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ART ICLE Open Ac ce s s

Loci discovery, network-guided approach, and
genomic prediction for drought tolerance index in
a multi-parent advanced generation intercross
(MAGIC) cowpea population
Waltram Ravelombola1,2, Ainong Shi1 and Bao-Lam Huynh3

Abstract
Cowpea is a nutrient-dense legume that significantly contributes to the population’s diet in sub-Saharan Africa and
other regions of the world. Improving cowpea cultivars to be more resilient to abiotic stress such as drought would be
of great importance. The use of a multi-parent advanced generation intercross (MAGIC) population has been shown to
be efficient in increasing the frequency of rare alleles that could be associated with important agricultural traits. In
addition, drought tolerance index has been reported to be a reliable parameter for assessing crop tolerance to water-
deficit conditions. Therefore, the objectives of this study were to evaluate the drought tolerance index for plant
growth habit, plant maturity, flowering time, 100-seed weight, and grain yield in a MAGIC cowpea population, to
conduct genome-wide association study (GWAS) and identify single nucleotide polymorphism (SNP) markers
associated with the drought tolerance indices, to investigate the potential relationship existing between the significant
loci associated with the drought tolerance indices, and to conduct genomic selection (GS). These analyses were
performed using the existing phenotypic and genotypic data published for the MAGIC population which consisted of
305 F8 recombinant inbred lines (RILs) developed at University of California, Riverside. The results indicated that: (1)
large variation in drought tolerance indices existed among the cowpea genotypes, (2) a total of 14, 18, 5, 5, and 35
SNPs were associated with plant growth habit change due to drought stress, and drought tolerance indices for
maturity, flowering time, 100-seed weight, and grain yield, respectively, (3) the network-guided approach revealed
clear interactions between the loci associated with the drought tolerance traits, and (4) the GS accuracy varied from
low to moderate. These results could be applied to improve drought tolerance in cowpea through marker-assisted
selection (MAS) and genomic selection (GS). To the best of our knowledge, this is the first report on marker loci
associated with drought tolerance indices in cowpea.

Introduction
Cowpea [Vigna unguiculata (L.) Walp.] is a diploid

legume (2n= 2x= 22) grown for its relatively high
amount of seed protein1. Cowpea cultivation exists in
Asia, Oceania, the Middle East, southern Europe, Africa,

southern USA, and Central and South America2. Cowpea
has also been shown to be nutrient-dense. Cowpea seeds
consisted on average of 6.8 iron, 4.1 zinc, 1.5 manganese,
510.0 phosphorus, and 1430.0 potassium, in mg per 100-g
seed (Frota et al.3). Cowpea consumption has proven to
promote health due to the high amount of antioxidants
found in cowpea seeds4,5. In addition to grain nutritional
values, cowpea biomass can be used for animal feed and
cover–crop production6. Cowpea was grown on more
than 11 million hectares worldwide, and over 70% of that
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came from Africa with Nigeria being the top producer7.
Among developed countries, the United States has the
greatest potential for exporting cowpea with the highest
average cowpea yield per hectare8.
Cowpea cultivation in many parts of the world is usually

rain-dependent and water shortage during cowpea
developmental and growth stages could be detrimental to
cowpea production9. Evidence of the negative effects of
drought stress on cowpea has been reported in areas
where cowpea is cultivated10,11. Even though cowpea is
one of the most drought-tolerant legumes, some cultivars
with desirable agronomic traits were found to be sensitive
to water-deficit conditions12. Therefore, cowpea breeding
programs aiming at improving drought tolerance is still
required. Breeding for drought tolerance can make use of
good understanding of the genetic control for drought
tolerance. With an estimated genome size of 620 Mb13,
cowpea could be used as an excellent model crop for
drought tolerance-related studies in legume research. The
relatively small genome size of cowpea would allow for a
rapid and efficient identification of genes contributing to
drought tolerance. Drought tolerance in cowpea is a
complex trait, which involves sophisticated interactions
between genes11, so identifying genes for drought toler-
ance has been a challenge. In addition, incorporating the
genetic finding into breeding programs for improving
drought tolerance of the existing cowpea elite culticars
would be limited by narrow genetic base through bipar-
ental crosses. This could be addressed by performing
drought tolerance research on a multi-parent advanced
generation intercross (MAGIC) population derived from
founder parents altogether having drought tolerance and
other desirable agronomic traits.
Investigation the genetic architecture governing a trait

of interest using a MAGIC population has recently
received significant consideration. MAGIC population
provides both greater diversity and a balanced allele fre-
quency, which is critical for efficiently conducting
genetic-related studies14. MAGIC population was first
developed to dissect the genetic architecture of important
traits in animals and results were promising15. For plants,
MAGIC population has been established for Arabidopsis
thaliana16, wheat17, rice18, and chickpea19. The genetics
of yield and tolerance to abiotic stress such as drought
have been successfully investigated in a MAGIC rice
population18. Investigating the genetics of drought toler-
ance on a MAGIC cowpea population could be also
achieved. The first MAGIC cowpea population was
developed from the University of California, Riverside20.
This MAGIC cowpea population was phenotyped under

normal and restricted irrigation conditions in California
and genotyped with 51,128 SNPs using the Illumina
Cowpea Consortium Array21. Markers associated with
drought tolerance and agronomic traits such as flowering

