
UC Irvine
UC Irvine Previously Published Works

Title
Adaptive Techniques for Minimizing Middleware Memory Footprint for Distributed, Real-
Time, Embedded Systems

Permalink
https://escholarship.org/uc/item/66b0g4fr

Journal
Proceedings of the IEEE 18th Annual Workshop on Computer Communications, 18

Authors
Panahi, Mark
Harmon, Trevor
Klefstad, Raymond

Publication Date
2003-10-20

DOI
10.1109/CCW.2003.1240790

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/66b0g4fr
https://escholarship.org
http://www.cdlib.org/

Copyright © 2003 IEEE. Reprinted from the Proceedings of the IEEE 18th Annual Workshop on Computer
Communications (CCW 2003).

This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any
way imply IEEE endorsement of any of the University of California eScholarship Repository's products or
services. Internal or personal use of this material is permitted. However, permission to reprint/republish
this material for advertising or promotional purposes or for creating new collective works for resale or re-
distribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the copyright laws protecting it.

Adaptive Techniques for Minimizing Middleware
Memory Footprint for Distributed, Real-Time,

Embedded Systems

Mark Panahi, Trevor Harmon, and Raymond Klefstad
Department of Electrical Engineering and Computer Science

University of California, Irvine
Irvine, California

{mpanahi, tharmon, klefstad}@uci.edu

Abstract—In order for middleware to be widely useful for
distributed, real-time, and embedded systems, it should provide a
full set of services and be easily customizable to meet the memory
footprint limitations of embedded systems. In this paper, we
examine a variety of techniques used to reduce memory footprint
in middleware. We found that combining aspect-oriented
programming with code shrinkers and obfuscators reduces the
memory footprint of CORBA middleware to <5% of its original
size, as customized for a small client application for a memory-
constrained embedded device.

Keywords-distributed systems; embedded systems; real-time
systems; CORBA; middleware; aspect-oriented programming;
memory footprint

I. INTRODUCTION
Middleware platforms, such as J2EE [1], CORBA [2], and

.NET [3], are widely used in many applications, because they
provide a broad set of frequently used capabilities that save
time and simplify the development process. Essentially, the
use of middleware allows the developer to avoid having to
reinvent custom solutions for each set of applications.

Developers of embedded systems would be able to derive
tremendous benefits from middleware usage, except that most
middleware implementations are too large to fit on resource-
limited embedded devices. Therefore, in order for the
middleware development community to address the resource
constraints of embedded devices, the size of the middleware
implementation must be customizable to accommodate the
constraints imposed by the underlying device. At the same
time, this customization must be achieved easily by the
application developer, in keeping with the spirit and goals of
middleware.

A variety of techniques can be applied to reduce the
memory footprint of middleware code, including the following:

• Conditional compilation,

• Java reflection combined with dynamic class loading,

• Code shrinking,

• Code obfuscation, and

• Aspect-oriented programming (AOP) [4].

The emphasis of this paper is on the advantages of the
systematic use of AOP in conjunction with code shrinking and
obfuscation.

The remainder of this paper is organized as follows: Section
II gives an overview of techniques for reducing memory
footprint; Section III presents the uses of AOP for reducing
memory footprint in ZEN [5], a full-featured Real-time
CORBA Object Request Broker (ORB) for RTSJ (Real-time
Java) [13]; Section IV presents empirical results when AOP, in
conjunction with code shrinking and obfuscation, was applied
to ZEN; Section V presents our conclusion; and Section VI
describes related work.

II. APPROACHES TO REDUCE MEMORY FOOTPRINT

A. Conditional Compilation
With conditional compilation, a preprocessor examines

compile-time configuration flags to decide which portions of
the code to include or remove, as defined by the application
programmer (with #ifdef, for example). Conditional
compilation is often used with C or C++ to allow retargeting of
systems to different platforms. It has also been used to allow
custom configuration of operating systems and middleware [6].
A disadvantage of this technique is that the resulting source
code is difficult to read and debug. In addition, the application
developer must be aware of the wide variety of compile-time
flags that must be specified for each compilation. Furthermore,
this approach is unsupported in and undesirable for Java.

