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Abstract: We study the dynamical evolution of strongly coupled field theories,

initially in thermal equilibrium, under the influence of an external driving force. We

model the field theory holographically using classical gravitational dynamics in an

asymptotically AdS spacetime. The system is driven by a source for a (composite)

scalar operator. We focus on a scenario where the external source is periodic in

time and chart out the response of several observables. We find an interesting phase

structure in the response as a function of the amplitude of the source and driving

frequency. Specifically the system transitions from a dissipation dominated phase,

via a dynamical crossover to a highly resonant amplification phase. The diagnostics

of these phases include the response of the operator in question, entropy production,

energy fluctuations, and the temporal change of entanglement entropy for small

subsystems. We comment on evidence for a potential phase transition in the energy

fluctuations of the system.
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1 Introduction and Conclusions

The dynamics of quantum field theories driven far from equilibrium is a fascinating

topic, owing to the complex interplay of quantum and statistical behaviours in the

system. While a quantitative understanding of how field theories respond to non-

linear external sources remains in general an open problem, in recent years one has

gained some insight into such phenomena.

On the one hand progress in this direction has been driven by experimental de-

velopments which allow for a detailed study. For instance the ability to simulate
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many-body dynamics in cold-atom systems has led to the opening of a new frontier

in dynamical simulations, cf., [1] for a recent review. On the other hand, theoretical

horizons have been broadened with the gauge/gravity duality providing an excel-

lent arena to explore the dynamics of strongly interacting many-body systems using

(classical) gravitational dynamics in a suitable limit (cf., [2] for a not so recent re-

view). Coupled with the development of excellent numerical algorithms for studying

dynamical problems in AdS gravity [3, 4], the confluence of ideas and techniques

provides an excellent opportunity to further our understanding of out-of-equilibrium

dynamics.

A much studied protocol in this context is the quantum quench dynamics,

wherein one takes a system initially in equilibrium, typically in the ground state,

and subjects it to external sources which change the subsequent dynamics by mod-

ifying the Hamiltonian. The rate at which sources act on the system controls the

features of the subsequent relaxation, assuming that the sources are non-vanishing

for a finite amount of time. The analysis of such a quench protocol has benefited both

from theoretical understanding using standard quantum field theory technology in

low dimensions [5–7] and from a wide array of examples that have been studied holo-

graphically in the recent past [8–21]. In most cases the interest is in the approach

to equilibrium at late times and the rate at which various observables thermalize

[16, 22–37]. Note that since we inject energy in the process of the quench, even

an initially pure state will appear to be well approximated by a thermal ensemble

asymptotically (assuming that the field theory dynamics are sufficiently ergodic).

A slightly different but related scenario is one where we subject a system, again

initially in an equilibrium configuration, to an external driving source which keeps

doing work on it throughout the entire time period under study. More specifically,

we will be interested in examining the behaviour when the initial state is chosen to

be a thermal density matrix, so that one can simultaneously explore the response of

a quantum dissipative system. For non-linear dynamical systems the response under

such external driving can provide insight into the dynamics via the coherent build-up

of the response.

Classical analogs of what we have in mind are situations where we drive a

(damped) pendulum steadily or subject a viscous fluid to external forcing. The

latter is particularly apposite, for the problem we study can be thought of as a

hot deconfined plasma of a planar gauge theory disturbed by an external source, as

studied in the hydrodynamic context in [38]. Rather than letting the driving grow

without bound, we will subject our plasma to a periodic driving by turning on the

source for a relevant operator. One therefore has two relevant dimensionful param-

eters characterizing the situation: (a) The amplitude of the external force whose

scaling dimension is set by the conformal weight of the operator we exploit and (b)

The frequency of the external driving. The third scale which is the temperature

of the initial equilibrium state can be factored out, if we are interested in describ-
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ing the dynamics for a conformally invariant system, which is most natural in the

gauge/gravity context. This scenario was explored in [20], who carried out a per-

turbative analysis for small amplitudes of the driving source. A related analysis of

periodically driving a quantum system near a critical point was undertaken in [18].

Gravitationally the problem we study is the following: we have a Schwarzschild-

AdS4 black hole modeling our initial thermal density matrix of a three-dimensional

CFT. At some instant of time on the boundary we turn on a periodic source for

a relevant scalar operator, which we specifically choose to be of dimension 2 for

simplicity.1 The physics of the system is captured by examining the behaviour or

various observables as we vary the amplitude A and the period P of the driving

(measured e.g. in units of the initial temperature). We will in particular extend the

perturbative analysis of [20] valid for A � 1 to the non-perturbative regime A � 1

for a wide range of driving frequencies. We find that the system naturally exhibits at

least four different phases which are depicted in phase diagram Fig. 1; two of these

(labeled IIb and III) are non-perturbative in A.

Before we describe the different phases, let us examine for a moment the physics

of the gravitational system qualitatively. Initially we have a planar black hole in

AdS4. When we turn on the scalar source, we are injecting energy into the bulk.

This energy does work on the system and simultaneously heats it up. The latter is

seen by the fact that some of the energy falls behind the horizon, which grows2 –

this is the gravitational response to the disturbance of the plasma. However, in this

process we also induce an expectation value for the operator whose source we tweak.

When we disturb the system ‘slowly enough’, the operative parameter measuring this

being the product of the amplitude and the period, the system has time to catch-up.

This is the dissipation dominated regime indicated by I in Fig. 1. In this regime the

injected energy falls behind the horizon with little fanfare.

As we ramp up the disturbance, the plasma is driven more and more non-linear,

with a dynamical cross-over visible as we move into phases IIa or IIb of Fig. 1. Note

that the entire non-linear dynamics in the system is induced by the non-linearities of

gravity, for we model the system simply by a free (massive) scalar field. In this phase

the response gets more in-phase with the source. It is amusing to contrast this with

non-linear scalar dynamics; we find that in this phase we can model the scalar 1PI

effective action induced from the gravitational interactions to be well mimicked by a

polynomial potential (see [17] for previous studies of self-interacting scalars in AdS).

1 This choice turns out to have several advantages as the dual scalar being conformally cou-

pled to gravity in the bulk allows a certain level of technical simplification in various holographic

renormalizations we need to do to extract physical data.
2 As we will be describing the dynamics of Einstein-scalar system with the scalar field satisfying

the null energy condition, the areas of the event and apparent horizon (in the canonical foliation)

have to grow monotonically – a consequence of the area theorem [39] (see [40] for an excellent

overview). We will elaborate on this point in §2.3.
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P T0

A/T0

Fig. 1: The “phase diagram” of the driven holographic plasma characterized by the period

(P ) and amplitude (A) of the driving force, measured in units of the initial thermal scale T0.

There are four distinct regimes marked on the diagram which are explained in the main text.

σin refers here to the imaginary (or in-phase) part of the conductivity defined in Eq. (3.3). As

we move from southwest to northeast in the figure, the system is driven into a more non-linear

regime; the crossing of the grey-dashed boundary is the turn on of the in-phase part of the

conductivity σin in regime II, and the crossing of the blue-dashed boundary signifies the entrance

into the resonance phase of regime III i.e., |φmax
1 | → ∞. The character of the different regimes

is further illustrated by displaying the phase portrait of the scalar operator (expectation value

against source) used to drive the plasma.

In this regime there is less dissipation; the entropy production by the growth of the

horizon area is slowed down relative to region I. The primary distinction between

the two phases IIa and IIb themselves is the lag in the response seen as the period

is increased (hence the tilt in the phase portrait).

For even larger disturbances, we enter region III, where the system response gets

highly resonant and there is a steep growth in the response. As one might suspect

this is the domain where the gravitational non-linearities are strongest and indeed

one can check that such behaviour is not visible for a polynomially (self-) interacting

scalar. In the course of our investigation we explore not just the phase portrait,

but various other physical quantities of interest, such as the growth of entropy and

dissipation in the system, the rate at which entanglement is produced, etc.. For
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instance, region IIb is characterized by enormous fluctuations in the energy of the

system over a single period and continuous but non-differentiable behaviour in the

entanglement entropy of a sub-system.

Let us contrast our results with the analysis in the perturbative regime of small

amplitudes undertaken in [20].3 As one can see from phase diagram Fig. 1 for small

amplitudes, A� 1, one is largely in the dissipation dominated linear response regime.

This is indeed consistent with the analysis of [20], who explore the dependence of

observables on both the period of the driving as well as the dimension of the per-

turbing operator ∆. As for us the latter remains frozen and we are unable to check

the detailed scaling relations they find, but in the common domain of overlap we do

indeed have agreement. In particular, for perturbing operators of dimension ∆ = 2 in

CFT3 we expect to see that the energy dissipation as a function of the period scales

as Ediss ∼ P−1 (for A � 1), independent of the initial temperature. Furthermore,

we also expect that the work done in each cycle, measured by the entropy produced,

to scale with the increased energy density. We find that in the slow driving regime

this scaling closely tracks the prediction from local thermal equilibrium, but starts

to grow more steeply as we transit into more interesting non-linear regimes.

While the various response functions provide us with a useful diagnostic of the

phase structure of the dynamical evolution, we also attempt to gain insight into the

non-equilibrium dynamics using entanglement entropy for small sub-systems. This

non-local probe exhibits distinct characteristic features in the various regimes: for

weak driving, the growth of entanglement is gradual (and appears to track the growth

of thermal entropy), while for strong driving there are steep oscillations and glitches

in its evolution. We should caution the reader that we have only examined entan-

glement entropy for relatively small sub-systems, owing to technical complications

with numerical stability. Nevertheless these results suggest a rather rich structure in

the temporal growth of entanglement with driving, which deserves further detailed

exploration [41].

