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Abstract

Exposure to ambient particulate matter (PM) caused an estimated 4.2 million deaths worldwide in 

2015. However, PM emission standards for power plants vary widely. To explore if the current 

levels of these standards are sufficiently stringent in a simple cost-benefit framework, we 

compared the health benefits (avoided monetized health costs) with the control costs of tightening 

PM emission standards for coal-fired power plants in Northeast (NE) Brazil, where ambient PM 

concentrations are below World Health Organization (WHO) guidelines. We considered three 

Brazilian PM10 (PMx refers to PM with a diameter under x micrometers) emission standards and a 

stricter U.S. EPA standard for recent power plants. Our integrated methodology simulates hourly 

electricity grid dispatch from utility-scale power plants, disperses the resulting PM2.5, and 

estimates selected human health impacts from PM2.5 exposure using the latest integrated 

exposure-response model. Since the emissions inventories required to model secondary PM are not 

available in our study area, we modeled only primary PM so our benefit estimates are 

conservative. We found that tightening existing PM10 emission standards yields health benefits 

that are over 60 times greater than emissions control costs in all the scenarios we considered. The 

monetary value of avoided hospital admissions alone is at least four times as large as the 

corresponding control costs. These results provide strong arguments for considering tightening PM 
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emission standards for coal-fired power plants worldwide, including in regions that meet WHO 

guidelines and in developing countries.

Keywords

Health impacts; Pollution control costs; Particulate matter; Emission standards; Coal power plants; 
Electricity grid dispatch; Air quality; Energy policy

1. Introduction

The combustion of fossil fuels is increasingly of concern, not only because of greenhouse 

gas emissions, but also because of the adverse health impacts of the air pollutants it 

produces. For coal, these pollutants include sulfur dioxide, nitrogen oxides, carbon 

monoxide, heavy metals such as mercury, and particulate matter (Smith et al., 2013). We 

focus here on particulate matter (PM), a complex mixture of tiny solid particles and liquid 

droplets emitted from both natural and anthropogenic sources, because of all the common air 

pollutants it is the largest contributor to global mortality and morbidity. PM, and especially 

PM2.5 (PMx denotes particulate matter with a diameter under x micrometers), contains 

inhalable particles small enough to penetrate deep in the respiratory system, resulting in 

respiratory (e.g., asthma aggravation) and cardiovascular morbidity, and mortality from 

cardiovascular, lung cancer, and respiratory diseases (WHO, 2013). As a result, ambient 

PM2.5 is now the fifth largest contributor to global disease (Brauer et al., 2015). The impact 

of PM pollution has been worsening: between 1990 and 2015, the number of deaths 

attributable to ambient PM2.5 exposure increased from 3.5 million to 4.2 million (Cohen et 

al., 2017). However, PM emissions standards for coal-fired power plants - a large source of 

anthropogenic PM (National Research Council, 2010) - vary widely, depending on plant 

size, age, technology, and jurisdiction (Zhang, 2016).

A number of studies have quantified air quality and/or health impacts from fossil fuel power 

plants under various scenarios and control strategies at the regional (Levy et al., 1999, 

2002a–2002b; Levy and Spengler, 2002; Zhou et al., 2003; Frost et al., 2006; Carbonell et 

al., 2007; Hao et al., 2007; Carreras-Sospedra et al., 2010; Vutukuru et al., 2011; McDonald-

Buller et al., 2016) and national (Zhou et al., 2006; Markandya and Wilkinson, 2007; Levy 

et al., 2009; Machol and Rizk, 2013; Mokhtar et al., 2014; Driscoll et al., 2015) levels. A 

few studies have modeled hourly electricity grid unit commitment and dispatch to better 

capture the link between electricity production and ambient air concentrations (Kerl et al., 

2015; Buonocore et al., 2016a–2016b; Rodgers, 2016); however, these studies used linear 

approximations to model the relationship between pollutant exposure and health impacts, 

which tend to underestimate health impacts at low concentrations and overestimate health 

impacts at high concentrations, compared to non-linear exposure-response models (Apte et 

al., 2015). We did not find any studies that combined hourly electricity grid unit 

commitment and dispatch with atmospheric dispersion and non-linear exposure-response 

models.

Several studies have compared the health benefits with the control costs of reducing various 

types of power plant emissions. Some papers focused on the acid rain program in the U.S. 
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After analyzing this program, Burtraw et al. (1998) reported that its health benefits outweigh 

its expected costs with a high level of confidence. In a subsequent investigation, Chestnut 

and Mills (2005) confirmed that the health and environmental benefits of the U.S. acid rain 

program (~US$100 billion annually) dwarf its costs (~US$3 billion annually). Burtraw et al. 

