UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Prediction Intervals in Generalized Linear Mixed Models

Permalink
https://escholarship.org/uc/item/66c2t8vK

Author
Yang, Cheng-Hsueh

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California


https://escholarship.org/uc/item/66c2t8vk
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Prediction Intervals in Generalized Linear Mixed Models

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Applied Statistics
by
Cheng-Hsueh Yang

March 2013

Dissertation Committee:
Dr. Daniel R. Jeske, Chairperson
Dr. James M. Flegal
Dr. Xinping Cui



Copyright by
Cheng-Hsueh Yang
2013



The Dissertation of Cheng-Hsueh Yang is approved:

Committee Chairperson

University of California, Riverside



ACKNOWLEDGEMENTS

Though only my name appears on the cover of this dissertation, a great many people have
contributed to its production. My sincere gratitude goes to all those people who have
made this dissertation possible:

First and foremost, I would like to thank to my advisor of this dissertation, Dr. Daniel R.
Jeske for the valuable guidance and advice. He inspired me greatly to work in this
dissertation. His willingness to motivate me contributed tremendously to my dissertation.
I also would like to thank him for showing me some example that related to the topic of
my dissertation.

Dr. James Flegal and Dr. Xinping Cui are dissertation committee members, for
participating in my doctoral committee and the distinguished teaching of classes that

build up my theoretical statistics and probability knowledge.

v



DEDICATIONS

Most importantly, none of this would have been possible without the love and patience of
my family. My immediate family, to whom this dissertation is dedicated to, has been a
constant source of love, concern, support and strength all these years. I would like to
express my heart-felt gratitude to my family. Especially, I would like to thank my wife
Tzu-Chun for standing beside me throughout my career and writing this dissertation. She
has been my inspiration and motivation for continuing to improve my knowledge and
move my career forward.

Many friends have helped me through these difficult years. Their support and care helped
me overcome setbacks and stay focused on my graduate studies. I greatly value their
friendship and I deeply appreciate their belief in me. Especially, I am highly grateful to
my best friend, Roberto Crackel, who helped me learn a lot about American culture.
Thanks to Roberto Crackel for sharing in my happy moments during the process of
writing this dissertation and providing encouragement when it seemed too difficult to
complete. [ would have probably given up without his support. Furthermore, following
through on his PHILOSOPHY, he gave me a lot of opportunities to demonstrate my

ability to answer his intractable questions during my final defense.



ABSTRACT OF THE DISSERTATION

Prediction Intervals in Generalized Linear Mixed Models

by
Cheng-Hsueh Yang
Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, March 2013
Dr. Daniel R. Jeske, Chairperson
Three methods for constructing prediction intervals in a generalized linear mixed model
(GLMM) are the methods based on pseudo-likelihood, Laplace, and Quadrature
approximations. All three of these methods are available in the SAS procedure
GLIMMIX. The pseudo-likelihood method involves approximate linearization of the
GLMM into a linear mixed model (LMM) framework, and the other two methods utilize
approximate conditional mean squared error (MSE) formulas for the empirical best
predictor (eBP). For constructing a prediction interval, we propose two new generalized
methods based on a mean squared error (MSE) approximation of the empirical best linear
predictor (eBLP) and the empirical best predictor (eBP). Following the approach by
Harville and Kackar (1984) for a linear mixed model (LMM), we decompose the

prediction error into two terms for the purpose of deriving the MSE
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approximation. Unlike in the LMM case, however, closed form expressions for the two
terms in the subsequent MSE approximation are not available.

In terms of the BLP based interval, we approximate these two terms using the Taylor
series expansion. In terms of the BP based interval, we confront the computational
challenge by proposing a Monte Carlo algorithm for evaluating the plug-in estimators of
these two terms. Furthermore, two terms from the prediction error are shown to be
uncorrelated using the eBP as the predictor rather than the eBLP. The last proposed
method is in regards to a highest posterior density (HPD) from a Bayesian view, using the
information from the posterior distribution of random factors given the response vector.
As discussed in this dissertation, a HPD interval is not as general as the BP and BLP
based prediction interval because the prior distribution is limited.

For the Poisson and the Bernoulli GLMMs, simulation studies show that the
methodology for our three proposed prediction intervals improves the coverage
probability over the three existing methods available in GLIMMIX. Moreover, our
results show that with bootstrap adjustments, our proposed BP and BLP based prediction
interval achieve coverage probabilities satisfactorily close to the nominal level. However,
it is intractable to derive a HPD under the negative binomial GLMMs because of the
prior distribution for dispersion parameter. As we have mentioned, two proposed
generalized methods are still applied to the negative binomial GLMM. The simulation

results are as the same as the Poisson and Bernoulli GLMM.
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1. Introduction

For several years, in the linear mixed models (LMMs), much of the literature has

extensively focused on point prediction such as the best predictor (BP), the best linear

predictor (BLP) and the best linear unbiased predictor (BLUP). McCulloch, Searle and

Neuhaus (2008) is a good reference to this literature. The BLUP can be derived using

multiple methods. One common method is to use the joint maximum likelihood approach

from Henderson (1950). However, in most cases, the BP, the BLP and the BLUP contain

unknown parameters. Hence, the empirical best predictor (eBP), the empirical best linear

predictor (eBLP) and the empirical best linear unbiased predictor (eBLUP) were proposed,

replacing the unknown parameters with corresponding estimators. Kackar and Harville

(1984) derived a mean squared error (MSE) approximation of the eBLUP using a Taylor

series expansion. Jeske and Harville (1988) used the eBLUP and its MSE approximation to

construct a prediction interval in LMMs. In addition, the SAS system has implemented

much of the relevant literature about prediction intervals on LMMs in the procedure

MIXED (see, for example, Littell et al. (2006) and references therein).

In LMMs, responses are assumed to be normally distributed, however, the normality

assumption is not always appropriate. When faced with such difficulties, the more



applicable generalized linear mixed models (GLMMSs) accommodate non-normally

distributed responses. The topic of prediction intervals is less well developed for the

important class of GLMMs. The SAS procedure PROC GLIMMIX computes prediction

intervals for GLMMs using one of the following three methods: Pseudo-likelihood (PL),

Laplace (L), and Quadrature (Q). In all three methods, an estimate of the predictor and

its associated precision is used to constructa 100(1— )% prediction interval using

normal percentiles.

The PL method is based on Wolfinger and O'Connell (1993) who proposed an

algorithm to calculate the parameter estimates and the values of fixed and random effects.

The main idea of this algorithm is to approximate the GLMM as a LMM with use of a

pseudo-variable obtained through a Taylor series expansion. The algorithm iterates

between updates of the pseudo-variable and parameter estimator that result from the

LMM computations.

The Laplace method is based on Booth and Hobert (1998) who utilized a Laplace

approximation based on the work of de Bruijn (1981) to approximate the value of the BP.

An iterative strategy is employed to obtain the eBP, first approximating it using current

values of parameters and fixed effects, and then updating those values by approximating



the likelihood using another Laplace approximation. This process continues until

convergence is achieved. The precision of the eBP is evaluated using a Taylor series

approximation to the conditional mean squared error (CMSE) derived in Booth and

Hobert (1998). Zhao et al. (2006) and Skrondal and Rabe-Hesketh (2009) have also

advocated CMSE as a suitable measure of precision.

The quadrature method also calculates the BP using a Laplace approximation, however

the likelihood function is approximated via an adaptive quadrature approximation [see,

for example, Golub and Welsch (1969), Abramowitz and Stegun (1972) and Pinheiro and

Chao (2006)]. The advantage of the adaptive quadrature approximation is to improve the

approximation of the likelihood function by centering and scaling the quadrature points.

Again, the same iterative strategy as the Laplace method is employed until convergence

criteria is met and CMSE is used to measure the precision of the eBP. It is worth noting

that because the estimated CMSE is a function of parameter estimates, its value is not the

same for the Laplace and quadrature methods since these methods calculate parameter

estimates differently.

This dissertation proposes three new methods for constructing prediction intervals for

GLMMs that have a single random factor that captures cluster effects in the. For example,



the levels of the random factor could correspond to random block effects in an ANOVA
design, random hospital effects in a clinical trial design, or random intercepts in a
longitudinal data analysis design. Our GLMM context covers applications where the
response variable is count data modeled by distributions such as Poisson, negative
binomial or Bernoulli. Our aim is to propose a better prediction interval method for linear
combinations of the underlying fixed and random effects.

Let y; denote the j-th sampling unit within the i-th cluster, for i=1,...,m and

j=1,...,n

Let s=(s,,...,s,)" denote the unobservable random cluster effects and
let 4; denote the conditional (given s;) mean of the j-th observation from the i-th
cluster. Our operating GLMM is defined as follows:

a. Conditional on s;, the observations from the i-th cluster {y;}}, are
independently distributed from distributions whose probability functions are
denoted by (| , x)

b. 9(w;)=x;8+s, ,where x; =(, % ,...,%;,,)" isa vector of fixed covariates
associated with j-th observation in the i-th clusterand B=(4,,8,,..., B,4)" s
a vector of unknown parameters

c. {s}", are independent and identically distributed froma N(0, c?) distribution



Although other definitions of GLMMs can be found (see, for example, McCulloch et al.
2008) the framework we use is popular for reasons including the flexibility to extend
beyond independent random effects and the availability of PROC GLIMMIX to fit these
models. The covariate vector can be used to describe differences between the
observations that are traced to identifiable fixed effects such as treatment effects. The
parameter x may or may not be needed, depending on the model specification. If, for
example, f isanegative binomial distribution, x represents the over-dispersion
parameter, whereas if f isa Poisson or Bernoulli distribution, x is not needed in the
model specification. Our main purpose is on how to construct a prediction interval for a
quantity suchas w=A4'8+06's ,where 4 and 6 areknown px1 and mx1
vectors of constants, respectively. Define 8= (f',07, k), where it is understood that

the x parameter may not be needed. Let the observations from the i-th cluster be

collectively referred to as y; = (Y, , Vi ---» ¥in )" » @nd let all the observations from all
of the clusters be collectively referredtoas y=(y,,..., y,) . In our second proposed

method, probability functions we will subsequently use are the conditional distribution of

vy, given s, f(y,|s;;6) :H f(y; | 44 ,x), the zero-mean Gaussian distribution for s,

j=1



@(s;; %), the joint distribution of y, and s, f(y,,s ;0)=f(y,|s;0) (s |c”) ,the
marginal distribution of y., f(y,;60) :I: f(y;,s; ;6)ds;, and the conditional
distribution of s, given y;, f(s;|y;;0)=f(y;,s;0)/ f(y;;6). The conditional
distribution of s, given vy, can be expressedas f(s|y;6) =HL f(s/|y;;0). The
integrated likelihood function is L(&| y):HLf(yi;e) and the maximum likelihood
estimator of ¢ isdefinedas & =arg Lnax L(@|y).

This paper is organized into 6 sections. The first section is the introduction and
motivation, which have already been discussed. The second section reviews the concepts
of the PL method, the Laplace method and the quadrature method. In section 3, our
proposed method, the BLP based method and the BP based method are derived. In section
4, we use three GLMMs with a single random factor to illustrate our proposed methods.
In section 5, a simulation study is used to evaluate the alternative prediction interval
methods. In section 6, we provide a summary and recommendation.

2. Related Work

Section 2.1 The PL method

Wolfinger and O’Connell (1993) proposed a PL approach to GLMMs based on the LMM

methodologies. Let z=[z4,, 14, I and define R(u x) as a diagonal matrix whose



elements are the variance of y given s where x can be neglected in special cases

such as the Bernoulli and the Poisson GLMM, and let 1= (1,---,1)' denote a vector of
1I’s, | denote an identity matrix and Z denote a nxm matrix where Zzlni =n. A
GLMM is approximated as y=u+e , with g(u)=Xg+Zs, Cov(s)=o°l ,
E(e|x)=0 and Var(e|x)=R(ux).Let § and § are the current estimates of S
and s. We define a= g‘l(X,@+Z§) which is a vector consisting of evaluations of

-1

g at each component of Xﬁ’+ Z$. The main idea of the PL approach is to create a

pseudo variable, v, through the Taylor series expansions to e=y—u expanding

A

about ﬂ and § and iteratively apply the linear mixed model equations to estimate
fixed effects and predict random effects. Define v=g(a)+9'(&)(y—4) . Here,
9'(/2) is a diagonal matrix with elements g’([zij) . Define R(z,x) as the
approximation for R(x,x) . Wolfinger and O’Connell motivate the approximation
V|[(B,5)~MVN( XB+Zs,g'(2)R(fx)g'(2) ). Since s~N(0,5°1), we have:
v~MVN( X8, 9'(2)R(&x)g'(&)+0°ZZ') Equation Section 2(2.1)

Based on (2.1), the profile log likelihood can be derived and used to estimate o and «
as follows:

I(v;0?, k) oc —%Iog \Y |—2Iog rvr (2.2)

7



where  V =g'(2)R(4.x)9'(f1)+0°2Z" and r=v—X(X V‘lx)fl XV . The
estimates of o and x,say &° and £, can then be used with mixed model equations

to get the next iterate of B and § as follows:

Lo

S11Z(9'(@)R(mR) g (4)) v

e 1| X @R@EAG@) X X (G (@R(R)G(4) 2
2@ @rEAT @) X 2 (e @R @) 2+())

Iterations that maximize (2.2) and then solve (2.3) can continue until the iterations
converge.
We are interested in a prediction interval for w. An intuitive predictor for w is
n(y;0)=A'B+5'$. A naive estimate of the covariance matrix of [ﬂﬂ,é’—s’]l is H .
Thus, a naive estimate of the MSE of 7(y;d) is L H,*L, where L, :(/1’,5’)' and an
approximate prediction interval for w is:

1(y:0) - 2,, L H L <w<n(y;0)+2,, L H, 'L, (2.4)
If we want to get a prediction interval for h(w) from (2.4), we simply evaluate h(:) at
the end points of the interval in (2.4).
Section 2.2 The Laplace method and Quadrature method

Booth and Hobert (1998) discuss using the BP, that is E(s|y;8), as the predictor for s.



However, obtaining a closed form solution of the BP is often not possible as the high
dimensional integration becomes mathematically intractable. Therefore, a Laplace
approximation is applied to approximate the BP. The authors show
E(s|y;0) =s(y;0) ~5(y;0) and 5(y;0) is solved by maximizing log f (y,s). Thus,
the term §(y;&) is an approximate value of the best predictor of s. In practice, the
parameter & is unknown. Therefore, an iterative strategy is employed by first finding
§(y;0) assuming a current value of 4, and then finding a new estimate of & by
approximating the integrated likelihood using another Laplace approximation. Iterations

continue until convergence, and the resulting estimator is denoted as 6.

When & is known, the corresponding BP for w is 7(y;8)=A'8+5'E(s|y;8). When
6 is unknown, the corresponding eBP for w is 7(y;6) . Booth and Hobert assume
n(y;0)—n(y;6) and 7(y;6)—w are independent and represent the conditional mean
squared error (CMSE) of w as follows:

€| (n05i0)-w) |y | = vartwi 1+ €{(n5:0) -0 0)) |y | = A o)+ BOvi0) (29
where Varfwlyl= Ayi6) and €{(n(y:0)-n(v:0)) |v] = B30,
Define 1®(5(y;0)) as the second derivative of log f (y,s), evaluated at §(y;6). Then

the term, A(y;8), is approximated using a Laplace approximation as follows:



A(Y;0) =5 (19 (5(y:0) )6 (26)
The term, B(y;0), is approximated using the first order Taylor series expansion to
s(y; @) expanding about 6 and information matrix and as follows:

B(y;0) zC(y;é)' I‘l(e)C(y;é) 2.7)

where I(@) is the information matrix for @ based on the GLMMs and

y:0) =[/1'+5’(‘%0’;9)}5(88(%29))15,(Mn
2 do oK

CMSE can be approximated as follows:

C

—

. From (2.6) and (2.7), the

0=0

E[(n(y;é)—w)z\y}z5’(—l<2>(§(y;e))-1)5+c(y:é)'I‘l(e)C(y:é) (28)

Thus, we make use of (2.8) to construct a prediction interval for w as follows:

7(;60) 2, A(Y;0) + B(Y;0) <w<n(y;0) + 2, A 0) +B(y:0)  (2.9)
Using the same procedure discussed at the end of section 2.1, a prediction interval for

h(w) can also be constructed. In terms of the Quadrature method, this method finds a
new estimate of & by approximating the integrated likelihood using the quadrature
approximation instead of the Laplace approximation. The rest procedures are all as the

same as the Laplace method. It is worth noting that the prediction interval expression for

the quadrature method is as the same as (2.9). However, the values of 6 are not

10



estimated identically using these two methods because of different approximations to the
integrated likelihood. Thus, the values of the prediction interval from these two methods
are not the same either.
3. Proposed Methods
Section 3.1 BLP Based Prediction Intervals

In this section, we derive a prediction interval for w by starting with the BLP of
g '(w) . By doing so, we match the scale of y and g™*(w). We then use
g[BLP(g™*(w))] as a natural predictor for w and use it to derive the prediction interval
(L,U) that we use for w. A prediction interval for an arbitrary function h(w) is then
(h(L),h(U)) and will automatically be contained in the proper domain. For example,
(g’l(L),gfl(U)) will lie in the appropriate parameters space for u, which might be
[0,1] or R".
The BLP(g*(w)) can be represented as follows:

BLP(g™(w)) = Hyag TV V,,(y—4,) Equation Section 3(3.1)

g (w),y VY

Here, u .., =E(@ (W), V, =Cov(g™'(w),y), V,,=Cov(y,y), u,=E(y).

g7 (w).y

Thus, BLP(g™(w))has four terms that need to be derived:yg_l(w), \Y/ Vv,, and

gt (w),y’
u, . Let §[BLP(g™(w))] be the value of g[BLP(g™(w))] after replacing 6 in

11



g[BLP(g*(w))] with & in G[BLP(g*(w))]. In order to use §[BLP(g*(w))] to
construct a prediction interval for w, we need to approximate the mean squared error of
G[BLP(g " (w))]. Let 7(y;0) =g[BLP(g*(W))] and 7(y;8) = G[BLP(g"(w))]. Define

e=w-7(y;0)
=[w=n(y; )]+ | n(y:0)-n(y: ) |

(3.2)
and the exact MSE is M (€)= E(e?). In the case of LMMs, the two terms in (3.2) are
uncorrelated (Kackar and Harville, 1984). Based on simulation results discussed in

Section 5, we make the assumption that in our GLMM context they are at least

approximately uncorrelated to obtain at the following approximation to M ()

M (6) ~ E[n(y;0) -w] + E :77()/:9)—77(3/; é):z (3.3)
=M, (@) + M,(0).

where M,(0) =E[n(y;0)-w[" and M,(6)=E[n(y:0)-n(y:0)] . The first term in
(3.3) is approximated using a Taylor expansion of g(u) around g~ (w) yields:
n(y;0)—w=g'(g (W)[BLP(g ' (W)) —g " (W)]. It follows that

M, (0) ~ {E {9 (g *(W)IBLP(g *W) g W)}

(3.4)
+Var{g'(g ™ (W)[BLP(g (W) - g *(w]]

In Appendix A.1, we show that { E{g'(g’l(w))[BLP(g’l(w))—g’l(w)]}}z ={L E(T)}2

where Lo = (1 20V sy Vot ) (Vo Vo) —1)' and

12



T{g'(g‘l(w» g'g *W)[E(ys)] g'(g-l(w»g-l(w)j and

E(Y]s)=97(XB+2Zs)=u

And we also show:

Var {g (g™ (W)[BLP(g™*(w)) - g *(w)]]
2 , (35)
=L HL +(Vy, V55 JEN (9 ) ) Var (ys)) (V. V55

Where H, =Cov(T). In (3.5), the term, Var(y|s), is the covariance matrix of y|s and
off-diagonal entries are all zero and diagonal entries are the conditional variance of a
response given its associated random effects. Thus, M,(6) in (3.4) can be approximated

as follows:

!