time, growth habit, and maturity were investigated based
upon QTL analysis. Genetic maps, recombination fre-
quency analysis, and significant QTLs related to the
aforementioned traits were established for the MAGIC
cowpea population20. This study was complemented
using a genome-wide association study (GWAS)
approach22. GWAS provides a greater mapping resolution
over QTL mapping and efficiently permits the discovery
of new genes23,24. However, the drought tolerance index
trait, which is the relative change of the trait values due to
drought stress25,26, was not investigated in this MAGIC
cowpea population. Investigating the genetic architecture
of the drought tolerance indices could lead to the dis-
covery of new significant loci associated with drought
tolerance in cowpea. In addition, the analysis can be
further enhanced using genomic selection. Predictive
breeding involving genomic selection has become more
and more popular since it is cost-effective and provides
breeders with a rapid genetic gain per unit of time27.
Genomic selection has been reported to be highly efficient
in investigating the genetic architecture of complex trait
such as drought tolerance28. Therefore, the objectives of
this study were to conduct a GWAS and GS for the
drought tolerance indices, to identify SNP markers asso-
ciated with drought tolerance indices, and to estimate the
GS accuracy in predicting drought tolerance indices in a
MAGIC cowpea population.

Materials and methods
MAGIC population development and genotyping
The population was developed and genotyped by

Huynh et al.20. In brief, the population was derived from
crosses between 8 genetically diverse parents (IT89KD-
288, IT84S-2049, CB27, IT82E-18, SuViTa_2, IT00K-
1263, IT84S-2246, and IT93K-503-1), which were culti-
vars and breeding lines from Burkina Faso, Nigeria, and
the United States. IT93K-503-1 was an advanced
drought-tolerant line developed by IITA, Nigeria29. The
remaining parents harbored a combination of important
agronomic traits such as resistance to Striga, fungi, bac-
teria, viruses, foliar thrips, root-knot nematode, and heat
stress29–35. The first crosses were done in early 2011. The
resulting MAGIC population consisted of a total of 305
F8:10 RIL lines. These RIL lines and founder parents were
genotyped using of total of 51,128 SNPs form the Illu-
mina Cowpea Consortium Array21. After SNP filtering, a
total of 32,059 high-quality SNPs were retained (missing
data <10%, heterozygosity <10%, and minor allele fre-
quency >5%).

Growing conditions and phenotyping
Phenotypic data from field phenotyping experiments of

MAGIC RILs and parents were published in previous
report by Huynh et al.20. In brief, the experiments were
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conducted in 2 years in two locations with two replicates
(block) (1) during summer, from June (14.5 h) to Sep-
tember (12.8 h), at UCR-CES (33.97° N, 117.34° W) and
(2) during autumn, from September (12.8 h) to December
(9.9 h), at CVARS (33.52° N, 116.15° W). In 2015, the
population was planted in two blocks that received dif-
ferent watering regimes (full irrigation and restricted
irrigation) and were separated by a six-row buffer (5 m).
In 2016, the two experiments (full irrigation and restricted
irrigation) were repeated on adjacent field blocks. For the
restricted irrigation, fields were watered to field capacity
before sowing and no irrigation was done until harvest.
Under the well-watered regime, water was supplied before
planting and field irrigation was conducted when needed.
Each set of repeated trials at UCR-CES and CVARS was
considered as a randomized complete block design, with
each field site per season receiving one watering treatment
corresponding to a block. The plant growth habit, flow-
ering date, maturity date, grain yield, and 100-seed weight
were measured under both full and restricted irrigations.
The planting areas were irrigated to field capacity before
planting and restricted water regime was achieved by
withholding water on the 2-week-old cowpea plants.
Flowering dates were recorded when 50% of plants within
a plot had flowered. Plant growth habit was rated based
on a 1 to 6-scale (1: acute erect, 2: erect, 3: semi-erect, 4:
indeterminate, 5: semi-prostrate, and 6: semi-prostrate).
Maturity date was recorded when over 95% of pods within
a row were dry. Grain yield and 100-seed weight were
recorded upon harvest.

Data analysis
In order to assess the effects of restricted irrigation on

the aforementioned agronomic traits, drought stress tol-
erance index was computed and defined as described in
Saad et al.26.

Tolerance index ¼ 100´ Yrestricticed irrigation=Yfull irrigation
� �

where Yrestricticed irrigation represented flowering time,
maturity, grain yield, and 100-seed weight under
restricted irrigation and Yfull irrigation referred to flowering
time, maturity, grain yield, and 100-seed weight under full
irrigation treatment. Changes in plant growth habit were
quantified using a binary approach (1: no change in plant
growth habit between full irrigation and restricted
irrigation and 9: otherwise). Data were visualized using
the ‘MASS’ package of R® v.3.6.136.
Pearson’s correlation coefficients between the quanti-

tatively evaluated traits were calculated using R® v.3.6.1
and the association between the qualitative trait (change
in growth habit) and the quantitatively evaluated traits

was investigated through a univariate logistic regression,
which was run in R® v.3.6.1 as well. The logistic regres-
sion model was the following.

log π= 1� πð Þ½ � ¼ β0 þ βiXi

where π was the probability of success of an event from
the conditional binomial distribution Y|N~Bin(N, π) with
Y being the number of genotypes having change in plant
growth habit under drought stress and N being the total
number of genotypes, β0 was the intercept, βi was the
effect of the ith covariate on the binomial response, Xi

denoted the ith covariate corresponding to each trait i={1:
tolerance index for plant maturity, 2: tolerance for
flowering time, 3: tolerance index for 100-seed weight,
and 4: tolerance index for grain yield}.

