
can result at the neighbourhood scale. At the regional or national
level, the grouping and clustering approach is a powerful method
for energy research: it yields similar results in terms of daily load
factors and full load hours compared to a full simulation. For the
three exemplary case study regions, the difference in full load
hours for heating was below 2%. For cooling, the maximum differ-
ence in full load hours was 6.8%. However, estimating highly local-
ized demands at the neighbourhood level needs careful
consideration, as annual demands are frequently over or underes-
timated in the double-digit percentage range. Particularly if only
considering a small number of buildings (<20) clustering and
grouping is not practical. We have also shown that capturing vari-
ability due to different occupancy is particularly challenging: For
bottom-up simulations, the temporal aggregation results in over-
estimating peak demands when aggregating identical load profiles
multiple times. This challenge is amplified when using clustering
approaches.

Detailed building-type and building age-specific energy signa-
tures are made available from all building simulations, which are
Fig. B1. Visualization of building group (n = 270) mean feature values for the floor are
buildings is labelled. (SFH: Single-family home, MFH: Multi-family home).
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proposed as a viable alternative approach to grouping and cluster-
ing for fast and simplified bottom-up energy demand simulation to
derive regional or national energy demands with minimal data
requirements. Energy signatures enable particularly the considera-
tion of local climate, which is difficult to capture with grouping and
clustering approaches. Finally, the presented analysis demon-
strates the importance of isolating uncertainties related to upscal-
ing (when relying on grouping or clustering buildings) from other
sources of uncertainty, such as data inputs or the applied energy
demand simulation framework.
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Appendix A

Additional results are provided in the supporting information
document containing Notes A–C which can be found online in
the Supplementary Data (Appendix E).
Appendix B

Fig. B1
a and building footprint coverage. The number of buildings within each group of
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Appendix C

Table C1, Table C2
Table D1
Linear fitting parameter for cooling and heating of the energy signatures in Fig. 6. The coe

Building type Age class Cooling

Single-family home < 1945 y = 0.013917x � 0.23588
1945–1960 y = 0.01276x � 0.215656
1961–1985 y = 0.01058x � 0.177033
1986–2010 y = 0.01221x � 0.150733
> 2011 y = 0.014686x � 0.14563

Multi-family home < 1945 y = 0.011866x � 0.20320
1945–1960 y = 0.010568x � 0.18027
1961–1985 y = 0.009452x � 0.16072
1986–2010 y = 0.010848x � 0.13749
> 2011 y = 0.012738x � 0.13328

Office < 1945 y = 0.014438x � 0.22935
1945–1960 y = 0.015737x � 0.24767
1961–1985 y = 0.014279x � 0.22328
1986–2010 y = 0.015841x � 0.21199
> 2011 y = 0.01843x � 0.211475

Hospital < 1945 y = 0.019914x � 0.32810
1945–1960 y = 0.01958x � 0.323267
1961–1985 y = 0.016645x � 0.27330
1986–2010 y = 0.01881x � 0.266451
> 2011 y = 0.023237x � 0.29927

Shop < 1945 y = 0.024751x � 0.36051
1945–1960 y = 0.024885x � 0.36037
1961–1985 y = 0.022759x � 0.32090
1986–2010 y = 0.019757x � 0.17023
> 2011 y = 0.019607x � 0.09163

School < 1945 y = 0.008784x � 0.12273
1945–1960 y = 0.008496x � 0.11547
1961–1985 y = 0.007348x � 0.09712
1986–2010 y = 0.01063x � 0.136171
> 2011 y = 0.012652x � 0.14127

Restaurant & Hotel < 1945 y = 0.023098x � 0.37522
1945–1960 y = 0.021675x � 0.34541
1961–1985 y = 0.019331x � 0.30503
1986–2010 y = 0.024528x � 0.33477
> 2011 y = 0.029649x � 0.36580

Table C1
Building type classification depending on STATENT NOGA08_SECTOR attribute.

Building type STATENT (NOGA08_SECTOR)

Other Shop A – F, H, R, QG
Office School J-O, SP
Restaurant and Hotel I

Table C2
Building type classification depending on GWR GKLAS attribute.