B. Reflection and Dynamic Class Loading
With reflection and dynamic class loading, an ORB can be

designed with a high degree of pluggability, allowing unused
features to be eliminated from the ORB core and loaded
dynamically only when needed. The Virtual Component
Pattern was used extensively in the first version of ZEN to
allow automatic subsetting of middleware features [5]. This
pattern, which behaves like an object-oriented virtual memory,
is particularly useful when a middleware feature may have a
variety of implementations and only one is used at a particular
time. The unused implementations may be eliminated from

This work was funded by Boeing, DARPA, and AFOSR.

0-7803-8239-0/03/$17.00 ©2003 IEEE. 54

public class Hello {
public Hello(boolean b) {
 if (b)
 methodA();
 else
 methodB();
}

private void methodA() {
 System.out.println("Method A");
}

private void methodB() {
 System.out.println("Method B");
}

private void methodC() {
 System.out.println("Method C");
}

public static void main(String[] args)
{
 Hello h = new Hello(args.length > 0);
}
}

main

Hello

if

methodA methodB

methodC

memory, thus reducing the memory footprint. However, a
disadvantage of this technique is that dynamic class loading,
occurring at run-time, can cause jitter that is unacceptable for
some systems.

C. Code Shrinkers
Code shrinkers use a variety of techniques for shrinking

code. Basic implementations walk through a list of classes and
remove any fields that are declared but never accessed. For
example, a field declared in a class as private, static, and final,
but never used within that class, is unnecessary and can simply
be removed. More advanced code shrinkers build a call graph
of all possible execution paths that the code could take at run-
time. Any classes and methods not in the graph are removed, as
shown in Figs. 1 and 2.

D. Code Obfuscators
Reverse engineering of software has traditionally been

difficult due to the low-level nature of compiled code. With
Java, however, reverse engineering is surprisingly easy, due to
its high-level instruction set known as “bytecode”. Bytecodes,
which are translated at run-time into the platform’s native
instruction set, include the full names of methods, packages,
and variables, even after all debugging information has been
removed. Furthermore, bytecodes are well specified and have a
nearly one-to-one mapping with Java language constructs [7].
For these reasons, changing bytecodes back into a near-perfect
representation of their original source code is relatively simple.
A number of tools, known collectively as “decompilers,” are
available to decompile bytecodes back into Java source code.

To hinder reverse engineering using these decompilers,
Java developers often apply a tool known as an “obfuscator” to
their compiled code. The obfuscator changes the bytecodes so
that meaningful method names, such as getBufferSize(),
become cryptic names such as hjk(). This renaming is also
known as name mangling. Although decompilers can still
reverse-engineer obfuscated bytecodes, the meaningless names
greatly reduce the value of the generated source code. The
name mangling also has an interesting side effect: after
obfuscation, when verbose, descriptive names are converted to
shorter, simpler names, the total size of the compiled code
shrinks.

Many obfuscators take the idea of code shrinking several
steps further. During the obfuscation process, they search for
unused classes, methods, and fields, and remove them entirely
from the bytecode. For applications that use only a small part
of a shared library, the reduction in size can be dramatic.

E. Aspect-oriented Programming
Aspect-oriented programming is a relatively new

programming methodology that gives programmers the ability
to refactor and modularize crosscutting concerns resistant to
modularization by traditional object-oriented techniques.
Many of the features in middleware are represented by such
crosscutting concerns and thus can be excluded easily from a
given build process by the application developer via the use of
AOP.

Figure 1. The typical Java compiler will compile the unused method C, but
code shrinkers will remove it.

Modularization is an important element of software
customization and memory footprint reduction. The ability to
capture all of the mechanics of a given feature within a single
module, including interactions with other modules, provides
greater control over the inclusion of that feature in the main
corpus of code. This is especially useful for an application to
be executed on a memory-constrained device using a feature-
rich middleware platform such as CORBA. The underlying
middleware implementation must be customized to minimize

Figure 2. Code shrinkers use call graphs, such as this graph of the code in
Fig. 1, to conclude that method C is never called and can be removed.