Genome-wide association study
A Bayesian Information and Linkage Disequilibrium

Iteratively Nested Keyway (BLINK) model was used to
conduct GWAS. The BLINK was run using in R® v.3.6.1
using the package ‘BLINK’37. Previous studies have shown
that BLINK allowed for efficiently discovering SNPs
highly associated with traits of interest over other mod-
els37. SNPs with a LOD greater than 3 were declared
significant38.
BLINK was a modified and improved version of Fixed

and Random Model Circulating Probability Unification
(FarmCPU). FarmCPU iteratively run both a fixed effect
model (FEM) and a random effect model (REM). A major
assumption when running FarmCPU was the even dis-
tribution of markers within the genome, which could be
easily violated. In BLINK, this assumption was relaxed by
using the information from a linkage disequilibrium (LD)
analysis. The REM part of FarmCPU was replaced by a
second FEM in BLINK, making the running time shorter.
The two FEM models used in BLINK were the following

FEM 1ð Þ : yi ¼ Mi1b1 þMi2b2 þ ¼ þMikbk þMijdj þ ei

FEM 2ð Þ : yi ¼ Mi1b1 þMi2b2 þ ¼ þMijbj þ ei

with yi being the phenotypic data from the ith sample;
Mi1,Mi2b2, …, Mik the genotypes of k pseudo QTNs,
which were initially empty and with effects b1, b2, …,
bk, respectively; Mij being the jth genetic marker of the
ith sample; and ei being the residual having a
distribution with mean zero and a variance σ2e. In this
study, we focused on the SNPs associated with the
tolerance index trait. However, we rerun the traits
investigated by Huynh et al.20 and Olatoye et al.22 using
BLINK and the SNPs identified for these traits were
analyzed in the network analysis section. LD heatmaps
were established in R® v.3.6.1 using the package
‘LDheatmap’39.
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Association network
A network-guided association analysis was conducted to

investigate the significant loci that were associated with
two or more traits. The algorithm used for constructing
the network was similar to that of established by Fang
et al.40 with slight modifications. The nodes in the net-
work corresponded to the traits and the significant SNPs
associated with each trait. The traits investigated by
Huynh et al.20 and Olatoye et al.22 were represented by
solid circles, whereas the tolerance index traits were
visualized by solid diamonds. The SNPs associated with
each trait were denoted using solid dark grey circles. The
size of each trait node was fixed, whereas the size of each
SNP node was proportional to its LOD value that was
obtained from GWAS. The bigger the SNP node the
higher its LOD. The edge of the network was represented
using solid dark lines linking the SNP and trait nodes. The
attribute of the edge between a pair of SNPs was pro-
portional to the pairwise LD r2 between the two SNPs,
which was estimated using PLINK41. The attribute of the
edge between a SNP node and a trait node was fixed. No
edges were used between trait nodes. The network was
designed using Cytoscape v. 3.7.242. A network was
established when a SNP was associated with two or more
traits, which was easily identified using a GWAS
approach. In addition, a network could be also con-
structed when two different SNPs were associated with
two different traits, but these two SNPs were in high LD.
This could not be detected with GWAS. Finally, a net-
work was also defined when two SNPs in high LD were
associated to one trait, which could be considered as
epistasis40.

Genomic selection
Genomic selection was carried out using all 32,059

high-quality SNPs obtained from Huynh et al.20. Genomic
estimated breeding values (GEBVs) were estimated using
a ridge regression best linear unbiased predictor model
(rrBLUP)43. The rrBLUP model was y=WGβ+ ε where y
was the vector phenotype, β indicated the marker effect
with β~N(0, Iσ2β), W corresponded to the incidence
matrix relating the genotype to the phenotype, G denoted
the genetic matrix, and ε was the random error. The
solution for the model was β^=(ZTZ+ Iλ)−1ZTy with
Z=WG. The ridge parameter used in this study was λ=
σ2e/σ

2
β. The parameter σ2e denoted the residual variance

and σ2
β
the marker effect variance. rrBLUP was conducted

in R® v.3.6.1 using the package ‘rrBLUP’44.
Genomic estimated breeding values (GEBVs) were

estimated using a training population randomly chosen
from the MAGIC population45. Since the genotypes with
missing data could impact the results, they were removed
prior to conducting genomic selection, leaving with a total
of 249 cowpea genotypes for the analysis. Genomic

selection was conducted using a two-, three-, four-, five-,
six-, seven-, and eight-fold cross validation corresponding
to a training/testing set of 125/124, 166/83, 186/63, 199/
50, 207/42, 213/36, and 217/32, respectively. The training
and testing sets were two disjoint groups. The training
population was used to fit the model and the testing
population was used to assess the accuracy of the model.
A total of 100 replications were used for each cross-
validation level. Genomic selection accuracy corre-
sponded to the Pearson’s correlation coefficient between
the GEBVs and the observed phenotypic values in the
testing set45.