M,(0) ~{LLE(T)} + L H,L, (Vs Vor )E {(g (7 w)) Var(y|s)} (A
(3.6)

Let d(y;0)=0n(y;0)/06 and define  A(@)=E[d(y;0)d(y;0)] and

B(0)=17'(0), where 1(0) is Fisher's information matrix whose ij-th element is given

by E[—@Z log L(€| y)/86’i80j] Using arguments that parallel Kackar and Harville’s

(1984), a second order Taylor expansion of #(y;0)—n(y;0) around 0=0 yields

13



[77(y;49)—77(y;¢9)]2z[d(y;é?)'(é’—é’)]2 and then ultimately M,(6)~tr[A(0)B(6)]
shown in Appendix A.2.  An approximationto M () is therefore

M (0) = { LE(T )}2 + L H,L, +(Vg—1(w>,yV£1y) E {(g -(g—l(w)))z Var(y\ s)}(vg,l(w)’yvjy ) +tr[A(0) B(9)].
(3.7)

However, M (@) still depends on unknown parameters. Thus, M (é) is the estimate of
M (), after substituting the parameter estimates. We propose the following 100 (1- )%
prediction interval for w:

n(y;:0)— 2, M (8) <w <n(y;0)+2,,\M (&) (3.8)

We are also interested in comparing the interval in (3.8) with the alternative interval
10%:0)= 2,3 [My(O) <w <n(;0)+2,,M,(0) (3.9)

that is based on using a (naive) estimator of MSE that ignores the expected increase in

MSE caused by having to use the eBLP instead of the BLP. Using the same procedure

discussed at the end of section 2.1 or 2.2, a prediction interval for h(w) can also be

constructed.

Recognizing that neither (n(y;é)—w)/«fl\'/'l(é) nor (r;(y;é)—w)/,\/Ml(é) may be

adequately approximated by a N(0,1) distribution, we also consider bootstrap percentile

adjustments of (3.8) and (3.9). An Algorithm 1 below shows how to obtain the

14



bootstrap percentile adjustments.

Algorithm 1

Use the data y to obtain parameter estimates 6 and eBLPs of the
cluster effects §=(S,,...,S,)’. The eBLPs are obtained as described in

Section 3.1, choosing A=0 and &=e;, where ¢ is zero except for a

one in the i-th position.

Compute i, =g (x3+$) ,i=1...m, j=1,..n

For k=1 to B (weuse B=1000)

Simulate a conditional bootstrap data set, fixing §, by generating the

components of y®, i=1,...,m, j=1,...,n independently from the

distributions f (-| ;;6), and compute the bootstrap estimator 9
Compute Z, :[n(y(k);é(k))—n(y;é)}lall\'fl(é(k)) if using interval (3.8)
or instead Zk:[n(y(k);é“‘))—n(y;é)Jlale(é(k)) if using interval (3.9)

Next k
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7. Extract lower and upper «/2 percentiles, L

a

, and U_,, respectively,
fromthe {Z }, quantities
8. Construct the bootstrap percentile interval

n(y:0) U, M (@) <w <(y;0) L, ,\[Mi () (3.10)

if using interval (3.8),
7(y:0) UM, (8) <w <n(y;0) - L,,\M,(6) (3.11)

if using interval (3.9)
Again, using the same procedure discussed at the end of section 2.1 or 2.2, a prediction
interval for h(w) can also be constructed.
Section 3.2 BP Based Prediction Interval

There are four motivations to use the BP based method instead of the BLP based

method. The first, in terms of the linear assumption, if we want to use the BLP, we have
to consider the scale problem because the BLP is a linear function of y. Thus, we derive a
prediction interval for w=A'8+d’s by starting with the BLP of g~ (w). There is no
scale problem for the BP because we know the BP is not always a linear function of y.
The second, in terms of the prediction error, we can prove w—n(y;8) and

n(y;0) —n(y;0) are uncorrelated when n(y;6) and n(y; é) are BP and eBP,
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respectively which is shown in Appendix A.3. However, this result does not hold when
n(y;6) and n(y;é) are BLP and eBLP, respectively. The third, in terms of M, (@), if
we use the BP, then M, (6) =S'E[Var(s|y;0)]6 (shown in Appendix A.4) is estimated
by using Monte Carlo simulation which we will discuss later. If we use the BLP, then

M, (6) can only be approximated using a Taylor expansion in (3.6). The fourth, the
Laplace method in PROC GLIMMIX also derives a prediction interval by starting with
the BP, and so we can make comparisons with our method to the Laplace method.

In this section, we derive a prediction interval for w by starting with the BP of w.
We then use n(y;8)=A'+56'E(s|y;0) as a natural predictor for w and use it to
derive the prediction interval (L,U) that we use for w. Again, a prediction interval for
an arbitrary function h(w) is then (h(L),h(U)) and will automatically be contained in
the proper domain. In practice, & isunknown and the predictor used is the so-called eBP,
denoted as n(y;é). The prediction error of the eBP is e = w—r;(y;é) and the exact
MSE is M(@)=E(€®). As we have discussed and proved w-7(y;d) and

n(y;0)—n(y;0) are uncorrelated, we know:
M(6) =M, () + M, (6) (3.12)

Here, the first term in (3.12) is simply M, (0) =E[Var(w|y)]=5E[Var(s|y;0)]5 and
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M, (6) =~tr[ A(6) B(0)]. Therefore, an approximationto M (6) is
M (0) = 5'E[Var(s| y;0)]S +tr[A6) B(9)]. (3.13)
Here, the Reader should note that the expressions needed to evaluate A(H) are in
(A.11). Consider estimating M(6) by using the plug-in estimator M(é). In this

section, we discuss the details of computing this estimator. In so doing, we will make

A

repeated use of Algorithm 2 (outlined on the next page) which is designed to receive 6

and an arbitrary function q(y;#) (which for our use is a matrix-valued function) and
return the plug-in estimator of E[q(y;&)] through Monte Carlo evaluation of
E[q(y;é)] , where E(-) denotes the estimated expectation with respect to the
distribution f(y;6) .  Algorithm 2 is specifically suited for situations where
E[q(y;H)] does not have a closed-form expression. We also note that q(y;#) itself
may not have a closed form expression.

The first term in (3.13) involves E[Var(s|y)]. The plug-in estimator of this quantity
can be obtained from Algorithm 2 by choosing q(y;&8) equal to the matrix Var(s|y).
[Recall that Var(s|y) is a diagonal matrix with elements Var(s,|y,)]. The second
term in  (3.13)separately involves both A(¢) and B(O) . Since
A(©) =E[d(y;6)d(y;0)'], Algorithm 2 will return A(@) by choosing q(y:;6) equal to
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the matrix d(y;0)d(y;0)’. Since B(6)=17(0), the plug-in estimator B(f) requires
the plug-in estimator of the matrix I(6?):E[—82 logL(@| y)/aeiae,.]. Algorithm 2
will return I(é) by choosing q(y;0) equal to the observed information matrix
1,(0)=[ -6 log L(0] )/ 06,00, |.
Algorithm 2

1. For k=1to K (weuse K =1000)

2. Simulate s independently from a N(0,6°) distribution,

I=1,...,m

3. Compute 4 =g (xA+s¥),i=1...m , j=1,..,n

(k

4. Simulate  y* =(y{,...,y") . i=1,....m by generating the

components independently from the distributions f (-] z;6) and let
yO ="y
5. Compute q(y®;6)
6. Nextk
7. Return X" q(y®;d)/K
After obtaining M(é), we can propose the 100 (1—a)% prediction interval for w as

follows:
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(Y 0)— 2, M (0) <w <n(y;0)+2,,\M (&) (3.14)

The Appendix A.5 summarizes all the calculations needed to compute (3.14). We are
also interested in comparing the interval in (3.14) with the alternative interval

7(%:0) = 2,,,\My(0) <W <7(y:0)+2,,\M,(6) (3.15)
Again, we also proposed the bootstrap percentile adjustments to construct the bootstrap
percentile interval as discussed in (3.10) and (3.11) because the Normal approximation
might be not adequate.
4. Examples
Section 4.1 Negative Binomial GLMM

Section 4.1.1 BLP Based Prediction Interval

Yij K
I(y. .
Here we have  f(y; | 4;,x) = (y; +) ) il and the typical link
C(y; +D0(x) | g+ M T K

function is g(u)=logu . For our illustration, we assume logs; =4 +s,  and

consider a prediction interval for ;. In this case we have 6= (B,,0%,x) and

N T I(y; +x) Ky 3 k| . 2
T(%.5:6) H“{F(yu +DI(x) (ﬂij +KJ (luij +K] }’ﬂ(sl’a )

and we can express the likelihood function as follows:
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m oo | LY +5) pors VM : .2
L(my)OCH'JwHJl{ F(K)K [eﬁ?*siwc] (eﬂ”;:zcj }W(s“a o

and the MLE is obtained as & =argmaxL(@|y) and can then be used to evaluate
0

n(y;0).

Define A=eh™/? B =g?*’ (e"z —1) and C=e?""2"" [ In Appendix A.6, we can

show:

"By ) (4.1)

BLP(g7 (W) =A+———
(97 (w) A+C+nB y

To evaluate Ml(é) , we use the formula in (3.6) with the required inputs shown in

Appendix A.7 as follows:
LLE(T)=B(A+C)/ (A*(A+C+nB))
LH,L, = (B(A+C)*(A* +B)*)/ (A*(A+C +nB)?)

’

(vg,l o Vol )E {(g (g™ (W) Var(ys, )} (vg,l o Vil ) N (B/(A+CnB) (A2 +B)/ A +1/ ) T

o0 evaluate Mz(é) , We have to calculate A(8) with the required inputs shown in
Appendix A.8 as follows:

Let p=nB/(A+C+nB), d,=nAB/(A+C+nB)’ , d,=(1-p)A,

3 2
d, = SMABHANAF2OAC - p)A/2, d,=nBC/(k(A+C+nB)?), d, =0
2(A+C+nB)

and we have:
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E(d(y;0)d'(y;0))=[E(f;(¥;))] where E(f;(¥,))~ f;(A)+ f/(AVarly;]/2 and
Var[y,]=B+(A+C)/n; and computation of f;(A) and f/(A) isenabled with the
required pieces by
f.(A)=d2/ A%, f1(A)=(-8Apd,d, +2A%dZ +6p%d3)/ A%,

42 2 " _ 242 242 4
f,,(A)=dZ/ A%, f5(A)=(-8Apd,d, +2A%d2+6p%d2)/ A%,

42 2 " _ 242 242 4
f(A)=dZ/ A2, f(A)=(-8Apdyd,+2A%d2 +6p%d2)/ A%,

d

d 14
f,(A) =  T5(A) =[60°d,d, +2A(Ad,d, —2pd,d, —2d,d;) |/ A*

d,d, "
f(A) = -8 5t (A) =[ 6p°d,d, +2A(Ad,ds —2d,d, —2d,d;) |/ A’
fs(A) = =25, 11(A) =[ 6p°d,d, + 2A(Adyd; —2pd,dg —2d,d;) |/ A"
The proposed 100 (1- )% prediction interval for w= £, +s, as discussed in section

3.1.

Section 4.1.2 BP Based Prediction Interval

Following the computational summary outlined in the Appendix A.5, E(s,|y,;#) can

be obtained from (A.9) and used to evaluate 7(y;6) =4, +E(S |y:;¢). Andthe MLE

can then be used to evaluate 7(y; é) .

To evaluate M (é), we use Algorithm 2 as described in Section 3.2, using referenced

formulas in the Appendix to derive the required inputs. Var(s, |y,;¢) can be computed
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directly  using equation (A.10). Let w(u) denote the digamma function.

Computation of on(y;0)/08, , on(y;0)!6c* and on(y;0)/ox isenabled by (A.11)

with the required pieces (A.12)-(A.14) and (A.15)-(A.17) being given by

ot (y;,s;0) K o ts,
P = - —ne” ) f(y.,s:8
P I A Y

of(y.s;0) 1 (s .
0o :20'2 (?_1 f(yi’si’g)

ﬂ0+5i
i (yé,’:l’e) {Z] 11//()/” +Kx)—ny(x) - T—FK—'—ni log (ﬁj} f(y;,s;0)
of (y;;6) R :
o Lﬂ eﬁO*s K(yi. ne®)f(y,s,;0) ds,
af(y.ﬂ) L@Z 2[ s jf(y,,s,,e) ds,

ot (v, 0) y, —ne™ K :
ok I {ZJlW(Y.,+’<) ny () - T‘”‘ibg o f(yis,:0) ds

Finally, the observed information matrix quantities are calculated from (A.18)-(A.23).

The quantities needed for these formulas are (A.24)-(A.29) and are respectively given by
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2 . 2 Bo+si
a f(yi’si’e) — {|: K (y| _nieﬁ0+5i)j| _|: K€ (y| _nieﬂ0+5i )+L

o’ B, et 4 e " +x)° et 4 e

x F(Y::8::0)

(yi — nieﬂ0+si ) (Y830

2
o

o’f(y,s:0) 1 [sf lj K

00’03, 25° e 4

62 f (yilsi;e) _ n; y: _nieﬁoJrSi P
7w DIRCARIEE S L P

x{ K —(yi.—nie/’oﬂi )} + eﬁ0+5i(yi~_nieﬂo+5i)} f(yi,si;H)

eﬂ0+si + i (eﬁo+5i +K)2

f(y,s:0) | 1(s8 ¥ 1(s 1 _
e b e B e )

azf(yi,siie)_ 1 Si2 n yiA_nieﬁo+si
oxdc? 202 ?_1 {ZHW(YU +K)_”i‘//(’<)—w

+ nilog(eﬂwﬁ)}f(yi,si;@)

o*f(y;,s;;0) n y, —nefs . 2
T e Zj:1W(yij +K) =Ny (k) —w+ n, log [mj

+ ZLW'( Yi t K)— ni‘//(’() +

nieﬁoﬂi :|}

Then, the proposed 100 (1- )% prediction interval for w= 3, +s, as obtained as

discussed in section 3.2.

Section 4.2 The Poisson GLMM

Section 4.2.1 BLP Based Prediction Interval
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Here we have  f(y; | ;) :exp(—uij)yijyij l'y;! and the typical link function is
g(u)=logu. We again assume logs; = +s; and consider a prediction interval for
w=f3,+s,. Inthiscase we have 8=(f,,0°) and

f(y,,s;0) =exp[—nieﬁ°+Si +(B, +si)yi]go(si;az)/H';‘:lyij! .

