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Abstract

Converging evidence from studies of human and nonhuman animals suggests

that the hippocampus contributes to sequence learning by using temporal con-

text to bind sequentially occurring items. The fornix is a white matter pathway

containing the major input and output pathways of the hippocampus, including

projections from medial septum and to diencephalon, striatum, lateral septum

and prefrontal cortex. If the fornix meaningfully contributes to hippocampal

function, then individual differences in fornix microstructure might predict

sequence memory. Here, we tested this prediction by performing tractography

in 51 healthy adults who had undertaken a sequence memory task. Microstruc-

ture properties of the fornix were compared with those of tracts connecting

medial temporal lobe regions but not predominantly the hippocampus: the

Parahippocampal Cingulum bundle (PHC) (conveying retrosplenial projections

to parahippocampal cortex) and the Inferior Longitudinal Fasciculus (ILF) (con-

veying occipital projections to perirhinal cortex). Using principal components

analysis, we combined Free-Water Elimination Diffusion Tensor Imaging and

Neurite Orientation Dispersion and Density Imaging measures obtained from

List of abbreviations: AD, axial diffusivity; BF, Bayes factor; dMRI, diffusion-weighted Magnetic Resonance Imaging; DTI, diffusion tensor Imaging;
DWI, diffusion-weighted Imaging; FA, fractional anisotropy; fMRI, functional Magnetic Resonance Imaging; fODF, fibre Orientation Density
Function; FOV, field of view; FWE, free water elimination; FWE-AD, Axial Diffusivity (Free Water Elimination); FWE-DTI, Diffusion Tensor
Imaging (with Free Water Elimination); FWE-FA, Fractional Anisotropy (Free Water Elimination); FWE-MD, Mean Diffusivity (Free Water
Elimination); FWE-RD, Radial Diffusivity (Free Water Elimination); HARDI, High Angular Resolution Diffusion-Weighted Imaging; ILF, inferior
longitudinal fasciculus; MD, mean diffusivity; MTL, medial temporal lobe; NDI, Neurite Density Index; NODDI, Neurite Orientation Dispersion and
Density Imaging; ODI, Orientation Dispersion Index; PC, principal component; PCA, principal component analyses; PHC, Parahippocampal
Cingulum Bundle; RD, radial diffusivity; RT, reaction time; TE, echo time; TR, repetition time.
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multi-shell diffusion MRI into two informative indices: the first (PC1) capturing

axonal packing/myelin and the second (PC2) capturing microstructural com-

plexity. We found a significant correlation between fornix PC2 and implicit

reaction-time indices of sequence memory, indicating that greater fornix micro-

structural complexity is associated with better sequence memory. No such rela-

tionship was found with measures from the PHC and ILF. This study highlights

the importance of the fornix in aiding memory for objects within a temporal

context, potentially reflecting a role in mediating inter-regional communication

within an extended hippocampal system.

KEYWORD S
diffusion MRI, episodic memory, fornix, hippocampus, sequence, time

1 | INTRODUCTION

The hippocampus is widely known to make a critical con-
tribution to episodic memory. Considerable evidence sug-
gests that the key contribution of the hippocampus might
be to build memories that associate different pieces of
information occuring in a shared spatiotemporal context
(Aggleton & Brown, 2005; Eichenbaum, 2017; Ekstrom &
Ranganath, 2018; Hsieh et al., 2014; Long & Kahana, 2019;
Opitz, 2014). For instance, hippocampal lesions in animals
disrupt memory for temporal order relationships
(Eichenbaum, 2017; Heuer & Bachevalier, 2013;
Ranganath & Hsieh, 2016). Furthermore, hippocampal
neural activity patterns, measured with functional mag-
netic resonance imaging (fMRI), carry information about
the temporal context of items in learned sequences (Hsieh
et al., 2014; Kalm et al., 2013; Schapiro et al., 2012;
Williams et al., 2023; for review, see Lee et al., 2020).

In particular, work by Hsieh et al. (2014) evidenced
that the hippocampus uniquely carries information about
the temporal order of objects in sequences, whereas other
medial temporal lobe (MTL) regions, the perirhinal cor-
tex and parahippocampal cortex, carry information about
isolated object and temporal context information, respec-
tively. Additionally, individual differences in sequence
memory (indexed by the reaction time, RT, facilitation
for semantic decisions on objects within consistently
ordered sequences vs. randomly ordered sequences)
strongly correlated with individual differences in hippo-
campal object-position binding bilaterally (indexed as the
multi-voxel pattern similarity difference between hippo-
campal patterns during repetitions of the same item in
consistent sequences and hippocampal patterns during
repetitions of the same item in random sequences). The
results indicate that the hippocampus has representa-
tional specializations that support sequence memory
(Davachi & DuBrow, 2015).