The outline of this paper is as follows. We begin in §2 by giving a quick overview

of the basic set-up and the numerical solutions. Following this in §3, we set out the

various observables we use to explore the behaviour of the system. In particular, we

justify the rationale behind phase diagram Fig. 1 and how we should physically think

of the different regimes. §4 is devoted to the study of entanglement entropy in this

system where we focus on the region of an infinite strip and exploit the underlying

homogeneity of the set-up. We conclude with a discussion in §5. Some technical

results about holographic renormalization required for computing various observables

is collected in the Appendices; Appendix A collects some useful information about

3 We note that [18] study the influence of a periodic electric fields on the phase transition between

a normal and superconducting phase using holography. It is clear in this case that a driving the

system will make it exit the low temperature superconducting phase as the energy expended heats

up the system past the critical point, as their analysis confirms.
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holographic renormalization in our models while Appendix B provides details relevant

for computing entanglement entropy.

2 Driven CFTs and their Holographic Duals

We first take the opportunity to set up the basic problem of a field theory driven

out of equilibrium by turning on a source for a relevant operator. We then go

on to describe how to model this in the holographic set-up and present the basic

methodology and results from the numerical simulations.

2.1 Driving CFTs by Relevant Operators

We are interested in the dynamics of strongly coupled plasmas that are driven by an

external source. The initial plasma is in equilibrium in some homogeneous thermal

state at a temperature T0 for t < 0. At t = 0 we introduce external sources with some

specified spatial-temporal profile that we control. We focus exclusively on situations

where the external sources are spatially homogeneous, but otherwise arbitrary and

tunable at will.

To wit, the system under consideration can be modeled by an equilibrium density

matrix, evolved under a time-dependent Hamiltonian, i.e., we take

SCFT = SJ=0 +

∫
ddx
√
−γ J (x)O(x) (2.1)

where O(x) is a single trace (gauge-invariant) relevant operator of conformal di-

mension ∆ < d. The source J (x) is chosen to have no spatial dependence and be

temporally periodic and thus can be represented as

J (x) = A cos(ωt) Θ(t) . (2.2)

Here Θ(t) is the Heaviside step function for turning on the periodic perturbation

of amplitude A and driving frequency ω = 2π/P at t = 0; later in actual (numer-

ical) implementations we will choose a suitable ramp factor to smoothly turn the

perturbation on.

In the presence of the source, the Ward identities following from diffeomorphism

and Weyl invariance get modified. A simple analysis shows that the boundary con-

servation equation now has an explicit source term

∇µT
µ
α = O∇αJ . (2.3)

indicative of the work done by the driving source on the CFT. Likewise the one-point

function of the trace of the energy-momentum tensor no longer vanishes but satisfies

T µµ = (d−∆) J (x)O(x) (2.4)
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Since the boundary theory is conformal, it does not have any intrinsic time scale. The

time scales in the problem come from only the driving force, namely its amplitude

and period. The situation of interest is thus characterized by three scales:

• T0: the initial thermal scale for the homogeneous plasma.

• A: the amplitude of the source whose scaling dimension is d−∆.

• ω: the driving frequency or the time-scale set by the period P = 2π/ω.

2.2 Holographic Driving

The gravity dual to this set-up is modeled by the dynamics of a scalar field φ with

mass m2
φ = −2, dual to a relevant perturbation of the boundary theory.

Sbulk =
1

16πGN

∫
dd+1x

√
−g

(
R + d(d− 1)− αg

2

[
(∂φ)2 +m2φ2

])
(2.5)

In our holographic implementation of this set-up we will work in d = 3 and consider

a scalar operator with conformal dimension ∆ = 2. While this is rather specific, we

will explore the phase structure of the driven system as a function of the ratio of

scales outlined above. The qualitative features we believe are independent of these

actual choices.4 We have included a dimensionless gravity-scalar coupling αg which

we can use to tune the amount of backreaction on the geometry; for the most part

we will focus on αg = 0 or αg = 1, to model probe and interacting scalar fields

respectively.

We want to study gravitational dynamics driven by a scalar field whose non-

normalizable mode is turned out as dictated by the source J (x), i.e., take φ0(t) =

A cos(ωt) and study the behaviour of the theory with varying amplitude A and

frequency ω. The gravitational background is an asymptotically AdS4 spacetime,

which we write in ingoing Eddington-Finkelstein coordinates (sometimes called the

Bondi-Sachs form) as:

ds2 = −2 f(t, r) e2χ(t,r) dt2 + 2 e2χ(t,r) dt dr + ρ(t, r)2 (dx2 + dy2) (2.6)

The coordinate dependences of the metric functions f , χ, ρ are explicitly indicated

with homogeneity ensuring that ∂x and ∂y are Killing vector fields.

Our initial state is a planar Schwarzschild-AdS4 black hole with temperature

T0 = 3/π, corresponding to horizon size r+ = 1. This bulk solution is given by

f = r2(1− 1
r3

), χ = 0, ρ = r with metric

ds2
t≤0 = −r2

(
1− 1

r3

)
dt2 + 2 dt dr + r2

(
dx2 + dy2

)
. (2.7)

4 We have also set `AdS = 1 for simplicity.
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For our choices of m2
φ = −2 in d = 3, the amplitude A has mass dimension 1. Thus

we have two interesting time scales associated with the external driving force: the

period P and the inverse amplitude A−1. To capture universal physics, we look at

relatively late times of the non-thermalized system compared to both of these scales.

Note also that in those late times the initial value of the temperature, T0, becomes

irrelevant.

There has been much interest recently in holographic quenches, in which the

system is initially driven to an excited state, and then is allowed to return to equi-

librium, a process which exhibits some degree of universality. In contrast, we are

interested in the dynamics of the steady state system while it is being driven. Hence,

in our solutions we do not turn off the driving force at late times, and seek univer-

sal features associated with the driven steady state system. We will see that such

dynamical features exist, and they strongly depend on the parameter

ξ(P,A) ≡ P A , (2.8)

the unique dimensionless parameter formed from the two time scales associated with

the driving force. Below we refer to the regime ξ � 1 as the weak driving regime,

and ξ � 1 as the strong driving regime (which is further divided into two separate

dynamical regimes). We also measure time in units of the period P , thus we vary

and discuss the dependence of observables on the two dimensionless parameters: the

strength of the drive and time.

2.3 Bulk solutions

We solve the equations of motion resulting from the scalar-gravity Lagrangian (2.5)

by direct numerical integration. The boundary conditions on the scalar are pre-

scribed by the source and the metric is required to be asymptotically AdS4. The

AdS boundary is attained as r →∞ and the asymptotic behaviour of the fields is

φ(t, r) =
φ0(t)

r
+
φ1(t)

r2
+O(r−3)

ρ(t, r) = r + λ(t)− αg
4

φ0(t)2

r
+O(r−2)

f(t, r) =
1

2
(r + λ(t))2 − λ′(t)− αg

4
φ0(t)2 +O(r−1)

χ(t, r) = O(r−4) (2.9)

More specifically, we use the characteristic formulation of the resulting partial differ-

ential equations as explained in detail in [4] to numerically integrate for the solution.

The advantage of the method is that it allows us to use constrained evolution: at

each time step we solve a nested set of ODEs to determine the time derivatives of all

dynamical quantities, and then we use one of the standard time evolution schemes
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t
P

u

φ

(a) Sample φ solution

t
P

u

f

(b) Sample f solution

Fig. 2: A sample solution displaying the scalar field φ(t, u) and the temporal component of

the metric function f(t, u) for ξ(P = 1, A = 1) = 1. Time is measured in units of P and the

radial component is compactified as u = 1/r.

to march forward in time. While we follow the general logic of [4], in our implemen-

tation we found that some of elements described in [42] enabled for a more robust

evolution.

To solve the radial ODEs we discretize the equations using a Chebyshev basis in

the radial direction, typically taking a grid of 60 points. For time evolution we use

an explicit Runge-Kutta method of order 4, with an adaptive step size. We filter at

each time step by throwing out the top third of the Fourier modes for each dynamical

variable to avoid artificial and unphysical growth in amplitudes of short wavelength

modes associated with the UV cutoff.

In the regime of strong driving, we found it necessary to turn on the perturbation

gradually from zero. Therefore we include a ramp-up time of 2P , after which the

amplitude reaches its intended value. Thus, the first few periods of each solution

show behaviour sensitive to details of the ramp-up protocol. We look at observables

only after this ramp-up time of 2P .

In Fig. 2 we show one example of evolved bulk fields for a specific solution. As

we perturb the system by a relevant operator, the scalar field grows towards the

horizon. All fields are (at least approximately) modulated with the period of the

source.

At this point it is worthwhile mentioning one important consistency check on the

numerical scheme, which relies on the existence of a smooth horizon in the spacetime.

Given a metric and a Cauchy slice in the bulk spacetime, one can find the outermost

trapped surface on this slice. If we have a set of Cauchy slices that foliate the

spacetime, then the future outermost trapping horizon, which we simply refer to

as the apparent horizon by a common abuse of terminology, is typically defined by
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taking the union of the outermost trapped surface on all the slices. The apparent

horizon thus defined is subject to an area law which was originally discussed by [39] –

we refer the reader to [40] for a concise modern summary and proof of the statement.