(2001) analyzed instead the cost-effectiveness of reducing NOx emissions from electric 

power plants; they concluded that the benefits of the U.S. EPA mandated state 

implementation plans would more likely exceed costs with an annual cap than with a 

seasonal cap. More recently, Buonocore et al. (2016a) found that the net health benefits of 

the U.S. Clean Power Plan, which decreases emissions of various air pollutants (including 

PM) as a result of implementing a CO2 standard, are in the order of US$12 billion annually.

In China, Li et al. (2004) obtained a benefit-cost ratio ranging from 1 to 5 for reducing PM10 

emissions from coal-fired power plants in the heavily polluted Shanghai area. In a more 

recent study of several heavily polluted Chinese cities, Zhang et al. (2015) reported that the 

health benefits of reducing coal power plant emissions are 29 to 32 times greater than the 

corresponding control costs. Also of interest is the multi-continent cost-benefit analysis of 

local air pollution and global climate change by Bollen et al. (2009), who estimated that the 

benefit-cost ratio of controlling power plant emissions ranges from 2 to 32.

While these studies cover a broad array of contexts, to our knowledge no published study 

has yet combined hourly electricity grid unit commitment and dispatch simulations with 

atmospheric dispersion and a non-linear exposure-response model. In this paper, we adopt a 

conceptually simple cost-benefit framework to explore if different PM10 emission standards 

are sufficiently stringent (i.e., if incremental benefits from tightening these standards are 

“close” to the corresponding control costs). We apply this framework to compare the health 

benefits (avoided health costs) and the control costs of tightening PM10 emission standards 

for coal power plants in Northeast (NE) Brazil, where ambient PM concentrations are below 

World Health Organization guidelines (WHO, 2018).

Apart from our methodology, which is well-suited for areas that do not have the emissions 

inventories required by photochemical models to simulate secondary PM formation,1 our 

paper makes several contributions. First, we provide new (conservative) benefit estimates of 

tightening PM standards based on the monetarily value of health benefits, which we 

compare with emissions control costs. Second, our case study adds to the thin literature 

dealing with the health impacts of thermal power plants in Latin America, which currently 

consists of two studies in Brazil (Alves and Uturbey, 2010; Avelino et al., 2015), one in 

Mexico (Lopez et al., 2005), and another one for three large Latin American cities (Bell et 

al., 2006). Third, while many previous studies have focused on areas with high PM 

concentrations (Zhou et al., 2003, 2006; Li et al., 2004; Bell et al., 2006; Hao et al., 2007; 

Guttikunda and Jawahar, 2014; Zhang et al., 2015), our case study is in a region where 

annual average ambient PM2.5 concentrations are below the WHO air quality guideline of 10 

μg/m3 (WHO, 2018). Fossil fuel power plants in such areas are probably less likely to be 

1PM can either be emitted directly into the air (primary PM, which has both man-made and natural sources) or be formed in the 
atmosphere (secondary PM) from gaseous precursors such as SO2, NOx, ammonia, and nonmethane volatile organic compounds 
(WHO, 2013).

Howard et al. Page 3

Environ Int. Author manuscript; available in PMC 2020 May 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



upgraded to curb emissions of air pollutants and the local population may erroneously feel 

safe from adverse health impacts caused by air pollution.

2. Methods and data

2.1. Study area

Our study area is in the northeast of Brazil (NE Brazil), a country that relies on renewable 

energy (mainly hydroelectricity) for over 80% of its electricity production (REN21, 2017).

NE Brazil is comprised of nine states that span over 1.5 million km2 and have a combined 

population of 54 million people (Instituto Brasileiro de Geografia e Estatística, n.d.); see 

Fig. 1. The main cities of NE Brazil, Recife, Fortaleza and Salvador, have populations of 

3.69, 3.61, and 3.57 million respectively (Instituto Brasileiro de Geografia e Estatística, 

n.d.).

NE Brazil, a semi-arid region, has some of the world’s highest capacity factors for wind and 

solar electricity production, along with a large hydroelectric potential (Krauter, 2005; da 

Silva et al., 2016). Renewable electricity (including hydroelectricity) in Brazil is planned to 

expand from 103.1 GW of installed capacity in 2013 to 164.1 GW in 2023, while non-

renewable electricity is forecasted to expand from 21.3 GW to 31.7 GW over the same time 

period (a total capacity increase of 57.3% over 10 years).

The NE grid is one of five large grids in Brazil’s national interconnected power system 

(Brazil also has an isolated system in the Amazon Region). Its total installed capacity 

exceeds 29,000 MW, and its annual electricity demand tops 85,000 GWh (ONS, n.d.). Table 

1 shows the installed capacity of electric generators regulated by the central dispatch 

authority Operador Nacional do Sistema Eletrico (ONS) in NE Brazil.