However, it is clear that episodic memory relies not
only on the hippocampus but also on a broader network
of areas, so we aimed to elucidate how structural connec-
tivity of the hippocampus with these broader areas relates
to sequence memory. According to one hypothesis, epi-
sodic memory is supported by an ‘extended hippocampal
system’, comprising the hippocampus, anterior thalamic
nucleus, mamillary bodies and medial prefrontal cortex
(Aggleton, 2012; Aggleton & Brown, 1999; Gaffan, 1992;
Gaffan & Hornak, 1997). Murray et al. (2017, 2018) pro-
posed that the prominence of integrated spatiotemporal
representations in the primate extended hippocampal
system reflects an inheritance from oligocene anthro-
poids, where background scenes supported foraging
choices at a distance, an ability that was enhanced over
evolution, enabling hippocampal representations to sup-
port spatio-temporal attributes of episodic memory in
humans (Murray et al., 2017). Regions in the extended
hippocampal system are inter-connected via the fornix,
the main white matter tract entering and exiting the hip-
pocampus (Aggleton, 2012; Aggleton & Brown, 1999;
Bubb et al., 2017; Gaffan, 1992; Gaffan & Hornak, 1997).
Thus, the fornix may play a critical role in bringing
together elements of the extended hippocampal system in
the service of episodic memory. Individual differences in
microstructure of the fornix should therefore be associ-
ated with inter-individual variation in memory for objects
in spatial and/or temporal context.

Indeed, human studies using diffusion-weighted Mag-
netic Resonance Imaging (dMRI), which can non-
invasively delineate the path of major fibre pathways and
evaluate their microstructure through indices such as
Fractional Anisotropy (FA) (Assaf et al., 2019), have
found that inter-individual differences in fornix micro-
structure in healthy individuals correlate with individual
variation in spatial memory and scene discrimination
performance (Bourbon-Teles et al., 2021; Hodgetts
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et al., 2015; Hodgetts et al., 2017; Postans et al., 2014;
Rudebeck et al., 2009; for review, see Benear et al., 2020).
However, it is unclear whether fornix microstructure
would similarly relate to temporal memory. While lesions
of the fornix in macaque monkeys are known to impair
choices based on relative recency (Charles et al., 2004),
the contribution of the fornix to temporal sequence mem-
ory has not been investigated in healthy humans.

We investigated fornix contributions to memory for
objects in temporal context, in healthy humans, using
an adaptation of the sequence memory task of Hsieh
et al. (2014). As in that study individual differences in
the time taken to answer semantic questions about
learned objects in consistently ordered sequences versus
randomly ordered sequences (RT random - RT consis-
tent) was used as an indirect measure of sequence mem-
ory (referred to as ‘Sequence Memory Performance’).
Larger Sequence Memory Performance scores would
equate to a faster RT for consistently ordered sequences
than for randomly ordered sequences, indicating that
memory-based predictions (formed through repeated
exposures to temporal regularities) (Davachi &
DuBrow, 2015; Lisman & Redish, 2009) about upcoming
objects in the predictable, relative to the unpredictable
sequence, had aided performance (see also Williams
et al., 2023)1. It was hypothesized that individual differ-
ences in fornix microstructure would relate to Sequence
Memory Performance.

In contrast, we investigated the roles of the Parahip-
pocampal Cingulum bundle (PHC) and Inferior Longitu-
dinal Fasciculus (ILF), specifically with the expectation
that these would not contribute to binding of objects
within temporal sequences. The PHC connects the poste-
rior cingulate and retrosplenial cortex with the parahip-
pocampal cortex (Bubb et al., 2017, 2018), an area
previously shown to hold temporal context information
about sequences, but not conjoined object and temporal
position information (Hsieh et al., 2014). The ILF is a
major white matter tract in the ventral object processing
stream, connecting occipital cortex with ventro-anterior
temporal lobe, including the perirhinal cortex (Catani
et al., 2003; Hodgetts et al., 2015), an area previously
shown to hold object information regardless of any tem-
poral sequence associations, but not conjoined object and
temporal position information (Hsieh et al., 2014; see also
Gaffan & Parker, 1996; Parker & Gaffan, 1997, for related
evidence of a unique role for the hippocampus-fornix

system, but not perirhinal or cingulate cortices, in the
integration of objects and their position in space).

A multi-shell diffusion MRI protocol was applied
allowing the combination of Free-Water Elimination Dif-
fusion Tensor Imaging (FWE-DTI) and Neurite Orienta-
tion Dispersion and Density Imaging (NODDI) models to
assess tract microstructural properties. While DTI has
been successfully applied to study inter-individual differ-
ences in cognition and tract microstructure in healthy
adults (e.g., Coad et al., 2020; Hodgetts et al., 2015, 2017;
Postans et al., 2014), DTI measures lack biological speci-
ficity (Tournier et al., 2011). One way to increase specific-
ity is to correct DTI measures for partial volume effects
with extracellular water. Free-water elimination DTI
(FWE-DTI) (Pasternak et al., 2009) adds a second com-
partment to the DTI model that explicitly accounts for
the signal contribution of extracellular free water, such as
cerebrospinal fluid. As a result, the DTI parameters (FA,
MD, AD and RD) obtained through FWE-DTI are cor-
rected for partial volume effects and thus better represent
tissue microstructure. Furthermore, both axon density
and fibre dispersion can influence FA (Beaulieu, 2002).
The three-compartment model, NODDI, provides metrics
sensitive to axon density, Neurite Density Index (NDI),
and the extent of orientational dispersion within a voxel,
Orientation Dispersion Index (ODI) (Zhang et al., 2012)
in addition to an extracellular free-water compartment.

