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Abstract Terrestrial carbon (C)-climate feedbacks

depend strongly on how soil organic matter (SOM)

decomposition responds to temperature. This depen-

dency is often represented in land models by the

parameter Q10, which quantifies the relative increase

of microbial soil respiration per 10 �C temperature

increase. Many studies have conducted paired labora-

tory soil incubations and inferred ‘‘active’’ and ‘‘slow’’

pool Q10 values by fitting linear two-pool models to

measured respiration time series. Using a recently

published incubation study (Qin et al. in Sci Adv

5(7):eaau1218, 2019) as an example, here we first

show that the very high parametric equifinality of the

linear two-pool models may render such incubation-

based Q10 estimates unreliable. In particular, we show

that, accompanied by the uncertain initial active pool

size, the slow pool Q10 can span a very wide range,

including values as high as 100, although all parameter

combinations are producing almost equally good

model fit with respect to the observations. This result

is robust whether or not interactions between the

active and slow pools are considered (typically these

interactions are not considered when interpreting

incubation data, but are part of the predictive soil

carbon models). This very large parametric equifinal-

ity in the context of interpreting incubation data is

consistent with the poor temporal extrapolation capa-

bility of linear multi-pool models identified in recent

studies. Next, using a microbe-explicit SOM model

(RESOM), we show that the inferred two pools and

their associated parameters (e.g., Q10) could be

artificial constructs and are therefore unreliable con-

cepts for integration into predictive models.We finally

discuss uncertainties in applying linear two-pool (or

more generally multiple-pool) models to estimate

SOM decomposition parameters such as temperature

sensitivities from laboratory incubations. We also

propose new observations and model structures that

could enable better process understanding and more

robust predictive capabilities of soil carbon dynamics.
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Introduction

Predicting the fate of the large amount of soil carbon

stored globally [more than twice as in the current

atmosphere (Ciais et al. 2013)] is critical for quanti-

fying feedbacks between terrestrial biogeochemistry

and the Earth’s climate. In particular, land models

need accurate quantifications of soil organic matter

(SOM) decomposition sensitivity to soil temperature

under a warming climate. To address this need,

thousands of empirical studies have inferred SOM

decomposition temperature sensitivities, often char-

acterized by the parameter Q10 that measures the

relative increase in microbial SOM respiration per

10 �C temperature increase (e.g., Fang and Moncrieff

2001; Haddix et al. 2011; Hamdi et al. 2013; Lloyd and

Taylor 1994; Schadel et al. 2013). However, debate

continues regarding the laboratory-based Q10 values

for incorporation into SOM models, or whether

alternative model structures are more appropriate

(Conant et al. 2011; Davidson and Janssens 2006;

Davidson et al. 2006; Hemingway et al. 2019; Tang

and Riley 2015).

The use of Q10 (or alternatively activation energy in

the Arrhenius representation of SOM turnover) is

inherent in the substrate quality (SQ) conceptual

model of SOM decomposition (e.g., Hartley and

Ineson 2008; Parton et al. 1988; Wetterstedt et al.

2010). In these SQ-based models, SOM is assumed to

consist of several abstract (i.e., not measurable) pools,

each of which has its own decomposition turnover

time that varies as a function of temperature, moisture,

and other edaphic conditions. Despite their popularity,

SQ-based models cannot explain the observation that

old carbon (which by assumption is recalcitrant and

therefore of long turnover time) can be decomposed

rapidly when made accessible to active microbes (e.g.,

Kleber et al. 2011; Nowinski et al. 2010; Schuur et al.

2009).

Another problem with SQ-based models is their

usually very high parametric equifinality, i.e., for a

given set of observations, many parameter combina-

tions are able to produce model outputs that fit the

observations equally well (e.g., Beven and Freer 2001;

Tang and Zhuang 2008), while their predictions often

diverge wildly. For instance, using the APSIM model,

which has six SQ-based SOM pools, Luo et al. (2015)

showed that ‘‘convergent modeling of past soil organic

carbon stocks’’ is followed by ‘‘divergent projections’’

of twenty-first century SOM dynamics. In a subse-

quent study, Luo et al. (2017) deduced the same

conclusion for a SQ-based linear two-transfer-pool

model (that considers interactions between active and

slow pools; see supplemental material for a descrip-

tion and solutions for these two types of linear two-

pool models). These findings therefore motivate an

analysis of whether the high parametric equifinality of

SQ-based models may lead to large uncertainties in

temperature sensitivities inferred from incubation

experiments.

