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Abstract—In order for middleware to be widely useful for 
distributed, real-time, and embedded systems, it should provide a 
full set of services and be easily customizable to meet the memory 
footprint limitations of embedded systems. In this paper, we 
examine a variety of techniques used to reduce memory footprint 
in middleware. We found that combining aspect-oriented 
programming with code shrinkers and obfuscators reduces the 
memory footprint of CORBA middleware to <5% of its original 
size, as customized for a small client application for a memory-
constrained embedded device.  

Keywords-distributed systems; embedded systems; real-time 
systems; CORBA; middleware; aspect-oriented programming; 
memory footprint 

I.  INTRODUCTION 
Middleware platforms, such as J2EE [1], CORBA [2], and 

.NET [3], are widely used in many applications, because they 
provide a broad set of frequently used capabilities that save 
time and simplify the development process.  Essentially, the 
use of middleware allows the developer to avoid having to 
reinvent custom solutions for each set of applications.   

Developers of embedded systems would be able to derive 
tremendous benefits from middleware usage, except that most 
middleware implementations are too large to fit on resource-
limited embedded devices. Therefore, in order for the 
middleware development community to address the resource 
constraints of embedded devices, the size of the middleware 
implementation must be customizable to accommodate the 
constraints imposed by the underlying device. At the same 
time, this customization must be achieved easily by the 
application developer, in keeping with the spirit and goals of 
middleware.  

A variety of techniques can be applied to reduce the 
memory footprint of middleware code, including the following: 

•  Conditional compilation, 

•  Java reflection combined with dynamic class loading, 

• Code shrinking, 

• Code obfuscation, and 

• Aspect-oriented programming (AOP) [4]. 

The emphasis of this paper is on the advantages of the 
systematic use of AOP in conjunction with code shrinking and 
obfuscation.  

The remainder of this paper is organized as follows: Section 
II gives an overview of techniques for reducing memory 
footprint; Section III presents the uses of AOP for reducing 
memory footprint in ZEN [5], a full-featured Real-time 
CORBA Object Request Broker (ORB) for RTSJ (Real-time 
Java) [13]; Section IV presents empirical results when AOP, in 
conjunction with code shrinking and obfuscation, was applied 
to ZEN; Section V presents our conclusion; and Section VI 
describes related work. 

II. APPROACHES TO REDUCE MEMORY FOOTPRINT 

A. Conditional Compilation 
With conditional compilation, a preprocessor examines 

compile-time configuration flags to decide which portions of 
the code to include or remove, as defined by the application 
programmer (with #ifdef, for example). Conditional 
compilation is often used with C or C++ to allow retargeting of 
systems to different platforms. It has also been used to allow 
custom configuration of operating systems and middleware [6].  
A disadvantage of this technique is that the resulting source 
code is difficult to read and debug.  In addition, the application 
developer must be aware of the wide variety of compile-time 
flags that must be specified for each compilation. Furthermore, 
this approach is unsupported in and undesirable for Java. 

B. Reflection and Dynamic Class Loading 
With reflection and dynamic class loading, an ORB can be 

designed with a high degree of pluggability, allowing unused 
features to be eliminated from the ORB core and loaded 
dynamically only when needed. The Virtual Component 
Pattern was used extensively in the first version of ZEN to 
allow automatic subsetting of middleware features [5].  This 
pattern, which behaves like an object-oriented virtual memory, 
is particularly useful when a middleware feature may have a 
variety of implementations and only one is used at a particular 
time.  The unused implementations may be eliminated from 
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public class Hello { 
public Hello(boolean b) { 
  if (b) 
    methodA(); 
  else 
    methodB(); 
} 
 
private void methodA() { 
  System.out.println("Method A"); 
} 
 
private void methodB() { 
  System.out.println("Method B"); 
} 
 
private void methodC() { 
  System.out.println("Method C"); 
} 
 
public static void main(String[] args) 
{ 
  Hello h = new Hello(args.length > 0);
} 
} 

 
main

Hello

if

methodA methodB 

methodC

memory, thus reducing the memory footprint. However, a 
disadvantage of this technique is that dynamic class loading, 
occurring at run-time, can cause jitter that is unacceptable for 
some systems. 