0-7803-8239-0/03/$17.00 ©2003 IEEE. 55

the presence of unneeded code (usually in the form of
superfluous features).

Standard object-oriented programming techniques,
primarily performed by representing logical entities as classes,
are sufficient for modularizing most features in middleware.
However, they lack the ability to modularize mechanisms that
represent a single feature, but are scattered throughout several
classes. Aspect oriented programming provides this facility.

III. ASPECT-ORIENTED PROGRAMMING WITH ASPECTJ
AspectJ is an aspect-oriented programming language

extension to Java [9]. It has been successfully applied to ZEN
to achieve footprint reduction via the modularization of
crosscutting concerns. It is important to note that there are two
basic mechanisms of crosscutting. Static crosscutting allows
the addition of methods and fields to classes. Subsetting via
static crosscutting thus produces a net effect similar to that of
code shrinking, but code shrinking accomplishes this type of
code reduction much more easily. We therefore used the code
shrinking technique, instead, to accomplish this reduction. On
the other hand, dynamic crosscutting enables the addition of
instructions (i.e., lines of code) to existing methods. This
mechanism therefore allows the customization of run-time
execution, at compile time, when it is known beforehand that
certain code will not be needed. This customization cannot be
accomplished through code shrinking alone and therefore
provides an important mechanism for additional code
reduction. In particular, this reduction is possible because
AspectJ specifies well-defined locations in Java code, called
join points, where additional code can be woven in (such as
method calls and field references).

We identified two crosscutting concerns to exclude from
ZEN’s client ORB:

1. Support for local invocations: One of the main features
of CORBA is to provide location transparency. However, if it
is known ahead of time that all invocations are remote, then the
code associated with local invocations (a large part of the
server code) can be removed.

2. Portable interceptors: Portable interceptors provide hooks
into the ORB code so that applications or services can examine
requests as they are being processed (e.g., for authentication)
on both the client and the server. Much of the code associated
with portable interceptors is scattered throughout the ORB, and
is thus a feature that can be properly modularized only with
AOP. Fig. 3 shows the degree of code scattering formerly
associated with portable interceptors, and indicates the exact
locations where portable interceptor code has been woven in. It
is also important to note that there are additional files not
shown that are a part of the portable interceptor feature, but are
referenced by the woven-in code. Thus, code footprint
reduction results not only from the exclusion of woven-in code,
but also from the exclusion of code upon which the woven-in
code depends.

IV. EMPIRICAL RESULTS
One of our research goals for ZEN is to enable the

reduction of its code size so that it can fit a wide variety of

Figure 3. Portable interceptors are a single feature, but its code is scattered
over many files. Portable interceptor code itself is shown in red.

small-footprint, network-aware, embedded systems for which it
was intended. Furthermore, this code reduction, via
customization, should be as easy as possible for the application
developer. One step toward this goal is to build a customization
framework that will use combinations of code reduction
techniques to allow the size of ZEN to be decreased according
to the requirements of a particular memory-constrained device
upon which it would be installed. As a reasonable goal for
target code size, we refer to the Java 2 Platform Micro Edition
(J2ME) Connected Device Limited Configuration (CLDC),
which is targeted for devices that typically have 128 KB to 512
KB of memory available for the Java platform and applications
[8]. Because the target code size for these embedded devices is
so small, even small reductions in code size become highly
significant.

In this work, we measured the ability of three of the
techniques discussed above - AOP, code shrinking, and code
obfuscation - to reduce the code size of ZEN. AOP has the
unique ability to modularize crosscutting concerns, thus
making those features pluggable. Because this modularity
allows code shrinkers and obfuscators to exclude unneeded
modules during the build process, we expect AOP used in
conjunction with the other two techniques to yield synergistic
code size reduction.