Although individual diffusion measures are related to
somewhat different aspects of white matter microstruc-
ture, they also share information (Bells et al., 2011; de
Santis et al., 2014). A dimensionality reduction frame-
work, based on Principal Components Analysis (PCA),
can take advantage of such redundancies to combine dif-
fusion measures into more biologically informative mea-
sures of white matter microstructure (Chamberland
et al., 2019; Geeraert et al., 2020). By adopting this novel
approach, we were able to combine dMRI measures into
meaningful indices of white matter microstructure and
successfully examine the relationships between white mat-
ter microstructure of the fornix, ILF and PHC, and indi-
vidual differences in sequence memory. Based on Hsieh
et al. (2014), we predicted significant correlations between
Sequence Memory Performance and fornix microstructure
properties, but not between Sequence Memory Perfor-
mance and ILF or PHC microstructure properties.

2 | MATERIALS AND METHODS

2.1 | Participants

Fifty-one female volunteers (mean age: 20.1 years, SD
1.1, range: 19–24 years) were recruited from the Cardiff

1Note that previous work referred to this measure as “RT
Enhancement” (Hsieh et al., 2014; Random RT minus learned
[consistently ordered, including overlapping sequence pairs] RT) or
“sequence prediction effect” (Williams et al., 2023;
Fixed [consistently ordered]-Random RT for objects 2-5).
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University School of Psychology participant panel
(a subsample of those described in Karahan et al., 2019).
The study was approved by Cardiff University’s School of
Psychology Research Ethics Committee, and all volun-
teers gave informed consent prior to participation. Partic-
ipants underwent behavioural testing followed by a
diffusion MRI scan, within a 6-month period.

2.2 | Task procedures

The sequence memory task, adapted from Hsieh et al.
(2014), comprised two sessions: a learning session and
immediately followed by a retrieval session. In these,
participants were asked to make semantic decisions
about objects, including man-made objects, animals,
fruits, and vegetables, that were presented in sequences
of five objects. Participants answered different semantic
questions in each of the two sessions, to ensure their
responses were modulated by their memory of the
temporal-sequential relationships among the objects,
rather than learning at the level of motor responses or
of object-response associations. Both sessions included
consistently ordered (henceforth, consistent) and ran-
domly ordered (henceforth, random) sequence types.
Consistent sequences contained the same objects that
always appeared in a fixed (and hence predictable)
order: one of these sequences contained unique objects
and another two sequences shared identical objects in
serial positions 2 and 3 (but note that this is treated as
one condition as in Crivelli-Decker et al., 2018). Two
random sequences contained unique objects, but these
were presented in a different order in every repetition.
The retrieval session additionally included novel
sequences, which contained novel and trial-unique
objects upon every repetition (note: Response RTs to
novel objects is not included in this study). Examples of
the sequences are shown in Figure 1.

2.2.1 | Learning session

The learning session included two study-test cycles. In
each study cycle, the three consistent and the two ran-
dom sequences were each presented three times. One
of five semantic yes/no questions, for example, ‘Is the
presented item readily edible?’, was presented at the
beginning of each cycle, and participants answered this
question for each object presented within the cycle.
Participants were instructed to answer as quickly and
accurately as possible. The order of sequences was
semi-randomized to ensure that sequences of the same
type were not presented consecutively and that all
sequences had been presented before showing repeats.
Each object was displayed for 1 s and was followed by
a blank fixation screen lasting 1.5 s. Participants could
respond any time between object onset and the end of
this fixation screen. The sequences were separated by a
longer blank fixation screen lasting 2.5 s (see Figure 2
for more detail).

In each of the test cycles in the learning session, par-
ticipants were shown all classes of sequences again. As
above, the order of sequences was semi-randomized.
Participants were explicitly tested on how well they had
learned each of the consistent sequences, three times.
They were shown all the objects from a sequence
simultaneously, and these were labelled 1 to 5, with
five boxes underneath each of the numbers. Participants
were asked to reconstruct the order in which they were
presented in that sequence, using keys 1 to 5 along the
top of the keyboard. The correct order was then dis-
played. For the random sequence trials, participants
simply placed the objects in a random order, and then,
another random order was displayed, which required
no response. There were two study-test cycles within
the learning session. For consistent sequences, answers
were scored correct if objects were placed in the correct
temporal position. The fraction of answers that were

F I GURE 1 Examples of object

sequences. Participants learned, and

were tested on, a range of object

sequences that were either consistently

ordered (‘consistent’; arrows indicate
consistent order) or randomly ordered

(‘random’). Sequences of novel objects
(‘novel’) were additionally included in

the retrieval stage. Repetition examples

are included to illustrate that consistent

sequences had consistent object order

across repetitions whereas random

sequences did not.
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correct, within a sequence, was expressed as a percent-
age. Percentage accuracy over all the reconstruction
tests was averaged to give a ‘Learning Session
Performance’. Note that this score was comprised of
explicit measures of sequence retrieval, assessed inter-
mittently during the learning session, with the aim of
reflecting learning performance.