NE Brazil has only two large coal power plants: Porto do Pecém I (two 360 MW units) and 

Porto do Pecém II (one 360 MW unit). Both are located within 30 km of the Fortaleza 

metropolitan area (Fig. 1), along with several diesel and gas power plants. The location of 

these plants motivated our selection of the Fortaleza area for this study.

A review of regulatory documents indicates that Brazil has at least three different PM10 

emission standards (but currently no PM2.5 standard) for coal power plants: 28.15 g/kWh 

(Ministério de Minas e Energia, 2007); 390 mg/Nm3 (0.69 g/kWh; National Counsel of the 

Environment (CONAMA)) (Ferreira, 2015); and 204 mg/Nm3 (0.36 g/kWh; for power 

plants funded by Brazil’s National Development Bank (BNDES)) (Governo do Estado do 

Ceará, n.d.). We were unable to determine why the PM10 emission standard in the 2030 

National Energy Plan is so much higher than the other emission standards. The CONAMA 

and BNDES standards were converted to g/kWh using data from the Porto do Pecém power 

plants. By comparison, the U.S. EPA PM10 emission standard for electric utility steam 

generating units over 73 MW built after 05/03/11 is 0.09 lb./MWh (0.04 g/kWh or 22.6 

mg/Nm3) (U.S. EPA, 2015), which is among the most stringent standards in the world 

(Zhang, 2016).
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This sets the stage for our study. We analyzed the health benefits and control costs of the 

following three scenarios:

• Scenario 1: the PM10 emission standard is cut from 28.15 g/kWh to 0.69 g/kWh;

• Scenario 2: the PM10 emission standard is reduced from 0.69 g/kWh to 0.36 g/

kWh; and

• Scenario 3: the PM10 emission standard is tightened from 0.36 g/kWh to 0.04 g/

kWh.

2.2. Integrated assessment methodology

Fig. 2 present an overview of our integrated methodology. First, we modeled hourly unit 

commitment and dispatch of the NE Brazil electricity grid level for an entire year (2015).

Second, we dispersed the resulting hourly primary PM2.5 emissions (after converting PM10 

emissions using the PM2.5/PM10 ratio as explained in Subsection 2.2.2) for year 2015 using 

the dispersion model CALPUFF View™. We did not consider secondary PM because the 

natural and anthropogenic emissions inventories required to simulate secondary PM 

formation are not available in our study area, which makes our results conservative.

Third, the resulting PM25 concentrations were processed in BenMAP (U.S. EPA, 2017a) 

using the latest IER model (Cohen et al., 2017) to capture the non-linear relationship 

between pollutant exposure and health impacts. The monetized health benefits were then 

compared with the emission control costs, which we calculated using an integrated 

environmental control model (Carnegie Mellon University, 2017).

2.2.1. Electricity system dispatch model (PLEXOS®)—To model hourly power 

plant dispatch for a whole year (2015), we built a spatially and temporally resolved 

electricity dispatch model for the electric grid of Northeast (NE) Brazil using the PLEXOS® 

model. Recent studies have used PLEXOS® to assess large-scale renewable integration 

(Palchak et al., 2017), capacity expansion planning (Shirley and Kammen, 2015), and 

pumped storage hydropower (Koritarov et al., 2014).

Electricity dispatch models simulate optimal power plant dispatch to match load (i.e. 

electricity demand) and generation (i.e. electricity supply), while accounting for the 

marginal cost of electricity generation and technical, economic, and environmental 

constraints. We selected PLEXOS® because it has a broad range of functionalities, an 

intuitive user interface, and an extensive documentation. Alternatives to PLEXOS®, such as 

the NEWAVE model developed by Brazil’s Power Sector Research Center (CEPEL), are 

proprietary and therefore unavailable.

Designing an electricity dispatch model that optimizes unit commitment requires defining 

load, a transmission network, generators, fuels, emissions, storages, reserves, and various 

constraints. As load profiles are not public in Brazil, we also had to develop an hourly load 

profile for NE Brazil for 2015 by projecting to 2015 the 2013 NE Brazil load profile 

obtained from Brazil’s National System Operator (ONS, Operador Nacional de Sistema 

Howard et al. Page 5

Environ Int. Author manuscript; available in PMC 2020 May 15.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Eletrico). We relied on the load forecasting algorithm in PLEXOS®, and assumed that 

electricity demand grows by 4.77% per year (Torrini et al., 2016).

Transmission system data were obtained from Miranda et al. (2017), who recently studied 

the integration of large-scale wind power into the NE Brazil electricity grid. Each generator 

(node) was connected to a transmission line, and each transmission line was constrained by 

its maximum flow capacity.