We used AspectJ, in conjunction with ProGuard [10], a
Java code shrinker and obfuscator, to reduce the static memory
footprint of ZEN so that only the code needed to service
invocations of a client involving primitive data types is
included. (This application example was chosen to represent
the limited needs of a number of relatively simple embedded
systems.) We then measured code size with the “aspectized”
features either included or excluded, before and after code
shrinking and obfuscation, and before and after the application
of all three techniques.

Subsetting using aspects provides a modest reduction of
code size of 270 KB, or 6% (see Fig. 4). This modest reduction
is to be expected. We applied only dynamic crosscutting,
relying on code shrinking to achieve (more easily) the

0-7803-8239-0/03/$17.00 ©2003 IEEE. 56

Figure 4. Memory footprint savings (in KB) with three code reduction techniques.

reduction that static crosscutting could also achieve. Therefore,
the reduction seen using dynamic crosscutting represents only
that which cannot be achieved through any other techniques.
Furthermore, for this paper we identified only two areas with
crosscutting concerns to serve as examples of those that could
be addressed by aspects; to fully realize the benefits of aspects,
more such areas can be identified.

Since code shrinking and obfuscation are related
techniques, which are not independent in their application with
the same tool, we primarily consider the effects of both of these
techniques used together. Code shrinking and obfuscation
together yield a dramatic reduction in code size of 4045 KB
(95%), from over 4260 KB to 215 KB (see Fig. 4). This
dramatic code reduction is also to be expected, since in this
scenario, the shrinking and obfuscation reduce the ORB to one
that provides only a basic set of features needed by an
application. ZEN, like any full implementation of CORBA,
contains code to support a large number of features, most of
which are not needed for basic operations. While it is important
for the ORB to provide a full set of CORBA services to meet
the needs of a wide variety of applications, any given
application will typically need only a subset of these services
[5]. Shrinking, therefore, can yield dramatic reductions by
removing most of this unnecessary code, while some additional
reduction is derived from obfuscation due to the shortening of
remaining field, method, class, and package names.

In addition, our results confirm that these three techniques
work together in complementary ways to reduce code size
dramatically. Although each of the three techniques can yield
definite benefits individually, they can be combined
synergistically to further reduce code size. The first step
toward reducing ORB code size is to use aspects to achieve a
higher degree of modularity in the ORB. The greater the degree
of modularity, the greater the effectiveness the second step,
code shrinking, will have. Code shrinking removes unneeded
code, while aspects makes more of the unneeded code
removable by eliminating some of the coupling with needed
code.

For example, the aspect that represents support for local
invocations is implemented in such a way that code shrinking
is required for it to be effective. There is no discernible
difference between the pre-shrunk versions of the full-featured
ORB and the ORB with local invocation support excluded,
because this aspect in fact eliminates only dependencies to
modules used for local invocations. Removal of these
dependencies, however, enables the shrinker to remove
unneeded classes and methods associated with local
invocations. Consequently, the version with local invocation
support excluded is 3258 KB (76%) smaller than the full-
featured version (see Fig. 4). The shrinker has been able to
remove code that the aspect has, in effect, released.

Finally, code obfuscation, applied to the remaining minimal
needed code, provides additional reduction that works

4260
3990

215 98
0

500

1000

1500

2000

2500

3000

3500

4000

4500

Original ORB After removal of
features using aspects

After
shrinking/obfuscation

After
shrinking/obfuscation

and removal of features
with aspects

O
R

B
 s

iz
e

in
 K

B

0-7803-8239-0/03/$17.00 ©2003 IEEE. 57

particularly well with AspectJ. We have observed that AspectJ
tends to create methods with unusually long names.
Obfuscation is particularly helpful in counteracting this side
effect of using AspectJ.

Using aspects together with shrinking and obfuscation
brings the code size of ZEN within the target memory
requirements of an embedded device (for example, the 128-512
KB target requirements for the J2ME CLDC). Shrinking and
obfuscation dramatically reduce the code size to a manageable
level, within the maximum for the J2ME CLDC. However, the
additional and synergistic reduction seen when applying code
reduction and obfuscation to aspect-excluded code (i.e., from
215 KB to 98 KB) is important: this reduction makes the use of
the ORB possible for some very small memory-constrained
embedded devices.