Results
Variation in drought tolerance
The tolerance indexing was used to quantify the relative

change in maturity due to drought stress. A tolerance
index greater than 100 for plant maturity indicated that
restricted irrigation made plant maturity longer, whereas
a tolerance index lower than 100 suggested plant maturity
being shorter due to water deficit. A large variation in
tolerance index for maturity was identified among the
RILs. Tolerance index was nearly normally distributed
(Fig. 1a). Tolerance index ranged between 69.19 and
142.01, with an average of 104.74 and a standard deviation
of 15.60 (Fig. S1).
Tolerance index for flowering time varied from 78.41 to

126.67, with an average of 97.48 and a standard deviation
of 5.35. Tolerance index for flowering time was also
approximately normally distributed (Fig. 1b). Tolerance
index for 100-seed weight was approximately normally
distributed (Fig. 1c) and ranged between 59.56 and 210.11,
with an average of 113.09 and a standard deviation of
17.54 (Fig. S1).
Unlike the aforementioned parameters investigated in

this study, tolerance index for grain yield was right-
skewed as shown in Fig. 1d. Tolerance index ranged
between 4.95 and 754.39, with an average of 41.89 and a
standard deviation of 53.34, indicating that yield was
negatively impacted by restricted irrigation (Fig. S1).
Plant growth habit under both full and restricted irri-

gations were recorded. A total of 154 RILs had a change in
plant growth habit due to drought stress. Overall, the
change pattern was semi-erect and indeterminate towards
acute erect and erect.
Pearson’s correlation coefficients between the different

tolerance indices were calculated. Overall, correlation
coefficients between traits were low. A moderate and
positive Pearson’s correlation coefficient was found
between tolerance index for grain yield and tolerance
index for 100-seed weight (r= 0.33). A low Pearson’s
correlation coefficient was found between tolerance index
for maturity and tolerance index for flowering time (r=
0.17). The lowest Pearson’s correlation coefficient was
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found between tolerance index for flowering time and
tolerance index for 100-seed weight (r= 0.01).
A univariate logistic regression model was used to

assess the relationship between change in growth habit
due to drought stress and the previously assessed toler-
ance indices. The univariate logistic regression model was
used to fit the change in growth habit to each tolerance
index trait, where the growth habit was a binomial
response and each tolerance index was a continuous
predictor variable. The univariate model showed that all
tolerance indices except for tolerance index for grain yield
were insignificant. The estimate of the effects of tolerance
index for plant maturity, tolerance index for grain yield,
tolerance index for 100-seed weight, and tolerance index
for flowering time on the change of growth habit due to
drought stress were −0.009 (Z-value=−1.170, p-value=
0.142), 0.013 (Z-value= 2.207, p-value= 0.03), 0.006 (Z-
value= 0.851, p-value= 0.395), and −0.019 (Z-value=
−0.775, p-value= 0.438), respectively. These results
indicate that there is a significant association between
tolerance index for grain yield and change in growth habit
to drought stress.

Genome-wide association study
GWAS was conducted to identify SNP markers

associated with growth habit change, tolerance indices
for maturity, flowering time, 100-seed weight, and
grain yield. A total of 14 SNP markers were found to be
associated with tolerance index to plant growth habit

change (Table 1) (Fig. 2a). Of which, 8 were mapped on
a 10.1-Mb region of chromosome 8, indicating a strong
likelihood of significant loci associated with plant
growth habit change under drought stress in this
genomic region. The top 5 SNPs associated with
plant growth habit change under drought stress were
2_26924 (LOD= 4.06, MAF= 17.67%), 2_01300
(LOD= 3.88, MAF= 17.27%), 2_10658 (LOD= 3.88,
MAF= 17.27%), 2_54501 (LOD= 3.88, MAF=
17.27%), and 2_45332 (LOD= 3.88, MAF= 17.27%)
(Table 1), which were all located on chromosome 8.
The LD analysis around the most significant SNP
showed low pairwise LD values between SNPs (Fig. 3a).
The results indicated a total of 18 SNPs associated with

tolerance index for maturity (Table 1) (Fig. 2b). Of which,
14 were found on a 584-Kb region of chromosome 8. A
small portion of this region overlapped with the 10.1-Mb
region found for plant growth habit change under drought
stress. The remaining SNPs were located on chromo-
somes 2 and 7. The top 5 SNPs with the highest LOD
value were 2_21981 (LOD= 5.68, MAF= 20.08%),
2_40337 (LOD= 4.27, MAF= 28.34%), 2_14976 (LOD=
4.23, MAF= 28.92%), 2_14158 (LOD= 3.63, MAF=
33.33%), and 2_51274 (LOD= 3.54, MAF= 13.65%)
(Table 1). The region in the vicinity of the SNP with the
highest LOD value indicated a moderate LD (Fig. 3b). In
addition, no SNPs located within the 30-kb region
flanking the most significant SNP, 2_21981, had an LOD
greater than the declared threshold (3) (Fig. 3b).