Building type GWR (GKLAS)

Single-family
home

1110

Multi-family
home

1121, 1122, 1130

Shop 1230
Office 1220
Restaurant and

Hotel
1211, 1212, 1231, 1275

Other 1241, 1242, 1252, 1261, 1262, 1265, 1272, 1273, 1274*,
1276, 1277, 1278

Industrial 1251, 1271
School 1263
Hospital 1264

*if GKAT is 1080 and GSTAT is 1004, reclassify as MFH
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Appendix D

Table D1
Appendix E. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.enbuild.2022.111844.
References

[1] N. Eyre, S.J. Darby, P. Grünewald, E. McKenna, R. Ford, Reaching a 1.5�C target:
Socio-technical challenges for a rapid transition to low-carbon electricity
systems, Philos. Trans. Royal Soc. A: Math. Phys. Eng. Sci. 376 (2119) (2018) 1–
20, https://doi.org/10.1098/rsta.2016.0462.

[2] F.W. Geels, B.K. Sovacool, T. Schwanen, S. Sorrell, Sociotechnical transitions for
deep decarbonization, Science 357 (6357) (2017) 1242–1244, https://doi.org/
10.1126/science.aao3760.

[3] J.A. Fonseca, T.A. Nguyen, A. Schlueter, F. Marechal, City Energy Analyst (CEA):
Integrated framework for analysis and optimization of building energy
systems in neighborhoods and city districts, Energy Build. 113 (2016) 202–
226, https://doi.org/10.1016/j.enbuild.2015.11.055.

[4] D. Perez, J.H. Kämpf, U. Wilke, M. Papadopoulou, D. Robinson, CITYSIM
simulation: the case study of Alt-Wiedikon, a neighbourhood of Zürich City, in:
Proceedings of CISBAT 2011 - CleanTech for Sustainable Buildings, 2011, pp.
937–940.

[5] Roca-Puigròs, M., Billy, R. G., Gerber, A., Wäger, P., & Müller, D. B. (2020).
Pathways toward a carbon-neutral Swiss residential building stock. Buildings
and Cities, 1(1), 579–593. https://doi.org/10.5334/bc.61

[6] D. Wang, J. Landolt, G. Mavromatidis, K. Orehounig, J. Carmeliet, CESAR: A
bottom-up building stock modelling tool for Switzerland to address
sustainable energy transformation strategies, Energy Build. 169 (2018) 9–26,
https://doi.org/10.1016/j.enbuild.2018.03.020.

[7] L.G. Swan, V.I. Ugursal, Modeling of end-use energy consumption in the
residential sector: A review of modeling techniques, Renew. Sustain. Energy
Rev. 13 (8) (2009) 1819–1835, https://doi.org/10.1016/j.rser.2008.09.033.
fficient of determination is also listed, indicating goodness of fit.

R2 Heating R2

0.37 y = -0.053615x + 0.902771 0.86
0.42 y = -0.058237x + 0.976505 0.88
0.43 y = -0.048349x + 0.809258 0.88
0.63 y = -0.022761x + 0.336422 0.83

5 0.71 y = -0.015039x + 0.16454 0.71
5 0.37 y = -0.049682x + 0.816222 0.87
7 0.44 y = -0.048567x + 0.796706 0.86

0.46 y = -0.040207x + 0.651163 0.87
6 0.64 y = -0.020897x + 0.298632 0.83
7 0.72 y = -0.011854x + 0.1236 0.7
1 0.3 y = -0.058523x + 0.917801 0.86
5 0.31 y = -0.061323x + 0.969785 0.87
9 0.29 y = -0.052407x + 0.823698 0.87
2 0.4 y = -0.028352x + 0.388232 0.8

0.45 y = -0.016809x + 0.169623 0.67
6 0.4 y = -0.064469x + 1.068876 0.9

0.44 y = -0.068245x + 1.144014 0.9
3 0.41 y = -0.055482x + 0.930648 0.9

0.56 y = -0.031544x + 0.463245 0.87
9 0.62 y = -0.023154x + 0.263672 0.82
5 0.46 y = -0.054178x + 0.758959 0.83
4 0.44 y = -0.056417x + 0.806397 0.88
9 0.47 y = -0.048299x + 0.679134 0.86
1 0.62 y = -0.019329x + 0.219031 0.74
2 0.7 y = -0.006431x + 0.04097 0.5

0.14 y = -0.063839x + 1.005661 0.88
9 0.12 y = -0.064642x + 1.030308 0.89
8 0.1 y = -0.056177x + 0.890896 0.88

0.19 y = -0.031023x + 0.437015 0.8
5 0.19 y = -0.021179x + 0.226051 0.67
7 0.35 y = -0.069233x + 1.056611 0.83
7 0.37 y = -0.06916x + 1.05863 0.85
5 0.36 y = -0.059597x + 0.903196 0.85
1 0.49 y = -0.034996x + 0.460081 0.74
5 0.52 y = -0.024425x + 0.2471 0.58

https://doi.org/10.1016/j.enbuild.2022.111844
https://doi.org/10.1098/rsta.2016.0462
https://doi.org/10.1126/science.aao3760
https://doi.org/10.1126/science.aao3760
https://doi.org/10.1016/j.enbuild.2015.11.055
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0020
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0020
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0020
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0020
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0020
https://doi.org/10.1016/j.enbuild.2018.03.020
https://doi.org/10.1016/j.rser.2008.09.033