It is however important to note that the statement relies on the existence of a sensible

foliation of the spacetime by Cauchy slices. Indeed, it is possible as discussed in [43]

to find exotic symmetry breaking foliations (which are however incomplete) in which

even the Schwarzschild black hole solutions fails to have a trapped surface.

We mention this in passing, as [20] quotes the result of [43] to argue that apparent

horizon areas need not be monotone generically. They however do not encounter such

behaviour, for with the choice of ingoing coordinates in (2.6), there is a canonical

choice of bulk Cauchy slices respecting the homogeneity of the disturbance. In this

foliation the result quoted in [40] does apply and in fact simply follows from properties

of null congruences using Raychaudhuri’s equation.5 Our results are indeed consistent

with this expectation and we have checked that the area of the apparent horizon

does grow monotonically in t (which labels the leaves of the foliation chosen), as we

shall extensively see in the sequel. While initial results of [21] appeared to suggest

otherwise, upon closer scrutiny, one finds that in numerical analyses so far the area

of the apparent horizon does respect the second law as derived by [39].6

3 Driving Diagnostics

Having constructed the holographic duals we now turn to lessons that can be ex-

tracted from the geometry for the dynamics of strongly coupled field theories. A-

priori there are a number of observables which are useful probes of the out-of-

equilibrium situation and we will focus on those that offer most clear insight into the

dynamics. Our primary goal is to quantify the behaviour of the system as a function

of {P,A} and construct a phase diagram demarcating the various regimes in this

phase space. Let us quickly enumerate the observables we will use and proceed to

explain why they give us some insight into the dynamics:

• The phase portrait of response φ1(t) as a function of the source φ0(t). Alter-

natively, this relation can be codified in a conductivity σ(t), as defined below

in (3.3). We find 4 underlying phases regions that the system can fall into.

• The φ1-φ0 phase portrait features for polynomial and non-polynomial potentials

with the gravity-scalar coupling αg switched on and off.

• The cycle-averaged thermodynamics quantified by the energy density εavg(t)

and entropy density savg(t), and the scaling relation savg ∼ εγavg between them.

5 To be sure the statement of the area increase theorem does rely on the null energy condition,

which we happily assume, for it is always satisfied by scalar fields with sensible kinetic terms.
6 We thank Alex Buchel for checking this and confirming the monotone growth of the apparent

horizon area.
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• The work done in each cycle, measured as the difference in average energy

between two successive cycles, εcycle = ε
(n+1)
avg − ε

(n)
avg. We typically take n to

correspond to the penultimate cycle of our simulation.

• Fluctuations εfluc(t) in the energy density around εavg(t) and the maximal re-

sponse |φmax
1 (t)|.

• Entanglement entropy and extremal surface evolution for fixed spatial strips A
on the boundary.

When the system is driven by an external source, the most basic quantity is the

response, which is characterized by the scalar one-point function in the presence of

the source. In linear response theory, this can be obtained from the retarded Green’s

function of the operator O(x) evaluated in equilibrium. We are not just interested

in the linear response regime, which would correspond in our set-up to A� T0, but

in the full non-linear response. To visualize the response of the strongly coupled

plasma, especially in the non-linear regime, where its phase relative to the source

is important, we will find it instructive to exhibit the phase portrait, the trajectory

traced by the system in the φ0-φ1 plane. We also codify the relation between scalar

source and response by a complex conductivity, defined below.

In addition to the one-point function of the operator deforming the CFT, we are

interested in the boundary energy-momentum tensor. This can be decomposed in to

an energy density ε(t) and a pressure. In the holographic set-up one has

〈O(t)〉 = φ1(t) , ε(t) = 〈T tt(t)〉 , p(t) = 〈T ii(t)〉 (3.1)

The scale Ward identity (2.4) implies that pressure is not an independent observable

since it can be obtained from knowledge of ε(t) and φ1(t), so we will not discuss the

pressure separately. Additionally, to probe the local thermodynamics we will monitor

the local entropy density s(t), obtained by computing the area of the apparent horizon

at time t.7

The dynamics of the bulk gravitational fields encode the heat production re-

sulting from supplying external energy to the system. We monitor the explicit time

dependence of the energy density ε(t) and the entropy density s(t) along with their

values averaged over each driving cycle period P , and find for the most part that the

averaged values are increasing with time.8 These provide a useful diagnostic of the

7 Using the area of the apparent horizon (defined as the outermost trapped surface in the

foliation respecting spatial homogeneity) results a causal boundary observable. One maps points

on the apparent horizon to boundary points by Lie transport along radially ingoing null geodesics,

which in the ansatz (2.6) are simply lines of constant {t, x, y}. On the other hand the teleological

nature of the event horizon implies that its area would not provide a good measure for the boundary

entropy density, cf., [3, 44] for a discussion of this point.
8 Note that the averaging makes εavg(t) and savg(t) discrete in time.
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departure from equilibrium, as one can monitor the scaling relation to infer the local

thermodynamic equation of state. We define the thermodynamic scaling exponent γ

when the system is in a steady state t > ts via

savg ∼ εγavg (3.2)

Note that in thermal equilibrium, conformal invariance predicts γ0 = 2
3
. We will

encounter this and other scaling regimes in our driven system when conformal in-

variance is broken.

Note that one natural set of non-local observables we could use are the multi-

point correlation function for gauge invariant local operators, perhaps for O itself.

However, realistically this computation involves solving the wave-equation for the

linearized scalar fluctuations on top of the background we have constructed, to-

gether with the imposition of suitable boundary conditions on the future horizon, to

obtain sensible time-ordered correlation functions. These boundary conditions are

somewhat tricky to implement (see however [45, 46]) – we will therefore postpone a

discussion of correlators to the future.9

Below we describe the behaviour of the observables mentioned above in three

distinct dynamical regimes, and comment on the bulk interpretation of those regimes.

Once we have gained sufficient intuition from this exercise, we will then examine the

entanglement entropy for a specified boundary region.

3.1 Dissipation Dominated Regime

The simplest situation occurs in the regime of weak driving ξ � 1, which is best

described as the dissipation-dominated regime (phase I). This includes the regime of

small amplitudes, studied perturbatively in [20]. In this weak driving regime, the

behaviour of all observables is dominated by dissipation, which we now demonstrate

by looking at some specific observables.

As we drive the system by the scalar non-normalizable mode φ0 it is instructive to

divide the scalar response φ1 to the part in-phase with the driving force, and the part

completely out-of-phase with the perturbation. In analogy with an electromagnetic

perturbation in linear response, we can complexify the time dependence of the scalar

field10 and define a complex conductivity

σ(t) ≡ 1

iω

φ1(t)

φ0(t)
= σout(t) + i σin(t). (3.3)

9 We could following standard practice attempt to compute two-point correlation functions

using the geodesic approximation [47]. However, as discussed in [48] and more recently in [49],

this prescription doesn’t generically reproduce correct time-ordered correlation functions (we really

want in-in correlation functions in our set-up). As a result we will also refrain from computing

geodesics in the numerical background.
10 That is, regard cosωt and sinωt as the real and imaginary parts of eiωt.
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φ̃0

φ̃1

Fig. 3: The phase portrait of the dimensionless response φ̃1 ≡ P
A φ1 versus the dimensionless

source φ̃0 ≡ 1
A φ0 for ξ = 0.001� 1 in the dissipation dominated regime (P = 0.001, A = 1)

which we label as phase I. We evolve the solution for 10 periods with each colour segment

representing one period. The early times t < 2P show the effect of the perturbation ramp-up,

and thus are numerical artefacts that we omit from the plot.

With this notation the out-of-phase and in-phase parts of the response correspond

to the real and imaginary parts of the complex conductivity, σout(t) and σin(t), re-

spectively. This is the usual convention for the more familiar conductivity, related

to electromagnetic perturbations. As shown in Fig. 3 in the low driving regime the

scalar response is precisely out of phase with the scalar source, σin = 0, meaning all

the energy is dissipated and none of it used to excite the internal energy associated

with the scalar field i.e., no work is being done on the system. This is the quench

limit and it matches with what we expect from the behaviour of the perturbation in

linear response. The complex conductivity σ = σout is purely real and has constant

amplitude as a function of time at high frequencies.11 This is manifested in the fi-

nal steady state being reached almost immediately and consisting of closed untilted

trajectories in phase space. As we shall see below, tilting of the trajectories in phase

space is indicative of non-trivial response and work done onto the system. Fig. 4

shows what fraction of the complex conductivity σout is present on each point on the

(P,A) phase diagram, and for what we are concerned with currently, the system has

the response being completely out-of-phase with the source when the period is low.

Both the energy and entropy density, averaged over each cycle, grow linearly

with time in the dissipation-dominated regime . As the black hole grows, its entropy

growth tracks its energy growth at a slightly higher rate than the equilibrium relation

savg ∼ ε
2/3
avg, i.e., γ & 2/3. This entropy-energy scaling is shown in Fig. 5 along with

11 This is similar to the behaviour of the conductivity for electromagnetic perturbations in asymp-

totically AdS space.
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∣∣σin
σ
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Fig. 4: The fraction of the complex conductivity σin over the entire (P,A) phase diagram

where |σ|2 = σ2
in + σ2

out.

ε̃avg

s̃avg

(a) savg(t) versus εavg(t).

ε̃avg

s̃avg

t
P

(b) savg(t) and εavg(t) versus time.