Fig. 1 Phenotypic trait value distribution. Distribution of drought tolerance index for A maturity, B flowering time, C 100-seed weight, and
D grain yield
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Table 1 Significant SNPs associated with growth habit change, tolerance indices for plant maturity, flowering time, and
100-seed weight with their respective LOD (−log10(p-value)) value, and MAF (minor allele frequency)

Traits SNP Chromosome Position (bp) LOD MAF(%)

Growth habit change 2_40797 8 10549370 3.06 12.05

2_42112 8 10601329 3.06 12.05

2_42607 8 11012105 3.41 31.33

2_26924 8 13771284 4.06 17.67

2_01300 8 14264077 3.88 17.27

2_10658 8 15346859 3.88 17.27

2_54501 8 16564006 3.88 17.27

2_45332 8 16871228 3.88 17.27

2_06275 8 17354751 3.88 17.27

2_43529 8 20159451 3.64 17.67

2_40435 8 20618849 3.64 17.67

2_50806 10 29754489 3.49 12.20

2_26782 10 30148065 3.38 13.25

2_38918 10 30517553 3.25 13.31

Tolerance index for maturity 2_16403 2 32138108 3.13 42.17

2_45148 2 32146045 3.13 42.17

2_55009 7 14098180 3.54 13.65

2_51274 7 14976910 3.54 13.65

2_21981 8 1801037 5.68 20.08

2_10862 8 1929122 3.20 33.33

2_10861 8 1929370 3.20 33.33

1_0806 8 1950113 3.00 32.93

2_21676 8 1965506 3.00 32.93

2_21804 8 1970485 3.00 32.93

2_23871 8 1980059 3.00 32.93

2_23870 8 1980643 3.00 32.93

2_44136 8 1985249 3.00 32.93

2_14976 8 2006627 4.23 28.92

2_40337 8 2013873 4.27 28.34

2_14158 8 2338417 3.63 33.33

2_16735 8 2361920 3.47 32.93

2_41533 8 2384266 3.34 33.20

Tolerance index for flowering timea 2_06470 3 62407410 2.84 12.45

2_52919 3 62409665 2.84 12.45

2_06137 3 62434051 2.84 12.45

1_0946 3 63722355 2.83 11.65

2_27706 8 37928961 2.83 19.68

Tolerance index for 100-seed weighta 2_11122 4 1483784 2.95 11.34
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The discrepancy in change in flowering time between
full irrigation and restricted irrigation was also assessed
using tolerance index for flowering time. However, no
SNPs exceeding the LOD threshold (3) were found. We
only reported the top 5 SNPs, 2_06470 (LOD= 2.84,
MAF= 12.45%), 2_52919 (LOD= 2.84, MAF= 12.45%),
2_06137 (LOD= 2.84, MAF= 12.45%), 2_27706 (LOD=
2.83, MAF= 19.68%), and 1_0946 (LOD= 2.83, MAF=
11.65%) that the GWAS analysis suggested for tolerance
index for flowering time (Table 1) (Fig. 2c). One of these
SNPs were located on chromosome 8 (Fig. 2c). However,
this SNP was not located within the significantly asso-
ciated loci identified for plant growth habit change and
tolerance index for plant maturity. The region harboring
the most significant SNP, 2_06470, had a high LD
(Fig. 3c).

The results did not show any SNPs having an LOD
greater than the threshold (3) for tolerance index for 100-
seed weight under restricted irrigation. We just reported
the top 5 SNPs having the highest LOD values (Table 1).
These SNPs were 2_11122 (LOD= 2.95, MAF= 11.34%),
2_03731 (LOD= 2.89, MAF= 10.84%), 2_14932 (LOD=
2.89, MAF= 10.84%), 2_34365 (LOD= 2.89, MAF=
10.84%), and 2_07882 (LOD= 2.89, MAF= 10.84%).
These SNPs were all found on chromosome 4 (Fig. 2d).
Among all traits evaluated in this study, tolerance index
for grain yield had the highest number of significant SNPs.
Our data suggested indicated a total of 35 SNPs associated
with tolerance index for grain yield (Table 2) (Fig. 2e). Of
which, 26 were mapped on a 566.5-Kb region of chro-
mosome 6, 7 on a 2.5-Mb region of chromosome 8,
and 2 on a 703-Kb region of chromosome 8 (Table 2).

Table 1 continued

Traits SNP Chromosome Position (bp) LOD MAF(%)

2_03731 4 1523145 2.89 10.84

2_14932 4 1548833 2.89 10.84

2_34365 4 1549730 2.89 10.84

2_07882 4 1556026 2.89 10.84

aNo SNPs having an LOD value greater than the chosen threshold (3) were found so that the top 5 SNPs with the highest LOD value are presented

Fig. 2 Manhattan plots showing the LOD (−log10(p-value)) for each SNP used to conduct GWAS. The y-axis each of Manhattan plot represents
the LOD (−log10(p-value)) and the x-axis displays the chromosome number. Color coding on each Manhattan plot was chromosome-wise.
A Manhattan plot for change in growth habit, B Manhattan plot for tolerance index for maturity, C Manhattan plot for tolerance index for flowering
time, D Manhattan plot for tolerance index for seed size, and E Manhattan plot for tolerance index for grain yield

Ravelombola et al. Horticulture Research            (2021) 8:24 Page 7 of 13



These regions could harbor significant loci associated with
tolerance index for grain yield under drought stress in
cowpea. The top 5 SNPs with the highest LOD value were
2_25334 (LOD= 3.51, MAF= 8.23%), 2_51818 (LOD=
3.38, MAF= 12.85%), 2_31565 (LOD= 3.35, MAF=
9.64%), 2_19053 (LOD= 3.35, MAF= 9.64%), and
2_33474 (LOD= 3.35, MAF= 9.64%). The LD heatmap
shown in Fig. 3e revealed an independent LD block, which
contained the most significant SNP associated tolerance
index for grain under drought stress. This LD pattern was
not identified for traits such as change in plant growth
habit, tolerance index for maturity, flowering time, and
100-seed weight. In addition, there is a lack of overlaps
between the significant SNPs across different traits, indi-
cating that drought stress is a complex mechanism.