C. Code Shrinkers 
Code shrinkers use a variety of techniques for shrinking 

code. Basic implementations walk through a list of classes and 
remove any fields that are declared but never accessed. For 
example, a field declared in a class as private, static, and final, 
but never used within that class, is unnecessary and can simply 
be removed. More advanced code shrinkers build a call graph 
of all possible execution paths that the code could take at run-
time. Any classes and methods not in the graph are removed, as 
shown in Figs. 1 and 2. 

D. Code Obfuscators 
Reverse engineering of software has traditionally been 

difficult due to the low-level nature of compiled code. With 
Java, however, reverse engineering is surprisingly easy, due to 
its high-level instruction set known as “bytecode”. Bytecodes, 
which are translated at run-time into the platform’s native 
instruction set, include the full names of methods, packages, 
and variables, even after all debugging information has been 
removed. Furthermore, bytecodes are well specified and have a 
nearly one-to-one mapping with Java language constructs [7]. 
For these reasons, changing bytecodes back into a near-perfect 
representation of their original source code is relatively simple. 
A number of tools, known collectively as “decompilers,” are 
available to decompile bytecodes back into Java source code. 

To hinder reverse engineering using these decompilers, 
Java developers often apply a tool known as an “obfuscator” to 
their compiled code. The obfuscator changes the bytecodes so 
that meaningful method names, such as getBufferSize(), 
become cryptic names such as hjk(). This renaming is also 
known as name mangling. Although decompilers can still 
reverse-engineer obfuscated bytecodes, the meaningless names 
greatly reduce the value of the generated source code. The 
name mangling also has an interesting side effect:  after 
obfuscation, when verbose, descriptive names are converted to 
shorter, simpler names, the total size of the compiled code 
shrinks. 

Many obfuscators take the idea of code shrinking several 
steps further. During the obfuscation process, they search for 
unused classes, methods, and fields, and remove them entirely 
from the bytecode. For applications that use only a small part 
of a shared library, the reduction in size can be dramatic. 

E. Aspect-oriented Programming 
Aspect-oriented programming is a relatively new 

programming methodology that gives programmers the ability 
to refactor and modularize crosscutting concerns resistant to 
modularization by traditional object-oriented techniques.  
Many of the features in middleware are represented by such 
crosscutting concerns and thus can be excluded easily from a 
given build process by the application developer via the use of 
AOP.   

Figure 1.  The typical Java compiler will compile the unused method C, but 
code shrinkers will remove it. 

Modularization is an important element of software 
customization and memory footprint reduction.  The ability to 
capture all of the mechanics of a given feature within a single 
module, including interactions with other modules, provides 
greater control over the inclusion of that feature in the main 
corpus of code.  This is especially useful for an application to 
be executed on a memory-constrained device using a feature-
rich middleware platform such as CORBA.  The underlying 
middleware implementation must be customized to minimize  

Figure 2.  Code shrinkers use call graphs, such as this graph of the code in 
Fig. 1, to conclude that method C is never called and can be removed. 
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the presence of unneeded code (usually in the form of 
superfluous features). 

Standard object-oriented programming techniques, 
primarily performed by representing logical entities as classes, 
are sufficient for modularizing most features in middleware.  
However, they lack the ability to modularize mechanisms that 
represent a single feature, but are scattered throughout several 
classes.  Aspect oriented programming provides this facility. 

III. ASPECT-ORIENTED PROGRAMMING WITH ASPECTJ 
AspectJ is an aspect-oriented programming language 

extension to Java [9]. It has been successfully applied to ZEN 
to achieve footprint reduction via the modularization of 
crosscutting concerns.  It is important to note that there are two 
basic mechanisms of crosscutting. Static crosscutting allows 
the addition of methods and fields to classes. Subsetting via 
static crosscutting thus produces a net effect similar to that of 
code shrinking, but code shrinking accomplishes this type of 
code reduction much more easily. We therefore used the code 
shrinking technique, instead, to accomplish this reduction. On 
the other hand, dynamic crosscutting enables the addition of 
instructions (i.e., lines of code) to existing methods. This 
mechanism therefore allows the customization of run-time 
execution, at compile time, when it is known beforehand that 
certain code will not be needed. This customization cannot be 
accomplished through code shrinking alone and therefore 
provides an important mechanism for additional code 
reduction. In particular, this reduction is possible because 
AspectJ specifies well-defined locations in Java code, called 
join points, where additional code can be woven in (such as 
method calls and field references).  