Fig. 5: The fitted average entropy savg versus the average energy εavg (left) and their individual

values as a function of time (right) for ξ(P = 0.01, A = 1) = 0.01. Fitting for savg ∼ εγavg, we

find a fitted value of γ = 0.6682± 0.0023 & 2
3 with 95% confidence.

their own evolution with time. Note that the expansion of the black hole horizon is

not necessarily adiabatic (as measured e.g., by the rate of entropy increase 1
T
Ṡ
S

).

In the low amplitude regime, one can also estimate in perturbation theory the

amount of energy dissipated per cycle εcycle which we define as the difference of the

– 14 –



log10 ω
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Fig. 6: The dimensionless scaling parameter α(ω) from fitting εcycle ∼ ωα for a small amplitude

A = 1 in the linear response regime. It is expected for our choice of the scalar and dimension

(∆ = 2 and d = 3) that α → 1 in both the small (εcycle ∼ ω) and large frequency (εcycle ∼
ω2∆−d) limits.

average energy εavg between two successive cycles; for simplicity we take the result

for the last two cycles of our evolution in quoting the results below. One expects the

relation to take a scaling form εcycle ∼ ωα. The scaling exponent α should be a non-

trivial function of frequency itself; for low frequencies it is independent of the driving

operator, but the high frequency limit cares about the spectral properties about the

operator in question. Specifically, one finds that [20]: εcycle ∼ ω for small frequencies

and εcycle ∼ ω2 ∆−d for high frequencies. Since we are not scanning over different

choices of the driving operator, we have a single shot at determining this result. As

depicted in Fig. 6 we indeed find that the energy dissipated is linear both at low and

high frequencies: α(ω) → 1 both for ω � 1 and for ω � 1 (a coincidence owing to

our choice ∆ = 2 and d = 3). Interestingly there is some non-trivial intermediate

frequency behaviour which appears to amplify the energy dissipated in a single cycle.

The bulk picture of the process is also very simple: as we send energy pulses,

which are either weak or infrequent, they interact very rarely before falling into the

black hole horizon. All injected energy from the boundary goes towards steadily

increasing the black hole mass and the scalar field remains unexcited. The more

diverse behaviour observed below can be attributed to gravitational interactions of

those energy pulses before they fall into the black hole.

3.2 Dynamical Crossover Tilted Regime

We now discuss the qualitative changes in the system as we begin to move from the

weak driving ξ � 1 to the strong driving regime ξ � 1 (from regime I to regime II

through the grey-dashed line in phase diagram Fig. 1). Fig. 7 depicts a typical phase
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portrait of the system as we cross into the new dynamical regime. We see that this

regime is characterized by an onset of excitations of the scalar field and breaking

of discrete time translation symmetry. The left panel of Fig. 7 shows the transition

φ̃0

φ̃1

(a) ξ(P = 0.1, A = 20) = 2

φ̃0

φ̃1

(b) ξ(P = 10, A = 1) = 10

Fig. 7: The dimensionless phase portrait of the response φ̃1 versus the source φ̃0 for ξ(P =

0.1, A = 20) = 2 (left) and ξ(P = 10, A = 1) = 10 (right). The conventions are as in Fig. 3.

The left panel shows the behaviour in phase IIb while the right panel pertains to phase IIa.

from ξ � 1→ ξ � 1 at high amplitudes: the trajectories are no longer closed, rather

they precess as a function of time and are slightly tilted. The breaking of discrete

time-translation invariance is an interesting effect of the gravitational interactions of

the scalar field.

In the right panel of Fig. 7 we see the effect of moving into the new dynamical

regime at low amplitudes: there is a clear tilt in the phase portrait from the one in

Fig. 3 with ξ � 1 which indicates that the response is no longer completely out of

phase with the source. The tilting of the trajectories at lower frequencies corresponds

to the emergence of a finite in-phase contribution σin > 0 in the conductivity; this sets

the system somewhere between one with a purely out-of-phase conductivity (closed

circular trajectories) and one with a purely in-phase conductivity (straight diagonal

line trajectories). In other words not all of the injected energy is dissipated as was

the case in regime I, but rather, work is actually being done on the system.

As a result of having less dissipation in this regime, the energy and entropy of

the black hole grow more slowly with time. Moreover, we find the scaling behaviour

between the average energy and entropy, with a thermodynamic scaling exponent

γ > 2
3
, for all values of (P,A), as shown in Fig. 8. In other words, while the work

done in the system slows down the energy increase of the black hole, the entropy

production is affected less.
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A

log10(γ − γ0)

Fig. 8: The increase in the scaling exponent γ in savg ∼ εγavg from the equilibrium value of

γ0 = 2
3 over the entire (P,A) phase diagram. We find that γ > γ0 holds for all scanned values

on the phase diagram.

To understand this regime further, it is instructive to reproduce this type of

phase portrait for a system without gravity. To that effect, we can study the special

case of scalar field evolution in a fixed black hole background, with no backreaction

on the geometry (i.e., αg = 0). To include non-linearity into the problem, we add

self-coupling to the scalar field, to mimic the effect of the non-linearities due to

gravitational interactions (see also [17]). Fig. 9 depicts the phase portrait of a self-

coupled scalar field with two types of polynomial potentials, which we took to be our

original form (free massive scalar) and also one with quartic self-interactions:

Vpoly,4(φ) = −2φ2 − 1

2
φ4. (3.4)

We can see that without non-linearity as in Fig. 9a, the phase portrait is tilted,

but sharp features of the phase portrait are lost compared to the case with the same

driving but also gravitational backreaction, depicted in Fig. 7b. Adding a polynomial

non-linearity, as done in Fig. 9b, gives a phase portrait that starts to form slightly

sharper features along with some amplification of the response. Thus, the simple

system of self-interacting scalar field allows us sufficiently separate the two effects

in regime II: we see that the tilt in the phase diagram is associated with decreased

frequency, whereas the breaking of time-translation invariance is associated with

increased amplitude. We note also that for this simple system, the third dynamical
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φ̃0

φ̃1

(a) V2(φ) = −2φ2

φ̃0

φ̃1

(b) V4(φ) = −2φ2 − 1
2φ

4

Fig. 9: The phase portrait of the dimensionless response φ̃1 ≡ P
A φ1 versus the dimensionless

source φ̃0 ≡ 1
A φ0 for ξ(P = 10, A = 1) = 10 with αg = 0 and different polynomial potentials

V (φ). The conventions are as described in Fig. 3.

regime of unbounded amplification discussed in the next subsection seems to be

absent.

Thus, the bulk interpretation of this dynamical regime becomes clear: the pulses

of energy injected at the boundary interact gravitationally before falling into the

black hole. This results in additional physics to that of simple dissipation, modeled

here by infalling the black hole. The gravitational interaction is due to perturba-

tive exchange of gravitons, and can be mimicked by a polynomial self-interaction of

the scalar field. In the next subsection we will see the effect of the gravitational

interactions becoming strong when both A and P are large.

3.3 Unbounded Amplification Regime

As we increase the driving strength further in both A and P directions (from regime

II to regime III through the blue-dashed line in phase diagram Fig. 1), we enter a

dynamical regime no longer reproducible by polynomial self-interactions of the scalar

field. We see the phase portrait of the scalar field in Fig. 10 for two instances of pa-

rameters in this regime. Moreover, we find this dynamical regime to be characterized

by unbounded response and restoration of time translation symmetry.

As we increase the strength of the driving force ξ, the phase portrait becomes

sharper and tilted, corresponding to an increased response and, again, less lag with

the source as seen in Fig. 4. The ‘slowness’ of the energy injection from the boundary

allows the scalar field to heat up as if the entire process were adiabatic, consequently

allowing the scalar response to respond relatively quicker to the source. Note that

although Fig. 4 shows |σin/σ| ≈ 1 in this regime, the absolute value |σ| is actually
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φ̃0

φ̃1

(a) ξ(P = 1, A = 20) = 20

φ̃0

φ̃1

(b) ξ(P = 10, A = 20) = 200

Fig. 10: The phase portrait of the response φ̃1 versus the source φ̃0 for ξ = 20 (left) and

ξ = 200 (right) in the non-perturbative dynamical regime (regime III). The conventions are as

in Fig. 3.

very large in this unbounded amplification regime so that a small |σout/σ| is still

strong enough to keep the black hole perpetually growing in size.

The maximal response |φmax
1 | over our ten cycles of driving is plotted in Fig. 11

throughout the phase diagram. It is seen to increase rapidly with ξ past the dissipation-

dominated regime. This seems to indicate the presence of a non-linear resonance,

which allows the scalar response to grow without bound. An interesting feature of

Fig. 11 is that the maximal response does not grow in the high frequency regime

regardless of how large ξ is by increasing A. It seems unlikely that unbounded

behaviour is attainable even for amplitudes drastically higher than the bounds of

numerical explorations reported in Fig. 11. Physically, this means that a rapid puls-

ing of small packets of energies can barely amplify the response of the system; the

frequency of driving has to be below a certain bound for resonance to be possible

– or in other words, a certain slowness in the sourcing is required. We conjecture

that one should would see unbounded amplification only in the combined large P ,

large A regime which is slightly different from the traditional definition of resonance

that depends only on frequency. An interesting curiousity is a slight dip in the re-

sponse for moderate values of ξ preceding the rapid growth. This trough appears

to demarcate the domains of bounded (regime II) and unbounded responses (regime

III) empirically. It would be interesting to come up with a explanation for this

phenomenon.