S. Eggimann, N. Vulic, M. Rüdisüli et al. Energy & Buildings 258 (2022) 111844
[8] K. Orehounig, A. Mahdavi, E.M. Doppelbauer, W. Loibl, T. Tötzer, Projections of
design implications on energy performance of future cities: A case study from
Vienna, Sustainable Cities and Society 12 (2014) 92–101, https://doi.org/
10.1016/j.scs.2014.03.001.

[9] S. Eggimann, M. Wagner, Y.N. Ho, M. Züger, U. Schneider, K. Orehounig,
Geospatial simulation of urban neighbourhood densification potentials,
Sustainable Cities and Society 72 (2021), https://doi.org/10.1016/j.
scs.2021.103068 103068.

[10] G. Happle, J.A. Fonseca, A. Schlueter, A review on occupant behavior in urban
building energy models, Energy Build. 174 (2018) 276–292, https://doi.org/
10.1016/j.enbuild.2018.06.030.

[11] G.M. Huebner, D. Shipworth, All about size? – The potential of downsizing in
reducing energy demand, Appl. Energy 186 (2017) 226–233, https://doi.org/
10.1016/j.apenergy.2016.02.066.

[12] D. Ürge-Vorsatz, N. Eyre, P. Graham, D. Harvey, E. Hertwich, Y. Jiang, C.
Kornevall, M. Majumdar, J.E. McMahon, S. Mirasgedis, S. Murakami, A.
Novikova, K. Janda, O. Masera, M. McNeil, K. Petrichenko, S.T. Herrero, E.
Jochem, Energy End-Use: Buildings. In Global Energy Assessment: Toward a
Sustainable Future, Cambridge University Press, 2012, pp. 649–760.

[13] D. Hsu, Comparison of integrated clustering methods for accurate and stable
prediction of building energy consumption data, Appl. Energy 160 (2015) 153–
163, https://doi.org/10.1016/j.apenergy.2015.08.126.

[14] I. De Jaeger, G. Reynders, C. Callebaut, D. Saelens, A building clustering
approach for urban energy simulations, Energy Build. 208 (2020) 109671,
https://doi.org/10.1016/j.enbuild.2019.109671.

[15] S. Goy, V. Coors, D. Finn, Grouping techniques for building stock analysis: A
comparative case study, Energy Build. 236 (2021) 110754, https://doi.org/
10.1016/j.enbuild.2021.110754.

[16] O.M. Garbasevschi, J. Estevam Schmiedt, T. Verma, I. Lefter, W.K. Korthals
Altes, A. Droin, B. Schiricke, M. Wurm, Spatial factors influencing building age
prediction and implications for urban residential energy modelling, Comput.
Environ. Urban Syst. 88 (2021) 101637, https://doi.org/10.1016/
j.compenvurbsys.2021.101637.

[17] G. Meinel, R. Hecht, H. Herold, Analyzing building stock using topographic
maps and GIS, Building Research & Information 37 (5–6) (2009) 468–482,
https://doi.org/10.1080/09613210903159833.

[18] K.N. Streicher, P. Padey, D. Parra, M.C. Bürer, M.K. Patel, Assessment of the
current thermal performance level of the Swiss residential building stock:
Statistical analysis of energy performance certificates, Energy Build. 178
(2018) 360–378, https://doi.org/10.1016/j.enbuild.2018.08.032.

[19] G. Tardioli, R. Kerrigan, M. Oates, J. O’Donnell, D.P. Finn, Identification of
representative buildings and building groups in urban datasets using a novel
pre-processing, classification, clustering and predictive modelling approach,
Build. Environ. 140 (February) (2018) 90–106, https://doi.org/10.1016/j.
buildenv.2018.05.035.

[20] L. Girardin, F. Marechal, M. Dubuis, N. Calame-Darbellay, D. Favrat, EnerGis: A
geographical information based system for the evaluation of integrated energy
conversion systems in urban areas, Energy 35 (2) (2010) 830–840, https://doi.
org/10.1016/j.energy.2009.08.018.

[21] K.N. Streicher, P. Padey, D. Parra, M.C. Bürer, S. Schneider, M.K. Patel, Analysis
of space heating demand in the Swiss residential building stock: Element-
based bottom-up model of archetype buildings, Energy Build. 184 (2019) 300–
322, https://doi.org/10.1016/j.enbuild.2018.12.011.