Network-guided GWAS
An association network was established in order to

investigate the possible interactions between loci, which

were found to be significantly associated with each toler-
ance index trait measured in the MAGIC cowpea popu-
lation under drought stress. In addition, trait-associated
loci reported in Huynh et al. (2018) and Olatoye et al.
(2019) were also incorporated into the network. The net-
work was designed to be an extension of the GWAS
analysis in such a way that the SNPs in high LD (Linkage
disequilibrium) with the SNP having the highest LOD
value for each trait were used to perform the analysis.
The network-guided GWAS indicated 12 independent

subnetworks as shown in Fig. 4. The solid diamonds on
Fig. 4 showed the tolerance index trait, whereas the solid
circles indicated to traits investigated by Huynh et al.20 and
Olatoye et al.22. The solid dark gray circles surrounding
each trait corresponded to the SNPs. These results provided
a clear visualization of the genetic architecture affecting
each trait and suggested that some traits were likely to be
correlated at the genetic level, whereas other traits were
more genetically independent from the others. Traits such

Fig. 3 Local Manhattan plots and linkage disequilibrium (LD) heatmaps around the most significant SNP for each trait, which is shown by
the red dots. For each graph, the y-axis of the local Manhattan represents the LOD (−log10(p-value)) of the corresponding SNP. The x-axis of the local
Manhattan shows the physical distance (kb) between two adjacent SNPs. Below each local Manhattan plot is displayed the LD heatmap. Color coding
within the LD heatmap ranges from white to black and the parameter for estimating pairwise LD was R square. The white color within the LD
heatmap corresponds to an R-square value of 0, whereas the black color corresponds to an R-square value of 1. A Local Manhattan plot and
LD heatmap on a 776.1-kb region of chromosome 8 harboring the SNP 2_26924 associated with change in growth habit, B Local Manhattan plot and
LD heatmap on a 59.3-kb region of chromosome harboring the SNP 2_21981 associated with tolerance index for maturity, C Local Manhattan plot
and LD heatmap on a 227.3-kb region of chromosome 3 harboring the SNP 2_06470 associated with tolerance index for flowering time, D Local
Manhattan plot and LD heatmap on a 124.6-kb region of chromosome 4 harboring the SNP 2_11122 associated with tolerance index for seed weight,
and E Local Manhattan plot and LD heatmap on a 156.3-kb region of chromosome 6 harboring the SNP 2_25334 associated with tolerance index
for yield
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as tolerance index for plant maturity (T2), tolerance index
for flowering time (T3), and tolerance index for 100-seed
weight (T6) had independent significant loci (Fig. 4),

suggesting that these traits could have independent
drought tolerance mechanism and should be investigated
separately when studying drought tolerance in cowpea.

Table 2 Significant SNPs associated with tolerance index
for grain yield with their respective LOD (−log10(p-value))
value, and MAF (minor allele frequency)

Traits SNP Chromosome Position (bp) LOD MAF(%)