Finally, it is amusing to model the non-linear effects of gravity in terms of an

effective scalar potential to see what is necessary to attain regime III. We find that

while a scalar field with polynomial self-interaction does not seem to posses this
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Fig. 11: The maximal response
∣∣∣φ̃max

1

∣∣∣ = P
A |φ

max
1 | over the entire (P,A) phase diagram.

regime, one can reproduce similar features by non-polynomial potentials. For exam-

ple, we can discuss a self-interacting scalar field probe, with

Vnon-poly(φ) = −2 sinh2 φ+
1

6
sinh4 φ . (3.5)

This choice of scalar self-interaction is chosen to agree with our previous example

(3.4) in the small field regime, but of course behaves differently for large field values.

In Fig. 12 we see that indeed similar features of the phase diagram are reproduced:

narrow closed trajectories and resonant response. We conclude therefore that the

features of this dynamical regime are due to strong, non-perturbative gravitational

effects occurring outside the black hole horizon. The fact that the non-linearities

induced by gravity can be extremely strong, should perhaps be borne in mind while

attempting to come up with simplified models of gravitational dynamics in AdS

spacetime.

3.4 Energy Fluctuations

Another observable we monitor is the behaviour of energy fluctuations. More pre-

cisely, we consider the deviations from the average energy in a each cycle, εfluc(t) =

|ε(t) − εavg(t)|. These cycle fluctuations are a crude proxy for genuine fluctuation

information that can be extracted, for instance, by considering symmetrized two-

point functions of the boundary energy momentum tensor. Such ensemble-averaged

fluctuations are known to exhibit phase transitions in periodically driven systems
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φ̃0

φ̃1

(a) ξ(P = 10, A = 1.5) = 15

φ̃0

φ̃1

(b) ξ(P = 10, A = 2) = 20

Fig. 12: The phase portrait of the response φ̃1 versus the source φ̃0 for ξ = 15 (left) and

ξ = 20 (right) for the non-polynomial potential Eq. (3.5), in the conventions of Fig. 3.

[50]. Some indication those transitions are possible in holographic systems is given

in [20].

The results for our simulations in various regimes are plotted in Fig. 13. We

observe a qualitative change in these cycle fluctuations between different regimes.

While in the dissipation-dominated phase we do not see a lot of deviation from the

mean, there is a steep growth in fluctuations as we enter the non-linear phases. The

fluctuations are maximal in the unbounded amplification regime (regime III). We

note that in contrast to the maximal scalar response, which also grows dramatically

in that phase, the fluctuations do track the driving frequency, with there being more

deviations in the large period limit.

It would be useful to confirm this behaviour directly with the computation of

correlation functions, a task we leave for future investigation.

4 Entanglement entropy

Thus far we have discussed various local observables (response functions and ther-

modynamic data) which have served to help us chart the phase diagram of the driven

system in Fig. 1. We now turn to other non-local field theory observables that are

sensitive to the non-equilibrium dynamics. Since we are not going to examine the

behaviour of higher point correlation functions, we will dive right into the dynamical

behaviour of entanglement entropy.

In the boundary we have a density matrix ρ(t) which is time-evolving with respect

to the perturbed Hamiltonian. At any given instant of (boundary) time, we pick a

spatial region A and construct the matrix elements of the reduced density matrix
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Fig. 13: Energy density fluctuations (last cycle) ε̃fluc in units of A2/P over the entire (P,A)

phase diagram.

ρA(t) = TrAc (ρ(t)) by tracing out the degrees of freedom in the complement (on

the chosen Cauchy slice). The entanglement entropy is given by the von Neumann

entropy of ρA, i.e., SA(t) = −TrA (ρA log ρA) which we can monitor as a function of

time.

Holographically computing the entanglement entropy for boundary regions in

time dependent situations involves finding bulk codimension-2 extremal surfaces EA
anchored on the said boundary regionA [23]. We study the evolution of entanglement

entropy focusing in particular on translationally invariant strip regions:

A = {t = tA,−a ≤ x ≤ a, y ∈ R} . (4.1)

The bulk codimension-2 surface ends at x = ±a at some chosen instance of boundary

time tA and is obtained by solving effectively a set of geodesic-like equations with

our interpolated metric functions Σ, f , and χ (see Appendix B.1 for details). The

covariant holographic entanglement entropy prescription [23] generalizing [51, 52]

states that

SA =
Area(EA)

4G(4)

N

. (4.2)

Should there be multiple extremal surfaces, we choose the one with minimal area

(homologous to A). The proper area of these surfaces diverges owing to the locality

of the underlying QFT. In our case we encounter potential divergences not only from

the surface reaching out to the asymptotic boundary, but also from the presence

of the sources driving the system. The physical result we are after is the finite
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universal contribution Sfin
A , which will measure the entanglement created/destroyed

as we drive the system away from thermal equilibrium. Fortuitously, for our choice

of scalar operator, there are no contributions due to the source, and hence we can

simply regulate by background subtraction.12 As a result we will consider as our

entanglement diagnostic, the following finite quantity

∆SA(t) =
4G(4)

N

Ly

[
SA(t)− SA(t = 0)

]
(4.3)

where Ly is the IR regulator in the non-compact translationally invariant direction.

Since we drive the system away from thermal equilibrium, SA(t = 0) is the corre-

sponding value of the entanglement entropy computed in the Schwarzschild-AdS4

geometry. In what follows we will simply quote the results of our numerical simula-

tions both for the behaviour of the extremal surfaces themselves and ∆SA(t).

4.1 Extremal surfaces in the driven geometries

The extent to which the extremal surfaces penetrate into the bulk can for the most

part be determined from the location of the cap-off point which we parameterize as

(t∗, u∗ = 1/r∗, x = 0).13 For very small regions we are reasonably close to the AdS

boundary whence, the curves are approximately semi-circles u2 + x2 ≈ a2. As we

increase to larger strip widths the extremal surfaces start to probe the interesting re-

gions of the driven geometry and thus allows us to see qualitative differences between

the four phases.

Generically we see that the following statements hold irrespective of the phases

we consider:

1. The radial depth and the temporal extent spanned by the surface evolves non-

trivially as a function of tA. One consequence of working with ingoing coordi-

nates (2.6) is that the surfaces naturally dip back in time (see [33, 53]).

2. The oscillatory driving of the system imprints itself in the profile of the extremal

surfaces, with the scale of these oscillations set by the the driving parameters

A and P . The periodic movement of the surface can be seen in pulsations of

the turnaround point of the surface: u∗ and t∗ have oscillations of the same

period superposed over some enveloping function.

3. On average, the extremal surfaces reach further into the bulk with time; u∗(tA)

is monotonically increasing for the range of parameters explored. To under-

stand this note, we gauge fixed the bulk coordinate chart (2.6) such that the

12 Details of the divergent structure and the counter-terms necessary to compute the area func-

tional in our set up can be found in Appendix B.2.
13 The coordinate u = 1/r is chosen such that the horizon remains at u = 1 during the entire

course of the evolution (the boundary is at u = 0).
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horizon is at u+ = 1. In these coordinates the proper size of the region A
increases (due to ρ(t, r)) which means that the surfaces want to get closer to

the horizon to extremize the area functional. The rate at which this happens

depends on both the amplitude and the frequency of the driving. We also note

that surfaces dip less temporally, i.e., t∗ − tA is increasing.

4. We also note that the location of the extremal surface appears to be consistent

with causality of entanglement entropy [49]. While we have not explicitly

checked that the surface lies in the casual shadow of the boundary region A,

one simple consistency check visible from our results for t∗ is that t∗ < tA − a.

We remind the reader that in (2.6) lines of constant t and x are radially ingoing

null geodesics. Causality at the very least requires that the cap-off point of

the extremal surface lies below the ingoing null geodesic from the domain of

dependence. Since for the strip region the boundary domain of dependence is

a diamond anchored at (tA ± a, 0) and (0,±a), we note that the ingoing light

ray from the bottom tip of this diamond cannot signal to the cap-off point.

In the following discussion we will illustrate the behaviour of the extremal sur-

faces more explicitly in each of our phases. We have been reasonably conservative

in our analysis and have chosen to work only with surfaces that do not get too close

to the horizon (in fact u∗ < 0.2). This is to avoid both numerical issues as well as

to avoid complications from the existence of multiple extremal surfaces. We follow

a single branch of solutions as described at the end of Appendix B.1. The primary

results of the extremal surfaces are shown in the plots Figs. 14, 15, 16, and 17, where

we show the evolution of the extremal surface as well as u∗(tA) and t∗(tA).

Linear regime (small A): Although all phases display extremal surfaces that sink

into the bulk with each driving cycle, the growth of u∗ in the linear regime of small

amplitudes is most steady. We focus here on phases I (high frequency; dissipation-

dominated) illustrated in Fig. 14 and IIa (low frequency; tilted) illustrated in Fig. 15,

which fall under this characterization. As the frequency is lowered and we pass from

the dissipation-dominated phase to the tilted phase, there is drastic reduction in the

growth of u∗ per cycle.

The evolution of t∗ in the two phases is also interesting; t∗ − tA is gradually

increasing on average with time (recall that in the stationary geometry t∗− tA would

be constant). It turns out to be useful to look at a dimensionless parameter t̃∗ ≡
(t∗−tA)/P which measures the cap-off time relative to the boundary. In this context,

there is more time-lag in phase I i.e., t̃∗I � t̃∗IIa . 0, which hints at the cause for why

the surfaces do not penetrate as far deep in the bulk in phase IIa as opposed to phase

I.14 In addition we see strong oscillatory patterns in phase II in spite of having only

a steady increase in u∗; such a feature is absent in phase I.