Notwithstanding these conceptual defects, the sim-

plicity of SQ-based models has led them to be widely

applied to interpret laboratory soil incubations. For

instance, Liang et al. (2015) compared results from

several linear multiple-pool models to infer tempera-

ture sensitivity parameters from respiration time series

measured during SOM incubations. They found that

the two-discrete-pool model, which does not consider

interactions between active and slow pools, was able

to fit the soil respiration data very well under many

conditions, and Schadel et al. (2013) drew the same

conclusion from a similar analysis. In a recent study,

which we analyze here, Qin et al. (2019; hereafter

Q2019) used a linear two-discrete-pool model to fit

their 330-day incubation of topsoil (0–10 cm) and

subsoil (30–50 cm) samples collected from three sites

on the northeastern Tibetan Plateau. They inferred that

topsoil is more sensitive than subsoil to temperature

warming and concluded that SOM models can be

improved by incorporating such a contrast in temper-

ature sensitivity.

Meanwhile, to address the conceptual difficulties

with SQ-based models (e.g., ‘‘old carbon’’ can often

behave just like ‘‘active’’ pool carbon), new model

structures have been developed to attempt explicit

representations of the myriad interactions between

microbes, enzymes, substrates, and various abiotic soil

processes (Abramoff et al. 2019; Dwivedi et al.

2017, 2019; Riley et al. 2014; Sulman et al. 2018;

Tang and Riley 2015; Wang et al. 2013; Wieder et al.

2013). These new models then predict that SOM

decomposition emerges from these interactions. In

general, including more processes requires more

model parameters and will potentially increase a

model’s parametric equifinality. Nevertheless, these

new models enable more direct correspondence

between their simulations and empirical measure-

ments, and provide mechanistic insights that are
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otherwise not available from SQ-based models.

Moreover, with improved mathematical formulations

(Tang and Riley 2013, 2017, 2019b), these new

models may enable first-principle based parameteri-

zation that is not feasible with SQ-based models (e.g.,

Tang and Riley 2019a, b).

Here, by reanalyzing the Q2019 incubation data

using the linear two-discrete-pool model (e.g., Liang

et al. 2015; Qin et al. 2019; Schadel et al. 2013) and the

linear two-transfer-pool model (Luo et al. 2017), we

first show that the high parametric equifinality makes

it almost impossible to obtain a robust inference of Q10

values and other related parameters for SQ-based

SOM pools. Next, using amicrobe-explicit model, i.e.,

the REaction-network-based model of Soil Organic

Matter and microbes (RESOM) (Tang and Riley

2015), we show that apparent active and slow pools

can emerge from the decomposition of a single

substrate with a single temperature sensitivity (i.e.,

activation energy). We then discuss why mechanistic

SOM decomposition models like RESOM should be

more extensively explored and how laboratory incu-

bations can be better used to inform the development

of these new models.

Large parametric equifinality in linear two-pool

models leads to uncertain Q10 and other parameters

Q2019 conducted a long-term (330-day) laboratory

incubation for topsoil (0–10 cm) and subsoil

(30–50 cm) samples collected from three sites on the

northeastern Tibetan Plateau. They then applied a

linear two-discrete-pool model to derive the temper-

ature sensitivities of active and slow SOM pools, and

asserted that topsoil has higher temperature sensitivity

than subsoil for bulk soil, active, and slow pools. We

digitized their respiration time series data using the

MATLAB script grabit (https://www.mathworks.com/

matlabcentral/fileexchange/7173-grabit), and con-

ducted Markov chain Monte Carlo (MCMC) based

inversions (Vrugt 2016) for a linear two-discrete-pool

model using these respiration data. We note that

Q2019 set their Q10 parameter prior ranges to [1, 2]

and [2, 4] for the active and slow pool, respectively

(reported in Table S4 of their Supplemental Material),

thereby strongly limiting the range of their possible

posterior values. Analogously Schadel et al. (2013)

imposed upper and lower limits to the decay rates of

active and slow pools. However, some

observationally-based studies have reported bulk soil

Q10 values as high as a few hundred (e.g., Hamdi et al.

2013). Therefore, if we interpret their approach cor-

rectly, the Q2019 parameter inversion results could

have been biased methodologically, because these

unjustified prior constraints force their inferred Q10

values to fall within an unrealistically small range. We

further note that emergent Q10 values have been

observed to vary across a wide range and be hysteretic

with respect to temperature over time (e.g., Davidson

et al. 2006; Pingintha et al. 2010), and microbe-ex-

plicit models are better at resolving such hysteresis by

accounting for hysteresis in microbial biomass and

kinetics (e.g., Tang and Riley 2015).