Tolerance

index for

grain yield

2_31564 6 32057972 3.35 9.64

2_31565 6 32058239 3.35 9.64

2_30808 6 32061499 3.35 9.64

2_19053 6 32061827 3.35 9.64

2_33474 6 32070478 3.35 9.64

2_28131 6 32077832 3.35 9.64

2_28570 6 32088910 3.09 9.80

2_10632 6 32089786 3.35 9.64

2_13247 6 32107028 3.35 9.64

2_18126 6 32147410 3.35 9.64

2_14728 6 32165112 3.35 9.64

2_02004 6 32184138 3.35 9.64

2_25332 6 32186496 3.35 9.64

2_33745 6 32186893 3.35 9.64

2_25331 6 32188321 3.35 9.64

2_25334 6 32189396 3.51 8.23

2_25333 6 32189710 3.35 9.64

2_30533 6 32204324 3.35 9.64

2_31969 6 32234310 3.35 9.64

2_32622 6 32239677 3.35 9.64

2_50666 6 32250975 3.11 9.92

2_21574 6 32454860 3.05 9.64

2_29076 6 32461137 3.05 9.64

1_0823 6 32612013 3.05 9.64

2_15103 6 32612013 3.05 9.64

2_21155 6 32624482 3.05 9.64

2_53988 8 21904122 3.15 11.24

2_46582 8 22607265 3.29 11.65

2_01303 9 4760699 3.24 13.25

2_51818 9 4789752 3.38 12.85

2_35898 9 4877591 3.16 13.65

2_23949 9 5346101 3.26 14.46

2_23950 9 5347304 3.26 14.46

2_11952 9 5364438 3.26 14.46

2_34102 9 7298753 3.08 9.79

Fig. 4 Association networks displaying the tolerance indices of
growth habit, maturity, flowering time, seed weight, and grain
yield under drought stress in a MAGIC cowpea population. The
solid circles represent the traits evaluated under full irrigation and
drought stress conditions. The solid diamonds correspond to the
tolerance indices for different traits under drought stress. The solid dark
gray circles show the significant SNPs associated with each trait. The
size of each SNP node is proportional to its LOD value. Edges between
nodes are represented by solid black lines. Edges with similar size are
used to link each trait node to each SNP node. Edges with different size
are used to link different SNP nodes. The link power of the edge
between each SNP node was the R-square linkage disequilibrium (LD)
value between the two SNPs. The empty red circles represent the
significant loci associated with the tolerance index trait values. The
empty blue circles display the epistatic loci reported by Olatoye et al.
(2019). The legend corresponding to each trait node was the following:
T1= Tolerance index for growth habit change, T2= tolerance index
for plant maturity, T3= tolerance index for flowering time, T4= grain
yield under full irrigation, T5= grain yield under drought stress, T6=
tolerance index for 100-seed weight, T7= tolerance index for grain
yield, T8= growth habit under full irrigation, T9= growth habit under
drought stress, T10=maturity under full irrigation, T11=maturity
under drought stress, T12= flowering time under full irrigation, T13=
flowering time under drought stress, T14= flowering time under full
irrigation at UCR, T15= flowering time under drought stress at UCR,
T16= seed weight under full irrigation, and T17= seed weight under
drought stress. Tolerance index for flowering time at UCR was not
calculated since the experiments were conducted under two different
seasons at this location
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The network-guided GWAS revealed interacting loci
for change in growth habit and tolerance index for grain
as shown by the solid blue and red diamonds, respectively,
in the upper right-corner of Fig. 4. The two interacting
loci were highlighted using the empty red circles. This
result suggested that tolerance index for grain yield and
change in growth habit had common significantly asso-
ciated loci. Interestingly, this network existing between
loci affecting tolerance index for grain yield and change in
growth habit was not identified via GWAS alone, indi-
cating that a network analysis could complement GWAS
to provide additional information to investigate the
genetics of drought tolerance in cowpea.
The network analysis revealed common loci between

traits, which were identified using GWAS. These findings
showed that GWAS and network analysis could be used
to validate each other. In addition, the network analysis
displayed epistatic loci for each trait evaluated in this
study. Significant epistatic loci, shown by the interactions
between SNPs within each trait, were found for tolerance
index for grain yield, change in growth habit, and toler-
ance index for plant maturity (Fig. 4).

Genomic selection
Genomic selection was conducted using a ridge

regression best linear unbiased predictor model (rrBLUP)

for change in plant growth habit due to a restricted
irrigation, tolerance index for plant maturity, tolerance
index for flowering time, tolerance index for 100-seed
weight, and tolerance index for grain yield. The accuracy
of genomic selection was evaluated under different cross-
validation folds. Overall, genomic selection was low for
almost all traits. At each cross-validation fold, variation in
genomic selection accuracy was identified between each
tolerance index trait (Fig. 5). Genomic selection accuracy
for change in growth habit was highest regardless of the
training population size. The average genomic selection
accuracy for change in growth habit was 0.18, 0.21, 0.19,
0.21, 0.19, 0.21, and 0.19 at 2-fold, 3-fold, 4-fold, 5-fold,
6-fold, 7-fold, and 8-fold cross validation, respectively.
Genomic selection accuracy for tolerance index for 100-
seed weight was second highest at 2-fold (0.12), 3-fold
(0.12), 5-fold (0.13), 6-fold (0.12), and 7-fold (0.15) cross
validation (Fig. 5). The increase in training population
size seemed to be more favorable to improving the
genomic selection accuracy of tolerance for 100-seed
weight than enhancing the genomic selection accuracy
for tolerance index for grain yield. The lowest genomic
selection accuracy was recorded for tolerance index for
flowering time (2-fold: 0.05, 3-fold: 0.07, 4-fold: 0.07,
5-fold: 0.08, 6-fold: 0.08, 7-fold: 0.08, and 8-fold: 0.08)
and for tolerance index for grain yield (2-fold: 0.05,

Fig. 5 Genomic selection accuracy using a ridge regression best linear unbiased predictor model (rrBLUP) for change in plant growth
habit, tolerance index for flowering time, grain yield, plant maturity, and 100-seed weight. Genomic selection was conducted using a 2-fold,
3-fold, 4-fold, 5-fold, 6-fold, 7-fold, and 8-fold cross validation. The y-axis of the figure represents the accuracy of genomic selection at each cross-
validation fold for each trait
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3-fold: 0.05, 4-fold: 0.05, 6-fold: 0.08, 7-fold: 0.08, and 8-
fold: 0.08) (Fig. 5).