The likelihood function is L(@]y) mH:ilI:exp[—nieﬂ°*si +(5, +si)yi]go(si;az)dsi
and the MLE is obtained as & =arg gnax L(A|y) and can then be used to evaluate
n(y;6).
Define p=nB/(A+nB) with A=e®*°"? and B=e*»" (e"2 —1). In Appendix A.9,
we can show:

BLP(g ' (W)) = (1 p)A+ pY, (4.2)
To evaluate Ml(é) , we use the formula in (3.6) to calculate M,(8) in Appendix A.10

as follows:

1 Y(. nB 3B nB? B2
M@ ~Bl —— | [1+ =+ = = 4.3
() (A+nBj( A A2 AP A (43)

To evaluate Mz(é),we have to calculate M, (&) by evaluating A(&) in Appendix

A.11 as follows:
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1 p(p+nAl-p))

1 -
- IRY: 2 nA(l- p) 5 V(A o)
R ()
2 nA(-p) 47 P

(4.4)

The proposed 100 (1-a)% prediction interval for 4; as obtained by letting h= g’ as
discussed in section 3.1.
Section 4.2.2 BP Prediction Interval

Because the negative binomial distribution becomes the Poisson distribution when
k=00, all of the results in Section 4.1.2 pertaining to evaluating M(é) apply to the
Poisson GLMM case when the following two conventions are adopted: i) use the above
formula for f(y,,s;;0), ii) only use the derivative equations that are with respect to f,
and/or &, and use their limiting formas x — 0.
Following the computational summary outlined in the Appendix A.5, E(s,|y;;#) can be
obtained from (A.9) and used to evaluate 7(y;6) =4, +E(S,|y,;€). Andthe MLE can
then be used to evaluate 7(y; é) . Toevaluate M (é) , we use Algorithm 2 as described
in Section 2.2, using referenced formulas in the Appendix to derive the required inputs.
Var(s, | y;;6) can be computed directly using equation (A.10). Computation of

on(y;0)16pB, and on(y;0)/0c° isenabled by (A.11) with the required pieces (A.12)
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-(A.14) and (A.15)-(A.17) being given by

of (¥:,5::6)

_ _ So+si .
o, = (Y, —ne® ) £(y;,s;0)

of(y.s;0) 1 (s .
0o :20'2 (?_1 f(yi’si’e)

A0 1%y e |
8, le(yi‘ ne® ) f(y,s;0) ds,

of (y;;0) :J'w le(s—i—lj F(yi.5;:0) ds,
~20° | o

oo’
Finally, the observed information matrix quantities are calculated from (A.18), (A.19)

and (A.21). The quantities needed for these formulas are (A.24), (A.25) and (A.27)are

respectively given by

2 .
710.5:0) - {(yi. _nieﬂwsi)2 _nieﬂ0+Si } f(y;,s:60)

By
o f(y.,s;0 1 (s i
0

F(y,s:0) | 1 (s ) _1(s 1
i — 1 _ - | L= f(y. yS: ) o
o°c? 40"\ o° o*lo? 2 :%:6)

The proposed 100 (1-«)% prediction interval for .; as obtained by letting h= g’ as

discussed in section 3.2.
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Section 4.2.3 Bayes Interval

!

Define w, =e®*, w=(w,---w,) and v, :(yil,---ym)'. In Appendix A.12, we can

m

show:

LS (logwi— 4, )?

gw‘ﬁwiyi.—ff T (0?) e =% t(8,,0%)dpdo’ (4.5)

f(W|y)oce_

We assign the non-informative prior to f(/,) and the inverse gamma distribution to

f(o?) in (4.5). Define logw= logwi and ms’ = Z(Iogwi —log W)2 , and so we
it m i-1
can show the following result in Appendix A.13:
3w m ms® + 2.3 1y
f(wly)ce = l—IWiyi-’l (T] (4.6)
i=1

Our strategy is to generate a sample from the multivariate distribution of w|y in (4.6)
using the random walk Metropolis—Hastings algorithm as follows. This algorithm starts

with a given w® =(w®,---w )T and a symmetric m-dimensional distribution h. For

t=12--- ,let wO=w®? 1Y where &Y ~h(). Then compute
f(w®
a(w(t) |W(t—1)): min ]ﬂ% 4.7)
f (W | y)

Here, f(w]y) isderived using (4.6). We accept w® as the next draw from the

posterior distribution with probability (4.7), otherwise we set w® =w"™  After
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applying the Metropolis-Hastings algorithm, a Markov chain of (w®,w® ...} is used
as a sample from the posterior distribution. When constructing a 100 (l—a)% prediction
interval for w, , we consider a highest posterior density (HPD) interval using another
Monte Carlo algorithm developed by Chen and Shao (1999). This Monte Carlo algorithm
can be used to search for two percentiles which have the shortest interval length for a

100 (1—a)% prediction interval, using the criteria of minimizing the interval length
between two percentiles from a MCMC draws.

Section 4.3 The Bernoulli GLMM

Section 4.3.1 BLP Based Prediction Interval

Here we have f(y;la) =2 @—p;)™ and the typical link function
isg(u)=log(u/@-u)). For our illustration, we assume Iog[uij /(1—yij.)]:ﬂ0+si

and consider a prediction interval for ;. In this case we have 6= (B,,0%) and

e(ﬁo +5;) Vi

f(yi’si?9)=m€0(5i;0 )

and we can express the likelihood function as follows:

e(ﬁ0+5)y| 2
L@ty <[1.]" Ly o,

and the MLE is obtained as & =argmaxL(@|y) and can then be used to evaluate
4

n(y;0).
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Define E[eﬁ“s' /(1+eﬁ°+s' )Jand E[eﬁb*s' /(1+eﬁ°+5' )T are calculated numerically and

denotedas T, and T, respectively. In Appendix A.14, we can show:

BLP(g™(W)) =T, + (.-T) (v, —nT,) (4.8)
(T,-T,)+n (T, -T7)

To evaluate Ml(é) , we use the formula in (3.6) with the required inputs shown in

Appendix A.15 as follows:

Let A=T,-T, and B, =T,-T? anddenote H,; astheelementin the ithrow and
j thcolumnof H,:

L, =(T,-nTB/(A+nB) B/(A+nB)l -1)

E(T)=(YA+B/A+2+A (L+A)L 1+A)

H,. =2B(J/A+B/A°~1)/A*+B , H,, =BJ, H,;;=B, H,,=(-B/A*+2B}1,
H,,, =—B/A*+2B, H,, =Bl

E{(g '(g‘l(w)))ZVar(yi|si )} = ((A2 + B)/A3 +A+ 2) | and

Vo Vo =[BL/(A+nB)IL .

To evaluate Mz(é) , We have to calculate A(#) with the required inputs shown in
Appendix A.16 as follows:

Define
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T, = E[(eﬂ"”‘ ) (1t )3} ,
T,=| a*3e‘%+ﬂ (L sto?) [2V2r (et )] ds,
T g o " (1 5P07?) 11227 (et ds,
and T,, T, and T, are calculated numericallyand p=nB, /(A +nB))
E(d(y;0)d'(y;0)) =[E(f; (V)] where E(f;(¥,))~ f;(T,)+ f/(T,)Var[y,]/2 and

! (T —T,) and computation of f;(T,) and f/(T,) isenabled with

Var[y, |=T,-T +=

the required pieces by

2
CZ

f11 (Tl) =T — 2
(Tl (1_T1))

- 2
f11”(T1):—4C22 &_£+ p} 2C2 |:i_p_2_p—2i|
lT1(1_T1)]2 | C T 1-T I.T1(1 T)] A T12 (1_T1)2
r 2
__ 2% |y e P, |G PP
Ul(l—Tl)]z_ C, T1 1_T1 C22 T12 (1_T1)2
C,C
f, (T)=—722— and
12\"1 (Tl (1—T1))2
c,C o ¢ 20 2p | [ & & 208 2p°
f, (T) =—2%4— {—+—3——p+ p} +{——2——i+ pz + B z}
[L@-T)] c, T, 1-T c, ¢ T° (A-T)
2
fr(T)) =

(T,- T))

o % 2c; 5 C3_£+ P 2_ G P
22 ' [T1(1 T)] T1 1_T1 Cj T12 (1_T1)2




Where ¢, ¢,, c,,and c, aredefined in Appendix A.16. The proposed 100 (1— )%
prediction interval for 4; as obtained by letting h=g™ as discussed in section 3.1.
Section 4.3.2 BP Based Prediction Interval

Following the computational summary outlined in the Appendix A.5, E(s,|y,;#) can
be obtained from (A.9) and used to evaluate 7(y;6) =4, +E(S |y;¢). Andthe MLE
can then be used to evaluate 7(y;d). To evaluate M(6), we use Algorithm 2 as
described in Section 2.2, using referenced formulas in the Appendix to derive the
required inputs. Var(s,|y;;0) can be computed directly using equation (A.10).
Computation of on(y;0)/08, and on(y;0)/0c° is enabled by (A.11) with the

required pieces (A.12)-(A.14) and (A.15)-(A.17) being given by

of (y,.5,:6) _(y _ nef

of(y.s;0) 1 (s .
oo’ :20'2 (?_1 t(y,5:0)

of (y;0) (= n.e/os
— L= - f(y.,s;0) ds;
8ﬂ0 J:OO [ yl' 1+ eﬁ0+si (yl ! ) !

oo’

of (y;;6) :Iw le(s—izz—ljf(yi!si;e) ds; .
=20\ o

Finally, the observed information matrix quantities are calculated from (A.18), (A.19)
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and (A.21). The quantities needed for these formulas are (A.24), (A.25) and (A.27)are

respectively given by

aZf(yi,si;e)K neh ] nes

OB, 1+ | (L+eh™)?

82 f (y ) S 1 6) 1 S.2 n_eﬁ0+5i
ir9 = -1 i (v, 50
adzaﬁo 202 0-2 y" 1+ eﬂo+si (y| i )

f(y,s;0) | 1 (st Y 1(s 1 |
0*c? {40‘ (_ j 04[0'2 ZHf(yi'Si’g)'

The proposed 100 (1-«)% prediction interval for s; as obtained by letting h= g’

]f(yi,si:ﬁ)

discussed in section 3.2.

Section 4.3.3 Bayes Interval

Bo+si
Define w. = - . In Appendix A.17, we can show:
14/t
% _m ——mlog—ifﬂOZ
f(wly) ocHwy' )" (o Sl f(6,,0°)dB,do” (4.9)
_1 0 —o0

We assign the non-informative prior to f(/,) and the inverse gamma distribution to

f(c?) in (4.9). Define IogW=ZIOg—Wi and msz=2(logvvi—logw)2,and SO we
it m i-1

can show the following result in Appendix A.18:

m-1

1 (MT
f(W|y)ocHWy' H (1-w)" y(ms_;w] (4.10)
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Again, we can construct a HPD interval as discussed in section 4.2.3 using (4.10).
5 Performance Evaluations

To compare the proposed prediction intervals with the intervals in SAS, we
performed a simulation study to evaluate coverage probability and expected width of the
alternative intervals. In terms of alternative GLMMs, we considered the three
illustrative examples presented in Section 4.  In terms of the proposed prediction
intervals, we included both (3.8), (3.9), (3.14) and (3.15) in the simulation study — along
with their bootstrap adjusted versions and a HPD interval. We compared those four
intervals to the three intervals in SAS obtained by using the PL, L and Q methods.

For simulation parameters, we took me{10,20} andset n,=n for ne{5,10}.
When considering the negative binomial GLMM, we varied « e {1, 2,5 } We also
varied f,e{1,2} and oe{.2,.4}. These combinations of parameter values
correspond to the response variable having a mean that ranges between 2 and 8 and
variance that ranges between 3 and 94. Because it is intractable to demonstrate a HPD
interval under the negative binomial GLMM with x =0, we illustrate a HPD interval
with the Poisson GLMM, we varied f, €{1,1.5,2,2.5} and o e{.2,.4}. These

combinations of parameter values correspond to the response variable having a mean that
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ranges between 3 and 13 and variance that ranges between 3 and 43. For the Bernoulli
GLMM, we varied f,e{-25,-.5,5,2} and oe{2,2}. These choices of
parameter values corresponded to success probabilities that ranged from about 0.2 to 0.8.
Using the Bernoulli GLMM, we can also derive a HPD interval. For each scenario of
parameter settings and sample size values, we simulated 1000 data sets from the GLMM
and then evaluated each of the alternative prediction intervals. The percentage of
prediction intervals for each method that covered parameter was recorded.

Tables 1-4 and 6-9 show the coverage probabilities and Table 5 and 10 show expected
widths of all the alternative prediction intervals for the scenarios covering the negative
binomial and Poisson GLMMs, respectively. Table11-14 and Table 15 show
corresponding results for the Bernoulli GLMMs.

We see that the three prediction interval methods implemented in SAS have coverage
probabilities that are lower than expected, and in general, there is very little difference
between these three methods. While intervals (3.8), (3.9), (3.14) and (3.15) have coverage
probability closer to the nominal level, their bootstrapped versions offer the best solutions.
Tables1-4, 6-9 and 11-14 show that bootstrap adjustments were less effective with the

three SAS intervals and generally not adequate enough to make the coverage probabilities
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satisfactory. Using the BP base method, it is worth noting that we tried using a bias

correction with this 2tr(A(6)B(¢#)) (see, Harville and Jeske (1992)) and it resulted in

only a modest 1% increase in the coverage probability. From Table 5,10 and 15 we can

see increasing the number of clusters is more important than increasing the number of

sampling units in terms of reducing the expected width. Namely, when doubling the

number of clusters the expected width reduces by approximately 75% compared to

approximately 50% when doubling the number of sampling units. \We also see interval

(3.8) and (3.14) have an appropriately slightly wider expected width compared to interval

(3.9) and (3.15), respectively, due to the correction term in the MSE approximation.

6 Summary and Future Work

We have developed new prediction interval methodologies for a class of GLMMs that

are suitable for analyzing clustered count data. In the BLP and BP based intervals, our

approach was to derive an approximation to the MSE of the eBP or the eBLP using the

technique applied by Kackar and Harville (1984) for LMMs. In a HPD interval, our

approach is to use MCMC methods to sample from the conditional distribution of w|y.

We compared our proposed methods with three existing prediction interval methods that

are implemented in the SAS procedure GLIMMIX, which are based upon
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pseudo-likelihood, Laplace, and quadrature approximations.

For three illustrated examples, our simulation study showed that the coverage

probabilities for the intervals computed by SAS are too low. The coverage probabilities

for our proposed interval (3.8) and (3.14) with bootstrap adjustments are quite close to

the nominal value with an expected width that rapidly decreases as the number of clusters

increases, and less rapidly as the number of sampling units within a cluster increases.

For the Poisson GLMM and the Bernoulli GLMM, the HPD interval performs as well

as the BP based and the BLP based interval using the bootstrap percentile adjustment in

terms of coverage probability. Thus, we construct the expected width from each

simulation to compare these three methods in Table10-1 and 10-2 and Table15-1 and 15-2.

It is clear to see the expected width from the HPD interval is shorter than the BLP based

and the BP based interval using the bootstrap percentile adjustment, thus, the HPD

interval outperforms the BLP based and the BP based. Thus, when the HPD interval is

available, it has better performance, however, the BLP and the BP based interval are more

generalized

When constructing a HPD interval, we must know the form of the density in (4.6) or

(4.10), however, this density is usually mathematically intractable, so we then use the
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random walk Metropolis Hasting algorithm to sample from the target density in (4.6) or

(4.10), to construct a HPD interval.

In addition, future work includes considering a standard GLMM having two or more

random factors or a conjugate GLMM presented in Appendix A.19. When using this

conjugate GLMM, there are two advantages and two disadvantages. The first advantage

is that a closed form of the parameter estimate exists as shown in Appendix A.19 while

the second advantage is that a closed form approximation of the MSE is derived in

Appendix A.19. The first disadvantage is that it lacks flexibility to extend beyond

independent random factors while the second disadvantage is that no available software

can fit this conjugate GLMM. Due to these two disadvantages, the standard GLMM (our

operating GLMM) was considered in this dissertation.
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Prediction Interval

(3.14) (3.15) SAS/PL SAS/L SASIQ

By (3.14) | wiBS | (3.15) | w/BS | SASIPL | w/BS | SAS/L | wiBS | SASIQ | w/BS
1 0.900 | 0.938 | 0.885 | 0.933 | 0.879 | 0901 | 0.881 | 0903 | 0.882 | 0.905
0.902 | 0.939 | 0889 | 0.934 | 0.873 | 0.898 | 0875 | 0901 | 0.876 | 0.902

2 0.905 | 0.936 | 0.901 | 0.931 | 0.875 | 0.897 | 0876 | 0.899 | 0.876 | 0.903
0.899 | 0.934 | 0.896 | 0.928 | 0.876 | 0.899 | 0876 | 0901 | 0877 | 0.904

1 0.908 | 0.938 | 0.905 | 0.935 | 0.869 | 0.896 | 0871 | 0.898 | 0.873 | 0.901
0911 | 0.940 | 0907 | 0.936 | 0871 | 0.899 | 0.872 | 0900 | 0.872 | 0.902

2 0.905 | 0.941 | 0.899 | 0.939 | 0.868 | 0.894 | 0870 | 0.896 | 0.871 | 0.899
0.902 | 0.939 | 0.895 | 0.936 | 0.873 | 0.897 | 0874 | 0.899 | 0.875 | 0.900

1 0.898 | 0.943 | 0892 | 0.938 | 0.878 | 0903 | 0879 | 0904 | 0.881 | 0.905
0.894 | 0941 | 0889 | 0.937 | 0.875 | 0899 | 0876 | 0903 | 0877 | 0.904

2 0.896 | 0.943 | 0892 | 0.939 | 0872 | 0894 | 0873 | 089 | 0874 | 0.897
0893 | 0.942 | 0887 | 0936 | 0.876 | 0.898 | 0877 | 0901 | 0.879 | 0.903

Table 1-1. Negative Binomial Coverage Probabilities

for (m,n)=(10,5).

Nominal Coverage is 0.95.