We performed seven MCMC inversions to quantify

how sensitive the inferred Q10 values are to the

imposed parameter ranges for both active and slow

pools. For both pools, the seven inversions used

maximum Q10 values of 4, 10, 20, 40, 50, 70, and 100;

the experiments are named accordingly as IQ4, IQ10,

IQ20, IQ40, IQ50, IQ70, and IQ100, where IQx refers

to an inversion with Q10 bounded at a maximum value

of x. Additionally, since Q10 has been reported to be as

low as 0.5 (Hamdi et al. 2013), we allowed Q10 prior

values to extend to 0, but none of the MCMC

inversions resulted in Q10 values smaller than 1.

When the maximum Q10 is bounded at 4 (for both

pools), our MCMC inversions ( \* MERGEFORMAT

Fig. 1) corroborate Q2019s inference that Q10 values

of both the active and slow pools in topsoil

(2:06� 0:012 and 3:89� 0:092, respectively) are

higher than those in subsoil (1:51� 0:031 and

2:86� 0:23, respectively), although these Q10 values

differ from those in Q2019, who reported mean values

of about 1.8 and 2.4 for topsoil active and slow pools,

respectively; and 1.6 and 2.2 for subsoil active and

slow pools, respectively. These differences may exist

because (1) we did not exactly recover their data and

the inversion is sensitive to data uncertainty charac-

terization, and (2) we used different, but still restric-

tive, parameter ranges. Further, when we imposed the

same upper prior ranges as Q2019 did, the inversion

inferred topsoil Q10 values for the active and slow pool

of 2:00� 0:003 and 3:95� 0:045, respectively, and

for the subsoil, of 1:53� 0:030 and 3:69� 0:26,

respectively. However, for inversions with larger

maximum Q10 values, we find very wide ranges of

slow pool Q10 values (i.e., a manifestation of high

parametric equifinality; \* MERGEFORMAT Fig. 1c,
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d), while all predicted respiration time series match the

observations equally well (Fig. 1a, b). Moreover, this

large parametric equifinality is higher for topsoil than

for subsoil. For example, the most uncertain inference

occurs for topsoil when Q10 is bounded at 100, where

the posterior maximum and minimum slow pool Q10

values are 97.5 and 4.6, respectively; whereas for

subsoil the most uncertain inference occurs when Q10

is bounded at 70, where the posterior maximum and

minimum slow pool Q10 values are 40.9 and 2.80,

respectively. In summary, our results are consistent

with those of Luo et al. (2017), even though they

instead used time series of soil carbon stocks as

constraints in their parameter inversions for the linear

two-transfer-pool model, which has one more param-

eter than does the linear two-discrete-pool model (see

supplemental material).

When the posterior distributions of slow pool decay

rates at different temperatures and initial active pool

fractions are compared for inversions with Q10 values

bounded at 4 and 100 (i.e., IQ4 and IQ100 in \*

MERGEFORMAT Fig. 2), we find that the wider

range of topsoil slow pool Q10 for IQ100 (than for IQ4;

\* MERGEFORMAT Fig. 2a, c, e) occurs because (1)

the inferred slow pool decay rates at 10 �C and 20 �C
are left edge-hitting and more center-peaked, respec-

tively, and (2) the initial active pool is larger in IQ100

than in IQ4 (\* MERGEFORMAT Fig. 2g, h). For

subsoil, the posterior differences between IQ100 and

IQ4 are smaller, but high parametric equifinality

remains (\* MERGEFORMAT Fig. 2b, d, f).

Our analyses above show that more than 12,500

combinations (out of the 500,000 MCMC samples for

each inversion) of posterior parameters fit the incuba-

tion soil respiration observations equally well. This

high parametric equifinality and the resultant wide

range of Q10 values indicate that (1) it is difficult to use

a linear two-discrete-pool model to robustly derive the

temperature sensitivity of SOM decomposition from

laboratory incubation soil respiration data alone, and

(2) the initial active and slow pool SOM stocks are

difficult to robustly quantify. For assertion (2),

although the differences in the fraction of initial

SOM as active pool between inversions ( \* MERGE-

FORMAT Fig. 2g, h) are relatively small (about 0.09

vs. 0.11 on average), they force significant uncertainty

into the slow pool decay rates, making those small

a b

c d

Fig. 1 For the incubation time series from Qin et al. (2019),

many MCMC based inversions of two-discrete-pool model

parameters are able to fit the data equally well (panels a and b),
but their slow pool Q10 values are quite different (panels c and

d). The inversions are labelled as IQx, i.e., an inversion with a

maximum Q10 value of x for both active and slow pools. Panels

a and c are for topsoil, b and d are for subsoil
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differences consequential (which is reflected in the

wide range of slow pool Q10).