Discussion
Change in plant growth habit, tolerance index for plant

maturity, tolerance index for flowering time, tolerance
index for 100-seed weight, and tolerance index for grain
yield were evaluated to quantify the relative tolerance to
drought stress of the MAGIC cowpea population used for
this study. Tolerance index has been used for efficiently
assessing plant stress tolerance in previous studies25,26.
Our results indicated large variation in tolerance index
trait among the cowpea genotypes evaluated in this study,
suggesting that this population is genetically diverse and
could be used to enhance drought tolerance in a cowpea
breeding program. However, the Pearson’s correlation
coefficients analysis between the tolerance index traits
were low, indicating that drought tolerance mechanism
between the tolerance index traits could be independent.
These results were in-line with previously reported stu-
dies on the possible independent mechanisms affecting
drought tolerance in cowpea12,46. The logistic regression
model of change in plant growth habit on tolerance index
for grain yield was significant, which suggested an asso-
ciation between these two traits. This funding was critical
since it established a link between growth habit and tol-
erance to grain yield reduction due to drought stress in
cowpea. Additional studies will be required to investigate
the pathways that could lead to the association between
plant growth habit and tolerance to the decrease in grain
yield under restricted irrigation in cowpea.
Genome-wide association study (GWAS) was con-

ducted to identify SNP markers associated with the tol-
erance index traits. The number of significant SNPs varied
between the tolerance index traits. As expected, tolerance
index for grain yield had the highest number of SNP
markers, indicating that a large number of loci could
contribute to maintaining high yield in cowpea genotypes
subjected to restricted water supplies. These results were
in agreement with previous investigations reporting grain
yield being a polygenic trait47,48. The MAGIC cowpea
population used in this study was first investigated by
Huynh et al.20 and Olatoye et al.22. They conducted
GWAS for flowering time, plant maturity, plant growth
habit, 100-seed weight, and grain yield under full irriga-
tion and restricted irrigation, respectively. In this study,
we improve their analysis by assessing the drought tol-
erance of each individual within the cowpea MAGIC
population using the tolerance index formula25,26. The
GWAS was reanalyzed based on tolerance indices. Results
indicated the discovery of new loci affecting the tolerance
index traits. These loci were not identified by Huynh
et al.20 and Olatoye et al.22. Therefore, our findings
complement the approach conducted by Huynh et al.20

and Olatoye et al.22 to investigate drought tolerance in the
MAGIC cowpea population. In addition, we integrated
the reported loci identified by Huynh et al.20 and Olatoye
et al.22 into a network that displayed the newly discovered
loci for tolerance index. The network analysis suggested a
clear independency between the different loci, which
supported our previous claim on the independency of
drought tolerance mechanism affecting different traits in
cowpea. Olatoye et al.22 investigated the epistatic inter-
actions between loci affecting the traits evaluated by
Huynh et al.20. These interactions were found using a
network-guided approach as shown in Fig. 4, which sug-
gests that the algorithm we used to establish the network
analysis was valid. One of the significant findings from
this current study was the discovery of two loci affecting
both change in plant growth habit and tolerance index for
grain yield (Fig. 4). These loci were rich in transmembrane
amino acid transporters and MYB-transcription factors.
The role of biomolecule transporters in regulating plant
response to water-deficit conditions has been well-
documented. Jarzyniak and Jasiński49 stated that the
transmembrane transporters significantly affect stomatal
and cuticular activities during drought stress in plant.
These biomolecules could also affect root responses under
water-deficit conditions. MYB-transcription factors have
been shown to assist plant with withstanding drought
stress. The expression of MYB-transcription factors have
been correlated with the capability of plants to survive
under drought conditions50–52. These findings showed
that the approach we used for investigating the genetic
architecture of drought tolerance in this MAGIC cowpea
population could efficiently target candidate genes that
are relevant to drought tolerance.
Genomic selection for change in growth habit, drought

tolerance index for flowering time, plant maturity, 100-seed
weight, and grain yield was conducted using a ridge
regression best linear unbiased predictor model. Genomic
selection has been proven to be effective when dealing with
complex traits such as drought tolerance28,53. In this study,
genomic selection accuracy varied from low to moderate.
This could be attributed to the complexity of the drought
tolerance traits. Olatoye et al.22 evaluated the prediction
accuracy of flowering time, maturity date, and seed size
under full irrigation and restricted irrigation, respectively,
from the data generated by Huynh et al.20 and using the
same MAGIC population reported in this current work.
The prediction accuracy was higher for flowering time,
maturity date, and seed size under full irrigation and
restricted irrigation, respectively. This could be explained
by the fact that these traits were more heritable than their
respective drought tolerance indices, which were calculated
based on the ratio of the trait values from restricted irri-
gation and full irrigation, respectively. Even though the
genomic selection accuracy varied from low to moderate, it

Ravelombola et al. Horticulture Research            (2021) 8:24 Page 11 of 13



can still supplement the phenotypic selection and would
increase the genetic gain by at least 10%54.

Conclusion
In this study, large variation in drought tolerance indi-

ces for plant growth habit, flowering time, plant maturity,
100-seed weight, and grain yield was found within the
MAGIC cowpea population. New loci associated with
these drought tolerance traits were identified and a
network-guided strategy assisted with the discovery of
overlapping significant loci associated with the drought
tolerance indices. In addition, genomic selection accuracy
varied from low to moderate. The results from this
investigation will contribute to a better understanding of
the genetic architecture governing drought tolerance in
cowpea and could be used in cowpea breeding programs
through marker-assisted selection and genomic selection.
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