We modeled all of the 393 generators in NE Brazil that are centrally dispatched by Brazil’s 

ONS (Table 1). For each generator, a set of properties was defined, as shown in Fig. 3. Most 

of the data used for developing our NE Brazil PLEXOS® model were collected by our 

partners at the Center for Energy and Environmental Economics (CENERGIA) at the 

Universidade Federal do Rio de Janeiro. These data were sourced primarily from Brazil’s 

national electricity operation authority ONS and from the national electricity regulator 

ANEEL (Agência Nacional de Energia Elétrica). Additional data were obtained directly 

from ONS and ANEEL.

Hydroelectric power plants, which represent 49.8% of NE Brazil’s electric system capacity, 

were dispatched to minimize the cost of thermal generation over our period of analysis. Each 

hydroelectric plant was constrained by setting the initial fill level of each reservoir to the 

percentage of NE hydro storage capacity that each reservoir contributes, multiplied by the 

stored energy in January 2015. The final level of each reservoir was set to the percentage of 

NE hydro storage capacity that each reservoir contributes, multiplied by the stored energy in 

December 2015. Moreover, the maximum energy available per month for each hydroelectric 

plant was based on prior year hydroelectric dispatch records to account for seasonality in 

precipitation patterns and electricity demand (Energy Exemplar, n.d.).

Following previous studies (e.g., Blair et al., 2014), the hourly generation of wind and solar 

power plants across NE Brazil was simulated based on location specific wind speeds and 

solar irradiation profiles. We relied on a CENERGIA wind generation model and the United 

States National Renewable Energy Laboratory System Advisory Model (Blair et al., 2014).

Properties specific to each thermal generator include maximum capacity, heat rate, minimum 

stable level, ramp up and ramp down rates, minimum uptime and downtime, start time and 

emissions rates.2 PM10 emission rates were based on PM10 emission standards in the 

Ministry of Mines and Energy 2030 Energy Plan (2007): 0.042 g/kWh for natural gas 

generators, 0.37 g/kWh for diesel generators and 0.49 g/kWh for biomass generators. For 

coal power plants, we used the PM10 emission standards discussed above (28.15 g/kWh, 

0.69 g/kWh, 0.36 g/kWh, and 0.04 g/kWh). We simulated the NE Brazil electric grid 

dispatch and emissions under each of the four PM10 emission standards considered, holding 

all other properties of the NE Brazil electricity system constant between simulations. Hourly 

2Maximum capacity is each generator’s installed capacity. The heat rate is the amount of fuel required to produce one unit of 
electricity (MJ/kWh). The minimum stable level is the minimum stable generation. Ramp up/down rates limit the rate at which 
generation can increase/decrease (MW/min). The minimum up/down time is the minimum number of hours a generator must be left on 
or off for in any commitment cycle. The start time is the amount of time each generator requires to reach its minimum stable level. 
Emission rates are the rate of production of air pollutant emissions (g/kWh).
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emissions were calculated for each power plant based on actual dispatch, assuming that all 

thermal power plants abide by the relevant emission standard for the scenario considered.

After simulating NE Brazil’s electricity grid dispatch for year 2015, spatially resolved 

emission profiles containing the time-varying hourly emissions for each generator (8760 

entries per generator) were entered into CALPUFF View™.

2.2.2. Atmospheric dispersion of PM emissions (CALPUFF)—We selected 

CALPUFF for simulating the dispersion of primary PM emissions because it is widely used, 

extensively validated, recommended by the U.S. EPA (U.S. EPA, 2017b), and well suited for 

this study. CALPUFF is a non-steady-state Lagrangian Gaussian puff model that accounts 

for complex terrain effects, overwater transport, long-range transport, coastal interactions, 

building downwash, wet and dry removal, and simple chemical transformations. CALPUFF 

View™ (the commercial version of CALPUFF we used; Lakes Environmental, n.d.) includes 

built-in modules for processing input data (meteorological data, geophysical terrain) and 

results from the dispersion of selected pollutants.

Dispersion modeling for our study required spatially resolved power plant emissions, 

meteorological, and topographic data. NE Brazil fits in a 1200 km by 1500 km rectangle. We 

selected a 320 km × 320 km area with a 5.4 km × 5.4 km grid around Fortaleza to capture air 

quality changes caused by the PM emissions of thermal generators in that area, which 

include the only two large coal power plants in NE Brazil. Out of the 39 operational thermal 

power plants in NE Brazil in 2015 (Table 1), eight are within our study area.

Hourly meteorological conditions for our study area were developed as WRF (weather 

research and forecasting) files with a 4 km resolution by the University of Waterloo, Canada. 

The WRF files include surface meteorological data, such as wind speed and direction, 

temperature, surface pressure, precipitation and cloud cover, as well as vertical profiles of 

wind speed and direction, temperature, and pressure.