Parameters inferred from linear two-discrete-pool

models are often applied to inform more complex

transfer-pool models (e.g., CENTURY; Parton et al.

(1988)). However, the difference in these two model

structures makes it difficult to use the discrete-pool

model to demonstrate the impacts of the high

parametric equifinality on model projections. To

facilitate such a demonstration, we conducted an

inversion using a linear two-transfer-pool model (see

supplemental material for model formulation) for the

topsoil with maximum Q10 values of 4 and 100, and

performed forward simulations using the inferred

posterior parameters. We found that the full set of

inversions using the linear two-transfer-pool model

produced very similar results (not shown) to those

shown in Figs. 1 and 2.

We find the MCMC inversions with the linear two-

transfer-pool model are equally uncertain (Fig. 3) as

those for the linear two-discrete-pool model (Figs. 1,

2). Moreover, the associated 25-year projection with

no warming demonstrates a very strong divergence

through amplifying effects from the carbon input flux

on the posterior parameters after year 2 (Fig. 4). If

warming is considered, we expect that the divergence

shown in Fig. 4 will become even larger because it

will include additional uncertainty from Q10 (Feller

1968). Given these results and previous studies (Luo

et al. 2015; Tang and Zhuang 2008), we conclude that

linear two-pool models (and probably multiple-pool

models) are of such high parametric equifinality that

they cannot be well-constrained by incubation time

series observations of either respiration or soil carbon

stocks.

We also investigated whether additional data could

help better constrain the linear two-pool models. We

tested this idea by dramatically increasing the sam-

pling frequency and reducing the observational error

of respired CO2. This synthetic inversion experiment

with the linear two-transfer-pool model indicates that,

although sampling respiration daily at 2% relative

error (which is rarely achievable in reality) does

constrain Q10 values quite well, it is still insufficient to

robustly infer other model parameters (i.e., initial

active pool fraction and fraction of decomposed active

Fig. 2 For topsoil, when the MCMC inversion applies a

maximum Q10 value of 100 (i.e., IQ100), the slow pool Q10

distribution (panel a) has a longer tail (than IQ4) because the

distribution of IQ100 slow pool decay rate (ks) at 10 �C (panel c)

does not align well with the distribution at 20 �C (panel e) and
the initial active pool is larger (panel g). Differences between
IQ100 and IQ4 for subsoil also exist but are comparatively

smaller (panels b, d, f, h)
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pool into slow pool) that also must be used for

predictions (\* MERGEFORMAT Fig. 5). Increasing

the relative error of daily observations to a more

realistic yet still challenging-to-achieve 5% would

have resulted in an even more biased posterior of the

initial fraction of SOM as active pool (0.027 for IQ4,

and 0.21 for IQ100), and transfer coefficient (0.02 for

IQ4, and 0.83 for IQ100) between active and slow

pools during decomposition (Figure S1). Analogously,

we suspect that adding multi-site bulk SOM stocks or

radiocarbon respiration data as observational con-

straints is unlikely to improve the inversion, because

of the weak signal of the slow pool as can be triggered

in an incubation experiment (which will lead to biased

estimation of the fraction of decomposed active pool

that enters slow pool, as shown in Fig. 5g).

Fig. 3 MCMC inversion with the linear two-transfer-pool

model for topsoil with the maximum Q10 set to 4 and 100,

respectively. Panel a is model comparison to respiration time

series; b is posterior active and slow pool Q10 values; c, d, e, f

and g are probability distribution of the fraction of decomposed

active pool into slow pool, slow pool Q10, slow pool ks at 10 �C,
slow pool ks at 20 �C and initial active pool fraction of the soil

sample, respectively

Fig. 4 A demonstration of

the parametric equifinality

problem of the linear two-

transfer-pool model for soil

carbon projections using

posterior parameters from

Fig. 3. The carbon input to

the model begins from year

2, consistent with the

beginning of the wide

uncertainty range that

increases over time
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Multiple apparent SOM pools can emerge

from a single substrate

We next conducted incubation experiments with the

microbe-explicit RESOM model (Abramoff et al.