2.2.2 | Retrieval session

Each of the five blocks was preceded by the presentation
of a yes/no semantic question (different from those used
in the learning session). Each sequence was presented
three times within each block (again, in a semi-
randomized order to ensure that sequences of the same

F I GURE 2 Sequence memory task layout. The task comprised a ‘learning’ session followed by a ‘retrieval’ session. Examples of

the consistent and random sequences are shown. The learning session comprised study-test cycles. In the study part, participants

became familiar with the object sequences by answering semantic questions about the objects presented in their sequences. In the test

part, participants were asked to re-order (now randomly ordered) objects from the consistently ordered sequences. Note that the

random sequences cannot be reordered correctly and participants randomly ordered the objects before being shown another random

order. The sequences were shown three times within the test and study parts, and there were two study-test cycles. The retrieval

session comprised five blocks, which was similar to the study part of the learning session, but all the sequences were shown

seamlessly (without longer blank fixation screens). Again, participants answered semantic questions about each object displayed.

Blue asterisks have been added for illustrative purposes, on some images in the retrieval session, to denote the image in position

1 of a sequence.
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type were not presented consecutively). The presentation
times were the same as those in the learning session,
except that the sequences were run seamlessly: Sequence
boundaries were not highlighted by a longer blank fixa-
tion screen.

RTs of positions 2–5 of all trials from consistent and
of all trials from random sequences were averaged, and
compared, to measure the extent to which individuals
utilized temporal order memory (i.e., a mnemonic repre-
sentation of which items predict the next item in a
sequence) to facilitate semantic judgements. This was
expected to be reflected as a speeding in average response
RT of the consistent sequences compared to the random
sequences, ‘Sequence Memory Performance’ (our mea-
sure of individual differences in sequence memory)
(Crivelli-Decker et al., 2018; Hsieh et al., 2014). Note that
RT of position 1 of each sequence was excluded as we
expected equally slow RTs for position 1 across all
sequences, as items in a sequence cannot be predicted
until after the first item is presented.

2.3 | MRI data acquisition

Structural and diffusion MRI data were collected using a
Siemens Prisma 3T MRI system with a 32-channel head
coil. Diffusion-weighted Imaging (DWI) data were
acquired using a dual-shell HARDI (High Angular
Resolution Diffusion-Weighted Imaging) (Tuch
et al., 2002) protocol with the following parameters:
slices = 80; repetition time (TR) = 9,400 ms; echo time
(TE) = 67 ms; field of view (FOV) = 256 mm � 256 mm;
acquisition matrix size 128 � 128; voxel dimensions = 2
� 2 � 2 mm3; and phase encoding direction = anterior–
posterior. Diffusion sensitization gradients were applied along
30 isotropic directions with a b value of 1,200 s/mm2 and
along 60 isotropic directions with a b value of 2,400 s/mm2.
Six non-diffusion-weighted images were also acquired
with a b value of 0 s/mm2.

T1-weighted anatomical images were obtained using
a magnetization prepared rapid gradient echo scanning
(MPRAGE) sequence with the following parameters:
slices = 176; TR = 2,250 ms; FOV = 256 mm � 256 mm;
matrix size = 256 mm � 256 mm; flip angle = 9�,
TE = 3.06 ms; slice thickness = 1 mm; and voxel size:
1 � 1 � 1 mm3.

2.4 | MRI data processing

The T1-weighted and DWI data were converted from
DICOM to NIfTI formats using dcm2nii (obtained from
nitrc.org). The T1-weighted data also underwent

cropping, skull removal with the FSL Brain Extraction
Tool (Smith, 2002) and down-sampling to a voxel size of
1.5 � 1.5 � 1.5 mm (Jenkinson et al., 2012).

Subject motion, eddy current and echo planar imag-
ing distortions were corrected by co-registering the DWI
data to their respective T1-weighted images using Explore
DTI (version 4.8.3) (Leemans et al., 2009). The lower
(1,200 s/mm2) and higher (2,400 s/mm2) b-value data
were analysed separately. Although DTI modelling was
carried out on both shells, DTI model maps from the
lower b-value data (where the assumption of Gaussian
diffusion is met; Assaf & Pasternak, 2008) were used to
extract DTI scalar measures, FA (range 0–1) and Mean
Diffusivity (MD, units 10�3 mm2/s), radial diffusivity
(RD, units 10�3 mm2/s) and axial diffusivity (AD, units
10�3 mm2/s) (Leemans et al., 2009; MATLAB, 2015).