39



Prediction Interval

Correlation of (3.8) (3.9) (3.14)

By | o |twotermsin (3.2) | (3.8) | w/BS | (3.9) | w/BS | w/2tr(AB)
1.2 -0.002 0.903 | 0.937 | 0.886 | 0.930 | 0.912
4 0.009 0.904 | 0.938 | 0.901 | 0.936 | 0.908

2 | .2 0.012 0.902 | 0.935 | 0.898 | 0.929 | 0.913
4 -0.006 0.898 | 0.932 | 0.895|0.930 | 0.901
1.2 0.003 0.906 | 0.941 | 0.903 | 0.934 | 0.917
4 -0.005 0.912 | 0.943 | 0.910 | 0.935| 0.920

2 | .2 0.007 0.903 | 0.940 | 0.897 [ 0.936 | 0.909
4 -0.001 0.903 | 0.938 [ 0.899 | 0.935| 0.911
1.2 -0.006 0.900 | 0.940 | 0.891|0.937 | 0.904
4 0.014 0.895| 0.939 | 0.890 [ 0.935| 0.901

2 | .2 -0.011 0.898 | 0.944 | 0.892 | 0.941 | 0.903
4 0.012 0.891 | 0.941 | 0.886 | 0.938 | 0.900

Table 1-2. Negative Binomial Coverage Probabilities
Nominal Coverage is 0.95.

for (m,n)=(10,5).
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Prediction Interval

(3.14) (3.15) SAS/PL SAS/L SASIQ
By | O | 314 | wBs | (315 | wiBS | SASPL | wiBS | SASL | wiBS | SASIQ | wiBS
1 2 | 0909 | 0941 | 0895 | 0.936 | 0.892 | 0904 | 0.894 | 0907 | 0.895 | 0.909
4 | 0912 | 0942 | 0909 | 0938 | 0.890 | 0901 | 0.891 | 0.903 | 0.891 | 0.905

2 2 | 0914 | 0939 | 0912 | 0935 | 0903 | 0912 | 0904 | 0914 | 0905 | 0.916
4 | 0916 | 0943 | 0913 | 0.940 | 0906 | 0916 | 0906 | 0917 | 0906 | 0.918

1 2 | 0911 | 0939 | 0908 | 093 | 00908 | 0915 | 0910 | 0916 | 0911 | 0.917
4 | 0915 | 0942 | 0912 | 0.940 | 0904 | 0912 | 0906 | 0913 | 0906 | 0.914

2 2 | 0920 | 0.940 | 0916 | 0.938 | 0.898 | 0908 | 0901 | 0910 | 0902 | 0.912
4 | 0917 | 0939 | 0915 | 0935 | 0.896 | 0903 | 0.897 | 0.904 | 0.899 | 0.906

1 2 | 0915 | 0943 | 0914 | 0942 | 0899 | 0906 | 0901 | 0910 | 0903 | 0.911
4 | 0918 | 0941 | 0916 | 0938 | 0901 | 0909 | 0902 | 0911 | 0904 | 0.912

2 2 | 0909 | 0941 | 0905 | 0937 | 0902 | 0912 | 0904 | 0913 | 0905 | 0.915
4 | 0907 | 0938 | 0903 | 0935 | 0905 | 0913 | 0906 | 0915 | 0907 | 0.915

Table 2-1. Negative Binomial Coverage Probabilities

for (m,n)=(10,10).

Nominal Coverage is 0.95.
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Prediction Interval

Correlation of (3.8) (3.9) (3.14)

By | o |twotermsin (3.2) | (3.8) | w/BS | (3.9) | w/BS | w/2tr(AB)
1.2 -0.010 0.907 | 0.938 | 0.901|0.933| 0.915
4 0.003 0.914 | 0.943 | 0.906 | 0.935| 0.918

2 | .2 0.012 0.912 | 0.941 | 0.910 [ 0.935| 0.919
4 0.006 0.915| 0.946 | 0.913 0.943| 0.921
1.2 -0.001 0.910 | 0.937 | 0.906 | 0.934 | 0.918
4 -0.003 0.917 | 0.944 | 0.914 | 0.942 | 0.919

2 | .2 0.009 0.922 | 0.943 | 0.917 | 0.939 | 0.925
4 -0.010 0.915| 0.939 | 0.911 [ 0.932 | 0.926
1.2 0.007 0.913 | 0.941 | 0.912 | 0.935| 0.922
4 -0.010 0.920 | 0.943 | 0.916 | 0.937 | 0.925

2 | .2 -0.006 0.911 | 0.938 | 0.908 | 0.934 | 0.916
4 0.015 0.905| 0.937 | 0.901 | 0.931| 0.918

Table 2-2. Negative Binomial Coverage Probabilities

for (m,n)=(10,10).
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Prediction Interval

(3.14) (3.15) SAS/PL SAS/L SASIQ
By | O | 314 | wBs | (315) | wiBS | SASPL | wBS | SASL | wBS | SASIQ w/BS
1 2 | 0916 | 0936 | 0912 | 0933 | 0912 | 0918 | 0914 | 0919 | 0915 0.920
4 | 0917 | 0938 | 0914 | 0935 | 0918 | 0923 | 0920 | 0923 | 0921 0.924

2 2 | 0921 | 0940 | 0919 | 0938 | 00909 | 0915 | 0911 | 0916 | 0912 0.918
4 | 0923 | 0941 | 0922 | 0940 | 0913 | 0920 | 0913 | 0922 | 0915 0.924

1 2 | 0926 | 0939 | 0925 | 0937 | 0914 | 0921 | 0915 | 0923 | 0917 0.924
4 | 0924 | 0937 | 0923 | 0935 | 0918 | 0923 | 0922 | 0924 | 0.924 0.926

2 2 | 0915 | 0942 | 0912 | 0940 | 0920 | 0924 | 0921 | 0925 | 0923 0.926
4 | 0912 | 0938 | 0908 | 0936 | 0917 | 0919 | 0919 | 0921 | 0921 0.923

1 2 | 0925 | 0941 | 0922 | 0939 | 0915 | 0923 | 0917 | 0925 | 0919 0.926
4 | 0928 | 0944 | 0925 | 0941 | 0911 0916 | 0911 | 0.916 | 0.913 0.918

2 2 | 0919 | 0942 | 0917 | 0940 | 0921 | 0926 | 0922 | 0927 | 0.924 0.928
4 | 0917 | 0940 | 0915 | 0939 | 0918 | 0921 | 0919 | 0923 | 0919 0.925

Table 3-1. Negative Binomial Coverage Probabilities

for (m,n)=(20,5).

Nominal Coverage is 0.95.
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Prediction Interval

Correlation of (3.8) (3.9) (3.14)

By | o |twotermsin (3.2) | (3.8) | w/BS | (3.9) | w/BS | w/2tr(AB)
1.2 0.005 0.918 | 0.933 | 0.910 [ 0.929 | 0.922
4 0.007 0.915| 0.936 | 0.9130.933| 0.924

2 | .2 -0.013 0.920 | 0.939 | 0.918 | 0.935| 0.928
4 -0.006 0.924 | 0.942 | 0.921 | 0.937 | 0.929
1.2 0.005 0.928 | 0.941 |0.92410.935| 0.930
4 -0.006 0.925| 0.938 | 0.921 | 0.933 | 0.928

2 | .2 0.001 0.913 | 0.936 | 0.910 | 0.934 | 0.920
4 0.006 0.910 | 0.937 | 0.908 | 0.934 | 0.918
1.2 0.002 0.924 | 0.939 |0.920 | 0.937 | 0.930
4 -0.016 0.930 | 0.945 | 0.927 | 0.940 | 0.932

2 | .2 0.012 0.917 | 0.941 | 0.9130.938| 0.924
4 -0.013 0.918 | 0.937 | 0.916 | 0.936 | 0.923

Table 3-2. Negative Binomial Coverage Probabilities
Nominal Coverage is 0.95.

for (m,n)=(20,5).
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Prediction Interval

(3.14) (3.15) SASIPL SAS/L SASIQ
By, | O | 3149 | wBs | 315) | wBS | SASPL | wBS | SAS/L | wiBS | SAS/Q W/BS
1 2 | 0919 | 0944 | 0915 | 0.942 | 0921 | 0930 | 0922 | 0931 | 0.924 0.932
4 | 0923 | 0948 | 0918 | 0.946 | 0925 | 0931 | 0926 | 0932 | 0.926 0.933

2 2 | 0925 | 0943 | 0924 | 0942 | 0918 | 0925 | 0919 | 0926 | 0921 0.926
4 | 0929 | 0947 | 0927 | 0.946 | 0923 | 0928 | 0923 | 0928 | 0.924 0.929

1 2 | 0930 | 0948 | 0927 | 0945 | 0925 | 0932 | 0926 | 0933 | 0.926 0.934
4 | 0928 | 0945 | 0926 | 0943 | 0924 | 0930 | 0927 | 0931 | 0.929 0.932

2 2 | 0926 | 0946 | 0923 | 0.944 | 0925 | 0931 | 0926 | 0932 | 0927 0.933
4 | 0923 | 0945 | 0921 | 0942 | 0923 | 0928 | 0924 | 0930 | 0926 0.931

1 2 | 0926 | 0943 | 0925 | 0.942 | 0929 | 0933 | 0931 | 0934 | 0932 0.935
4 | 0929 | 0947 | 0928 | 0.946 | 0926 | 0929 | 0927 | 0931 | 0927 0.931

2 2 | 0925 | 0942 | 0924 | 0941 | 0926 | 0930 | 0927 | 0931 | 0.929 0.932
4 | 0927 | 0944 | 0926 | 0943 | 0921 | 0928 | 0923 | 0928 | 0.925 0.929

Table 4-1. Negative Binomial Coverage Probabilities
for (m,n)=(20,10).

Nominal Coverage is 0.95.
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Prediction Interval

Correlation of (3.8) (3.9) (3.14)

By | o |twotermsin (3.2) | (3.8) | w/BS | (3.9) | w/BS | w/2tr(AB)
1.2 -0.004 0.917 | 0.944 | 0.9130.939| 0.924
4 -0.012 0.922 | 0.950 | 0.916 | 0.942 | 0.928

2 | .2 -0.011 0.927 | 0.948 | 0.922 | 0.941 | 0.929
4 -0.009 0.928 | 0.945 | 0.924 | 0.942 | 0.932
1.2 0.005 0.932 | 0.952 | 0.923 |0.947| 0.935
4 -0.010 0.925| 0.947 | 0.922 | 0.943 | 0.931

2 | .2 0.004 0.926 | 0.946 | 0.922 | 0.942 | 0.931
4 -0.012 0.924 | 0.943 | 0.919 | 0.942 | 0.928
1.2 0.007 0.925| 0.944 |0.921 (0.938 | 0.931
4 0.014 0.930 | 0.948 | 0.925|0.942| 0.934

2 | .2 0.007 0.926 | 0.944 | 0.923 | 0.940 | 0.929
4 0.012 0.926 | 0.946 | 0.920 | 0.939 | 0.934

Table 4-2. Negative Binomial Coverage Probabilities

for (m,n)=(20,10).
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Expected Width for (M, N)

(10, 5) (10, 10)
(3.14)

ﬂo (3.14)w/BS | (3.15w/BS | (3.8) w/iBS | (3.9w/BS | w/BS | (3.15) w/iBS | (3.8) W/BS | (3.9)w/BS
1 2.348 2.298 2.451 2.357 1.338 1.289 1.432 1.348
2.576 2.498 2.579 2.489 1.548 1.493 1.486 1.358
2 2.987 2.893 2.889 2.798 1.632 1.583 1.569 1.426
3.042 2.983 2.987 2.887 1.738 1.695 1.831 1.730
1 2.563 2.478 2.487 2.376 1.284 1.238 1.312 1.231
2.681 2,512 2.689 2.563 1.292 1.258 1.322 1.245
2 3.034 2.983 2.987 2.872 1.318 1.263 1.431 1.331
3.142 3.015 3.241 3.126 1.322 1.301 1.298 1.265
1 2.487 2.397 2.512 2.451 1.326 1.298 1.301 1.288
2.534 2.498 2.612 2.561 1.341 1.328 1.351 1.333
2 2.834 2.795 2.784 2.684 1.358 1.348 1.372 1.351
2.931 2.887 2.928 2.842 1.361 1.351 1.340 1.308

Table 5-1. Negative Binomial Expected Widths.
Nominal Coverage is 0.95.
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Expected Width for (M, N)

(20, 5) (20, 10)
(3.14)

ﬂo (3.14)w/BS | (3.15w/BS | (3.8) w/iBS | (3.9w/BS | w/BS | (3.15) w/iBS | (3.8) W/BS | (3.9)w/BS
1 0.787 0.713 0.797 0.783 0.489 0.463 0.512 0.501
0.812 0.795 0.816 0.802 0.492 0.471 0.503 0.498
2 0.825 0.806 0.831 0.821 0.503 0.493 0.496 0.483
0.831 0.828 0.829 0.819 0.509 0.501 0.487 0.479
1 0.756 0.748 0.776 0.764 0.499 0.488 0.505 0.493
0.779 0.763 0.785 0.769 0.512 0.503 0.498 0.482
2 0.781 0.772 0.790 0.781 0.516 0.510 0.501 0.491
0.792 0.781 0.798 0.784 0.522 0.518 0.526 0.512
1 0.748 0.732 0.738 0.725 0.475 0.468 0.498 0.483
0.751 0.738 0.755 0.743 0.479 0.470 0.490 0.482
2 0.762 0.749 0.768 0.751 0.485 0.479 0.476 0.465
0.768 0.759 0.781 0.779 0.489 0.481 0.494 0.483

Table 5-2. Negative Binomial Expected Widths.
Nominal Coverage is 0.95.
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Prediction Interval

(3.14) (3.15) SAS/PL SAS/L SASIQ
ﬁo (314) | w/BS | (3.15) | w/BS | SASIPL | wiBS | SASIL | w/BS | SASIQ | wiBS
1 0.903 | 0939 | 0.898 | 0.937 | 0.884 0902 | 0884 | 0.903 | 0.885 | 0.904
0.901 | 0.940 | 0.896 | 0.938 | 0.881 0905 | 0.883 | 0.906 | 0.886 | 0.907

15 0.905 | 0937 | 0.901 | 0.933 | 0.892 0903 | 0894 | 0.904 | 0.895 | 0.904
0.902 | 0938 | 0.898 | 0.934 | 0.896 0906 | 0.897 | 0.906 | 0.899 | 0.907

2 0.894 | 0.940 | 0.889 | 0.938 | 0.875 0894 | 0876 | 0.896 | 0.878 | 0.897
0.896 | 0.942 | 0.892 | 0.939 | 0.879 0893 | 0881 | 0.895 | 0.882 | 0.895

25 0.899 | 0941 | 0.893 | 0.938 | 0.887 0898 | 0888 | 0.900 | 0.889 | 0.901
0.903 | 0937 | 0.898 | 0.934 | 0.881 0899 | 0881 | 0.902 | 0.883 | 0.903

Table 6-1. Poisson GLMM Coverage Probabilities
for (m,n)=(10,5). Nominal Coverage is 0.95.

Correlation of Prediction Interval
(3.8) (3.9) (3.14)
two terms in (3.2)
ﬂo o (38) | wiBS | (3.9) | wiBS | HPD | wi2tr(AB)
1 2 0.004 0.903 | 0.938 | 0.895 | 0.936 | 0.937 0.911
A4 0.006 0.901 | 0.939 | 0.897 | 0.935 | 0.934 0.906
15 2 -0.012 0.905 | 0.937 | 0.902 | 0.935 | 0.938 0.912
A4 0.008 0.908 | 0.939 | 0.905 | 0.938 | 0.940 0.908
2 2 -0.009 0.895 | 0.941 | 0.891 | 0.937 | 0.941 0.897
A4 0.005 0.896 | 0.943 | 0.890 | 0.938 | 0.939 0.900
25 2 0.012 0.901 | 0.940 | 0.899 | 0.939 | 0.942 0.902
A4 -0.008 0.894 | 0.938 | 0.891 | 0.936 | 0.939 0.908
Table 6-2. Poisson GLMM Coverage Probabilities

for (m,n)=(10,5). Nominal Coverage is 0.95.
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Prediction Interval

(3.14) (3.15) SAS/PL SAS/L SASIQ

ﬁo (314) | w/BS | (3.15) | w/BS | SASIPL | wiBS | SASIL | w/BS | SASIQ | wiBS
1 0.916 | 0.940 | 0916 | 0.936 | 0.899 0911 | 0901 | 0912 | 0903 | 0.913
0920 | 0941 | 0917 | 0.940 | 0.894 0908 | 0.898 | 0910 | 0.899 | 0.912

15 0915 | 0938 | 0913 | 0935 | 0.902 0914 | 0903 | 0915 | 0904 | 0.917
0923 | 0939 | 0920 | 0937 | 0.903 0916 | 0905 | 0917 | 0906 | 0.918

2 0922 | 0939 | 0918 | 0936 | 0.890 0906 | 0892 | 0.909 | 0.892 | 0.911
0.918 | 0936 | 0915 | 0932 | 0.904 0915 | 0905 | 0917 | 0905 | 0.918

25 0.921 | 0940 | 0919 | 0.938 | 0.901 0912 | 0902 | 0913 | 0903 | 0.914
0.924 | 0938 | 0921 | 0936 | 0.905 0910 | 00906 | 0.910 | 0906 | 0.912

Table 7-1. Poisson GLMM Coverage Probabilities

for (m,n)=(10,10).

Nominal Coverage is 0.95.

Correlation of

Prediction Interval

3.8) (3.9 (3.14)
two terms in (3.2)

B, o (38) | wBS | (39) | wBS | HPD | wi2tr(AB)
1 2 0012 0.916 | 0.942 | 0.914 | 0940 | 0941 | 0.920
4 -0.014 0921 | 0.940 | 0.916 | 0.938 | 0.937 | 0.928
15 2 0.005 0.915 | 0.939 | 0.913 | 0.936 | 0.942 | 0.923
4 -0.009 0.924 | 0941 | 0.920 | 0.938 | 0.940 | 0.931
2 2 -0.013 0922 | 0942 | 0.916 | 0.938 | 0.941 | 0.926
4 -0.006 0915 | 0939 | 0912 | 0.937 | 0939 | 0.925
25 2 0.007 0018 | 0.944 | 0915 | 0941 | 0942 | 0.928
4 0015 0.920 | 0.943 | 0.918 | 0.939 | 0.936 | 0.930

Table 7-2. Poisson GLMM Coverage Probabilities

for (m,n)=(10,10).

