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Abstract 

The covariant coupled equations for plasma dynamics and the Maxwell field are 

expressed as a phase-space-Lagrangian action principle. The linear interaction is 

transformed to the bilinear beat Hamiltonian by a gauge-invariant Lagrangian Lie 

transform. The result yields the generalized linear susceptibility directly. 
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The fundamental relation between nonlinear ponderomotive effects and linear 

plasma response has come to be known as the K-X theorem. Ponderomotive effects 

are embodied in the oscillation-center Hamiltonian K(z), introduced by Dewar.1 It 

describesthe (oscillation-averaged) orbit of a single particle in an oscillatory field, with 

the dominant effects quadratic in the wave amplitude. On the other hand, the linear 

susceptibility X, a functional of the unperturbed particle distribution, describes the 

oscillatory current density linear in the wave amplitude. 

This surprising relation between the quadratic Hamiltonian K2 and the 

susceptibility X, for the case of a single wave, was observed2 some years ago, and 

then proved by Johnston3 and by Cary.4 The underlying reason for the relation, 

however, became clear only with the recent developmentS of phase-space Lagrangian 

action principles, and the realization that the plasma action term quadratic in the wave 

amplitude [-if(z)K2(z)) was simultaneously both the oscillation-center energy and the 

plasma part of the wave Lagrangian. (To be sure, this fact was at least implicit in the 

earlier work of Dewar 1 and of Johnston.3) The importance of this realization, with its 

embodiment in the action principle, is best exemplified in Similon's recent study6 of 

self-consistency in the stabilization of a confined plasma by the ponderomotive effects 

of an electromagnetic wave. 

The ponderomotive beat Hamiltonian, introduced by Johnston 7 for the scattering 

of two waves, and now of especial use for the theory of free-electron lasers and 

beat-wave accelerators, is a conceptually simple extension of oscillation-center ideas ") 

to particles that resonant with the beat of two primary waves. Its utility led Grebogi8 to 

the conjecture that it too is related to the linear susceptibility. This paper 

presents a simple proof of that desired relation, and then illustrates it by an explicit 

calculation. 
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That calculation, in turn, is based on the use of a powerful new perturbation 

technique, invented by Littlejoho9 for a system governed by a phase-space 

Lagrangian. Whereas the standard Hamiltonian perturbation theories (such as the 

Hamiltonian Lie transform 10) preserve the Poisson structure, the new method enables 
/ 

one to perform the desired averaging directly on the Poisson (or symplectic) structure. 

As a result, the generator of the transform can be made gauge invariant and physically 

meaningful. 

The calculation is here outlined for a field-free background. The extension to the 

case of a strong background field is conceptually easy, but of course algebraically 

complex, and will be published later. We begin with the definition of the two-point 

linear susceptibility tensor, 11,5 as a functional derivative: 

(1 a) 

It is convenient to use covariant notation, with metric (1, 1, 1, -1) and c = 1. Thus 

(x = x,t), j~ = (j, p), Av = (A, - <1». In terms of the Fourier transforms 

[e.g.~ j~(k) = fd4x j~(x) exp(-ik·x); k~ = (k,-ro)], the susceptibility reads 

(1 b) 

In Eq. (1), j is the linear current response to a perturbing electromagnetic potential A . 

Since j must be invariant under gauge transformations of A , the susceptibility must 

satisfy X~V(k, k') k'v = O. In addition, charge conservation (aj~/ax~ = 0) implies that 

k~X~V(k,k') = O. Because each particle responds to the perturbing field independently, 

the current density is additive in the particles; hence the susceptibility is a linear 

functional of the unperturbed distribution. 

The ponderomotive Hamiltonian K2 (z) is (by definition) that term, of the 

oscillation-center Hamiltonian K(z), which is quadratic in the perturbing potential. Its 

most general form is thus 
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(2a) 

(2b) 

(We absorb (21tr4 into the element d4k.) 

We may interpret the integrand of (2b) as the contribution, to the oscillation-center 

Hamiltonian, of the nonlinear beat between two plane waves with wave-vectors k1 and 

k2' The relation we wish to prove, the "generalized K-X theorem," is 

(3) 

That this relation has not heretofore been observed is probably due to the fact that 

almost all calculations of X make specific assumptions on the form of f. However, the 

functional derivative in (3) requires the susceptibility for completely general f. 

One restriction which we do make is that f include only those particles which are 

non-resonant with the primary waves k1' k2' Hence X is Hermitian, and K2 is real. 

The proper treatment of primary resonances is a large subject in itself, with important 

contributions especially by Dewar and his co-workers. 12 

The system action 8 is a functional of the potential field A(x), and of the particle 

orbits in 8-dimen~ional phase space, denoted ZCl('t) == [r~('t), 1t~('t)], with 1t~ :::: (1t, - h) the 

kinetic 4-momentum, h the kinetic energy, and 't an arbitrary orbit parameter. The 

single -particle action is 81 = f(1t·dr + eA(r)·dr). We demand that 881 =0 for variation 

of orbits constrained to the 7-dimensional mass surface 0 = H(z) = (1t2 + m2)/2m. With 

a Lagrangian multiplier A('t) , we have 

o = 8f[1t·dr + eA(r)·dr - A('t)d't H(z)] . (4) 
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Variation with respect to (wrt) r(t) yields d1t1l = eFIlV drY, where 

Fllv = allAv - aVAil' while variation wrt 1t(t) yields drll = A(t) dt 1tlllm. The 

mass constraint determines A 2(t) = -(dr(t)/dt)2; if one wishes dt to represent the 

particle's proper-time interval, then A = 1. 