To estimate the diffusion tensor in the presence of
physiological noise and system-related artefacts, the
Robust Estimation of Tensors by Outlier Rejection algo-
rithm was applied (Chang et al., 2005) to the lower b-
value data. The ‘Free Water Elimination’ (FWE)-DTI
technique of Pasternak et al. (2009) was used to allow
removal of the free water contribution to the data,
improving tissue specificity. FWE is based on a dual ten-
sor model with an isotropic tensor modelling the contri-
bution of free water and a second tensor modelling tissue
(Pasternak et al., 2009). This FWE technique was applied
to the lower b-value data (1200) and includes spatial reg-
ularization to overcome its inherent limitations when
applied to lower b values (less than �2,000) (since the
estimation of the model is ill-posed for single-shell acqui-
sition) (Pasternak et al., 2009). Applying FWE is espe-
cially crucial when examining the fornix (Hoffman
et al., 2022), which borders the 3rd ventricle, because
contamination by CSF can erroneously influence tract
DTI metrics (Kaufmann et al., 2017). Eliminating the
contribution of the free-water compartment provides DTI
measures that are corrected for the partial volume effect
of CSF-contamination. The corrected measures improve
the specificity of the DTI metrics to brain tissue
(Pasternak et al., 2009). Only FWE-DTI metrics were
used in the subsequent analyses. For this reason, we refer
to DTI metrics with the prefix FWE- (e.g., FWE-FA)
(Bauer et al., 2022).

To detect and eliminate signal artefacts in the higher
b-value data, the Robust Estimation in Spherical Decon-
volution by Outlier Rejection algorithm was applied
(Parker et al., 2012). Subsequently, peaks in the fibre Ori-
entation Density Function (fODF) in each voxel were
extracted using a modified damped Richardson-Lucy
deconvolution algorithm (Dell’acqua et al., 2010). Whole-
brain deterministic tractography was carried out in
Explore DTI (version 4.8.3) (Leemans et al., 2009). The
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streamlines were constructed using an fODF amplitude
threshold of .05, one seed per voxel, a step size of .5 mm
and an angle threshold of 45�.

The dual-shell data were also processed to apply the
biophysical NODDI model (Zhang et al., 2012), resulting
in NDI (estimates the volume fraction of neurites) and
ODI (estimates the variability of neurite orientation)
values (both range 0–1), as well as a volume fraction of
isotropic diffusion (Viso), attributed to a free water com-
partment. NODDI maps were created using Accelerated
Microstructure Imaging via Convex Optimization
(AMICO) (Daducci et al., 2015) NODDI (description and
pipelines available here2). The resulting maps were
accepted if normalized root-mean-square error map vox-
els in the areas of interest had error values under .3.

2.5 | Extraction of tract streamlines

To generate three-dimensional streamlines that repre-
sented the fornix, the ILF and the PHC, ‘way-point’ ROIs
were manually drawn onto whole-brain FA maps in the
diffusion space of 18 subjects, using ExploreDTI (version
4.8.3) (Figure 3). These ‘way-point’ ROIs allow the user
to define Boolean AND and NOT gates, and SEEDS, with
the aim of isolating the relevant streamlines. The proto-
col of Hodgetts et al. (2015) was used to extract fornix
streamlines, with the exclusion of the AND gate placed
on the transverse plane, as it did not appear to be
required. The protocol of Wakana et al. (2007) was used
to extract ILF streamlines. The protocol of Jones, Chris-
tiansen, Chapman, and Aggleton (2013) was used to
extract PHC streamlines, but a NOT gate placement of
Sibilia et al. (2017) was used to exclude any streamlines

of the cingulum that curved forward. The resultant tracts
were used to train in-house automated tractography soft-
ware (Greg Parker, Cardiff University; MATLAB, 2015),
which was then applied to the entire dataset. Streamlines
produced by the automated tractography software were
visually inspected, and spurious fibres were removed
using additional NOT gates.

2.6 | Dimensionality reduction of
microstructure data

FWE-FA, FWE-MD, FWE-RD, FWE-AD (from FWE-
DTI), and NDI and ODI (from NODDI) values for the
voxels encompassed in the tract streamlines were
extracted and averaged for each tract. We did not have
specific hypotheses regarding inter-hemispheric differ-
ences for the ILF or PHC, so left and right values for
these tracts were averaged together. This resulted in six
microstructure metrics for three tracts for all 51 partici-
pants. These diffusion measures were reduced through
PCA into microstructurally informative features
(Chamberland et al., 2019; Geeraert et al., 2020; see also
Gagnon et al., 2022; Guberman et al., 2022; Vaher
et al., 2022). The tract microstructure data were com-
bined in a single table. The Bartlett test was used to
assess the appropriateness for PCA. The prcmp function
in R (R Core Team, 2019) was then used to apply PCA to
centred and scaled data (converted to z scores). Sampling
adequacy of the PCA results was tested using the Kaiser-
Meyer-Olkin (KMO) test (from the R ‘Psych’ package;
Revelle, 2022). Components were retained depending on
the amount of cumulative variation they explained and
on inspection of the scree plot. Following data reduction,
participant scores in two biologically interpretable princi-
pal components (PCs) were used for analysis.2github.com/daducci/AMICO/blob/master/doc/demos/NODDI_01.md

F I GURE 3 Construction of tract streamlines. Sagittal views of the fornix, ILF, and PHC streamlines constructed in an ExploreDTI

example dataset (available at exploredti.com/exampledataset.htm). Right ILF and PHC tracts are shown, though they were extracted

bilaterally. Colours on the brain map and the streamlines indicate diffusion along the gradient directions (left-right: red; top-bottom: blue;

front-back: green). Example locations of the Boolean gates are represented by coloured lines (NOT gate: red. AND gate: green. SEED: blue).