[22] K.N. Streicher, M. Berger, E. Panos, K. Narula, M.C. Soini, M.K. Patel, Optimal
building retrofit pathways considering stock dynamics and climate change
impacts, Energy Policy 152 (2021) 112220, https://doi.org/10.1016/j.
enpol.2021.112220.

[23] R. Silva, S. Eggimann, L. Fierz, M. Fiorentini, K. Orehounig, L. Baldini,
Opportunities for passive cooling to mitigate the impact of climate change
in Switzerland, Build. Environ. (2021) 108574.

[24] P. Murray, J. Marquant, M. Niffeler, G. Mavromatidis, K. Orehounig, Optimal
transformation strategies for buildings, neighbourhoods and districts to reach
CO2 emission reduction targets, Energy Build. 207 (2020) 109569, https://doi.
org/10.1016/j.enbuild.2019.109569.

[25] R. Gupta, A. Pena-Bello, K.N. Streicher, C. Roduner, Y. Farhat, D. Thöni, M.K.
Patel, D. Parra, Spatial analysis of distribution grid capacity and costs to enable
massive deployment of PV, electric mobility and electric heating, Appl. Energy
287 (2021) 116504, https://doi.org/10.1016/j.apenergy.2021.116504.

[26] A.T.D. Perera, K. Javanroodi, V.M. Nik, Climate resilient interconnected
infrastructure: Co-optimization of energy systems and urban morphology,
Appl. Energy 285 (2021) 116430, https://doi.org/10.1016/j.
apenergy.2020.116430.

[27] S. Schneider, P. Hollmuller, P. Le Strat, J. Khoury, M. Patel, B. Lachal, Spatial-
Temporal analysis of the heat and electricity demand of the Swiss building
stock, Frontiers in Built Environment 3 (2017) 1–17, https://doi.org/10.3389/
fbuil.2017.00053.

[28] J. Unternährer, S. Moret, S. Joost, F. Maréchal, Spatial clustering for district
heating integration in urban energy systems: Application to geothermal
energy, Appl. Energy 190 (2017) 749–763, https://doi.org/10.1016/j.
apenergy.2016.12.136.

[29] J.F. Marquant, R. Evins, L.A. Bollinger, J. Carmeliet, A holarchic approach for
multi-scale distributed energy system optimisation, Appl. Energy 208 (August)
(2017) 935–953, https://doi.org/10.1016/j.apenergy.2017.09.057.

[30] J.F. Marquant, L.A. Bollinger, R. Evins, J. Carmeliet, A new combined clustering
method to Analyse the potential of district heating networks at large-scale,
Energy 156 (2018) 73–83, https://doi.org/10.1016/j.energy.2018.05.027.
16
[31] A. Krayem, A. Al Bitar, A. Ahmad, G. Faour, J.P. Gastellu-Etchegorry, I.
Lakkis, J. Gerard, H. Zaraket, A. Yeretzian, S. Najem, Urban energy
modeling and calibration of a coastal Mediterranean city: The case of
Beirut, Energy Build. 199 (2019) 223–234, https://doi.org/10.1016/j.
enbuild.2019.06.050.

[32] G. Johannesson, J. Stewart, C. Barr, L.B. Sabeff, R. George, D. Heimiller, A.
Milbrandt, Spatial Statistical Procedures to Validate Input Data in Energy
Models, Renewable Energy (2006).

[33] L. Belussi, L. Danza, I. Meroni, F. Salamone, Energy performance assessment
with empirical methods: Application of energy signature, Opto-Electron. Rev.
23 (1) (2015) 83–87, https://doi.org/10.1515/oere-2015-0008.

[34] M. Eriksson, J. Akander, B. Moshfegh, Development and validation of energy
signature method – Case study on a multi-family building in Sweden before
and after deep renovation, Energy Build. 210 (2020) 109756, https://doi.org/
10.1016/j.enbuild.2020.109756.

[35] R. Mutschler, M. Rüdisüli, P. Heer, S. Eggimann, Benchmarking cooling and
heating energy demands considering climate change, population growth and
cooling device uptake, Appl. Energy 288 (2021) 116636, https://doi.org/
10.1016/j.apenergy.2021.116636.

[36] E. Romano, C. Fraga, P. Hollmuller, CO2 emission savings of heat-pumps in the
residential sector. Case study for multifamily buildings in Geneva, 13th IEA
Heat Pump Conference, 2020.