Nominal Coverage is 0.95.
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Prediction Interval

(3.14) (3.15) SAS/PL SAS/L SASIQ
ﬁo (3.14) | w/BS | (3.15) | w/BS | SAS/PL | w/BS | SAS/L | w/BS | SAS/Q | wiBS
1 0.921 | 0.941 | 0.918 | 0.939 0.915 0.927 0.917 0.929 0.918 0.930
0.925 | 0.936 | 0.923 | 0.935 0.918 0.923 0.919 0.925 0.919 0.927
15 0.927 | 0.942 | 0.924 | 0.940 0.920 0.928 0.921 0.930 0.923 0.930
0.922 | 0.941 | 0.918 | 0.939 0.925 0.931 0.925 0.932 0.927 0.933
2 0.920 | 0.943 | 0.919 | 0.941 0.911 0.922 0.912 0.924 0.912 0.924
0.924 | 0944 | 0.921 | 0.941 0.921 0.924 0.923 0.925 0.924 0.926
2.5 0.930 | 0.946 | 0.926 | 0.943 0.916 0.925 0.918 0.926 0.919 0.927
0.931 | 0.945 | 0.927 | 0.942 0.927 0.932 0.928 0.934 0.929 0.935

Table 8-1. Poisson GLMM Coverage Probabilities

for (m,n)=(20,5).

Nominal Coverage is 0.95.

Correlation of Prediction Interval
(3.8) (3.9) (3.14)
two terms in (3.2)

ﬂo o (38) | wiBS | (3.9) | w/BS | HPD | w/2tr(AB)
1 2 0.003 0.920 | 0.939 | 0918 | 0.934 | 0.937 0.923
A4 -0.002 0.924 | 0.946 | 0921 | 0.941 | 0.942 0.929
15 2 -0.005 0.921 | 0.945 | 0.918 | 0.943 | 0.944 0.935
A4 -0.012 0.925 | 0.947 | 0.921 | 0.945 | 0.943 0.930
2 2 0.016 0.923 | 0.944 | 0.920 | 0.940 | 0.941 0.931
A4 -0.014 0.928 | 0.945 | 0.926 | 0.941 | 0.940 0.932
25 2 0.005 0.924 | 0.942 | 0.922 | 0.940 | 0.942 0.936
A4 -0.008 0.927 | 0.940 | 0.925 | 0.938 | 0.943 0.935

Table 8-2. Poisson GLMM Coverage Probabilities

for (m,n)=(20,5).

Nominal Coverage is 0.95.
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Prediction Interval

(3.14) (3.15) SAS/PL SAS/L SASIQ

By | o

(314) | wiBS | (3.15) | w/BS | SAS/PL | w/BS | SASIL | w/BS | SAS/Q | wiBS

1 .2 0.928 | 0.946 | 0.926 | 0.943 0.922 0.927 0.922 0.927 0.923 0.928

4 0.929 | 0.945 | 0.927 | 0.941 0.918 0.932 0.919 0.932 0.920 0.933

15 .2 0.925 | 0.946 | 0.921 | 0.942 0.925 0.930 0.926 0.931 0.926 0.931

4 0.921 | 0.943 | 0.918 | 0.939 0.927 0.932 0.928 0.933 0.929 0.935

2 .2 0.923 | 0.941 | 0.920 | 0.940 0.921 0.928 0.921 0.925 0.922 0.927

4 0.928 | 0.947 | 0.923 | 0.944 0.926 0.931 0.926 0.930 0.927 0.931

25 .2 0.930 | 0.948 | 0.926 | 0.945 0.929 0.934 0.930 0.935 0.931 0.936

4 0.929 | 0.945 | 0.925 | 0.941 0.931 0.936 0.931 0.936 0.932 0.936

Table 9-1. Poisson GLMM Coverage Probabilities
for (m,n)=(20,10). Nominal Coverage is 0.95.

Correlation of Prediction Interval
(3.14)
two terms in (3.2) (3.8) (3.9

ﬂo o (38) | wiBS | (38.9) | w/BS | HPD | w/2tr(AB)
1 2 0.009 0.927 | 0.944 | 0925 | 0.941 | 0.944 0.936
A4 0.003 0.921 | 0.945 | 0.919 | 0.942 | 0.940 0.936
15 2 -0.008 0.930 | 0.947 | 0.925 | 0.945 | 0.942 0.933
A4 0.012 0.934 | 0.948 | 0.932 | 0.947 | 0.946 0.932
2 2 -0.014 0.928 | 0.946 | 0.925 | 0.944 | 0.949 0.931
A4 0.009 0.924 | 0.945 | 0.922 | 0.943 | 0.947 0.934
25 2 -0.013 0.931 | 0.942 | 0.929 | 0.939 | 0.943 0.934
A4 -0.005 0.929 | 0.948 | 0.926 | 0.945 | 0.947 0.935

Table 9-2. Poisson GLMM Coverage Probabilities
for (m,n)=(20,10). Nominal Coverage is 0.95.
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Expected Width for (m , n)

(10,5) (10, 10)
(3.14) | (315) | (3.8) (3.9 | HPD (3.14) | 315) | (38) (3.9 | HPD
ﬂo w/BS w/BS | w/BS w/BS w/BS w/BS | w/BS w/BS
1 5124 | 4.987 | 5234 | 5019 4897 | 2.348 | 2257 | 2579 | 2.462 2.198
5579 | 5.321 | 5679 | 5.458 5238 | 2.357 | 2145 | 2487 | 2.378 2.013
15 4987 | 4789 | 5005 | 4874 4679 | 2451 | 2235 | 2378 | 2.264 1.984
5011 | 4.982 | 4.987 | 4872 4563 | 2443 | 2138 | 2.375 | 2263 1.982
2 5523 | 5314 | 5231 | 5.014 4872 | 2.378 | 2224 | 2413 | 230 2.013
4867 | 4642 | 4763 | 4578 4231 | 2.298 | 2109 | 2.324 | 2.287 2.024
25 5021 | 4.809 | 4.984 | 4.783 4349 | 2543 | 2238 | 2480 | 2.384 2231
5145 | 4.908 | 5012 | 4.983 4592 | 2.621 | 2348 | 2587 | 2.485 2.140
Table 10-1. Poisson GLMM Expected Widths.
Nominal Coverage is 0.95.
Expected Width for (m , n)
(20, 5) (20, 10)
(3.14) | 315) | (3.9) (39) | HPD (6.14) | 315 | (38) (3.9) | HPD
ﬂo w/BS | w/BS | w/BS w/BS w/BS | w/BS w/BS w/BS
1 1267 | 1.187 | 1.256 | 1.187 1.004 | 0684 | 0662 | 0691 | 0673 0.631
1253 | 1.165 | 1.248 | 1.128 1104 | 0692 | 0671 | 0683 | 0.663 0.623
15 1225 | 1159 | 1.238 | 1.117 0983 | 0702 | 0673 | 0.711 | 0.689 0.642
1119 | 0998 | 1.226 | 1.120 0981 | 0713 | 0687 | 0721 | 0.702 0.639
2 1112 | 0992 | 1229 | 1112 0984 | 0698 | 0663 | 0.683 | 0.669 0.644
1243 | 1.082 | 1.183 | 0.988 0975 | 0732 | 0701 | 0714 | 0.693 0.648
25 1273 | 1104 | 1.225 | 1.009 0988 | 0692 | 0671 | 0702 | 0.682 0.652
1281 | 1107 | 1.245 | 1.012 0993 | 0721 | 0702 | 0719 | 0.699 0.667

Table 10-2. Poisson GLMM Expected Widths.
Nominal Coverage is 0.95.
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Prediction Interval
(3.14) (3.15) SAS/PL SAS/L SAS/Q
By | ©
(314) | wBS | (3.15) | w/BS | SASIPL | w/BS | SAS/L | wiBS | SAS/Q | w/BS
25 02 | 0895 | 0935 | 0.892 | 0.934 | 0.869 0878 | 0.870 | 0.879 | 0871 | 0.879
2 | 0899 | 0942 | 0.896 | 0.938 | 0.871 0880 | 0.873 | 0.881 | 0874 | 0.881
05 02 | 0908 | 0941 | 0.905 | 0.939 | 0.875 0883 | 0.876 | 0.884 | 0877 | 0.886
2 | 0903 | 0939 | 0901 | 0.936 | 0.873 0881 | 0.875 | 0.882 | 0876 | 0.884
05 02 | 0894 | 0934 | 0.891 | 0.931 | 0.875 0884 | 0876 | 0.885 | 0.878 | 0.886
2 | 0897 | 0935 | 0.893 | 0.932 | 0.878 0889 | 0.878 | 0.891 | 0879 | 0.892
2.0 02 | 0905 | 0940 | 0.902 | 0.938 | 0.874 0885 | 0.876 | 0.885 | 0.877 | 0.886
2 | 0902 | 0938 | 0.897 | 0.935 | 0.876 0888 | 0.874 | 0.889 | 0875 | 0.891
Table 11-1. Bernoulli GLMM Coverage Probabilities
for (m,n)=(10,5). Nominal Coverage is 0.95.
Correlation of Prediction Interval
3.8) 3.9) (3.14)
two terms in (3.2)
ﬂo o (38) | w/BS | (39) | w/BS | HPD | wi2tr(AB)
25 0.2 0.004 0.893 | 0.934 | 0.890 | 0.931 | 0.935 0.899
2 0.008 0.896 | 0.940 | 0.894 | 0.936 | 0.937 0.902
0.5 0.2 0.012 0911 | 0.942 | 0.907 | 0.937 | 0.940 0.912
2 -0.009 0.905 | 0.938 | 0.902 | 0.933 | 0934 | 0.909
05 0.2 0.014 0.895 | 0.936 | 0.890 | 0.931 | 0.933 0.899
2 0.006 0897 | 0.934 | 0893 | 0.929 | 0934 | 0.902
2.0 0.2 -0.005 0.907 | 0.942 | 0.900 | 0.937 | 0.936 0.908
2 0.013 0.903 | 0.940 | 0.898 | 0.937 | 0.937 0.906

Table 11-2. Bernoulli GLMM Coverage Probabilities
for (m,n)=(10,5).

Nominal Coverage is 0.95.
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Prediction Interval

(3.14) (3.15) SAS/PL SAS/L SASIQ

B | @
(314) | wBS | (3.15) | w/BS | SAS/PL | wiBS | SASIL | w/BS | SASIQ | wiBS
25 02 | 0911 | 0942 | 0.907 | 0.938 | 0.903 0908 | 00906 | 0910 | 0907 | 0.911
2 | 0905 | 0940 | 0.902 | 0.936 | 0.897 0906 | 0.897 | 0.906 | 0.900 | 0.906
05 02 | 0915 | 0944 | 0911 | 0.942 | 0.899 0906 | 0901 | 0.907 | 0.903 | 0.908
2 0911 | 0.941 | 0.907 | 0.939 | 0.895 0902 | 0897 | 0.903 | 0.898 | 0.904
05 02 | 0918 | 0935 | 0.915 | 0.931 | 0.892 0901 | 0893 | 0.902 | 0.895 | 0.903
2 | 0920 | 0938 | 0916 | 0.935 | 0.896 0904 | 0896 | 0.905 | 0.898 | 0.906
2.0 02 | 0917 | 0943 | 0.914 | 0938 | 0.901 0906 | 0.904 | 0.907 | 0.906 | 0.908
2 | 0912 | 0941 | 0.908 | 0.939 | 0.898 0904 | 0901 | 0.905 | 0.903 | 0.906

Table 12-1. Bernoulli GLMM Coverage Probabilities

for (m,n)=(10,10).

Nominal Coverage is 0.95.

Correlation of

Prediction Interval

(3.8) (3.9) (3.14)
two terms in (3.2)

ﬂo o (38) | wiBS | (3.9) | w/BS | HPD | wr2tr(AB)
-25 0.2 0.012 0.908 | 0.944 | 0.904 | 0.939 | 0.940 0.915
2 -0.015 0.906 | 0.942 | 0.902 | 0.934 | 0.935 0.909
-05 0.2 0.007 0.913 | 0.945 | 0.909 | 0.939 | 0.943 0.918
2 0.013 0.910 | 0.943 | 0.905 | 0.940 | 0.941 0.915
0.5 0.2 0.005 0.915 | 0.937 | 0.911 | 0.932 | 0.935 0.921
2 -0.002 0.922 | 0.939 | 0.916 | 0.936 | 0.933 0.923
2.0 0.2 0.002 0.916 | 0.942 | 0.913 | 0.939 | 0.936 0.920
2 0.008 0.913 | 0.939 | 0.910 | 0.938 | 0.938 0.918

Table 12-2. Bernoulli GLMM Coverage Probabilities

for (m,n)=(10,10).

Nominal Coverage is 0.95.
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Prediction Interval
(3.14) (3.15) SAS/PL SAS/L SAS/Q
By | o
(3.14) | w/BS | (3.15) | w/BS | SAS/PL | w/BS | SAS/L | w/BS | SAS/Q | wiBS
-2.5 0.2 0.925 | 0.944 | 0.921 | 0.939 0.921 0.926 0.922 0.927 0.923 0.928
2 0.921 | 0.941 | 0.916 | 0.939 0.919 0.924 0.920 0.925 0.921 0.926
-0.5 0.2 0.919 | 0.938 | 0.915 | 0.936 0.912 0.920 0.914 0.921 0.916 0.922
2 0.923 | 0.941 | 0.918 | 0.940 0.914 0.922 0.915 0.923 0.918 0.925
0.5 0.2 0.924 | 0.942 | 0.919 | 0.940 0.922 0.928 0.922 0.930 0.924 0.931
2 0.928 | 0.945 | 0.923 | 0.941 0.923 0.930 0.923 0.931 0.925 0.932
2.0 0.2 0.922 | 0.942 | 0.919 | 0.940 0.915 0.924 0.917 0.925 0.919 0.926
2 0.918 | 0.944 | 0.914 | 0.941 0.911 0.917 0.914 0.918 0.916 0.920
Table 13-1. Bernoulli GLMM Coverage Probabilities
for (m,n)=(20,5). Nominal Coverage is 0.95.
Correlation of Prediction Interval
(3.8) (3.9) (3.14)
two terms in (3.2)
ﬁo o (3.8) | wiBS | (3.9) | w/BS | HPD | w/2tr(AB)
-25 0.2 0.004 0.926 | 0.944 | 0.922 | 0.938 | 0.937 0.929
2 0.007 0.922 | 0942 | 0.917 | 0.936 | 0.940 0.926
-05 0.2 -0.013 0.917 | 0.936 | 0.912 | 0.933 | 0.939 0.925
2 -0.008 0.921 | 0.943 | 0.918 | 0.939 | 0.941 0.928
0.5 0.2 0.007 0.926 | 0.943 | 0.921 | 0.940 | 0.942 0.929
2 0.009 0.927 | 0.946 | 0.920 | 0.942 | 0.943 0.932
2.0 0.2 0.005 0.920 | 0.941 | 0.918 | 0.938 | 0.939 0.926
2 -0.008 0.917 | 0.942 | 0.915 | 0.937 | 0.943 0.924
Table 13-2. Bernoulli GLMM Coverage Probabilities

for (m,n)=(20,5).

Nominal Coverage is 0.95.
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Prediction Interval
(3.14) (3.15) SAS/PL SAS/L SAS/Q
By | o
(3.14) | w/BS | (3.15) | w/BS | SAS/PL | w/BS | SAS/L | w/BS | SAS/Q | w/BS
-2.5 0.2 0.929 | 0.947 | 0.928 | 0.946 0.925 0.931 0.926 0.931 0.927 0.931
2 0.928 | 0.945 | 0.925 | 0.943 0.923 0.928 0.925 0.928 0.926 0.929
-0.5 0.2 0.933 | 0.946 | 0.929 | 0.945 0.919 0.925 0.921 0.926 0.922 0.927
2 0.931 | 0945 | 0.927 | 0.941 0.918 0.923 0.921 0.925 0.922 0.926
0.5 0.2 0.924 | 0945 | 0.921 | 0.942 0.922 0.926 0.923 0.927 0.924 0.928
2 0.929 | 0.948 | 0.926 | 0.944 0.924 0.930 0.924 0.931 0.925 0.932
2.0 0.2 0.928 | 0.946 | 0.925 | 0.943 0.925 0.932 0.926 0.933 0.927 0.934
2 0.931 | 0.948 | 0.926 | 0.944 0.927 0.933 0.928 0.935 0.929 0.937
Table 14-1. Bernoulli GLMM Coverage Probabilities
for (m,n)=(20,10). Nominal Coverage is 0.95.
Correlation of Prediction Interval
(3.8) (3.9) (3.14)
two terms in (3.2)
ﬁo o (3.8) | wiBS | (3.9) | w/BS | HPD | w/2tr(AB)
-25 0.2 0.015 0.928 | 0.944 | 0.924 | 0.942 | 0.945 0.932
2 0.006 0.926 | 0.945 | 0.922 | 0.942 | 0.944 0.931
-05 0.2 0.009 0.934 | 0.948 | 0.931 | 0.944 | 0.946 0.935
2 0.010 0.929 | 0.943 | 0.925 | 0.939 | 0.943 0.936
0.5 0.2 -0.013 0.923 | 0.944 | 0.919 | 0.941 | 0.944 0.930
2 0.011 0.931 | 0.949 | 0.927 | 0.946 | 0.946 0.935
2.0 0.2 -0.004 0.927 | 0.943 | 0.922 | 0.940 | 0.945 0.935
2 0.003 0.932 | 0.946 | 0.925 | 0.941 | 0.942 0.938
Table 14-2. Bernoulli GLMM Coverage Probabilities

for (m,n)=(20,10).