2019; Tang and Riley 2015) to show that apparent

active and slow pools may be inferred from incubation

data, even though a single substrate with a single

activation energy of 55 kJ (mol C)-1 was actually

undergoing microbial decomposition. For this demon-

stration of commonly-observed SOM decomposition

patterns, we configured RESOM with one microbial

population (with a substrate assimilation efficiency of

0.27 for topsoil, and 0.50 for subsoil, respectively),

one extracellular enzyme, one mineral soil surface

(with surface area of 575 g C m-2 and 1800 g C m-2

for topsoil and subsoil, respectively), and one substrate

(which can exist in both aqueous and solid phases).

The substrate assimilation efficiency and mineral soil

surface were obtained through trial-and-error by

comparing the simulated respiration data to that of

Q2019, and other parameters are from previous

publications (Abramoff et al. 2019; Tang and Riley

2015). Following Tang and Riley (2015), we first

generated initial conditions from a spinup to equilib-

rium and then ran RESOM for 330 days at the two

temperatures to mimic the incubation. After normal-

izing the respiration to initial SOM, these RESOM

simulations reproduced the Q2019 respiration time

series for both topsoil and subsoil within the observa-

tional uncertainty (\* MERGEFORMAT Fig. 6a, b),

suggesting that the predictive capability of RESOM is

scientifically reasonable to demonstrate the potential

to mis-identify multiple substrate pools from incuba-

tion data. We also note that when the temperature

forcing has higher temporal variability, like that

observed in field conditions, the emergent temperature

sensitivity is dynamic and the corresponding instan-

taneous Q10 can vary across a wide range. This

dynamics occurs because temperature sensitivity of

SOM decomposition depends on all the interactions

between microbes, substrates, enzymes, and mineral

surfaces represented in the model, as discussed

extensively in Tang and Riley (2015).

When the natural logarithm of the RESOM-pre-

dicted respiration is plotted against time (\* MERGE-

FORMAT Fig. 6c, d), nonlinear curves are found for

both topsoil and subsoil at 10 �C and 20 �C. This

Fig. 5 MCMC parameter inversion using synthetic observa-

tions of respiration sampled daily with a relative error 2%. True

model parameter values of the linear two-transfer-pool model

are annotated in all panels of the corresponding posterior

histogram. Panel a is model comparison to respiration time

series; b, c, d, e, f and g are probability distributions of active

pool Q10, slow pool Q10, initial active pool fraction, active pool

kf at 10 �C, slow pool ks at 10 �C, and the fraction of

decomposed active pool into slow pool
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commonly-observed pattern, which can also be pro-

duced with other model parameters or by other

microbial models (e.g., Grant et al. 1993; Smith

1979; Wieder et al. 2014), is a primary reason that

researchers assume SOM has multiple pools with

different turnover times. In this one-substrate-pool

RESOM version, these nonlinear-curves occur

because, as the incubation progresses, (1) substrate is

gradually depleted, and (2) microbial biomass is

reduced accordingly. Indeed, by conducting linear

two-discrete-pool model parameter MCMC inversions

with the RESOM predicted respiration time series

data, the inferred model is found to fit almost perfectly

to the RESOM subsoil simulation (\* MERGEFOR-

MAT Fig. 6d), and relatively accurately for the topsoil

(more than two pools are required to fit the RESOM

simulation for topsoil) (\*MERGEFORMAT Fig. 6c).

This contrast of model fitting to RESOM simulations

for topsoil and subsoil suggests that definitions of SQ

pools are not unique even for a single substrate. In real

soils, substrate diversity is likely very high, and the

forcing temperature is much more variable. Thus,

depending on the relative strength of interactions (and

likely the imposed temperature forcing in incubation

experiments), SQ-based linear multiple-pool models

may succeed in one situation (still at the expense of

uncertain parameters) while fail in another, even for

similar overall system properties.

Improving new SOM model structures from better

use of observations and cross-disciplinary

knowledge

Our analyses demonstrate that, because of their high

parametric equifinality, SQ-based linear two-pool

models provide inaccurate inferences of SOM decom-

position temperature sensitivity (and other related

parameters). We also showed that the oft-inferred

active and slow pools could be artificial constructs that

emerge even when only a single substrate is being

decomposed. Therefore, improving SOM decomposi-

tion models and temperature sensitivity inferences

from observations requires more explicit representa-

tion of the interactions between the many biotic and

abiotic processes that contribute to SOM dynamics.