The total action is 8 = l:i 8i + 8m, where 8i is the action of particle i, and 

8m =Jd4x F IlVFVIl/161t is the Maxwell action. The interaction part of 8 can be 

expressed as Jd4x jll(x) AIl(x), with [ull = drll/dt = 1tlllm] 

jJ.l(x) = l:j e fdt uJ.l(t) 04(x-r(t)) = e Jd
8
z f(z) uJ.lo4(x-r). 

We have introduced the particle phase-space density (for each species) 

f 4 4 
f(z) = l:j dtj 0 (r - rj(tj)) 0 (1t - ~(tj))' (5) 

Variation of Swrt A(x) yields the Maxwell equation aIlFIlV(x) = -41t jV(x). 

The distribution f satisfies the Vlasov equation5 {f,H} = 0, in terms of the 

noncanonical Poisson bracket (PB) {g1, g2} = J<l13(Z)(a91/aZ<l)(a92/az13). 

The Poisson tensor J(z) is the reciprocal of the Lagrange tensor (or symplectic 

2-form),9 corr = eF(r), co1tr = -corlt = I, co1t1t = O. Thus Jrr = 0, Jrlt = _J1tr = I, J1t1t = eF(r), 

and the PB is expressed in the physical variables r, 1t, F: 

(6) 

For a wave field FIlV(x), oscillations occur in the PB (6) for nonresonant particles. 

Our aim is to transform away this term, linear in F, by a change of variables from 

u 
particle coordinates ZU to oscillation-center (OC) coordinates i (z;F). The linear 

U 

oscillation induced by F is denoted z == z - z. We see that z (z) is a physically 

meaningful vector field; it is the generator of the Lagrangian Lie transform. 

In terms of the Fourier transform FIlV(k), the linearized particle equations yield the 

oscillation: 
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ii(z;F) = e Jd
4
k F(k)·u· (ik.uf1 exp ik·f , 

(7) 

as a vector field on OC phase space. In order that (7) be well-defined, we consider 

only that portion of phase space which has no primary resonances; i.e., k·u * 0 for all 

k such that F(k) * O. 

Our aim is to make the PB canonical, when expressed in OC variables: 

Space limitations permit us only to quote the result of using the Lagrangian Lie 

transform, which is based on differential-geometric methods.13 We obtain the OC 

Hamiltonian K(z) = H(z) + K2(i), with the ponderomotive term given by the virial:
14 

~(z;F) = -l](z;F)·[eF(r) ·uT (9) 

The canonical Hamiltonian equations then yield 

d1f/d't = -aKlaf = -a~/ar (10a) 

for the ponderomotive force, and 

df/d't = aKlaic = 1fIm + aKia1f , (10b) 

a gauge - invariant expression for the canonical OC momentum 1f, in 

terms to the OC velocity df/d't and the quadratic term (related to wave monentum). 

(The mass constraint now reads 0 = H(z) = K(z); i.e., the Hamiltonian transforms 

as a scalar under the coordinate change.) 

The one-particle action is now, in the OC representation, including the 

Hamiltonian constraint: 
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S1 = J(1f' df - K(i;F) d't). 

The terms of ~ Sj quadratic in F are thus 
I 

(11 ) 

(12) 

Noting from (9) and (7) that K2 and i are manifestly gauge - invariant, we proceed to 

express K2 in the desired form (2b), using FJ.1v(k) = i(kJ.1AV - kVAJ.1); we obtain 

(13) 

On substituting (2b) into (12), we obtain 

(2) J 8 I I 4 I 4 J.lV '. S = - d Z f(z)L d k1 d k2 AJ.l(k1) Av (k2) K (z,k1'~) (14) 

Recalling that jJ.1(x) = 8~iSi/8AJ.1(x), we see from (1 a) that 

(15) 

or XJ.lV(k1,k2) = 8
2
S/8A: (k1)8A)k2) . 

Applying this to (14), we obtain 

(16) 

which is equivalent to the desired theorem (3). 

If we set k2 = k1 in (13) and (16), we obtain the covariant form of the single-wave 

K-X theorem. 5,15 
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In summary, we have indicated that a phase-space transformation from particle to 

oscillation-center coordinates, using the oscillation vector field as the generator of a 

Lagrangian Lie transform, converts the Poisson Bracket to canonical but gauge­

invariant form, and converts the linear interaction to a bilinear form, which 

simultaneously is the beat Hamiltonian and expresses the generalized linear 

susceptibility. 

It is a pleasure to acknowledge the essential advice and help of R. Littlejohn, 

H.-C. Ve, B. Boghosian, and P. Similon. This research was supported by the Offices of 

Fusion Energy and of Basic Energy Sciences, of the U.S. Department of Energy under 

Contract No. DE-AC03-76SF00098. The research was begun at the Institute for 

Theoretical Physics, Santa Barbara, supported by the National Science Foundation 

under Grant No. PHV82-17853, supplemented by funds from the National Aeronautics 

and Space Administration. 
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