[37] BFS. (2017). Eidgenössisches Gebäude- und Wohnungsregister. Bundesamt für
Statistik. https://www.housing-stat.ch

[38] BFS. (2021). Statistik der Unternehmensstruktur (STATENT). https://www.bfs.
admin.ch/bfs/de/home/statistiken/industrie-dienstleistungen/erhebungen/
statent.html

[39] OpenStreetMap contributors. (2021). OpenStreetMap. https://www.
openstreetmap.org

[40] P. Theile, C. Kesnar, B.H. Czock, M. Moritz, A.A. Novirdoust, V. Coors, J. Wagner,
B. Schröter, There’s no place like home – The impact of residential
heterogeneity on bottom-up energy system modeling, Energy Build. 254
(2022) 111591, https://doi.org/10.1016/j.enbuild.2021.111591.

[41] Swisstopo. (2021). swissBUILDINGS3D 2.0. https://www.swisstopo.admin.ch/
de/geodata/landscape/buildings3d2.html

[42] SECO. (2006). ArGV 4 Art. 5: Raumhöhe (pp. 405–1). https://www.seco.admin.
ch/seco/de/home/Arbeit/Arbeitsbedingungen/Arbeitsgesetz-und-
Verordnungen/Wegleitungen/Wegleitung-zur-ArGV-4.html#1867319319

[43] M. Berger, J. Worlitschek, The link between climate and thermal energy
demand on national level: A case study on Switzerland, Energy Build. 202
(2019) 109372, https://doi.org/10.1016/j.enbuild.2019.109372.

[44] J. Spinoni, J.V. Vogt, P. Barbosa, A. Dosio, N. McCormick, A. Bigano, H.-M. Füssel,
Changes of heating and cooling degree-days in Europe from 1981 to 2100:
HDD AND CDD IN EUROPE FROM 1981 TO 2100, Int. J. Climatol. 38 (2018)
e191–e208.

[45] Federal Statistical Office. (2019). Statistik der Bevölkerung und Haushalte
(STATPOP), Geodaten 2019.

[46] MeteoSwiss. (2020). IDAWEB. https://gate.meteoswiss.ch/idaweb/login.do
[47] MeteoSchweiz. (2017). Klimabulletin Jahr 2016.
[48] Meteoswiss. (2021). Automatic monitoring network (SwissMetNet). https://

www.meteoswiss.admin.ch/home/measurement-and-forecasting-
systems/land-based-stations/automatisches-messnetz.html

[49] M. Sengupta, A. Habte, C. Gueymard, S. Wilbert, D. Renné, T. Stoffel, Best
Practices Handbook for the Collection and Use of Solar Resource Data for
Solar Energy Applications: Second Edition, In Best Practices Handbook for
the Collection and Use of Solar Resource Data for Solar Energy
Applications: Second Edition (Issue December 2017). www.nrel.gov/
publications, 2017.

[50] E.L. Maxwell, A quasi-physical model for converting hourly Global Horizontal
to Direct Normal Insolation, Solar Energy Research Institute SERI/TR-215-3087
(1987) 35–46.

[51] R. Perez, P. Ineichen, E.L. Maxwell, R.D. Seals, A. Zelenka, Article Dynamic
global-to-direct irradiance conversion models, ASHRAE Transactions 98 (1)
(1992) 354–369.

[52] W.F. Holmgren, C.W. Hansen, M.A. Mikofski, Pvlib Python: a Python Package
for Modeling Solar Energy Systems, J. Open Source Software 3 (29) (2018) 884.
https://doi.org/10.21105/joss.00884.

[53] M. Aksoezen, M. Daniel, U. Hassler, N. Kohler, Building age as an indicator for
energy consumption, Energy Build. 87 (2015) 74–86, https://doi.org/10.1016/j.
enbuild.2014.10.074.

[54] CH2018, Climate Scenarios for Switzerland, Technical Report, National Centre
for Climate Services, 2018.

[55] A.M. Maceachren, Compactness of geographic shape: comparison and
evaluation of measures, Geografiska Annaler, Series B 67 (1) (1985) 53–67,
https://doi.org/10.2307/490799.

[56] B. D’Amico, F. Pomponi, A compactness measure of sustainable building forms.
Royal Society Open, Science 6 (6) (2019) 181265, https://doi.org/10.1098/
rsos.181265.

[57] SIA. (2007). Thermische Energie im Hochbau - Leitfaden zur Anwendung der
Norm SIA 380/1.