Intuitively, one could argue that models with more

mechanistic representations may require more param-

eters and may not resolve the curse of high parametric

a b

c d

Fig. 6 The one-substrate RESOM model accurately fits the

laboratry incubation data (panels a and b). The model

predictions and observations show why more than one apparent

SOM pool could be mistakenly inferred (panels c and d). In

particular, calibrating (from MCMC inversion) the two-dis-

crete-pool model fits the RESOM simulations for subsoil almost

perfectly (panel d) and reasonably well for topsoil (panel c).
Panels a and c are for topsoil, b and d are for subsoil
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equifinality. However, more mechanistic SOMmodels

have at least several advantages, including that they:

(1) can incorporate first-principle based represen-

tations of kinetic parameters, e.g., substrate

affinity parameter, maximum substrate uptake

rate, or even substrate assimilation efficiency,

whose variability is unlikely to be resolved

through multiplier functions as often used in

SQ-based models (Tang and Riley 2019a, b);

(2) can provide mechanistic insights into important

systems dynamics, including why some old

carbon (i.e., with relatively negative D14C

values) can relatively easily be decomposed

when exposed to microbes and how mineral

protection affects SOM persistence (Heming-

way et al. 2019; Tang and Riley 2015);

(3) can produce more realistic dynamic predictions

of how temperature and moisture affect SOM

dynamics, which have been statically repre-

sented using multiplier functions in SQ-based

models (Tang and Riley 2019b), allowing for

observed bulk soil Q10 values to vary over a

wide range or be hysteretic (Pingintha et al.

2010);

(4) enable consistent representation of the myriad

biogeochemical processes that control the

cycling of various important chemicals (e.g.,

CO2, CH4, N2O, etc.), a need evidenced by the

SQ-based models’ ever-increasing introduction

of new response functions for new processes

(Sierra et al. 2015; Zhuang et al. 2004);

(5) enable a direct link between models and the vast

amount of knowledge accumulated in related

fields like microbiology, microbial ecology,

aqueous chemistry, physical chemistry, etc., so

that more diverse data (e.g., microbial cell size)

can be used for model constraints [e.g., Jin and

Kirk (2018a, b), la Cecilia et al. (2019), LaRowe

and Van Cappellen (2011), and Tang and Riley

(2019a, b)];

(6) may allow the use of parametric equifinality to

reduce predictive divergence. This counter-

intuitive idea is analogous to the approach used

to link kinetic gas theory and Navier–Stokes

equations in fluid mechanics (Batchelor 1967),

except that in microbial models parametric

equifinality could be represented with bio-

diversity. When bio-diversity is further

integrated with known ecological principles

(e.g., competition and symbiosis), the many

parameters can compensate each other to reduce

predictive uncertainty and meanwhile enhance

the models’ resilience to perturbations (see

Sect. 6 of Tang and Riley (2017) for a discus-

sion of this concept).

Finally, with the advantages described above, we

emphasize that mechanistic models will benefit from

laboratory respiration measurements when biogeo-

chemical and biogeophysical processes affecting res-

piration are also measured. Although we demonstrated

that the inferred temperature sensitivities in Q2019 are

likely biased because of their assumed SOM model

structure and inversion approach, their other measure-

ments characterizing soil aggregates, mineral soil

protection, and relative microbial abundances and

composition are valuable resources for future analy-

ses. As experiments begin collecting such critical

information, a suite of process-rich predictive models

can be developed which in turn enable better inter-

pretation of laboratory incubation studies and improve

predictions of terrestrial biogeochemical interactions

at larger scales.

Conclusions

SQ-based SOM models have been argued to be self-

consistent (Blankinship et al. 2018) and have provided

useful understanding of SOM dynamics, yet we show

here that their high parametric equifinality prevents

them from reliably being used to infer temperature

sensitivity and other related parameters of assumed

SOM pools from laboratory incubation data. This

problem is serious, since many global land models

used in climate assessments have SOM decomposition

models parameterized from these types of observa-

tions. New and more mechanistic models of SOM

decomposition should be explored to represent the

myriad biotic and abiotic entities and interactions that

affect temperature [and moisture; e.g., Tang and Riley

(2019b)] sensitivity of SOM decomposition. By

combining observations and model structures that

more explicitly represent the underlying processes

affecting SOM decomposition, we can expect

improved understanding and predictions of how

SOM cycling may respond to climate change.
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