14Note that in absolute terms however, t∗ in both regimes is comparable in magnitude.
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Fig. 14: Evolution of the extremal surfaces for a strip of width a = 0.05 with driving parameters

ξ(P = 0.1, A = 1) = 0.1 (phase I; dissipation-dominated). We pick a UV cutoff uA = 10−3

and have defined t̃∗ ≡ (t∗ − tA)/P to measure the cap-off t∗ point relative to the boundary.

Non-linear regime (large A): We now turn to the phases III (low frequency;

unbounded amplification) illustrated in Fig. 16 and IIb (high frequency; wobbly)

illustrated in Fig. 17 in the non-linear regime of high amplitude. Some of the features

seen in the linear regime continue to pertain: we see more pronounced oscillations in

t̃∗ and a decreased tendency for the surfaces to lag behind in time at lower frequencies.

In the unbounded amplification regime (phase III), we see significant bursts of

growth of the extremal surfaces. The oscillatory driving is felt rather acutely by the

surfaces and the evolution is considerably violent. On average however, u∗ appears

to advance more serenely despite having large amplitude oscillations per cycle.

In the dynamical crossover wobbly regime (phase IIb), there is a considerable

amount of instability. We chose here to work with smaller strip widths a = 0.01

(instead of a = 0.05) to avoid complications of phase transitions between multiple

competing extremal surfaces. The early part of the evolution is in line with what

happens in the dissipation-dominated regime (phase I), but shortly after, there are

discontinuities in the t̃∗ parameter with no noticeable effect in u∗. Around tA/P ≈
4.0− 4.2 and tA/P ≈ 4.6, we see an exchange of dominance in the extremal surface,
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Fig. 15: Evolution of the extremal surfaces for a strip of width a = 0.05 with driving parameters

ξ(P = 10, A = 1) = 10 (phase II; tilted). Conventions described in Fig. 14 apply.

which starts out at a higher value of t̃∗.

All in all, the extremal surfaces in the non-linear regime definitely has elements of

intrigue owing to the large pulses of energy that affect the bulk geometry significantly.

Although we do not delve into extremal surfaces that are positioned deeper into the

bulk, we notice in the course of our analysis that the surfaces tend towards the

horizon as expected. More curiously, we also find that for larger regions we cannot

find extremal surfaces that stay outside the apparent horizon. This is not surprising

since we expect based on earlier results that there will be surfaces that penetrate the

apparent horizon of the black hole (cf., [24]). However, one of the disadvantages of our

numerical scheme is that we are unable to explore this interesting regime due to the

fact that the spacetime inside the apparent horizon has been excised. As explained

in [4], this was to avoid complications with having caustics in the coordinate chart.

Analysis of entanglement entropy however does require us to have the complete bulk

geometry.
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Fig. 16: Evolution of the extremal surfaces for a strip of width a = 0.05 with driving parameters

ξ(P = 10, A = 20) = 200 (phase III; unbounded amplification). Conventions described in

Fig. 14 apply.

4.2 The evolution of entanglement

We now turn to the evolution of the entanglement entropy; the results are presented

in Fig 18 for the regulated quantity ∆SA as introduced in (4.3).

In the dissipation-dominated regime (phase I), the entanglement entropy grad-

ually increases, though in each cycle of forcing there is a time period for which the

growth is negligible. We expect this feature is simply a consequence of the entangle-

ment entropy tracking the thermal entropy. Even though we are not quite probing

the full thermal contribution with the relatively small regions A, it bears to reason

that the variation of the geometry is more or less equitable on all radial scales. This

appears consistent with other probes of this phase. As we discussed in §3.1 the weak

driving allows the system to efficiently dissipate the energy induced by the source

and the conductivity σ(t) was purely imaginary. Basically the dominant effect here

is the growth of the black hole horizon due to the driving and this in turn imprints

itself into the growth of ∆SA seen in Fig. 18a.

On the other hand when we reach phase IIa (tilted regime) by way of small

amplitudes, we start to see definite oscillatory evolution of ∆SA . In each oscillatory
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Fig. 17: Evolution of the extremal surfaces for a strip of width a = 0.01 with driving parameters

ξ(P = 0.1, A = 20) = 2 (phase IIb; dynamical crossover). Conventions are as described in

Fig. 14.

period we see a local reduction in ∆SA . On the other hand the temporal radial depth

attained by the extremal surface as measured by u∗ is almost similar to that in phase

I by juxtaposing the behaviour in Fig. 14 and Fig. 15. In phase IIa however, our

extremal surfaces are closer to the boundary in contrast to phase I. We conjecture

that the origin of the reduction in the ∆SA is associated with the sharp oscillations

in t∗ or equivalently t̃∗. These imprint themselves into the actual value of the area

despite the surface not getting too far into the bulk (which is possible since even the

asymptotics of the geometry is sensitive to the driving, cf., (A.17)). The onset of

non-monotone growth of ∆SA in Fig. 18b characterizes the departure from the linear

regime to the non-linear domain in line with the behavior of the phase portrait which

in turns modifies the conductivity (which picks up a real part σin > 0 in phase IIa).

The temporal change of ∆SA is much more pronounced in the non-linear regime.

In the unbounded amplification phase III (see Fig. 18c) and the dynamical crossover

wobbly phase IIb (see Fig. 18d), the ∆SA appears to track the time-coordinate of

the cap-off point t̃∗ quite efficiently. Indeed here we expect the non-linearities of the

system to be the dominant effect. We know that the black hole grows quite rapidly in
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tA/P

∆SA

(a) Phase I: ξ(A = 1, P = 0.1) = 0.1
tA/P

∆SA

(b) Phase IIa: ξ(A = 1, P = 10) = 10

tA/P

∆SA

(c) Phase III: ξ(A = 20, P = 10) = 200
tA/P

∆SA

(d) Phase IIb: ξ(A = 20, P = 0.1) = 2

Fig. 18: The evolution of the regularized entanglement entropy, ∆SA defined in Eq. (4.3), for

the four phases for a radial cutoff of uA = 10−3. The strip widths are a = 0.05 for panels (a),

(b), (c), and a = 0.01 for panel (d).

response to the energy injected into the system at the boundary from our discussion in

§3.2 and §3.3. The behaviour in phase III is smooth with large amplitude oscillations,

which qualitatively track quite well the behaviour of t̃∗. The dynamical crossover

wobbly phase (phase IIb) exhibits a lot more drastic behaviour. We encounter for

the first time a jumps in the family of extremal surface that minimize the area

(satisfying the boundary conditions and the homology constraint). These jumps

translate into continuous but non-differentiable kinks in ∆SA visible in Fig. 18d. We

again note that the radial position of the cap-off point of the extremal surface behaves

much more smoothly and the glitches appear in t̃∗. Furthermore, the growth of the

entanglement itself is rather steep as we see about an order of magnitude difference
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s/s0

∆SA

(a) Phase I: ξ(A = 1, P = 0.1) = 0.1
s/s0

∆SA

(b) Phase IIa: ξ(A = 1, P = 10) = 10

s/s0

∆SA

(c) Phase III: ξ(A = 20, P = 10) = 200
s/s0

∆SA

(d) Phase IIb: ξ(A = 20, P = 0.1) = 2

Fig. 19: The evolution of the regularized entanglement entropy, ∆SA defined in Eq. (4.3),

against the normalized entropy of the black hole, s/s0 = s/s(t = 0), for the four phases for

a radial cutoff of uA = 10−3. The strip widths are a = 0.05 for panels (a), (b), (c), and

a = 0.01 for panel (d). We include the Spearman and Pearson rank coefficients, −1 ≤ ρs ≤ 1

and −1 ≤ ρp ≤ 1 respectively, for each plot to demonstrate the linearity of the correlation

between the entanglement entropy and the thermal entropy (see text for explanation).

in ∆SA between the low amplitude and high amplitude regimes.

It is interesting to contrast the change of entanglement entropy with the change in

the thermal entropy to see how the two are correlated. As we have argued above, the

fact that we have an ever increasing thermal entropy (the bulk black hole is constantly

growing) implies that even for small sub-systems we will quickly see overwhelming

thermal contribution. We display in Fig. 19 the functional dependence of ∆SA on

the (normalized) instantaneous thermal entropy s(t)/s(t = 0).
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It is immediately apparently by eyeballing the plots that there appears to be near-

perfect correlation in three phases with Fig. 19c corresponding to phase III being the

only outlier. To get a quantitative feeling for the correlation we have also indicated

the Pearson correlation coefficient ρp as well as the Spearman rank coefficient ρs.

These are statistical markers for measuring correlations between two sets of data

and are defined to take values in the interval [−1, 1]. The values ρs, ρp = 0,±1

signify zero, perfect positive and perfect negative correlation respectively. While the

Spearman coefficient indicates that the observables in question are monotonically

related, the Pearson coefficient provides an accurate measure of linear correlation.

Indeed from the results quoted in Fig. 19 we see that ∆SA(s) is a linear function to

a very good approximation in phases I, IIa and IIb. It is curious that the linearity is

respected even in the presence of the glitches in the growth of entanglement entropy

(we do not see any drastic behaviour in the area of the apparent horizon). The

unbounded amplification phase III clearly demonstrates the effects of non-linearities

by decorrelating ∆SA and s(t).