ILF, Inferior Longitudinal Fasciculus; PHC, Parahippocampal Cingulum
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2.7 | Statistical analysis

For statistical testing and figure generation, R (R Core
Team, 2019), RStudio (RStudio Team, 2020) and JASP
(version 0.9.0.1) (JASP Team, 2021) were used. Partici-
pant datasets containing outlying values (>3 SDs from
the mean) in either the behaviour condition or the micro-
structure PCA score data were identified and removed.
T tests to test differences between sequence condition
RTs and two-tailed Pearson’s tests for correlations
between performance and microstructure scores were
carried out in R. To correct for multiple comparisons,
p values were Bonferroni-corrected by dividing the stan-
dard .05 alpha level by the number of tracts: .017 (.05/3
tracts).

In addition, Bayes Factors (BFs) were calculated using
the BayesFactor package in R (Morey & Rouder, 2018)
and reported as BF10 (evidence of the alternative over the
null model). To aid interpretation, BF10 values between
1 and 3 were taken as weak evidence in favour of the
alternative model, and values exceeding 3 were taken to
reflect stronger evidence (Raftery, 1995). In contrast,
values between 1 and .33, and below .33, were taken as
weak and stronger evidence in favour of the null, respec-
tively (Raftery, 1995). In the cases where behavioural
scores needed to be controlled for, Bayesian correlations
between the residuals of variables were tested. In contrast
to individual correlation tests, Bayesian multiple regres-
sion additionally allowed us to test the statistical relation-
ships between fornix microstructure and sequence
memory performance while controlling for ILF and PHC
tract microstructure and learning session performance in
the same model (akin to hierarchical regression). This
was carried out by including the nuisance variables
within the null model.

Plots were drawn using several R packages including
ggcorrplot (Kassambara, 2019), ggstatsplot (Patil, 2021),
ggplot2 (Wickham, 2016) and raincloudplots (Allen
et al., 2019).

3 | RESULTS

3.1 | Sequence learning and memory
data

3.1.1 | Learning session

Results from the reconstruction tests of the learning ses-
sion showed that consistent sequences were learned rea-
sonably well. The mean of the scores from the final
repeat of the second cycle (the 6th reconstruction of a
sequence) was 90.39%. To characterize participant

performance during the learning session, ‘Learning Ses-
sion Performance’ scores were created by averaging the
reconstruction results across study-test cycles. The mean
(and SD) of Learning Session Performance was 80.82%
(16.90%).

3.1.2 | Retrieval session

The key retrieval session measure of interest, ‘Sequence
Memory Performance’, was calculated as the difference
in averaged response RTs to positions 2–5 of the sequence
types random and consistent. Figure 4a shows group RT
data for each position in the two sequences. Figure 4b
shows that average RTs to positions 2–5 were signifi-
cantly faster for items in consistent sequences than for
items in random sequences (t[50] = 3.495, p = .001,
d = .489).

3.2 | Tract microstructure

Fornix, ILF and PHC streamlines were successfully
recontructed in all participants. The means (and SDs) of
the number of streamlines in each tract reconstruction
were fornix 546.6 (119.6); ILF 615.2 (183.0); and PHC
119.1 (41.4). The means (and SDs) of the lengths in voxels
of streamlines were fornix 182.7 (11.6); ILF 203.7 (9.1);
and PHC 131.0 (14.9). Mean along-tract, bilaterally aver-
aged tract microstructure metrics are shown in the
Table S1. The Pearson correlation values shown in
Figure 5a highlight the shared variance in these data.

The results from the PCA (overall KMO: .63, spheric-
ity: p < .001; comparable to Chamberland et al., 2019;
Geeraert et al., 2020) showed that 93% of the microstruc-
ture data variability was accounted for by the first two
principal components, PC1 and PC2 (Figure 5; loadings
shown in Table S2). PC1 accounted for 59% of the vari-
ance, and FWE-MD, FWE-RD and FWE-AD provided
major negative contributions. PC1 resembled the first
component found in Chamberland et al. (2019) and the
second component of Geeraert et al. (2020) (see also
Gagnon et al., 2022). PC1 was most influenced by MD,
which, in high resolution imaging of post-mortem tissue,
has been shown to strongly relate to the amount of mye-
lin, suggesting that it is related to proportions of
diffusion-restricting material (Seehaus et al., 2015).
Therefore, PC1 was interpreted as positively relating to a
‘tissue restriction’ property of the fibres (presumably
related to myelin density and axonal packing;
Beaulieu, 2014). PC2 accounted for 34% of the variance,
and FWE-FA and NDI provided the major negative con-
tributions, while ODI provided a major positive
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F I GURE 4 Participant averaged response RTs, for each condition. (a) Box plots of the RTs for each position in the random and