Nominal Coverage is 0.95.
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Expected Width for (m , n)

(10,5) (10, 10)
(3.14) | (315) | (3.8) (3.9 | HPD (G.14) | 315 | (3.8) (3.9 | HPD
ﬂo o) w/BS | w/BS | w/BS w/BS w/BS w/BS w/BS w/BS
25 | 02 | 0883 | 0.879 | 0.886 | 0.882 0843 | 0534 | 0528 | 0527 | 0522 0.498
2 | 0891 | 0889 | 0.893 | 0.889 0851 | 0541 | 0536 | 0491 | 0.486 0.473
05 | 02 | 0873 | 0.869 | 0.869 | 0.865 0.846 | 0487 | 0479 | 0502 | 0.496 0.468
2 | 0882 | 0878 | 0.884 | 0876 0.862 | 0502 | 0496 | 0.493 | 0.488 0.479
05 02 | 0871 | 0.867 | 0.873 | 0.869 0.853 | 0528 | 0523 | 0521 | 0516 0.502
2 | 0874 | 0871 | 0.876 | 0871 0.861 | 0538 | 0534 | 0518 | 0512 0.504
2.0 02 | 0869 | 0.864 | 0.872 | 0.868 0.849 | 0545 | 0537 | 0526 | 0522 0523
2 | 0873 | 0.868 | 0.876 | 0872 0848 | 0551 | 0547 | 0522 | 0515 0.508
Table 15-1. Bernoulli GLMM Expected Widths.
Nominal Coverage is 0.95.
Expected Width for (m , n)
(20, 5) (20, 10)
(3.14) | 3.15) | (3.8) (39) | HPD (6.14) | 315 | (3.9 (3.9) | HPD
ﬂo o) w/BS | w/BS w/BS w/BS w/BS | w/BS | w/BS w/BS
25 | 02 | 0223 | 0218 | 0254 | 0.248 0225 | 0105 | 0.098 | 0.108 | 0.105 0.087
2 | 0231 | 0228 | 0248 | 0.241 0218 | 0125 | 0115 | 0126 | 0.124 0.107
05 | 02 | 0219 | 0217 | 0212 | 0.207 0209 | 0114 | 0109 | 0117 | 0.114 0.091
2 | 0228 | 0224 | 0218 | 0.214 0212 | 0118 | 0112 | 0.07 | 0.103 0.089
05 02 | 0226 | 0223 | 0231 | 0.226 0218 | 0104 | 0.099 | 0.109 | 0.105 0.092
2 | 0231 | 0227 | 0226 | o0.221 0215 | 0115 | 0105 | 0118 | 0.112 0.098
2.0 02 | 0218 | 0215 | 0222 | 0.218 0210 | 0104 | 0.098 | 0.108 | 0.103 0.093
2 | 0231 | 0226 | 0216 | 0.208 0198 | 0129 | 0117 | 0.123 | 0.118 0.105

Table 15-2. Bernoulli GLMM Expected Widths.
Nominal Coverage is 0.95.
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Appendix
Al

We derive the first term, {E{g'(g’l(w))[BLP(g’l(W))—g’l(w)]}}z, in (3.4) as follows:

(E{o @ WBLP(@ @)~ 0l}] = {E {00 ) ) +Vy 0, Vo0 -1 -0 ) ]}
E{( 10y s Vit ) 9@ () + GG WDV, o, V3 3Y ~ 9 G (WD)G (w)}}

E{( 10V 2y yyuy)g(g*l(w))}+E{g'(g*l(w»vg,l(w),yvyity}—E{g'(g*(w»g*(w)}}z

[ ] s} ~E{oa w)g )]
o Vo Vit )E[ @ (g*l(w»]+E{g'(g*l(w))vg,l(w,,yvyit[E(y\S)]}-E{g'(g*(w»g*l(w)}}z
o Vo, Vi JELO (@) +V, ) ViLE {0 [ E(y]s)]} - E{a(a *(w)g ()]

10V gy Vot JE[ (07 ) ]+ EE{ 9 (@ (WD)V, 1, Vi1

‘t

—_——
t

Where Lo = (2 20V sy Voot ) (Vo Vi) —1)T and

T=(g(a W) o'@ @)[E(Ys)] gi@ m)a*w)

We can derive the second term, Var{g'(g‘l(w))[BLP(g‘l(w))—g‘l(w)]}, in (3.4) as

follows:

Var{g'(g™ (W))[BLP(g™*(W)) - g *(W)]} = Var{E {g (g * (W))[BLP(g *(w)) - g (w)]|s}}
+E{Var{g'(g(W)[BLP(g*(W)) - g *W)][s}}

(A1)
Here, we need to derive the first term, Var{E{g '(g‘l(w))[BLP(g‘l(w))—g‘l(w)]|s}}, in
(A.1) as follows:
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Var{ {g'(g*l(w))[BLP(g*(w))—g*(w)]s}}

E{0 (0 W 4y V0, Vo5 (V- 1) - 02w ]

Var E 9 (g (W)) g Twy g (w)yvyy’uy)—i—vg Yw),y yyy 9 (W)j” }}

[
<

Var| (1,1, V, s Vosty ) 9 (@ 00D+ Var V) Vi g (g )E (v1s)

+Var{g'(g™(w))g " (w)}

af{ My Vi yyyy)g(g W) +V 1, Vyy (9 (W)E Y] s~ g'(g’l(w))g’l(w)}
{

+200V (100 Yy 0y, Vot ) 9 (@O0 V, 1 V530 (8 WDE (Y] 5,))

g9
—2c:ov( Hyy Ny sy Vi, 007 (W), 9 '(97 (W) (W)
~2Cov(V,.,,, V0 (0 " (W)E(y 1), 9'(g  (w))g ()

:(”g’l(w)'vg*(w),yvx;y”y) Var{g (9 (W))} ( (O yVY y)Var{g (g‘l(w))E(yls)}( 9 (W)yvgly)l

+Var{g'(g™ (W)g (W)}

g-w) g
28110y Vg 10y Ve, COV (9 (07 (W), 9 (97 (W) g ™ (W)
2V, Vs COv(9 (9 (W)E (Y 1s), 9 (g (W) g ' (W)

g

= LT2H2L2

12110V, Vit ) COV(9 (0 (W), 0 (0 WE (¥1))(V, s, Vi)

(A.2)

And we need to derive the second term, E{Var{g '(g‘l(w))[BLP(g‘l(W))—g‘l(w)]|s}},

in (A.1) as follows:
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E {Var{g'(g (W) [BLP(g (W) - (w) ]|
~ EVar{ (g0 1, ) +V, 0, VoV~ 1) 072 |

A1)

—E {Var{g G W)V, Vi (y)‘ S}}

E {Var { g9'(g(w)) [Vg’l(W),yV;ly y}

=E {( 9'(g” (W)))2 (Vg—l(w),yVJ,ly )Var (y]s) (ngl(w),yvg,ly )'}
(Y, Vi3 0@ O Var(315) (55
A2

Using arguments that parallel Kackar and Harville’s (1984), the second term, M, (6), in

(3.3) can be approximated by using the second order Taylor expansion as follows:

(n(y:0)-n(y:0)}

L 2n:0-n10:0)}d ;)|

~ {fy(y:é')—n(y:é)}2 . 1

(7-0)

0=6

+2(6-0) {40003 (0) + 10 -0 [l 0:0)]),_(6-0) (A9
= (9—9)’ d(y;0)d(y;0)(6-0)
=d(y:0)(0-0)d(y:0) (6-0)={d(y:0) (0-0)}
where 7'(y:0) =[0%(y:6) 1 2606

Thus,
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M, (0) = E [n(y:0) ~n(y:0)|
~E{d(y:6) é—@)}z
_E [d(y 6y (0~ 0 )d(y 6’)}}

{
E{tr d(y; 9) { - 9) d(y; 9)}} (A.5)
|

[
tr{ [d(y:0)d(y: )] _(9 9)(9‘9)’:}}
tr{E{[d(y 0)d(y;0) ]:(9‘9)(‘9—9)’:}}

=E

Assume Cov[di(y;e)dj(y;e),(éi—ei)(éj—«91.)}:0 where d.(y;6) is the i th
element of d(y;#) and éi—ei is the ith element of 6—6. Thus, M, (6) can be

approximated as follows:
M, (6) = E{n(y:6)-n(y:6)|
ztr{E{[d(y;e)d(y;9)’]{(@—9)(9—0”}} (A6)
ztr[E(d(y;H)d(y;@)’)E((é—@)(é—&)’ﬂ

And we use the observed information matrix to approximate E((é—@)(é—@) ] Thus,

M,(6) in (A.6) can be approximated by tr[A(6)B(6)].

A3

If n(y;0) isthe BPand n(y;d) is the eBP, we can show
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E{[w—(y: [ n(y:6)-n(y:0) || =0 as follows:
E{E{w-n(y: O n(y:0)-n(:0) ] v}
=E{[n(y:0)-n(y:0) [E{lw—n(y; 0y}

~E{[n(y:0)-n(y:0) |E{lw—E(w| y) | y}}

{

[ 1(y:0)-1(y:0) J[EW| y)-Ew| )]}

Then we can prove w—7(y;6) and 7(y;60)—n(y;0) are uncorrelated. Thus, the BP
has one good property as follows:

E@e) =E[n(y:0)~w] + E[n(y:0)-n(y:6)|
=M,(6) + M, (0)

2

where M, (0) = E[n(y;6)-w]" and M,(6)=E| n(y:6)-n(y:0)]
If 5(y;0) isthe BLPand 7(y;d) is the eBLP, we can’t show

E |y 1 7(¥:6)~n(¥:6) || =0 as follows
E{E{tw-n(y [ n(v:0)-n(:0) ] v}
= E{[n(y:0)-n(y:0) |E{tw-n(y: O v}
= E{[n(y:0)-1(y:0) |E {[w—[x, +V, V5 (v - )11 v} (A7)

= E{:n(y;ﬁ)—n(y;é):[E(m y)-Lu, +vwvy;l(y_ﬂy)]]}

= Unknown

In (A.7), in the case we have the normal theorem, then
E {[W—n(y;é’)][n(y;e) —n(y;é)]} =0. The normal theorem means the joint distribution

of (w,y) isnormally distributed.
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Because we can’t prove W—n(y;6) and 7(y;0)—n(y;0) are uncorrelated, we can
only approximate E(e?) by assuming w—z(y;6) and n(y;0)—n(y;6) are
uncorrelated. Thus, we have the following result:

E@e) ~E[n(y:0)~w] + E[n(y:0)-n(y:6) |
=M,(6) + M, (0)

A4
M, () = Ew-7(y;6))’
=E[EW-7(y;0))* | V] (A.8)
= E[Var(w| y)]
=8'E[Var(s|y;0)]o
A5

Here we summarize all the formulas needed to compute the prediction interval in (4),
including those formulas that are needed in conjunction with use of Algorithm 1.  All of
the integrals required for these computations are one-dimensional integrals that can be
easily evaluated using Gaussian quadrature. The best predictor 7(y;8) requires the
guantities

E(s 10 =] sf(s|y:0)ds (A.9)
A standard optimization routine can be used to maximize the integrated likelihood

L(@|y) tofind 6, which in turn can be used to find n(y;0).
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Algorithm 1 can be used three times, as detailed below, to obtain M (d). For the
first use of Algorithm 1, send it the matrix Var(s|y) = Diag [Var(si |y 0) ].nll using

Var(s 1 0)=[ 57 (s 000, ([ 575 i) | (A10)

For the second use, send it the matrix d(y:&)d(Y;e)’=[6négg)}{anége)},

where on(y;0)/06, =2'(68106,)+5 (E(s|y;6)/06,). Evaluations of 98/06, are
either zero or one and

aE(Sly"‘g) = [ s (0 (s, 1v,:0)106,)ds,
AN D o ARO[ st 5000,
f2(y;;6)

Rt 0)[ s

Expressions needed to evaluate (A.11) are

dlog f(yij |/uij7K)/a/uij

o (y,,s:;0)/ 0B {Z?_lxm ]f(yi,si;e) (A.12)

9'()
of(y,,s;:0)00° = 2i2 [z—i—lj f(y;.s::0) (A.13)
o (4,501 0k =( 37, 0l0g (v | 4y, ) 1 0 (3,,5,:6) (A14)
and the integrated forms of (A.12)-(A.14)
o (y;:0)10p, = [ (of (v,5,:0) /8 ) s, (A.15)
o (y:0)100° = [ (o (y;,5,:0)/ 80° )ds, (A.16)
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o (y:0) 1 o = [ (8F (y;,5:6)/ ox)ds, (A.17)
Finally, for the third use of Algorithm 2, send it the observed information matrix
,(0). Since logL(@|y)=>"" log f(y;;6), and

Olog f(y;;0)  f(y:0)8°f(y,;0)106,00, —(of (y;:6)1 06, )(&f (y,;60)/ 6, )
00,00, t2(y::0)

it suffices to combine the expressions (A.15)-(A.17) with expressions for the Hessian

matrix of f(y,;6). Starting with (A.15)-(A.17), we find

0° (y,;0) [ o°f (vi.s; 9 ds, (A.18)
oB.op, BB
*f(y,;0) Iw 01 (%:5:0) 4o (A.19)
05°0p, oo’ |
o*f(y,;0) [ 01 (%,5:0) 4o (A.20)
Ok Of, Ok Of | |
0 ;Z(yiz,e) [ 0 féf"f"e)d (A.21)
o*f(y,;0) [ 01 (%,5:0) 4o (A22)
oK 0o’ ol olem ' |
o*f(y;;0) [ 82f(y.18.,9)aI (A.23)
s 'K |

We can see from (A.18)-(A.23) that what we ultimately need is the Hessian matrix of

f(y;,s;; &), which can be shown, starting with (A.15)-(A.17), to be the following:
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o f (y;,5:0) ={(zni dlog f(yij |1uij’K)/a/uij ](Zni dlog f(yij |/uij’K)/a:uij ] +

L% , X ,
opop, = g (/uij) i g (/uij)
n d%log f(y; | u:, "(u.) olog f(y. | .,
T | 100 Eyulza K)__g!(uuz 09 T 1 45:2) 1 (5
. 9'(#4) 0" 9'() Ot
(A.24)
2 . 2 .
0 f(yzi,si,H): 12 S—iz—l of (y;,s;;0) (A.25)
0o°0p, 20°\ o op,

F10,9:0) (o 210910 14,) |21 (4.5:0)
Ok Of, 1= oK op,
T, 1 0°log f(y; | s,x)
= g’(:uij) a:uijaK

(A.26)

]f(yilsiie)

0°c”’ 4| o

Pf(ys:0) | 1 (s Y 1(s 1 .
_[ ( J 4(02 2j]f(yi,si,@) (A.27)

ﬁHM@ﬁL_l(i_QQQEEQ (A.28)

oxoc®  20°\ o° oK

o’k = oK = 0’k

62f(yi,5i;9) _{(Zn dlog f(yij |,uij,K)j2 +Zni 02 log f(yij |luiij):l f(y.,s:0)

(A.29)

A.6

According to (3.1), the four elements, 4 . Vy .y ,and g, in

(w)? Vg*(w),yi !

BLP(g'(w)), are derived as follows:
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2
o

+
Bo >

iy =E(@7T (W) =E@E"™)=¢" 2 =A (A.30)

g7 (w)

Vg’l(w),yi = Cov(g‘l(w), Yiz  Yin, )
=Cov(g ™ (w), Yl
= (EE(g™(w)ya |5) ~E(9 " (W)EE(y, [5))1

- (eZﬂo“f? (ef’z —1))1’ _BI'

(A.31)

For the diagonal elements in v, ., we have:

V(y;) =EVar(y; |s;) +VarE(y; | ;)
20425,
= E(eﬁ0+5i +T) +Var(eﬂ0+sl)
=A+B+C

For the off diagonal elements inv, , , we have:
Cov(yij J yij') = EE(yij yij' | Si)_ EE(yU | Si)EE(yij’ | Si)

=E[ E(y; |S)E(yy | Si)]—(eﬁ”z}(eﬁ”z]

-E (e2ﬁ0+25i )_ e2ﬂ0+02

=B

Therefore, denote | as an identity matrix and J =[aij] where g; =1
V,, =(A+C)I1 +BJ

Thus, the inverse matrix of Vy_‘y_ can be expressed as follows:

vio Y [j__ B (A.32)
A+ C A+C+nB

Now,
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u, = EE(yy1s) ]2

2 (A.33)
— eﬂ0+0' /21 = Al

Assemble pieces from (A.30) to (A.33), itis clear to show (4.1).
A7

To evaluate M, (@), we need to calculate elements from (A.34) to (A.45) as follows:

.\ . BIU B
(Vi Vit ) = A= A+C I_A+c+niBJJA1
:A_ABC Y 28 Bllel
+ +C+n, (A34)
_, B A+C 1\
A+C| A+C+nB
_A__ NAB
- A+C+nB
(Vs Vioy )= Bl [___ B
o'y )T ALC| T A+C+nB
_ B [y nB g (A.35)
A+C A+C+nB
p— B !
(A+C+n,B)
Thus, L, =(A-nAB/(A+C+nB) B/(A+C+nB)l' -1)and derive
E(T):E[g'(g-l(w» g' (g (W)[ E(vi[s)] g'(g-1<w))g-l<w)j as follows:
1 2 1(, B
E[g'(g™(w)) |=E e =21 — A.36
[9'(g7 (W) | {eﬂ} A[ Azj (A.36)
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E{l}=1

=o@ o Elvls))} =& i 1))

E{g'(g™(W)g (W) =E {eﬂolﬁ, e } =1

Thus, E(T):Ui(u%j 1 1j

And derive H, as follows:

0_2

Var {g (g™ (W))} = :2/30 (egz _1) - %(“ %)

Var{g'(g " (W)E(ys)} =0
var{g'(g™(w))g™ (W)} =0
Cov(g'(g ™ (w)), 3 (g W)E(¥[s,)) =0
Cov(g'(g™ (W), g'(g *(W))g*(w)) =0
Cov(g'(g™ (W)E(¥ils,),9'(g ™ (W)g*(w))=0
And we can derive E{(g'(g‘l(w)))2Var(yi|si)} as follows:

2y +25,
eﬂOJrsl + 0 “oe

E{(g '(g‘l(w)))ZVar(yi|si )} -E (eﬁ3-+sl jz
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(A.38)

(A.39)

(A.40)

(A.41)

(A.42)

(A.43)

(A.44)




(A.45)
Thus, we can evaluate M, (8) as follows:

MU0 = (LE (T} + LHaL +(Vy, Vi, JE{ (00 ) Var (915} Yy, Vi3 )
Where

LE(T)=| A DAB By 4 l(1+Ezj 11
A+C+nB A+C+nB A A

n;AB 1 B n,B
=l A-—T—— ||t [+ —F——-1
A+C+nB A A A+C+nB

_(A2+Ac+niAB—niAB)l[1 B) n,B

+ R
A+C+nB AU A?) A+C+nB
A i1 B) ey
A+C+nB A A A+C+nB

([ A+C A2+B n;B
A+C+nB )| A’ A+C+nB

_ [ (A+C)(A*+B)+nA’B 4
| A’(A+C+nB)

_ B(A+C)
A*(A+C+nB) and
n,AB n,AB
H P S
L2H,L, = ( A+C+nBjA A2 [ A+C+nB]
_a _A+C ( j __A+C
A+C+nB A? A+C+nB
B[ A+C 2[ )
A? A+C+nB A®

2
B( A+C
:A4(A+C++nB} (A2+B)

| w

And
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(Y, Vi JE (970 20 Var (98} (-, V5 )

B Al L B) 1 B
= ——7=1|| |t [+ ||| ————=1
A+C+nB A A K A+C+nB

A8

To evaluate A(6), we know:

n.B
BLP(g"'(W)=A+——(y. - A A.46
(97 (w)) A+C+niB(y., ) (A.46)
We can parameterize (A.46) as follows:
BLP(g ‘(W) = A+—2 (7.~ A)
A+C+nB*"" (A.47)
= (1-p)A+py,

Thus d(y:@) = (ag[BLP(g‘ﬂ(ﬂo s 69[BLP(gc;z(ﬂo ) ag[BLP((_:gK (8, +Si))]J

is derived by using OA_p B _og € _,o % __ NAB

B, ' B 9B (A+C+nB)

oA

> 1A, a—BZ:ZB+A2,
oo 2 oo

C _,c P _3nAB+2nA’+2nA°C 0A _
oc* " oo’ 2(A+C+nB)" = o«

0,

a—B:O, §=—C/Kand a—'OzniBC/(zc(A+C+niB)2) as follows:
oK oK oK
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op
Where d,=—— and d,=(1-p)—.
op; fy

And

Where d, = ;;

And

0
Wh d.=—2 and d.=(1-p)—.
ere d, =2 and o, =(1-p) 22

ag[BLP(g (5, +5))] _ 2log[(1-p) A+ pY, |

b, By

a(l_p)A 1— % ai__

o o ap " Ad8)
(1-p)A+pY,

_ d,(y; —A)+d,

(1-p) A+ py,

oA

0

og[BLP(g (B, +5))] _2log[(1-p) A+ pY, |
oo’ B o2

(A.49)

og[BLP(g (B, +5))] _ 2log[(1-p) A+ pY, |
oK B oK
ML) s 1o p) iy
Ok 0K (A.50)
(1-p) A+ pY,
_ ds (Y, —A)+dg
(1-p)A+pY,

oA

oK
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Based on (A.48), (A.49) and (A.50), the term, E(d(y;@)d’(y;@)),can be derived as
follows:

E(d(y;0)d'(y;0))=[E(f;(¥.))] (A.51)

where [E(f;(¥;))] isa 3 by 3 matrix and given by the following elements

S I T R
SURTHRHE FAC R i
REARAARCCES RACHCLIE

E(f; (.)) by considering a second Taylor expansion of f;(y;) around E(Y;)=A.

. In (A.51), we approximate

Then we have: E(f;(V,)) ~ f;(A)+ f/(AVar[y,]/2 and Var[y,]=B+(A+C)/n,

]

and the calculation of ~ f;(A) and f/(A) are as follows:

For the diagonal elements in [E(f; (¥, ))]:

A) — (dl(A_A)+d2)2 _d_22

BT @A TR
And we know:
f(y) GO Ad) ) 2d 2p |
7 (A-p)A+pY) [T - A +d, (- p)A+pT) |
fl,l,(_.):(dl()‘/i_—A)erz)z_ 2d, 20 T
' ((1_:0)A+pyi.)2 _dl(yi._A)"‘dz ((1_,0)A+p3_/i.)_
(@ -~ +d,)’ -2d; 20’

(- P)A+pY, ) | (AT - A+ d,)7 (A= p)A+ oY)
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Thus,
py— (A=) +d,)° { 2d, 2p T
(A-p)A+pA)’ | d(A-A)+d, (1-p)A+pA)

CAGS A)+d){ —2d? N 2p° }
(A=) A+ o) | ([ (A=A +d,) (A= p)At pA)

o
N o

2d,_2p] _2d7 2"
d, A dz A

~ { 4d;  4p° _8pdl}_ 2d; 2,02}

2

o
N

R

A Ad, | 4 R
2d; +6p2 _8pd,
d; A Ad,
2A%d] +6p%°d? —8pAd,d,
A A’d?
_2A%d! +6p’d; —8pAdyd,

4

A

Q_ >|NQ,;

Similarly,
£ (A)= (d,(A-A)+d,)? d_f

(A-p)A+pA? A
p) = (ds(A—A)+d;)* d?

Qo)A i~ A 15 = (8Andsd, +2A%5 +6,°d5) | A,

f0(A) = (-8Apd,d, +2A%d2 +6p%dZ) /| A®,

Faa

For the off diagonal elements in [E(f; (¥;))]:

(d,(A-A)+d,)(d;(A-A)+d,) _d,d,

le(A) = 2 2
(A-p)A+pA) A

And we know:
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f,(A):(dl(vi_—A>+dz)(ds(vi_—A)+d»{ d . d 2 }
” (@~ p)A+pA)? AV, -A)+d,)  (do(F,—A)+d,)  (A-p)A+pA)

f,,(A):(dl(vi,—A>+dz)(d?,(m—A>+d4){ ¢ .4 2 }
N (@-p)A+ pAY’ (A (Vi ~A)+d))  (ds(F,~A)+d))  (A-p)A+pA)
+(cwi.—A)+dz)(da<vi.—A)+d4){ 2 }
(L~ P)A+ A’ (A% ~A+d)" (AT, ~A+d,)  (A-p)A+ A’
Thus,
f,,(A):(dl(A—A)+dz)(o|3(A—A)+ol4){ d, d, 2p }
? (- p)A+pA)? (@(A-A+d,) ([ GA-A+d) (@ A+ A
L (G(A=A) +d,)(dy(A- A)+d4){ —d? —d? . 2p° }
(- p)A+pA)? (A~ A+0)7 (A~ +d,) (@ p)A+pAY

_dd,fd d 2] dd 67 —df 2
A ld, d, A a2 A A

2 2 2 2 A2 2
A d d A T2 T A

dd dAdA

_dd,[6p? (dd di2p di2p
A A \dd, d, A d, A

dzd 6p Add,-2pd,d, -2pd,d,
Y +2A 2
A A? d,d,A

1
= F[6p2d2d4 +2A(Ad,d; - 2pd,d, —2pd,d;) |

Similarly,

£ (A= (d, (A= A)+d,)(d; (A A)+d)_d d,
. ((1- p)A+ pA)? A?

f)"(A) = [szd ds +2A(Ad,d; —2pd,d, —2pd,ds) |

f (A= (d (A—A)+d,)(d,(A- A)+d)_d d,
z (- p)A+ pA)’ A

f2(A) = [6p2d ds +2A(Ad,ds —2pd,d, —20d,ds) |
Thus, we can approximate E(d(y;@)d’(y;e)) using the result of approximation of
[E®; (V)]
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A9

According to (3.1), the four elements, . \ Vy .y ,and g, in

gtw) T TgTtw)y !

BLP(g*(w)), are derived as follows:

2

. +5; ﬂ°+i
by ~E(@ ) = (R =€ 7 = A (A52)
_ 1
ngl(w)’yi =Cov(g™ (W), Vi Vin,)
=Cov(g ™ (W), ¥,)1'
(A.53)

= (EE(g™(W)Y;: |5) —E(9 " (W)EE(y,|5))L
:(&%ﬂ*(@*—inl'zBr

For the diagonal elements in v, ., we have:
Var(y;) = EVar(y; | s;) +VarE(y; | s;)
=A+B

For the off diagonal elementsin Vv, , , we have:

YirYi !

COV(yij ' yij') = EE(yij Yij |s;)— EE(yU | Si)EE(yij’ |'s;)

=E[E(y; |s)E(yy | Si)]—(eﬁ”z}(eﬁ“z]

—E (e2ﬁ0+25i )_ e2ﬂ0+02

=B

Thus, the inverse matrix of Vy_‘y_ can be expressed as follows:

1 B
Vi ==|1- J A.54
Yi+Yi A[ A-l-nB j ( )

Now,

u, = EE(yy1s) |2

— eﬁ0+0'2/21 - Al

(A.55)
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Assemble pieces from (A.52) to (A.55), it is clear to show (4.2).

A.10

_ A2 B , ' .
Based on A.9, we have: L, = 1" -1| andderive

A+nB A+nB

E(T)zE(g'(g-%w» g'(@ W[ E(ils)] g'(g-l(w»g-l(w)) as follows:

E[g'(g™ W) |=E

And derive H, as follows:

0_2

(e

var{g'(g” W)} =

Var{g'(g " (W)E(ys)} =0
Var{g'(g™(w))g (W)} =0
Cov(g'(g ™ (w)), 3 (g W)E(¥[s,)) =0
Cov(g'(g™ (W), g'(g " (W))g ™ (w)) =0
Cov(g'(g™ (W)E(¥ils,),9'(g ™ (W)g*(w))=0

From (A.56) to (A.64), we have the following result:
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(A.57)

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

(A.64)



e

o (e"-1) 0 0
H, = 0 0 0 (A.65)
0 00

And we can derive E {(g '(g‘l(w)))2Var(yi|si )} as follows:

ehts o ... 0

2 .. .. . ) +Oi

E{(g'(gl(W)))ZVar(yJSi)}:E (eﬁlj o —e 2]
photsi

(A.66)

Thus, we have the following result:

2 2 2 2 2
2 _p 9 2 o ) 70+0'7
M, (0) ~ A et LA oA e2 (e" —1)+ni _B | |e*
A+nB A+nB A+nB | e A+nB
A B AL (1Y BY B \(1(, B
= 1+—2j— + B(1+—2j N — | | — 1+—2j
A+nB\" A’) A+nB| (A+nB A A+nB ) (AL A

1 Y(. nB 3B nB? B?
=B ==t G+ +—
A+nB A AL AN A

All

From (4.2), we know:

g[BLP(g™' (5, +s))] = log [A+ (v —n, A)j (A67)

A+n.B

We can parameterize (A.67) as follows:
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. ~ B ~
g[BLP(g (ﬁo+si))]—log[A+ A+nB(yi. niA)j

nB
:IOQ[A+A+niB(yi' A)] (A.68)

=log((1-p)A+pY,)

Thus d(y;0) =[‘99[B'-P(9‘1(ﬂo +5))] A9[BLP(g (5, +5)]

, is derived by using
op, oo’ j

OA_, B _ . dp__nAB A 1, B

=A, =2B, = -, —==-A, —=2B+A® and
op, op, o, (A+nB)Y dc® 2 oo
Op _3nAB+2nA as follows:
oo’  2(A+nB)’
0g[BLP(g (B, +s)] _ dlog((1- p)A+pY,)
op, 0B,
-n,AB n,AB
T A+(1-p)A+—"§
_(A+nBY w4 +(A+niB)2y"
(1-p)A+ Py,
) arng T gAY
1-p)A+pY;
—-A? A
_p(A+niB+A+niByi-]+(1_p)A
1-p)A+ py;.
_P(-A(-p)+(1-p)¥ )+ A-p)A
(1-p)A+pY;
_p((A=p)(. - A)+@-p)A
(1-p)A+ Y,
1- v, —A)+A
_(A=p)(p(3=A)+ )=(1—,0)
1= p)A+py; (A.69)

80



and

0g[BLP(g (B, +s)] _ 0log((1-p)A+pY,)

oo’ Folox

Where f(,)=

3n,AB +2n, A® A [3nAB+2nA° |_
|~ |A+-p) o ——— 5 |V
2(A+nB) 2 2(A+nB)

(1-p)A+py,
1

(7.~ )+ (1-p) A

3n,AB +2n,A°
2(A+nB)
(L-p)A+pY.

3. nAB nA’ o o, L
[ZX(A+niB)2+(A+niB)2}(yi' A5 (p)A
(1-p)A+ Py,

(2 p(a-p)+nA-p) (7.~ A)+ 30 p)A

d-p)A+pY;
(1-p) (2p+ niA(l—p)j(Vi. —A)+;A}
] d-p)A+pY;
(3p+2nA(1-p))(V: —A)+A]
2[@-p)A+pY, ]
(3p+2nA(1-p))¥. + A(l-2nA(L- p)~3p) |
2[(1-p) A+ pY, ]

=(1-p) f (V)
(A.70)

[(30+2n0A(1-p)) ¥, + A(1-2n,AlL-p) =3p) |

2[A-p)A+pY, |

Based on (A.69) and (A.70), the term, E(d(y;6’)d’(y;6’)), can be derived as follows:
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E(d(y;H)d’(y;e))zE{((l_;;f( )](1—/) (1—p)f(7i.))}
_[ (1-p)  (1-p)t(%
(

(%)~ H(E(R))+ (BT ~E()]+ t(EG)) ~E(5.)]
(A.72)
Thus,
e[ 1 (5)]~E[ f (E(5.))]+3 1"(E(T)E[%, ~E(7.)]

where f'(E(¥,)), f”(E(V.)) and Var[y,] are derived as follows:

2(3p+2nA(L- p))[A- p)A+ pY, |- 2p{[3p+ 20, A(L- p)] ¥, + A(1-3p - 2nA(L- p) )}
(2[a-p)A+py, ]}’
(3p+2nA(Ll-p)){2[(1- p)A+ pY,]-2pY, +2Ap} —2Ap
(2[a-p)A+py, )
(3p+2nA(l- p)){2[A- p)A]+2Ap} —2Ap
(2[a-p)A+py, ]}
_2A(2p+2nA(L- p))
(2[a-p)A+py, ]}’
A(p+nAl-p))
[a-p)A+py, T

t'(v)=
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(A.74)

And

—h

[@-p)A+pY, |
_2Ap(p+nAl-p))
[@-p)A+pY, |

,,(yl_)z[A(pm.A(l—p))J

Using (A.74) and (A.75), we have the following results:

f’(E . )): A(p+niA(1—p))
7 la-p)A+pE(T)T
_A(p+nAl-p))
[(@-p)A+pAT
A(p+nAlL-p))
AZ
_(p+nAl-p))
A

And

t1(E(%,))= —2Ap(p+nA(L-p))
) [@-p)A+ pAT
_2Ap(p+nAl-p))

A3
_=2p(p+nAl-p))
_ o

And
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Var[y, |=VarE[y, |s]+EVar[y, |s]

Bt
=Var (&% )+ E(e j (A.78)
ni
g, A_A+nB_B
n n P

Now, using (A.76), (A.77) and (A.78), we have the following results:

[t ()] =E[f(E()]+ P (EG)ELs ~E(0)]
= 1(E(% ))+;f (E(%.))var[¥,]

[ 3p+2n,A(1-p)) A+ A(1-2nAlL- p) -3p) | 1 ~2p(p+nAlL-p)) B
2[(1 p)A+ pA] 2 A2 »
_3pA+2n, A*(1-p)+A-2nA*(1- p)-3pA —B(p+n Al-p))
2[(A- p)A+ pA] A
_ A ,~PlpinAl-p)) 1 p(p+nAl-p))
2[(1—p)A+pA] nA(L-p) 2 nAlL-p)
(A.79)

Now, a second order Taylor expansion of ~ f? (Vi.) around E( ) yields:

(%)~ f2(E(%.))+2f (E(%.)) F'(E(%) )[7 (7 )]
f' y ]

, (A.80)
f
Thus
E[F2(%)]=E[ £ (E(¥))]+[ F'(E(%)) f(E(W))+ F (E(%)) f"(E(%)) JE[V. ~E(%.)]
= £2(E(7.)+[ f'(E(%)) F'(E(%.)+ T (E(%)) £ (E(%.) JE[V. ~E(%)]
= £2(E(%))+[ F'(E(%) T'(E(%,)+ f (E(%.)) "(E(%)) Var[7,]
(A.81)
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Using (A.76) and (A.77), we can derive f'(E(Y,))f'(E(7.))+ f(E(V.))f"(E(%.))

as follows:

(e F(E() - £ ()| L 2ol st )

:%z(l_p)[p+nip\(l—/0)+%(_2p)}

_NAL-p)(p+nAL-p)) _0i(L-p)(p+MAL-p))
A2 A

(A.82)

1

We know f(E(Vi,))=§ and f?(E(¥,))== and after replacing (A.81) with (A.78)

1
4
and (A.82). We have the following result:

E[£2(%.) ]~ f2(E(%.)+ f'(E(%)) F'(E(.)+ F(E(%)) t"(E(%.)) Var[¥.]