5 Discussion

The non-equilibrium dynamics of strongly coupled field theories is amenable to de-

tailed quantitative exploration using the AdS/CFT correspondence. We have ex-

ploited this set-up to study the behaviour when a homogeneous thermal plasma is

driven away from equilibrium by a periodically sourcing a relevant (composite) scalar

operator. The resulting dynamics exhibits a rather rich phase structure illustrated

in Fig. 1.

We identified four distinct phases, characterizing them in terms of the frequency

and amplitude of the external driving force. Of these the dissipation dominated phase

I is perhaps most intuitive for here the weakness of the driving, allows the system

to to catch up with the driving. This is clearly visible in the various observables we

studied; the complex conductivity of the response is purely real owing to the phase

lag between the source and response and the evolution of entanglement is pretty

quiescent.

There is more structure when we ramp up either the period of driving, or the

amplitude, for now the system departs quite rapidly away from equilibrium. The

response therefore is more pronounced; we see more in phase response and greater

temporal oscillations. In phases IIa to IIb there emerges a non-vanishing imaginary

part to the conductivity, which in fact appears to capture the entire response for

high values of the period and amplitude. We also notice that there are significant

fluctuations in the energy density and the entanglement entropy and furthermore,

the entropy density grows rather rapidly in this regime. Perhaps most intriguing

is the unbounded amplification of phase III, where we see sharp fluctuations and a

highly non-linear response. We argue that this response appears to be not captured
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by polynomial self-interactions of the composite operator; the intricate dynamics of

gravity in AdS appears to induce effective non-polynomial couplings in the effective

action for the operator O we use to perturb the system away from equilibrium. We

believe this fact is significant and should be taken into account when attempting

to construct effective models distilling the effects of gravitational interactions for

strongly coupled systems .

While our focus has been on computing the simplest set of observables, essentially

one-point functions and entanglement entropy for small sub-systems, the power of

holography is that we can do much more. In time independent equilibrium scenarios

it is straightforward to use the holographic map to compute correlation functions (at

least two point functions). In the genuine non-equilibrium scenarios as those we have

focused on the technology for computing such observables, whilst present [45, 45] is

still a bit cumbersome to work with (at least numerically). It would be interesting

to develop these techniques further perhaps taking inspiration from the analytical

models of [54, 55]. This would allow us with a direct probe of fluctuations in the

plasma, which can be contrasted with the dissipation in the system, the latter being

measured by the entropy production through the growth of the horizon.

Likewise our exploration of the behaviour of entanglement entropy has been re-

stricted to analysis of small sub-systems for pragmatic reasons. While the sub-system

under consideration was chosen to have fixed size, the fact that we are continuously

driving the system leads to an ever increasing thermal contribution to the entangle-

ment. Geometrically this is easy to understand since the horizon for our bulk solution

is ever growing (as we have indicated that both the event and apparent horizons are

required to be monotonic in our set-up) and reaches out towards the boundary in

the course of the evolution. As a result, the local thermal scale can overwhelm the

relative smallness of the sub-region we choose. To have precise mapping of the en-

tanglement structure we need to be able to ascertain the true minimum of the area

functional in such scenarios bearing in mind that the extremal surface can (and often

does) penetrate various horizons. A significant obstacle in ascertaining this is the

fact that the characteristic method for solving Einstein’s equations developed in [4]

excises the region of the spacetime behind the apparent horizon. While this is a

technical obstacle, overcoming it would not only enable us to probe the interior of a

highly non-equilibrium black hole using holographic entanglement, but it could also

allow us to explore other interesting scenarios such as the effect of perturbing the

ground state of the system by external sources.

Acknowledgments

We would like to thank Veronika Hubeny and Henry Maxfield for useful discussions.

M. Rangamani and M. Rozali would like to acknowledge the hospitality of Yukawa

Institute for Theoretical Physics, Kyoto during the course of the project. In addition

– 32 –



M. Rangamani would also like to acknowledge the hospitality of IAS, Princeton,

University of Amsterdam and Aspen Center for Physics.

M. Rangamani acknowledges support from the Ambrose Monell foundation, by

the National Science Foundation under Grant 1066293, by the FQXi under grant

“Measures of Holographic Information” (FQXi-RFP3-1334), by the STFC Consoli-

dated Grant ST/L000407/1, and the European Research Council under the Euro-

pean Union’s Seventh Framework Programme (FP7/2007-2013), ERC Consolidator

Grant Agreement ERC-2013-CoG-615443: SPiN (Symmetry Principles in Nature).

M. Rozali and A. Wong are supported by NSERC.

A Holographic Renormalization

We collect here some salient results for the computation of physical field theory

quantities using standard holographic techniques.

A.1 Scalar deformations

The bulk action (2.5) should be supplemented by boundary counter-terms to ensure

that (a) the bulk equations of motion follow from a consistent variational principle

and (b) the on-shell action evaluated on the solutions is finite.

In standard Poincaré-AdSd+1

ds2 = r2 ηµν dx
µ dxν +

dr2

r2
≡ ηµν dx

µ dxν + dz2

z2
(A.1)

the scalar field behaves asymptotically as

φ(r, x)→ 1

rd−∆
φ0 +

1

r∆
φ1

φ(z, x)→ zd−∆ φ0 + z∆ φ1 (A.2)

We will work with standard quantization (Dirichlet boundary conditions) for the

scalar field, which involves treating the mode that fall-off as r∆−d as the source for

the scalar field.

In the presence of the source we let the metric to take the FG form,

ds2 =
dz2

z2
+
gµν(x, z) dx

µ dxν

z2
(A.3)

where gµν(z, x) = γµν +O(z). If necessary we will denote by γε the induced metric

on the surface z = zε which differs from the boundary metric by a conformal trans-

formation by z2
ε . We will ignore this issue for most part and write the counter-terms

in terms of γµν below for simplicity.
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With these conventions we find the following boundary counter-terms:

Sbdy =
1

16π GN

∫
ddx
√
−γ

(
2K − 2 (d− 1)− 1

d− 2
γR

−1

2
∆− φ

2 +
1

2 (2 ∆− d− 2)

[
(∂φ)2 + c1

γR φ2
])

(A.4)

We are using conventional AdS/CFT definitions:

∆± =
d

2
±
√
d2

4
+m2 =

d

2
± ν (A.5)

Our interest concerns conformally coupled scalar field which has a mass in AdS

units given by

m2
c = −d

2 − 1

4
=⇒ ∆± =

d± 1

2
(A.6)

To compute the boundary energy momentum tensor we vary

T µν =
2√
−γ

(δSbulk + Sbdy)

δγµν
(A.7)

where we should take care to include the appropriate radial dependence in the defi-

nition of γµν .

Lets split the contribution from the graviton and the scalar and write

T µν = T µνg + T µνφ (A.8)

where the split is determined by the requirement that T µνφ ∝ φ. Then the two pieces

can be computed efficiently as follows:

T µνg =
1

16π GN

2√
−γ

δ

δγµν

[∫
dd+1x

√
−g (R + d(d− 1))

+

∫
ddx
√
−γ
(

2K − 2 (d− 1)− 1

d− 2
γR

)]
(A.9)

which one can show evaluates to a nice covariant expression:

T µνg =
2

16π GN

(
Kµν −K γµν + (d− 1) γµν − 1

d− 2

(
γRµν − 1

2
γRγµν

))
(A.10)

where zε is the location of the cut-off surface.

The scalar contribution can be evaluated by using the fact that we are interested

in the boundary variations to obtain:

T µνφ =
1

16π GN

2√
−γ

δ

δγµν

[∫
ddx
√
−γ

(
1

2 zd−1
ε

φ ∂zφ−
1

2 zdε
∆−φ

2 + · · ·
)]
(A.11)
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where · · · indicate the contribution from the higher order counter-terms and we have

put back the powers of zε now. The details now depend on the asymptotic expansion

of φ. For general ∆ we have to worry about the fact that the Taylor series solution

in the neighbourhood of z ' 0 looks like

φ(z, x) = φ0 z
∆− + a1(φ0) z∆−−2 + · · ·+ φ1 z

∆+ + · · · (A.12)

and we need to know the various intermediate pieces to complete the analysis. The

case we are interested in is rather special, where there are no powers of z in the

Taylor expansion between the source and the vev, so let us simply record the result

for this case for now leaving a more general analysis for later.

Before proceeding though, let us note that we can express (A.11) covariantly as

follows (r = z−1):

T µνφ =
1

16π GN

2√
−γ

δ

δγµν

[∫
ddx
√
−γε

(
1

2 rε
φnA∇Aφ−

1

2
∆−φ

2 + · · ·
)]
(A.13)

where nA is the unit normal perpendicular to the cut-off surface.

A.2 Specializing to ∆− −∆+ < 2 (∆+ > d− 2)

In this case the asymptotic expansion belongs to the special kind where

φ(z, x) = φ0 z
∆− + φ1 z

∆+ + · · · (A.14)

where we are allowed to use the fact that φ0 z
∆− is the beginning of an independent

Taylor series where the powers of z change by 2 units (use the fact that the Lagrangian

has φ → −φ symmetry). This corresponds to the case we are interested where

∆+ = 2, ∆− = 1 in d = 3.