We processed the WRF meteorological data in CALMET (a module of CALPUFF View™) 

to develop wind and temperature fields on a three-dimensional grid with a 4 km resolution. 

To process geophysical terrain inputs for CALMET, we used three publicly available map 

files (SRTM1, SRTM3 and GTOPO30) to account for land and ocean effects, because 

Fortaleza and the Porto do Pecém power plants are close to the Atlantic coast.

The PM10 emissions simulated in PLEXOS® were converted to PM2.5 using the ambient 

ratio method (Boldo et al., 2006) before dispersion in CALPUFF View™. For this 

conversion, we calculated a ratio by mass of primary PM2.5/PM10 of 0.775 by averaging all 

reported PM2.5 to PM10 emissions (by mass) for coal, oil, and natural gas generation in the 

United States (U.S. EPA, 2018a) as suitable Brazilian data were not available. As the ratio 

PM2.5/PM10 varies by fuel source, it was weighted for each fuel source based on their 

contribution to emissions in the NE Brazil electric grid.

2.2.3. Health outcomes modeling (BenMAP)—To assess how changes in long-term 

human exposure to PM2.5 concentrations affect selected health outcomes, we used the U.S. 

EPA’s Environmental Benefits Mapping and Analysis Program (BenMAP) (U.S. EPA, 
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2017a). We are aware of a dozen of multinational air pollution health impact assessment 

tools but we chose BenMAP for its versatility. BenMAP performs spatial and temporal 

calculations based on differences in air pollution concentrations between a baseline and a 

control scenario. It then combines concentration changes with spatially resolved population 

and baseline disease incidence data and uses concentration-response (C-R) functions to 

estimate the number of people affected (and the cost) for various health outcomes.

Population data with a 10 km × 10 km resolution for 2015 were extracted from the BenMAP 

regional datasets (U.S. EPA, 2017c) sourced from the United Nations Socioeconomic Data 

and Applications Center (SEDAC). We did not use Brazilian census data because the finest 

available resolution (municipality level) is coarser than the SEDAC data. Baseline disease 

incidence data and ambient PM2.5 concentrations were also downloaded from the BenMAP 

regional datasets. Both population and disease incidence data were discretized into 16 age 

groups using the 2015 Brazilian age pyramid (a graph showing the distribution of a 

population [on the horizontal axis] by age [on the vertical axis] and gender, with men on the 

left and women on the right) to match the requirements of the C-R functions we used.

We collected ambient PM2.5 concentrations, which ranged from 5 to 10 μg/m3, from the 

2013 Global Burden of Disease (Brauer et al., 2015). To combine the 5.4 km × 5.4 km 

PM2.5 air quality concentrations (simulated in CALPUFF View™) from electric grid 

emissions with the 10 km × 10 km PM2.5 ambient concentrations, we interpolated ambient 

PM2.5 concentrations using inverse-distance weighting (see Fig. 4 Panel D) because it has 

been shown to be preferable to Kriging or Thiessen polygons for environmental data 

(Akkala et al., 2010). We assumed that ambient concentrations reflect PM2.5 emissions 

under the 0.36 g/kWh standard because BNDES provided funding to the Porto do Pecém 

coal power plants to meet this standard (Governo do Estado do Ceará, n.d.). Therefore, the 

PM2.5 power plant emissions under the 0.36 g/kWh standard were subtracted from the 

ambient concentrations in all scenarios before adding the simulated power plant emissions.

To estimate premature mortality, we relied on the 2017 global IER model (Cohen et al., 

2017). The IER model is the only model that spans the entire global range of PM2.5 

exposure for the five main causes of PM-related mortality, which is necessary to capture the 

effects of high PM2.5 air quality concentrations in Scenario 1. In a study comparing the IER 

model with seven other prediction methods previously used in burden assessments, the IER 

model was found to be the best predictor of relative risk changes due to PM2.5 exposure 

(Burnett et al., 2014). Table 2 presents the C-R functions used to estimate mortality and 

hospital admissions.

A shown in Table 2, we relied on epidemiological studies from the U.S. and Europe, because 

for many health endpoints Latin American results are not available for PM2.5 (Bell et al., 

2006). To assess the impact of using a different C-R function, we also quantified premature 

mortality using a PM2.5C-R function developed by Lepeule et al. (2012) for low PM2.5 

concentrations in the US, which matched the range of ambient PM2.5 concentrations in NE 

Brazil (see the sensitivity analysis section below).
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We derived valuation functions for each type of hospital admission considered by updating 

the standard BenMAP cost of illness valuation functions for hospital admissions with Brazil 

hospital costs. Brazilian hospital admissions costs were sourced from a World Bank study 

(La Forgia and Couttolenc, 2008) and updated to 2015 using the Brazilian medical wage 

index (World Bank, n.d.). All of our health benefits and control costs are expressed in 2015 

US$.