E
_1_ [n@-p)(p+nAC-p))
4 A

:l_,_:ni (p+niA(1—p))B}l—p
P

4 A

1 n(p+nAl-p)B A 1
=—+ —=—+p+nAl-
1 y X g =g tPTh d-p)

(A.83)
Thus, using (A.79) and (A.83), we can approximate E(d(y;@)d’(y;e)) as follows:

. L_plprnAd=p))
) 1 f( 2 2 nAL=P)

E(d(y;0)d'(y;0))=(1-p) E| _ ./ A |=(1-
(d(y:0)d'(y:0) = (1-p) {f(yi.) f(yi‘)} t=2) 1 plptnAl=p) 1, aa )
2 nA(lL-p) TG



A.l12
We derive f(w|y) as follows:

fwly)ee [ [TTLEn W B0 ] Bu0™) ] (Brn0?)d Brdo?

A , 1 _(log\évi—zﬁo)z , ,
:II e "W, "Xme ? f(ﬁo"7 )dﬂodo'

0 -0 I=1 i
oo F o) e T g e

1
mo— 2Z(Iogw ~B)
Pe T f (S 0")dfdo”

A.13
We derive f(w|y) by assigning the prior distributions as follows:

m

N 1 W, = 5o _ -
fwly)oce Hwy-ljj R ey e P o
0 —
- > w _m xQ _m_ _ ! ogw; — /3,
_E meflj(GZ)z“eo Jer 4o
va —1J' 7%7“7 g o J'e IogWi_IOQWHOQW_%)Zdﬁoda2

Note that:
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P . 2 1 |& [ L — 2
0 = (Iogwi—logw+logw—/i'0) % - Z('OQ\M*'OQW) +Z(|°9W*ﬁo)
J'e 2004 dﬁo — J’e 20 l:i:l i1 X
RN Toqw)2 m(iogw—3.
® - Z(Iogwi—logw) +m(logw—ﬂ0)
_ je 20 {1 }dﬂo (A.86)
EESE ogw, —iogw)’
e 2‘7{;('9 ilog )L( 270°
m
Thus, define ms® = Z(Iogwi —log w)2 and we have the following result:

i=1

3 c m R ol w,—logw)’
f(w]y) e einiiZﬂLWi HWiyiflJ.(Uz )77&71 eiée Zoz{é(l ) } XQ/ZH—n?-Zdo—z

1< —
-y w _m o m o, B —j{Z(Iogwi—logW)} 1
oce HWiy"_lj(Jz) 2" otg 27l x(02)2d0'2
i=1 0
_nizm:wi m © m 1 B —%{Zm:(logw,—m/)z}
—p = HWiYiv—]-J.(GZ) 2 ¢ 2p aze 20| do?
i=1 0
-n Zw © m_ 1 _2p+ms?
=e leyl.fljy(az) 2 2e 20 sz
i=1 0
m-1
niZWi m F(a‘i‘z j
— i=1 ¥i-1
=€ l_IWi X
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Al4

Let w=/f, +s;. According to (3.1), the four elements, 4 .\ Vi, Vy o and g,
in BLP(g™*(w)), are derived as follows:
CE( W) =E| |7 A88
My, =E(@7 (W) = Tiehs |~ 1 (A.88)
-1
Vg’l(w),yi = COV(g (W)’ yil o yini )
= Cov(gil(w)’ yil)l
= (EE(9™ (W)Y I5,) —E(9 " (W))EE(yy |5) )Y (A.89)

eﬂ0+5i 2 eﬂtﬁsi 2 , 2\ ay
=|E 1+eﬂo+si -|E 1+eﬁ0+5i 1 :(TZ _Tl )1

Bo+si Bo+si 2
Where E[e—jand E( ¢ j are calculated numerically and denoted as T,

1+ 14/
and T, respectively.

For the diagonal elements in v, ., we have:

Var(y;) =Vare(y; | s;) + EVar(y; | s)

eﬁ0+si eﬂo+5| eﬁ’0+si
=Var| ———— |+ E 1-
[1+ A ] Kh A J[ 14/ H
Lo+S; 2 Bo+Si 2 Lo+Si Lo+Si 2
B | B e || *E| e | E| e
1+e/h* 1+e%h* 1+e%"s 1+e%"s
gho+s ghotsi 2
—El | gl
1+e/h* 1+e%*s

=T,-T7=T,(1-T,)

For the off diagonal elementsin V, , , we have:

Yir¥i?
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COV(Yij 1 yij') = EE(yij Yij |s;)— EE(yij | Si)EE(yij’ EY)

photsi ?
= E[E(yij |Si)E(yij’ | Si)]_@z(mj]

eﬂ0+si 2 eﬂ0+5i 2
Bl | || =
1+e%*s 1+eh*
=T, -T2

Therefore, define A =T,-T, and B, =T,-T,°, we have:

vV, =Al+BJ

Thus, the inverse matrix of V, =~ can be expressed as follows:

vy,ly,zi(l— % JJ (A.90)
7AL A+NB

Now,

u, = EE(y;1s) ]t

£ eﬁo‘*'si 1-T1 (Agl)
TS

Thus, using (A.88) through (A.91), BLP(g*(w)) has been derived as follows:

BLP(g (W) =T, + (T.-T.) (v,—-nT.) (A.92)
(T,-T,)+n (T, -T7)

So, g(BLP(g‘l(v))) is derived by letting g equal to the Logit function.
A.15

Based on A.14, we have: L, =(T,—nT,B,/(A+nB) B,/(A+nB)I'" —1) and derive
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EM)-E(ge ) ¢ MW[E(xls)] g m)gw) as follows:

The next step is to evaluate M,(8) in (3.4) as follows:

ﬂo*iz 2 2
Note that A=e~ 2 and B=e?»" (e” -1).
Then, we derive the following three elements as follows:

Lots; 2
E[g '(gfl(W))] = E{@?T)} = E[e‘ﬁrSi +2+gh"s ] =1/A+B/A*+2+A

(A.93)

2
L+efh) { ofots o

E {g '(g‘l(w))[E(yi\si )]} = E{( | T 1}} =E {(1+ efors )1} :[1+ eﬁ°+2}1: (1+A)1

(A.94)

1455 ) s
E{g'(gl(w»gl(w)}E{( i ) 1feﬁo+si

} E{l+eb™ ) =1+ eﬂ"%z =1+ A

(A.95)

From (A.2), we derive the following six elements as follows:

Lo+Si 2
Var{g'(g™ ()} Var{(lzzoﬂ)} = (e*zﬂo*‘* +eth —2)(e“z ~1)=2B(1A+B/A’-1) /A +B

(A.96)
Var{g'(g(W)E(ys,)} =Var {1+e"*7}3 =Var {L+e** }J =e”*** (¢” ~1)J =B
(A97)
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Var{g'(g™ (W))g (W)} =Var {1+e#* | =Var (e’ } =*»* (e"2 —1) =B
(A.98)

1 Lo+Si 2
COV(Q (g7 (W), 9' (g (W)E(ils, )) = Cov{(;T),(“ems. )1J

_ (1—e“2 +e2 e (e —1))1 -(-B/A*+B)1

(A.99)

Yt 11 -1 _ (+eﬂ0+5i )2 LBo+si
COV(Q (97 (W)),9'(g"(W)g (W))Cov{eﬂo—-%—s,’l_'_e (A.100)

=-B/A’+B

Cov(g (9 (W)E(vils ). 9 ‘(g‘l(w))g‘l(w)) = Cov((1+ e )1, 1+ ) — g?hte’ (e‘fZ —1)1 =Bl
(A.101)

In (A.3), we derive the following element:

(1+ ehs )2

) e ) ) : 1+ehs )
E{(g'(gil(w))) Var(yi‘si)}:E {< +e(/afo+s, ) J 0 :E{( -i_eiws. ) JI

e/}0+su
(1+ ghrs )2

I
VR
rDI
>
+
(¢}
>

: 2+2]| =((A*+B)/A+A+2)I

(A.102)
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Thus, we can evaluate the value of M,(6) using (A.93) to (A.102).

A.16

Then, we can derive M, (8) as follows:

From (A.92), we know:

BLP(g™ (W) =T, + (. -T) (y,—nT,) (A.103)
(T,-T,)+n (T, -T7)

We can parameterize (A.103) as follows:

] _ (Tz _le)
BLP(G W) =T+ v . _le)(yi. -nT,)

=(1-p)T,+ py;

(A.104)

ThUS d(y, 0) — [ag[BLP(g_l(ﬂO + Si))] , ag[BLP(g_l(ﬂO + S|))]j iS derived by USing

op, oo’
%le—TZ—ZB , %=2T3—2T1(T1—T2), ﬂ=T1—T2, @:ZTy
op, Py 9y fy
0 0 0
—B +nB)-B|—A+n—B
6p _ a Bl :[aﬂo l)(Ai i 1) l(éﬂo Ai |6ﬂ0 l} aA_l_ :T _T
OB, Ofy A+nB (A +nB,)* L oot Y
oB oT, oT.
aT.—lZ:TS_ZTlT[M 712:1-4, aT.—ZZ:TS and
0 0 0
—B B)-B| — .—— B
ap o Bl (80_2 lj(A1+nl 1) l(ao_z A1+nl 60'2 lj -
== = > as follows:
0oc® 0o A +nB (A +nB)
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S9[BLP(g (S, +s))] _ o{log[ (1~ p)T,+ py, ] -log[1-[(1- p) T, + p¥, ]|

by B,
6(1—p)_|_1+(1_ )ﬂ+aiyi
b, B, b,

[(1-p)Ti+p%, ][ 1-[(1-P)Ti+ P, ]]
c(V;, -T)+c,
[(1-p)T,+ p¥, |[1-[(1- p)T, + p¥, ]
(A.105)
op oT,

Where Cl:% and C2=(1—p)£.
0 0

And

o0[BLP(a (4, +5))] _ 21109[(1-p)Ti+ £, ]-log[1-[(1- )T+ o, ]}
80'2 B 862

al-p T,  dp _
( 2 )T1+(1_p)6012+8§2 Yi

[@=p) T+ o3 J[1-[(1-p) T+ oY, ]
— Cs()_’i._T1)+C4
[(1-p) T+ 0¥, ][ 1-[(1-P) T+ pY, ]]
(A.106)

T,
oo?’

Where c3=§—p and c,=(1-p)

2
(o)

Based on (A.105) and (A.106), the term, E(d(y;8)d’(y;8)), can be derived as follows:

f.(v) f,(V
E(d(y;e)d'(y;e))zEL”E;}; fﬂ%ﬂ (A.107)
Where
fll(yi ): (Cl(yl _T1)+C2)

[0-pyie o3 1[0 pieon T
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(€ (V. —T)+¢)(C (V. —T) +¢,) and
([(a-p)m+ 5. J[1-[a-p) T+ p3. ]

f12 (7.) =

(C3(yi. _T1)+C4)2 . and
(@) T+ o3 [1-[-p) T+ 27, ]}

f2 (yl) =

In (A.107), we approximate E(f,(V,)),E(f,(y,)) and E(f,(y,)) by consideringa

second Taylor expansion of f,(y,), f,(y,) and f,(y,) around E(Y,)=T,.Then

we have: E(f,(¥,)) ~ f,,(T,) + f, (TVar[y,]/2 where f,,(T,)=—=2— and
(Tl(l_Tl))
. st o p p T 22 [ p2
fu )= | ==+ - | 2T T T
I.Tl(l_Tl)] Cz Tl 1_T1 I.Tl(l_Tl)] Cz T1 (1_T1)

2¢2

-
I.Tl(l_Tl)]

2 2 2 2
G p, P | |G P __P
c, T, 1-T, ¢ T (-T)?

and

Var[y, |=VarE[y, |s;]+EVar[y, |s ]
Bo+si Bo+si
—Var [e—j e (e—] (A.108)

T+eM ) | Q+ehr)?

=T,-T7 +nl(Tl -T,)

C,C,

And E(f12(yi.)) ~ f12 (T1)+ f12”(-r1)var[yi.]/2 where f12 (Tl) = 2 and
(Tl(l—Tl))

f12” (Tl) =

2
oG |6, 20, 20 | | & & 20" 2p°
Le-T)F||c, ¢ T, 1-T, ¢ ¢ T? (@Q-T)

and E(f,,(3,))  f,,(T,) + f,, (TVar[y,]/2 where
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2

22(T1) _—
(Ta-T))

2
2c; C; p g P P
fr(l)=—r——| 2| =+ 2Tz 2
[T1(1 T)] C, T 1- Cy T1 (1_T1)
Thus, we can approximate E(d(y;H)d’(y;H)) using the result of approximation of

E(fL(¥)) E(f.(¥,)) and E(f(V:)).

Al7
We derive f(w|y) as follows:

f(w]y)e HH F(y, 1w B, o) (W] By, 0%) [ (B, 0)d Bd o

i [l s
ocﬁ _m W (1-w,)"” 1(02) e’ 21[ = J f(B,,0°)d B, do?

.m o .)”ﬁyi.lﬁ(az)Z‘euiz%('°g[1fvijﬁ°j f(f,0%)dB,do?

A.18

We derive f(w|y) by assigning the prior distributions as follows:

We assign the non-informative prior to f(/,) and the inverse gamma distribution to

Iog[ ! j
m 1—w
f(o?) in (4.10). Thus, define Iog(—1 Ww j:z—m Wi and we have the following
- i=1

results:
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jo )

Thus, define

N
1<}
@
—
Tl=
=
|
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f(w

A.19

m

i m
| y) o« rm[Wiyile(l—Wi )niiyi-ilJ.(o_Z )757&716 o_ze o
i=1 0

i=1

m 1 2pB+ms?
L > )
2 2 e 20 d o

m n F(a+m_1)
-1 ( _ )ni_yi._l % 2

[ m-1

i-1 i=1 ms? +2 a5
2

m-1

oc ljwi AT (- w ) [ mszg 28 j(“j

i=1

(A.111)
A conjugate GLMM is presented as follows:
yijl/”ij"POi(ﬂij) i=1--m, j=1---,n
My =5
s, ~ exp(4)
log 2 = x;; B

For our example, we take log A = 3, . Therefore, we know s, ~ exp(e”)

andy, |s;, ~ Poi(ns;) . Thus we have the following result:
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Pl == [

_eMg
e’e "% ds,
0 yl

_ eﬂony JAoce_(n+eﬂD)si
yl o

_en’  T(y+1)
yl  (n+ef)Vt

n y eﬂo
n+e? )\ n+ef

y

s’ ds;

n
_ eﬂo 1
n n
— 1) | 5+l
e’ e’

= NegBin[%,l}
e 0
Also,
f(sily)oc FQyils)f(s)
—ns; Yi.
_e (ns,) ehrg-es
Y !
o (S.)Vi.e—(me/"’)si
=Gamma(n+e”,y. +1)

y, +1
n+e’

So forw=s;, we denote the BP as 7(y; 3,) = and derive the likelihood function

and the parameter estimator as follows:
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y. B m
n e
L oc
) (n+e"°j [n+eﬂ°j

log L oc —y log(n+e”)+mg, —mlog(n+e”)
ologL _ (y +m)e”

—+m=0
op, n+ev
fio
+m)e
 rmen
n+e
b . ) .
=& M yehimeh —mn+meh
— = Yy =
n+e® y+m 7
5 _mn 1
—eh=—==
y. ¥

We can also derive the Fisher Information matrix as follows:

o° |Og L(ﬁo) _ _(y N m){(n+eﬂo )eﬂo —ghogh }

o’ B, (n+e”)?
Ly em) nebs 1 p2ho _ g2
Y. (n+ef)?
e/
(y. )(n+eﬂo)2
o*log L(3,) ne’e
E{— 75 0 =(n+e/’°)2 E(y +m)

_ne” mn
(n+e®)? e

_ mne”® (n 1
T nieh) ek
(n+e™) e

. mn

n+e’

. : . . mn . ;
We denote the Fisher information matrix as 1 (4,) = ——. Since we know e’ =
n-+e”

< |+

can replace S, with S, inthe eBP as follows:
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A - +1 - +1
n(y: o) =2 = AT
n+er° =

n+

Following Kackar and Harville (1984), we can approximate the MSE of #(y; ﬁo) as

follows:

) _ an(y;ﬂo) _ _(yi. +1)eﬁ0
d(y: )= T <= B

and

A(B,) = E[—(y‘- Hye” j

(n+e’)*
ezﬂo
C(n+eh)’

g )
Zm[E(yi, +2y; +1)}

e n+n2+n2+2n+1
(n+e,Bo )4 eﬂo ezﬁo eZ/BO eﬂo

e (3ne’ +2n® +e*
(n+e)* R

E(y, +1)*

and

n+eh
mn

B(ﬂo):rl(ﬂo) =

Thus,
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My (B)=E[s ~E(s1¥,)]
=E{Var(s;|y, )|

B y, +1
B E{(n+eﬂ°)2}

n +1
Yy n+e 1

T(n+eh) ePn+elh)  ef(n+eh)

M, (8,) = tr(A(5)B(5)))
e (3ne’ +2n* +e*t \n+eh
- (n+e”)* [ e/ j mn
3ne’® +2n% + e
T mn(n+eh)
1 . 3ne’ +2n% + e

e’ (n+e) mn(n+e”)*
1 1 3ne” +2n® +e*
_M(eT‘)JF mn(n+e”)? J

M (ﬂo) =

It is worth noting that E(d(y; £,))#0 , which is shown as follows:

E(d(y: 5) - E[—’(y‘- e j

(n+e”)?

Thus, we can conclude that E(dz(y;ﬂo)) #Var (d(y; 4,))-

To check the performance of M (B,) when approximating M (/3,), we estimate the true

MSE by Monte Carlo simulation. The following figure shows the results of the
performance:
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1.5

(m,n)=(10,5)
— True MSE
— Approximate MSE
o | (m,n)=(10,10)
T | — True MSE
t Approximate MSE ;
= /
[Tp)
@
Q
© I I I I I
-2 -1 0 1 2
Bo

From the above figure, the performance of the MSE approximation, M (f,) is very

good since it is very close to the true MSE, M (/,) in both cases.
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