In this circumstance we can simply use the terms written explicitly in (A.11) to

obtain

T µνφ =
1

16π GN

1

2
(2 ∆+ − d)φ0 φ1 γ

µν (A.15)

Then we find

Tµν =
1

16π GN

(
Kµν −K γµν + (d− 1) γµν +

1

2
(2∆+ − d)φ0 φ1 γµν

)
(A.16)

A.3 m2 = −2 in d = 3

Now, we can get the final answer for the case of interest either by working with the

Fefferman-Graham expansion in which case we need to know that

gµν(z, x)dxµ dxν = −
(

1− 1

4
φ2

0 z
2 +

4

3
a3 z

3 + · · ·
)
dt2

+

(
1− 1

4
φ2

0 z
2 − 2

3
(a3 + φ0 φ1) z3 + · · ·

)
(dx2 + dy2) (A.17)

– 35 –



The metric fall-offs allow us to compute the pieces in the boundary stress tensor

directly since the z3 term above is the correct answer.

Using this or directly computing from the CY-ansatz (A.13) we claim to obtain

(rescaled the result by a factor of 3/2).

T µν = diag

{
2 a3 + φ0 φ1,−a3,−a3

}
(A.18)

We can check that this satisfies the Ward identities:

T µµ = φ0 φ1 = J O2 , ∇µT
µ0 = −2 ȧ3−φ1 φ̇0−φ0 φ̇1 = −φ1 φ̇0 = O∇ν J (A.19)

where we used the boundary conservation law derived from the solution ȧ3 = −1
2
φ0 φ̇1.

B Extremal surfaces and entanglement for strips

In this appendix we describe our methodology for finding extremal surfaces relevant

for the computation of entanglement entropy. For simplicity we will focus on regions

which exploit the symmetry of our set-up and consider A to be a strip extended along

one of the translationally invariant directions, say y without any loss of generality,

as in Eq. (4.1). We need a bulk codimension-2 surface that ends on the boundary of

this region i.e., at x = ±a (at the chosen instant of boundary time tA). We describe

our strategy for finding this surface and computing its (regulated) area below.

B.1 Determining extremal surfaces

To find the extremal surface, we start by gauge fixing the reparameterization invari-

ance on the surface. We take y to be one of the coordinates. Dimensionally reducing

in this direction, we construct an effective action for a curve in the remaining di-

rections and pick a proper-length parameter λ as the second coordinate. Thus, the

extremal surface EA is embedded in the bulk as

Xµ = (t(λ), r(λ), x(λ), y) . (B.1)

We choose the proper-length parameter to ensure that
√

detγab = 1, which implies

that the unregulated area of the extremal surface is given as

Area(EA) = Ly

∫
EA
dλ
√

detγab = λEA Ly , (B.2)

in terms of parameter distance λEA spanned by the curve and the IR regulator Ly.

In practical terms we work with the effective Lagrangian

L = ρ2
[
2 t′ e2χ (r′ − t′ f) + ρ2 x′2

]
(B.3)
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where the metric functions ρ, f , χ are obtained by interpolation of our numerical

solutions. This is a geodesic problem, with some non-minimal coupling from the

dimensional reduction along the translationally invariant direction of the strip. In-

stead if using the geodesic equations, we found it convenient to pass to a set of six

first-order Hamilton-like equations by introducing Pt = t′, Px = x′, and P+ = r′−ρ t′
which are related to the conjugate momenta. The equations we solve are the above

three and

P ′x = −4Px
ρ

((Ptf + P+)∂rρ+ Pt∂tρ) = 0

P ′t = 2P 2
xρe

−2χ∂rρ− P 2
t (∂rf + 2f∂rχ+ 2∂tχ)− 2P 2

t

ρ
(f∂rρ+ ∂tρ) = 0

P ′+ = 2P 2
xρe

−2χ (f∂rρ+ ∂tρ) + PtP+∂rf −
2P 2

+

ρ
(∂rρ+ ρ∂rχ) = 0

(B.4)

We start from x = 0 in the bulk at some smooth cap-off point (x = 0, t∗, r∗) where

t′ = r′ = 0.15 and propagate out to the boundary. We evolve until a with a fixed

UV cut-off at rA and regulate the final answer for the entanglement entropy by

background subtraction (see below).

In the main text we illustrate the temporal dependence of the extremal surfaces

and Sreg
A for each of the four phases (I-IV) of Fig. 1 for fixed strip width a. Since

we numerically control the data of the cap-off point we work iteratively: we start

by fixing a suitable strip width a by tuning r∗ and t∗, then we evolve the extremal

surfaces by increasing t∗ and re-adjusting r∗ such that the strip width remains as a.

We note that we assume that there are no discontinuities or multi-valuedness in the

map from (r∗, t∗) → (a, rA), which we believe makes sense for small strip widths.16

Finally, to work in a compact domain we choose u = 1/r ∈ [0, 1] which we will use

to explain the properties of the extremal surfaces.

B.2 Regulated entanglement entropies

Since the extremal surfaces reach out all the way to the boundary, the proper area is

divergent with the coefficient of the leading divergent term fixed by the area of the

entangling surface ∂A. For a state of the CFT with vanishing sources for operators

it is well known [52] that the entanglement entropy behaves as

SA =
Area(∂A)

uA
+ Sfin

A +O(uA) . (B.5)

where Sfin
A is finite in the limit uA → 0. In normalizable states of the field theory Sfin

A
is the universal contribution to entanglement which should be independent of the

15 This cap-off point is not necessarily the deepest point in the bulk; for the examples shown in

this paper it however does turn out to coincide.
16 Such behaviour was noticed in extremal surface computation in global Vaidya-AdS by [53].
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cutoff value uA.17 One natural way for us to extract this quantity is to measure the

entanglement relative to the t = 0 thermal Schwarzschild state ∆SA(t) = SA(t) −
SA(t = 0), which can be extracted simply by vacuum subtraction.

Usually, when we turn on sources for relevant operators, these can contribute

additional divergences to the entanglement entropy [60]. In general in the presence

of additional relevant scales one naively expects there to be logarithmically divergent

terms polluting (B.5) and rendering vacuum subtraction meaningless. Fortuitously,

this does no happen for the problem at hand. This can be extracted by examining

the detailed discussion of [60], which we paraphrase below.

There is however a quick argument for the absence of logarithmic terms which we

now describe. For scalar operators in CFTd with operator dimension d
2
< ∆ < d

2
+ 1,

as we have considered, it is well known in AdS/CFT that the corresponding bulk

field has mass in the window where both asymptotic fall-offs are normalizable, i.e.,

m2 ∈ (m2
BF ,m

2
BF + 1) with the Breitenlohner-Freedman bound mass m2

BF = −d2

4
as

usual.18 In this window note that ∆−−∆+ < 2 and we have the Legendre transformed

theory with an operator of dimension ∆− by switching to alternate quantization [61].

Turning on a source for the faster-fall off mode ∆+ is equivalent, insofar as the

leading back-reaction on the metric, to considering instead a state in the Legen-

dre transformed theory where the alternate quantized operator with dimension ∆−
acquires a vacuum expectation value. However, since the divergence structure of

entanglement is the same in all states of the field theory, and the conformal vacua of

the two theories (standard and alternate quantization) coincide, it follows that the

divergence structure of SA should be unchanged from (B.5), even with J (x) 6= 0.

Our story is of course a special case with ∆+ = 2,∆− = 1 in d = 3. This observation

is consistent with the results of [60] and the counter-terms used in [20].

To explicitly analyze the structure of the divergences in the entanglement en-

tropy, let us consider the metric given in (A.17). Since the details of the divergences

are blind to the boundary spatio-temporal behaviour of the sources we will examine

the somewhat simplified setting where φ0 = const to glean the relevant information.

With the time-translational symmetry restored by this choice, the Lagrangian

for the extremal surface (which now is minimal) is simpler:

L =

√
gii(z)

z2

√
gii(z) + z′(x)2 (B.6)

17 For the vacuum state of a CFT3 with A being a circular disc Sfin
A would give the F-function

[56, 57] (the latter defined as the logarithm of the partition function of the theory a three-sphere).

In fact, this can be used to define a UV finite quantity without recourse to background subtraction:

following [58, 59] we can just as well consider
(
R d

dR − 1
)
SA, with R being the disc radius, as the

measure of entanglement growth.
18 Implicit in this statement is the fact that we are quantizing the scalar field with standard

(Dirichlet) boundary conditions, so that the dimension of the dual operator is ∆ = ∆+.
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where gii(z) is the spatial component of the metric in (A.17). This system has a

conserved Hamiltonian, which we can exploit to write down an expression for the

area directly. Introducing, z∗ which captures depth to which the minimal surface

penetrates into the bulk, we have for the on-shell value of the area

Area (EA) ∝
∫ z∗

ε

dz

√
gii

z2

(
1− gii(z∗)

2 z4

gii(z)2 z4
∗

)− 1
2

(B.7)

Using the explicit form of gii, the second term is at least z4 near the boundary so we

can forget about it. The first term is all that matters, so lets look at

√
gii

z2
=

1

z2
− 1

4
φ2

0 −
2

3
(a3 + φ0 φ1) z + · · · (B.8)

which has the z−1 divergence expected upon integration, but no further contribution

of relevance in z → 0 limit. From the φ2
0 term we get a contribution to the finite part

of the entanglement, and this is indeed the physically relevant answer. It should be

clear from this discussion is not specific to the choice m2 = −2 in d = 3, but should

hold for d
2
< ∆+ < d

2
+ 1 as we argued abstractly above.
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