We identified two crosscutting concerns to exclude from 
ZEN’s client ORB: 

1. Support for local invocations: One of the main features 
of CORBA is to provide location transparency.  However, if it 
is known ahead of time that all invocations are remote, then the 
code associated with local invocations (a large part of the 
server code) can be removed. 

2. Portable interceptors: Portable interceptors provide hooks 
into the ORB code so that applications or services can examine 
requests as they are being processed (e.g., for authentication) 
on both the client and the server.  Much of the code associated 
with portable interceptors is scattered throughout the ORB, and 
is thus a feature that can be properly modularized only with 
AOP. Fig. 3 shows the degree of code scattering formerly 
associated with portable interceptors, and indicates the exact 
locations where portable interceptor code has been woven in. It 
is also important to note that there are additional files not 
shown that are a part of the portable interceptor feature, but are 
referenced by the woven-in code.  Thus, code footprint 
reduction results not only from the exclusion of woven-in code, 
but also from the exclusion of code upon which the woven-in 
code depends. 

IV. EMPIRICAL RESULTS 
One of our research goals for ZEN is to enable the 

reduction of its code size so that it can fit a wide variety of  

Figure 3.  Portable interceptors are a single feature, but its code is scattered 
over many files.  Portable interceptor code itself is shown in red. 

small-footprint, network-aware, embedded systems for which it 
was intended. Furthermore, this code reduction, via 
customization, should be as easy as possible for the application 
developer. One step toward this goal is to build a customization 
framework that will use combinations of code reduction 
techniques to allow the size of ZEN to be decreased according 
to the requirements of a particular memory-constrained device 
upon which it would be installed. As a reasonable goal for 
target code size, we refer to the Java 2 Platform Micro Edition 
(J2ME) Connected Device Limited Configuration (CLDC), 
which is targeted for devices that typically have 128 KB to 512 
KB of memory available for the Java platform and applications 
[8].  Because the target code size for these embedded devices is 
so small, even small reductions in code size become highly 
significant. 

In this work, we measured the ability of three of the 
techniques discussed above - AOP, code shrinking, and code 
obfuscation - to reduce the code size of ZEN. AOP has the 
unique ability to modularize crosscutting concerns, thus 
making those features pluggable. Because this modularity 
allows code shrinkers and obfuscators to exclude unneeded 
modules during the build process, we expect AOP used in 
conjunction with the other two techniques to yield synergistic 
code size reduction.  

We used AspectJ, in conjunction with ProGuard [10], a 
Java code shrinker and obfuscator, to reduce the static memory 
footprint of ZEN so that only the code needed to service 
invocations of a client involving primitive data types is 
included. (This application example was chosen to represent 
the limited needs of a number of relatively simple embedded 
systems.) We then measured code size with the “aspectized” 
features either included or excluded, before and after code 
shrinking and obfuscation, and before and after the application 
of all three techniques.  

Subsetting using aspects provides a modest reduction of 
code size of 270 KB, or 6% (see Fig. 4). This modest reduction 
is to be expected. We applied only dynamic crosscutting, 
relying  on  code shrinking to achieve  (more easily) the  
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Figure 4.  Memory footprint savings (in KB) with three code reduction techniques. 

reduction that static crosscutting could also achieve. Therefore, 
the reduction seen using dynamic crosscutting represents only 
that which cannot be achieved through any other techniques. 
Furthermore, for this paper we identified only two areas with 
crosscutting concerns to serve as examples of those that could 
be addressed by aspects; to fully realize the benefits of aspects, 
more such areas can be identified.  