To calculate the value of a statistical life (VSL) for Brazil for 2015, we followed the U.S. 

EPA (2018b) recommended approach:

Brazil VSL2015 = US VSL2015 ∗ Brazil GDPPC2015
US GDPPC2015

0.8 ∗
Brazil PPP2015, (1)

where GDPPC denotes the gross domestic product per capita (obtained by dividing the gross 

domestic product, adjusted for purchasing parity, by the total population); and Brazil 
PPP2015 is the purchasing power parity conversion factor for Brazil, i.e., the number of units 

of Brazil’s currency required to buy the same amounts of goods and services in Brazil as $1 

in the U.S.

The U.S. EPA (2018b) recommends a U.S. VSL for 2015 of $10 million. For 2015, the 

Brazil and U.S. GDPPC were respectively $15,615 and $56,207 in PPP-adjusted dollars, and 

the PPP GDP conversion factor for Brazil was 1.9 (World Bank, n.d.). The 0.8 exponent 

comes from the OECD (2012), and represents the elasticity between income and willingness 

to pay to avoid adverse health effects. The resulting 2015 VSL for Brazil is US$6,819,641.

2.2.4. Emission control costs—To compare the avoided health costs (health benefits 

here) from tightening the PM10 emission standard with the corresponding control costs for 

the two Porto de Pecém coal power plants in our study area, we analyzed control costs using 

the Integrated Environmental Control Model (IECM) (Carnegie Mellon University, 2017). 

Our analysis relied on plant specific data, including plant capacity, plant life, and coal type. 

We considered the two post-combustion particulate controls for coal power plants available 

in the IECM: cold-side electrostatic precipitators (ESP) and fabric filters (FF), whose PM2.5 

collection efficiency is 98.0% and 99.7% respectively (Zhang, 2016).

Capital costs include particle collectors, ductwork, fly ash equipment, fans, general facilities 

costs, engineering fees, pre-production costs, process contingency costs, and interests. Per 

net MW, capital costs total US$47,170 for an ESP and US$56,780 for a FF. Fixed costs 

include operating and maintenance labor, maintenance material and administrative labor. Per 

MWh, fixed costs sum to US$0.3293 for an ESP and US$0.4166 for a FF. Variable costs 

include electricity, water and waste disposal, for a total per MWh of US$0.4790 for an ESP 

and US$0.4986 for a FF.

The equipment and material costs were assumed to be 38.4% greater for Brazil than for the 

U.S., based on an estimate of the additional costs (freight and insurance costs, import fees, 

customs expenses and Brazilian taxes) of importing equipment (Köberle et al., 2018). 

Brazilian labor costs were assumed to be 21% of U.S. labor costs, based on the Brazil to 

U.S. gross national income per capita ratio.
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We calculated that the annualized cost of removing 1 tonne (metric ton) of PM10 is US

$87.98 with an ESP and US$119.90 with a FF for a 360 MW unit. To estimate the control 

costs of reducing PM10 emissions Scenarios 1 and 2, we assumed that an ESP would be used 

because this approach is cheaper and sufficiently efficient (98.0% PM2.5 removal efficiency). 

Since Scenario 3 requires that 99.0% of PM10 emissions be removed, we assumed a FF 

would be used because it has a 99.7% PM2.5 removal efficiency.

3. Results

3.1. Electric grid emissions

Results from our PLEXOS® simulations for 2015 show an annual system load of 96,385 

GWh and an annual electricity generation of 97,593 GWh. Total simulated generation was 

1.3% greater than load and the simulated hydroelectric generation was within 3.2% of actual 

hydroelectric generation. When generation is greater than load and no energy storage 

resources are available, electricity generation must be curtailed or dissipated into heat (dump 

energy). The dump energy in our simulations was 1218 GWh (1.3% of load) and the 

unserved load was only 10 GWh (0.01% of load) (10 GWh = 96,385 + 11,218 GWh − 

97,593 GWh).

Table 3 displays total PM10 emissions by standard from the entire NE Brazil electric grid for 

2015. It shows that emissions from coal power plants in our study area could be reduced by 

240,617 t of PM10/year (=248,679-8062, or 96.8%) under Scenario 1, by 28921 of PM10/

year (=8062-5170, or 35.9%) under Scenario 2, and by an additional 28031 of PM10/year 

(5170-2367, or 54.2%) under Scenario 3.