V. CONCLUSION
Our initial tests have shown that a simple middleware

implementation can be shrunk statically to less than 5% (e.g.,
from 4260 KB to 98 KB) of its original, un-optimized size.
Furthermore, this reduction can be achieved easily and, in part,
automatically by the application programmer (in contrast to, for
example, using conditional compilation). In future work, we
plan to explore the use of these techniques with more
sophisticated examples, and to explore the dynamic memory
footprint. The example measured in this paper, meanwhile,
suggests that using this combination of code reduction
techniques is a promising approach toward reducing ORB size
for memory-constrained embedded devices.

VI. RELATED WORK
There has been other research related to using AOP in

CORBA middleware. In [11], the authors successfully
modularized several CORBA crosscutting concerns, including
portable interceptors, the dynamic programming model (the
Dynamic Invocation Interface and the Dynamic Skeleton
Interface), and fault tolerance support, with AOP (via AspectJ).
The authors proved the efficacy of applying AOP to CORBA
by retrofitting an existing open-source implementation of
CORBA (in this case ORBacus) with aspectized versions of
these features.

In [12], the authors developed the Framework for Aspect
Composition for an EvenT channel (FACET) by using AOP

via AspectJ to decompose an implementation of the CORBA
real-time event service into user-selectable features in order to
enable code footprint minimization. The authors measured
results by comparing code size among various configurations
of FACET, in terms of both class file size and the size of
natively compiled object files. They found a four-fold
difference between a minimal configuration and one of the
largest realistic configurations.

ACKNOWLEDGMENT
The authors thank Susan Anderson Klefstad for comments,

revision, and help with analysis of empirical results.

REFERENCES
[1] Sun Microsystems, Java 2 Platform Enterprise Edition Specification

Version 1.4, 2003, http://java.sun.com/j2ee/docs.html.
[2] Object Management Group, The Common Object Request Broker:

Architecture and Specification, Revision 2.6, 2001,
http://www.omg.org/technology/documents/corba_spec_catalog.htm.

[3] Microsoft, .NET Framework, http://www.microsoft.com/net/.
[4] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.M.

Loingtier, and J. Irwin, “Aspect-oriented programming,” Proceedings of
the European Conference on Object-Oriented Programming, vol. 1241,
pp. 220-242, 1997.

[5] R. Klefstad, D. Schmidt, and C. O'Ryan, “Towards highly configurable
real-time object request brokers,” Proceedings of IEEE International
Symposium on Object-Oriented Real-time Distributed Computing
(ISORC), 2002.

[6] P.A. Bernstein, “Middleware: A model for distributed system services,”
Communications of the ACM, vol. 39(2), pp. 87-99, February 1996.

[7] T. Lindholm, F. Yellin, The Java Virtual Machine Specification, Second
Edition. Boston, MA: Addison-Wesley, 1999.

[8] Sun Microsystems, Connected Limited Device Configuration
Specification Version 1.1, 2003, http://java.sun.com/j2me/docs/.

[9] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold, “Getting Started with AspectJ,” Communications of the
ACM, vol. 44(10), pp. 59-65, October 2001.

[10] E. Lafortune, ProGuard, http://proguard.sourceforge.net/.
[11] C. Zhang and H.A. Jacobsen, Quantifying Aspects in Middleware, ACM

AOSD, Boston, MA: 2003.
[12] F. Hunleth and R. Cytron, “Footprint and feature management using

aspect-oriented programming techniques,” Proceedings of the Joint
Conference on Languages, Compilers and Tools for Embedded Systems,
pp. 38-45, 2002.

[13] The Real-Time for Java Expert Group, The Real-Time Specification for
Java, http://www.rtj.org.

0-7803-8239-0/03/$17.00 ©2003 IEEE. 58

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