consistent sequence conditions. The red dots indicate the mean values. Sequence conditions are colour coded according to the key on the

right. Note that the y-axis range was reduced to make differences in RTs between positions clearer, so some outlying high and low individual

values (grey dots) have been excluded. (b) Individual participant averaged response RTs, for positions 2–5, for the random and consistent

sequence conditions. Data points from the same individuals are connected with grey lines. Sequence memory performance is the difference

between random and consistent averaged RTs. Box plots and distributions are also displayed. Lines connected to the boxplots indicate 95%

confidence intervals.

F I GURE 5 Redundancies between tract microstructure values and reduction through PCA. (a) Pearson’s correlations within the

microstructure data from each tract suggest that the FWE-DTI and NODDI metrics give overlapping information. Colour denotes r value.

(b) Biplot illustrating the influence of each of the measures on PC1 and PC2, which account for 59% and 34% of the variance, respectively.

(c) Tract component scores for each participant, illustrating the differing properties of the tracts. Note that one outlying PHC value lies

beyond the boundaries of the graph. FWE-AD, axial diffusivity; FWE-FA, fractional anisotropy; FWE-MD, mean diffusivity; FWE-RD, radial

diffusivity (with free water elimination); ILF, Inferior Longitudinal Fasciculus; PHC, Parahippocampal Cingulum; NDI, Neurite Density

Index; ODI, Orientation Dispersion Index; PC, principal component
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contribution. FA is not a measure of tissue restriction
(supporting our naming of PC1, to which FA minimally
contributes) but rather the degree to which mobility of
water molecules is restricted to any single direction (dif-
fusion restriction). It is often found to correlate more
strongly with ODI (negatively) than NDI (e.g., Churchill
et al., 2017; Pines et al., 2020; Zhang et al., 2012), suggest-
ing that dispersion of fibres influences the anisotropy
measurement in a voxel more than the tissue properties
themselves. Indeed, FA has been shown to relate most
strongly to fibre orientations in high resolution imaging
of post-mortem tissue (Seehaus et al., 2015). Therefore,
since ODI is lower in tracts known to have greater fibre
coherency and higher in tracts known to have more fibre
fanning and crossing (Mollink et al., 2017; Zhang
et al., 2012), and FA can be influenced by how coherently
fibres within a voxel are organized (Jones, Knosche, &
Turner, 2013; Pierpaoli et al., 1996), PC2 was interpreted
as relating to a ‘complexity’ property of the fibres (the
dispersion of modelled fibre orientations) (Schilling
et al., 2018). Note that PC2 scores were sign-flipped, so
that larger PC2 scores indicated greater complexity, to
facilitate interpretation.

3.3 | Relationships between sequence
memory and tract microstructure

As is often the case with real/social science data (Bono
et al., 2017), Sequence Memory Performance was non-
normally distributed (right skew, >1) so, to allow the use
of parametric testing throughout the analyses, the data
were transformed. A constant (of the most negative
value, sign-flipped and rounded up) was added to each
value, and the square root was then calculated
(McDonald, 2014), resulting in normally shaped data.
Unless stated otherwise, ‘Sequence Memory Perfor-
mance’ henceforth refers to the transformed data.

As the Extended Hippocampal System is known to be
important for episodic memory (Aggleton &
Brown, 1999; Gaffan & Hornak, 1997), we hypothesized
that individual differences in fornix microstructure,
which may reflect a quality of information flow between
regions of this system (Jankowski et al., 2013), would
relate to individual differences in sequence memory.

In line with our hypothesis, there was a significant
positive correlation between Sequence Memory Perfor-
mance and fornix PC2 (indexing microstructural com-
plexity) (such that better item-in-sequence memory,
indexed by a greater difference in RT between random
and consistently ordered, learned sequences, was associ-
ated with higher complexity scores), and the resulting BF
indicated evidence in favour of the alternative model

(r[46] = .343, p = .017, BF10 = 4.16). The correlation with
fornix PC1 (indexing tissue restriction), however, was not
significant (r[46] = .029, p = .847, BF10 = .33).

There were no significant correlations between
Sequence Memory Performance and ILF PC1/PC2
(r(46) = .030, p = .839, BF10 = .33; r(46) = .053, p = .720,
BF10 = .34) or PHC PC1/PC2 (r(46) = �.014, p = .923,
BF10 = .33; r(46) = .116, p = .433, BF10 = .43). These
results indicate that microstructure of the fornix, specifi-
cally the ‘complexity’ component (PC2), relates to mem-
ory of objects in temporal context whereas
microstructure properties of the ILF and PHC do not.