3.2. Resulting ambient air quality changes

Table 4 summarizes different mean PM2.5 concentrations from power plant emissions. The 

maximum annual mean PM2.5 concentrations are 91.7, 2.26, 1.18, and 0.35 μg/m3 under the 

28.15, 1.18, 0.36, and 0.04 g/kWh standards respectively. We note that under the 0.69 g/

kWh, 0.36 g/kWh and 0.04 g/kWh standards, PM2.5 concentrations in NE Brazil are below 

the World Health Organization (WHO) annual mean guideline of 10 μg/m3 PM2.5 and 24-

hour mean guideline of 25 μg/m3 (WHO, 2018) even after accounting for ambient PM2.5 

concentrations. These values illustrate the drastic reduction in PM2.5 under the 3 scenarios 

considered.

Panels A to D of Fig. 4 display average annual PM2.5 concentrations under each standard 

considered to illustrate how they change as PM10 standards are being tightened. As 

expected, the highest average annual concentrations are closest to the coal power plants and 

disperse westerly, in accordance with the annual wind rose shown in Fig. 5. Panel E of Fig. 4 

displays ambient PM2.5 concentrations for reference (described in Section 2.2.3). As 

explained above, the Porto de Pecém coal power plants are assumed to abide by the 0.36 

g/kWh PM10 standard.

PM2.5 concentration results from CALPUFF View™ only account for power plant emissions 

in the region surrounding Fortaleza. The (grid cell-level) highest annual mean PM2.5 

concentration is substantially less than the observed ambient PM2.5 concentrations under the 
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0.36 g/kWh and 0.04 g/kWh standards, which is expected because electricity grid emissions 

contribute only a portion of total ambient PM2.5. Ambient concentrations were incorporated 

in the health outcomes modeling to assess the impact of air quality improvements on human 

health.

3.3. Human health impacts

Table 5 (and the abstract art figure) summarizes the expected health benefits and the control 

costs of tightening the PM10 standard for coal power plants under each of the three scenarios 

considered. These results are based on average annual PM2.5 concentrations. Implementing 

Scenario 1 would prevent ~168 premature deaths and reduce hospital admissions by 16,257 

cases per year, which is worth US$1.264 billion per year with our assumptions. Cutting the 

PM10 emission standard from 0.69 to 0.36 g/kWh (Scenario 2) would prevent an additional 

3.7 premature deaths and 198 hospital admissions, which represents annual savings of US

$26.4 million. Further tightening the PM10 emission standard from 0.36 to 0.04 g/kWh 

would avoid 4.2 premature deaths and 194 hospital admissions, for annual savings of US

$30.0 million.

Although premature deaths drive the value of health losses under the three scenarios 

considered, the number of additional hospital admissions is 46 to 97 times greater than the 

number of premature deaths as most people affected by PM2.5 pollution will suffer from 

respiratory ailments or cardiovascular disease.

3.4. Comparison of health benefits with emissions control costs

Our calculations show that tightening the PM10 emission standard under Scenario 1 would 

cost US$21.1 million per year and cut 240,617 t of PM10. Going from 0.69 to 0.36 g/kWh 

(Scenario 2) would cost US$0.25 million per year and decrease annual PM10 emissions by 

2892 t. Implementing Scenario 3 from would cost US$0.34 million per year and remove 

2803 t of PM10.

Although these amounts are substantial, they are dwarfed by the expected health benefits of 

reducing PM pollution. Indeed, the value of avoided health costs is respectively 60 times, 

103 times, and 89 times greater than the cost of controlling emissions under Scenario 1, 2, 

and 3. These results reflect that the relative risk of disease incidence per unit increase in 

pollution is greater at low exposure than at high exposure (health impacts depend non-

linearly on PM exposure concentrations) (Burnett et al., 2014). The costs of hospital 

admissions related to PM pollution are by themselves at least four times larger than the 

emission control costs.

3.5. Sensitivity analysis

Uncertainty was analyzed at each modeling stage. As hydroelectric plants represent 49.8% 

of NE Brazil’s electricity infrastructure capacity (ONS, n.d.), we analyzed the impact that 

dry year conditions have on emissions by restricting reservoir levels and maximum energy 

dispatch to 2012 levels, which was the driest year in the NE Brazil water basin since 1983 

(CHRS, 2016). As expected, total annual PM10 emissions increased most for the more 
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stringent standards (e.g., by 18.5% under the 0.36 g/kWh PM10 standard), and little under 

the 28.15 g/kWh standard.

During the air quality modeling stage, we compared concentrations obtained by converting 

PM10 to PM2.5 before and after dispersion, which differed by an average of ~1% over the 

study area.

During our health impact analyses, we compared adult premature mortality cases from the 

IER model with the Lepeule et al. (2012) C-R function. The latter was developed for low 

PM2.5 concentrations (8–18 μg/m3) and has a higher relative risk estimate between PM2.5 

exposure and mortality. We found that adult mortality cases were 2.9 to 4.9 times higher 

with the Lepeule C-R function, which further highlights that our results are conservative.