[58] SIA. (2016). NORM SIA 380/1: Heizwärmebedarf.
[59] AHB, Erdsondenpotenzial in der Stadt Zürich, Stadt Zürich, 2014.
[60] A. Walch, N. Mohajeri, A. Gudmundsson, J.L. Scartezzini, Quantifying the

technical geothermal potential from shallow borehole heat exchangers at
regional scale, Renewable Energy 165 (2021) 369–380, https://doi.org/
10.1016/j.renene.2020.11.019.

https://doi.org/10.1016/j.scs.2014.03.001
https://doi.org/10.1016/j.scs.2014.03.001
https://doi.org/10.1016/j.scs.2021.103068
https://doi.org/10.1016/j.scs.2021.103068
https://doi.org/10.1016/j.enbuild.2018.06.030
https://doi.org/10.1016/j.enbuild.2018.06.030
https://doi.org/10.1016/j.apenergy.2016.02.066
https://doi.org/10.1016/j.apenergy.2016.02.066
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0060
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0060
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0060
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0060
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0060
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0060
https://doi.org/10.1016/j.apenergy.2015.08.126
https://doi.org/10.1016/j.enbuild.2019.109671
https://doi.org/10.1016/j.enbuild.2021.110754
https://doi.org/10.1016/j.enbuild.2021.110754
https://doi.org/10.1016/j.compenvurbsys.2021.101637
https://doi.org/10.1016/j.compenvurbsys.2021.101637
https://doi.org/10.1080/09613210903159833
https://doi.org/10.1016/j.enbuild.2018.08.032
https://doi.org/10.1016/j.buildenv.2018.05.035
https://doi.org/10.1016/j.buildenv.2018.05.035
https://doi.org/10.1016/j.energy.2009.08.018
https://doi.org/10.1016/j.energy.2009.08.018
https://doi.org/10.1016/j.enbuild.2018.12.011
https://doi.org/10.1016/j.enpol.2021.112220
https://doi.org/10.1016/j.enpol.2021.112220
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0115
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0115
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0115
https://doi.org/10.1016/j.enbuild.2019.109569
https://doi.org/10.1016/j.enbuild.2019.109569
https://doi.org/10.1016/j.apenergy.2021.116504
https://doi.org/10.1016/j.apenergy.2020.116430
https://doi.org/10.1016/j.apenergy.2020.116430
https://doi.org/10.3389/fbuil.2017.00053
https://doi.org/10.3389/fbuil.2017.00053
https://doi.org/10.1016/j.apenergy.2016.12.136
https://doi.org/10.1016/j.apenergy.2016.12.136
https://doi.org/10.1016/j.apenergy.2017.09.057
https://doi.org/10.1016/j.energy.2018.05.027
https://doi.org/10.1016/j.enbuild.2019.06.050
https://doi.org/10.1016/j.enbuild.2019.06.050
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0160
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0160
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0160
https://doi.org/10.1515/oere-2015-0008
https://doi.org/10.1016/j.enbuild.2020.109756
https://doi.org/10.1016/j.enbuild.2020.109756
https://doi.org/10.1016/j.apenergy.2021.116636
https://doi.org/10.1016/j.apenergy.2021.116636
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0180
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0180
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0180
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0180
https://doi.org/10.1016/j.enbuild.2021.111591
https://doi.org/10.1016/j.enbuild.2019.109372
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0220
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0220
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0220
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0220
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0245
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0245
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0245
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0245
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0245
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0245
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0245
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0250
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0250
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0250
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0255
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0255
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0255
https://doi.org/10.21105/joss.00884
https://doi.org/10.1016/j.enbuild.2014.10.074
https://doi.org/10.1016/j.enbuild.2014.10.074
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0270
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0270
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0270
https://doi.org/10.2307/490799
https://doi.org/10.1098/rsos.181265
https://doi.org/10.1098/rsos.181265
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0295
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0295
https://doi.org/10.1016/j.renene.2020.11.019
https://doi.org/10.1016/j.renene.2020.11.019


S. Eggimann, N. Vulic, M. Rüdisüli et al. Energy & Buildings 258 (2022) 111844
[61] EMC Education Services. (2015). Data Science & Big Data Analytics:
Discovering, Analyzing, Visualizing and Presenting Data Published. Wiley.
https://doi.org/10.1002/9781119183686

[62] X. Jin, J. Han, K-Medoids Clustering, in: C. Sammut, G.I. Webb (Eds.),
Encyclopedia of Machine Learning and Data Mining, Springer US, Boston,
MA, 2017, pp. 697–700, https://doi.org/10.1007/978-1-4899-7687-1_432.