Since code shrinking and obfuscation are related 
techniques, which are not independent in their application with 
the same tool, we primarily consider the effects of both of these 
techniques used together. Code shrinking and obfuscation 
together yield a dramatic reduction in code size of 4045 KB 
(95%), from over 4260 KB to 215 KB (see Fig. 4).  This 
dramatic code reduction is also to be expected, since in this 
scenario, the shrinking and obfuscation reduce the ORB to one 
that provides only a basic set of features needed by an 
application.  ZEN, like any full implementation of CORBA, 
contains code to support a large number of features, most of 
which are not needed for basic operations. While it is important 
for the ORB to provide a full set of CORBA services to meet 
the needs of a wide variety of applications, any given 
application will typically need only a subset of these services 
[5]. Shrinking, therefore, can yield dramatic reductions by 
removing most of this unnecessary code, while some additional 
reduction is derived from obfuscation due to the shortening of 
remaining field, method, class, and package names.   

In addition, our results confirm that these three techniques 
work together in complementary ways to reduce code size 
dramatically. Although each of the three techniques can yield 
definite benefits individually, they can be combined 
synergistically to further reduce code size.  The first step 
toward reducing ORB code size is to use aspects to achieve a 
higher degree of modularity in the ORB. The greater the degree 
of modularity, the greater the effectiveness the second step, 
code shrinking, will have. Code shrinking removes unneeded 
code, while aspects makes more of the unneeded code 
removable by eliminating some of the coupling with needed 
code.   

For example, the aspect that represents support for local 
invocations is implemented in such a way that code shrinking 
is required for it to be effective.  There is no discernible 
difference between the pre-shrunk versions of the full-featured 
ORB and the ORB with local invocation support excluded, 
because this aspect in fact eliminates only dependencies to 
modules used for local invocations. Removal of these 
dependencies, however, enables the shrinker to remove 
unneeded classes and methods associated with local 
invocations. Consequently, the version with local invocation 
support excluded is 3258 KB (76%) smaller than the full-
featured version (see Fig. 4). The shrinker has been able to 
remove code that the aspect has, in effect, released.  

Finally, code obfuscation, applied to the remaining minimal 
needed code, provides additional reduction that works 
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particularly well with AspectJ. We have observed that AspectJ 
tends to create methods with unusually long names. 
Obfuscation is particularly helpful in counteracting this side 
effect of using AspectJ. 

Using aspects together with shrinking and obfuscation 
brings the code size of ZEN within the target memory 
requirements of an embedded device (for example, the 128-512 
KB target requirements for the J2ME CLDC). Shrinking and 
obfuscation dramatically reduce the code size to a manageable 
level, within the maximum for the J2ME CLDC. However, the 
additional and synergistic reduction seen when applying code 
reduction and obfuscation to aspect-excluded code (i.e., from 
215 KB to 98 KB) is important: this reduction makes the use of 
the ORB possible for some very small memory-constrained 
embedded devices. 

V. CONCLUSION 
Our initial tests have shown that a simple middleware 

implementation can be shrunk statically to less than 5% (e.g., 
from 4260 KB to 98 KB) of its original, un-optimized size. 
Furthermore, this reduction can be achieved easily and, in part, 
automatically by the application programmer (in contrast to, for 
example, using conditional compilation). In future work, we 
plan to explore the use of these techniques with more 
sophisticated examples, and to explore the dynamic memory 
footprint. The example measured in this paper, meanwhile, 
suggests that using this combination of code reduction 
techniques is a promising approach toward reducing ORB size 
for memory-constrained embedded devices. 

VI. RELATED WORK 
There has been other research related to using AOP in 

CORBA middleware. In [11], the authors successfully 
modularized several CORBA crosscutting concerns, including 
portable interceptors, the dynamic programming model (the 
Dynamic Invocation Interface and the Dynamic Skeleton 
Interface), and fault tolerance support, with AOP (via AspectJ).  
The authors proved the efficacy of applying AOP to CORBA 
by retrofitting an existing open-source implementation of 
CORBA (in this case ORBacus) with aspectized versions of 
these features. 

In [12], the authors developed the Framework for Aspect 
Composition for an EvenT channel (FACET) by using AOP 

via AspectJ to decompose an implementation of the CORBA 
real-time event service into user-selectable features in order to 
enable code footprint minimization. The authors measured 
results by comparing code size among various configurations 
of FACET, in terms of both class file size and the size of 
natively compiled object files. They found a four-fold 
difference between a minimal configuration and one of the 
largest realistic configurations. 
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