4. Conclusions

In this paper, we combined an hourly electric grid simulation model for year 2015 (built 

using PLEXOS®), with spatially resolved atmospheric dispersion (via CALPUFF View™), 

and human health impacts estimation for various health outcomes related to PM2.5 exposure 

(via BenMAP) to quantify the health benefits of tightening PM10 standards and compare 

them to PM emissions control costs. We found that the value of avoided health costs is 60 

times greater than the emission control costs when cutting the PM10 emission standard from 

28.15 g/kWh to 0.69 g/kWh (Scenario 1), 103 times greater when reducing it further from 

0.69 g/kWh to 0.36 g/kWh (Scenario 2), and 89 times greater when tightening it from 0.36 

g/kWh to 0.04 g/kWh, which is among the most stringent standards in the world (Zhang, 

2016).

These results are noteworthy because they show that even in an area where ambient PM2.5 

ambient concentrations are below the WHO guidelines, the local population would 

experience substantial health gains from tightening PM10 emission standards.

Although a key driver of our results compared to some of the older studies (e.g., Li et al., 

2004; Lopez et al., 2005; Pervin et al., 2008; Bollen et al., 2009) is the higher value of a 

statistical life (VSL), decreasing the VSL would not qualitatively change our conclusions 

that, from the point of view of society, stricter PM10 standards for coal power plants should 

be implemented. Indeed, the mere benefit of avoiding PM-related illnesses leading to 

hospital admissions would exceed emission control costs by at least a factor four under each 

of the scenarios we considered.

Furthermore, it is important to note that the range of expected health benefits we report is 

conservative for several reasons. First, we did not account for secondary PM, although its 

impact could be quite substantial (Behera and Sharma, 2010), because modeling secondary 

PM requires complete natural and anthropogenic emissions inventories, which are not 

available for our study area (Sogabe, 2018). Second, we were not able to consider mortality 

induced by PM exposure in people aged 1 to 25 years because of epidemiological data 

limitations. Third, we note that lenient environmental regulations attract poorer quality 

investors (Dowell et al., 2000) and high-polluting joint ventures (Dean et al., 2005), which 

further degrade regional environmental quality and human health. Accounting for these 
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secondary effects would further tilt the balance in favor of more stringent PM emission 

standards.

Tightening standards is not sufficient, however. Standards need to be enforced, which can be 

challenging, especially in developing countries where plant-level monitoring data are rarely 

available (Barton et al., 2000).

In the future, it would be of interest to model secondary PM (when the necessary data 

become available) and to apply our methodology to areas with different geographic, 

demographic and electricity infrastructure conditions. Another avenue would be to explore 

the impact of even higher spatial resolution on results with appropriate terrain, 

meteorological, and population data, and to investigate seasonal variations in PM emissions 

and health impacts. Moreover, other pollutants could be modeled jointly with PM to analyze 

the co-benefits and costs of joint standards. Finally, it would be of interest to study the labor 

impacts of tightening PM10 standards in NE Brazil, and more generally of increasing the 

share of renewable electricity.

Coal power plants will likely play an important role until the emergence of more cost-

effective storage systems that can provide reliable base loads from renewable energy plants. 

However, the substantial difference between health benefits and control costs presented in 

this study argues strongly for tightening and enforcing the emission standards of coal power 

plants to improve local and regional air quality, not only in heavily polluted areas but also in 

relatively clean areas (where PM2.5 concentrations are below WHO guidelines), including in 

developing countries.
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Fig. 1. 
Study area.
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Fig. 2. 
Methodology overview.
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Fig. 3. 
Electric grid simulation data.
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Fig. 4. 
Fortaleza study area average annual PM2.5 concentrations (μg/m3).
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Fig. 5. 
Year 2015 wind rose for the city of Fortaleza.
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Table 1

Northeast Brazil electricity system capacity (2015).

Type Number of generators Total capacity (MW) Percentage of system capacity

Renewable

 Wind 291 7650 25.9

 Solar 52 1325 4.5

 Hydro 11 14,721 49.8

Thermal

 Biomass 1 17 0.1

 Natural gas 7 2094 7.1

 Coal 2 1080 3.7

 Oil 29 2684 9.1

Total 393 29,570 100.0

Source: Operador Nacional do Sistema Eletrico (ONS, n.d.).
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Table 3

Annual PM10 emissions by standard (metric tons).

PM10 Standard

28.15 g/kWh 0.69 g/kWh 0.36 g/kWh 0.04 g/kWh

Emission source

 Coal (tonne of PM10/year) 246,663 6046 3154 351

 Oil (tonne of PM10/year) 1284 1284 1284 1284

 Natural gas (tonne of PM10/year) 732 732 732 732

Total (tonnes of PM10/year) 248,679 8062 5170 2367
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