[63] Everitt, B., Landau, S., Leese, M., & D., S. (2011). Cluster Analysis. In Wiley (Ed.),
International Geophysics (5th Editio). https://doi.org/10.1016/B978-0-12-
385022-5.00015-4

[64] G. Varoquaux, L. Buitinck, G. Louppe, O. Grisel, F. Pedregosa, A. Mueller, Scikit-
learn: Machine Learning in Python Fabian, GetMobile: Mobile Computing and
Communications 19 (1) (2015) 29–33, https://doi.org/10.1145/
2786984.2786995.

[65] Fierz, L., & Urban Energy Systems Laboratory (Empa). (2021). hues-platform/
cesar-p-core: 1.3.0 (Version 1.3.0).

[66] D.B. Crawley, L.K. Lawrie, F.C.Winkelmann,W.F. Buhl, Y.J. Huang, C.O. Pedersen,
R.K. Strand, R.J. Liesen, D.E. Fisher, M.J. Witte, J. Glazer, EnergyPlus: Creating a
new-generation building energy simulation program, Energy Build. 33 (4)
(2001) 319–331, https://doi.org/10.1016/S0378-7788(00)00114-6.

[67] D. Wang, K. Orehounig, J. Carmeliet, Dynamic building energy demand
modelling at urban scale for the case of Switzerland, CLIMA 2016 -
Proceedings of the 12th REHVA World Congress, 2016.

[68] SIA. (2006). SIA 2024: Conditions d’utilisation standard pour l’énergie et les
installations du bâtiment. In Normes SIA. http://www.sia.ch/fr/services/sia-
norm/

[69] S. Eggimann, J.W. Hall, N. Eyre, A high-resolution spatio-temporal energy
demand simulation to explore the potential of heating demand side
management with large-scale heat pump diffusion, Appl. Energy 236 (2019)
997–1010, https://doi.org/10.1016/j.apenergy.2018.12.052.

[70] G. Huebner, D. Shipworth, I. Hamilton, Z. Chalabi, T. Oreszczyn, Understanding
electricity consumption: A comparative contribution of building factors, socio-
demographics, appliances, behaviours and attitudes, Appl. Energy 177 (2016)
692–702, https://doi.org/10.1016/j.apenergy.2016.04.075.

[71] G.M. Huebner, I. Hamilton, Z. Chalabi, D. Shipworth, T. Oreszczyn, Explaining
domestic energy consumption - The comparative contribution of building
factors, socio-demographics, behaviours and attitudes, Appl. Energy 159
(2015) 589–600, https://doi.org/10.1016/j.apenergy.2015.09.028.

[72] A. Capasso, R. Lamedica, A. Prudenzi, W. Grattieri, A bottom-up approach to
residential load modeling, IEEE Trans. Power Syst. 9 (2) (1994) 957–964,
https://doi.org/10.1109/59.317650.

[73] Mavromatidis, G. (2017). Model-based design of distributed urban energy
systems under uncertainty. In PhD Thesis. Imperial College London, UK.

[74] G. Krese, M. Prek, V. Butala, Analysis of building electric energy consumption
data using an improved cooling degree day method, Strojniski Vestnik/J. Mech.
Eng. 58 (2) (2012) 107–114, https://doi.org/10.5545/sv-jme.2011.160.
17
[75] P. Richner, P. Heer, R. Largo, E. Marchesi, M. Zimmermann, NEST - A platform
for the acceleration of innovation in buildings, Informes de La Construccion 69
(548) (2017) 1–8, https://doi.org/10.3989/id.55380.

[76] T. Day, Degree-days: theory and application, CIBSE (2006), Publications.
[77] SFOE. (2017). Analyse des schweizerischen Energieverbrauchs 2000 - 2016

nach Verwendungszwecken.
[78] pom+. (2020). FM Monitor Kennzahlen für die Zukunft.
[79] Kirchner, A., Ess, F., Grebel, T., Hofer, P., Kemmler, A., Ley, A., Piégsa, A., Schütz,

N., Strassburg, S., Struwe, J., & Daniel, B. (2012). Die Energieperspektiven für
die Schweiz bis 2050 - Energienachfrage und Elektrizitätsangebot in der
Schweiz 2000 - 2050. In SFOE.

[80] T. Siller, M. Kost, D. Imboden, Long-term energy savings and greenhouse gas
emission reductions in the Swiss residential sector, Energy Policy 35 (1) (2007)
529–539, https://doi.org/10.1016/j.enpol.2005.12.021.

[81] Z.T. Taylor, Y. Xie, C.D. Burleyson, N. Voisin, I. Kraucunas, A multi-scale
calibration approach for process-oriented aggregated building energy demand
models, Energy Build. 191 (2019) 82–94, https://doi.org/10.1016/j.
enbuild.2019.02.018.

[82] C.D. Burleyson, N. Voisin, Z.T. Taylor, Y. Xie, I. Kraucunas, Simulated building
energy demand biases resulting from the use of representative weather
stations, Appl. Energy 209 (2017) 516–528, https://doi.org/10.1016/j.
apenergy.2017.08.244.

[83] S. Eggimann, W. Usher, N. Eyre, J.W. Hall, How weather affects energy demand
variability in the transition towards sustainable heating, Energy 195 (2020)
116947, https://doi.org/10.1016/j.energy.2020.116947.

[84] M. Choobineh, P.C. Tabares-Velasco, S. Mohagheghi, Optimal energy
management of a distribution network during the course of a heat wave,
Electr. Power Syst. Res. 130 (2016) 230–240, https://doi.org/10.1016/j.
epsr.2015.09.010.

[85] EnergieSchweiz., Leistungsgarantie Haustechnik, Bundesamt für Energie.
(2019).

[86] Kessler, S., Oberpriller, Q., & Fülssler, J. (2017). Standardisierung des
Wirkungsnachweises bei Kompensationsprojekten und Teil B :
Standardmethodik des Wirkungsnachweises für die effiziente Regelung
von Heizung und Warmwasserbereitstellung in bestehenden
Wohnbauten.

[87] A. Brunner, M. Kriegers, V. Prochaska, F. Tillenkamp, Klimakälte heute, Die
Planer -, SWKI, 2021.

[88] R. Buffat, A. Froemelt, N. Heeren, M. Raubal, S. Hellweg, Big data GIS
analysis for novel approaches in building stock modelling, Appl. Energy
208 (May) (2017) 277–290, https://doi.org/10.1016/j.
apenergy.2017.10.041.

[89] Heeren, N., Gabathuler, M., Wallbaum, H., Jakob, M., & Martius, G. (2009).
Gebäudeparkmodell SIA Effizienzpfad Energie Dienstleistungs- und
Wohngebäude.

https://doi.org/10.1007/978-1-4899-7687-1_432
https://doi.org/10.1145/2786984.2786995
https://doi.org/10.1145/2786984.2786995
https://doi.org/10.1016/S0378-7788(00)00114-6
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0335
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0335
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0335
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0335
https://doi.org/10.1016/j.apenergy.2018.12.052
https://doi.org/10.1016/j.apenergy.2016.04.075
https://doi.org/10.1016/j.apenergy.2015.09.028
https://doi.org/10.1109/59.317650
https://doi.org/10.5545/sv-jme.2011.160
https://doi.org/10.3989/id.55380
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0380
https://doi.org/10.1016/j.enpol.2005.12.021
https://doi.org/10.1016/j.enbuild.2019.02.018
https://doi.org/10.1016/j.enbuild.2019.02.018
https://doi.org/10.1016/j.apenergy.2017.08.244
https://doi.org/10.1016/j.apenergy.2017.08.244
https://doi.org/10.1016/j.energy.2020.116947
https://doi.org/10.1016/j.epsr.2015.09.010
https://doi.org/10.1016/j.epsr.2015.09.010
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0425
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0425
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0435
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0435
http://refhub.elsevier.com/S0378-7788(22)00015-9/h0435
https://doi.org/10.1016/j.apenergy.2017.10.041
https://doi.org/10.1016/j.apenergy.2017.10.041

	Spatiotemporal upscaling errors of building stock clustering for energy demand simulation
	1 Introduction
	1.1 Energy demand simulations using a generalized building stock
	1.2 Original contribution

	2 Methods
	2.1 Data collection and preparation
	2.1.1 Building geometry and attributes
	2.1.2 Weather data processing

	2.2 Grouping
	2.2.1 Building type
	2.2.2 Buildling age
	2.2.3 Climate region

	2.3 Clustering
	2.3.1 Clustering feature value calculation
	2.3.2 Clustering algorithm

	2.4 Sampling
	2.5 Energy simulation
	2.6 Upscaling analysis
	2.7 Spatiotemporal validation

	3 Results and discussion
	3.1 Grouping and clustering
	3.2 Energy demands
	3.2.1 Heating and cooling signatures
	3.2.2 Specific energy demands per building type and age

	3.3 National upscaling
	3.4 Regional and neighbourhood upscaling errors
	3.5 Peak demand analysis
	3.6 Limitations and research needs

	4 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Appendix 
	Appendix A 

	Appendix B 
	Appendix C 
	Appendix D 
	Appendix E Supplementary data
	References