Moreover, the correlation between Sequence Memory
Performance and fornix complexity held when control-
ling for Learning Session Performance (r[44] = .369,
p = .011, BF10 = 6.11), indicating that this fornix prop-
erty may be specifically important for sequence retrieval.
There was also no significant correlation between
Sequence Memory Performance and Learning Session
Performance (r[45] = .259, p = .079, BF10 = 1.31). More-
over, there continued to be no significant correlations
between Sequence Memory Performance and fornix tis-
sue restriction, ILF tissue restriction/complexity or PHC
tissue restriction/complexity, when controlling for Learn-
ing Session Performance (Figure 6a).

Bayesian multiple regression analysis, comparing
models with fornix PC2, PHC PC2, ILF PC2 as predictors
of Sequence Memory Performance, with Learning Ses-
sion Performance included in the null model, indicated
that a model with only fornix PC2 (complexity) was most
probable (BF10 = 5.297, against the null model). Model
averaging indicated that the data were most likely under
a model that included fornix PC2 (BFinclusion = 4.833).
The inclusion probabilities figure (Figure 6b) shows that
only fornix PC2 has a greater marginal inclusion proba-
bility than the prior inclusion probability, indicating its
importance for prediction. In a separate test where PHC
PC2, ILF PC2 and Learning Session Performance were all
included in the null model, evidence for the importance
of fornix PC2 held (BF10/BFinclusion = 4.051).

These findings indicate the relative importance of the
fornix, compared with the PHC and ILF, especially the
fibre complexity component (PC2) of this tract, for mem-
ory of objects in temporal context.

For completeness, results of correlation tests between
the behavioural scores and raw tract microstructure
values are shown in Figure S1.

4 | DISCUSSION

The hippocampus has been shown to play a crucial role
in the construction and retrieval of representations of
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events associated through their temporal contiguity
(Davachi & DuBrow, 2015; Howard &
Eichenbaum, 2015; Ranganath & Hsieh, 2016; Schapiro
et al., 2016). Complementing this finding, here, we dem-
onstrate that microstructure of the fornix—a white mat-
ter tract that interconnects an extended hippocampal

system, including the hippocampus, anterior thalamic
nucleus, mamillary bodies, septal nuclei and medial pre-
frontal cortex—predicts individual differences in tempo-
ral sequence memory in humans. These results lend
credence to the idea that hippocampal contributions to
memory may be supported by an extended network that

F I GURE 6 Associations between tract microstructure scores and sequence memory performance. (a) Correlation plots between

sequence memory performance and microstructure scores, when controlling for learning session performance. The light-blue histograms

show the distributions of the fornix tissue restriction/complexity data. The green and red histograms show the distributions of the PHC

tissue restriction/complexity data and ILF tissue restriction/complexity data, respectively. The dark blue histograms show the distribution of

sequence memory performance. The blue lines are the regression lines, and surrounding shaded areas represent the 95% confidence interval.

There was a significant partial correlation between sequence memory performance and fornix complexity (at alpha threshold .017). Example

fornix, ILF and PHC streamlines are shown on template brains. (b) Bar graph of the posterior inclusion probabilities of the Bayesian linear

regression, predicting sequence memory performance with variables fornix complexity, ILF complexity, PHC complexity and learning

session performance. The dashed line indicates the prior inclusion probabilities. ILF, Inferior Longitudinal Fasciculus; PHC,

Parahippocampal Cingulum
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is linked via the fornix (Aggleton, 2012; Aggleton &
Brown, 1999; Bubb et al., 2017; Gaffan, 1992; Gaffan &
Hornak, 1997).

Previously, through representational similarity analy-
sis of fMRI signals recorded during the retrieval phase of
a sequence memory task, Hsieh et al. (2014) demon-
strated that individual differences in hippocampal voxel
pattern information correlated with RT indices of
sequence learning. Using scalp electroencephalography
(EEG) recordings with the same task, Crivelli-Decker
et al. (2018) showed that changes in oscillatory activity in
the theta band (4–7 Hz) predicted sequence learning in
this paradigm. Our findings complement these prior
results in revealing that microstructure properties of the
fornix, in particular a property putatively reflecting fibre
complexity (Chamberland et al., 2019), correlated with
inter-individual RT difference between consistent and
random sequences, indexing the extent to which, after a
sequence has been learned, individuals use that sequence
memory to facilitate response preparation by predicting
upcoming objects during consistent sequences, thus
resulting in faster semantic decisions (Davachi &
DuBrow, 2015; Williams et al., 2023). These findings con-
firm the importance of the hippocampus’s structural con-
nectivity in supporting successful sequence memory.

Notably, in the Hsieh et al. (2014) paradigm, activity
patterns in the parahippocampal cortex and perirhinal
cortex (bilaterally) carried information about temporal
position and object identity respectively, but the hippo-
campus uniquely carried conjunctive representations of
item and temporal position (see also Gaffan &
Parker, 1996, Parker & Gaffan, 1997 for comparable evi-
dence of a unique role for the primate fornix in integrat-
ing information about objects and their positions in
space). Our results align with this by supporting a unique
role of the fornix in item-in-temporal sequence memory.
We found no evidence to suggest that microstructure
properties of the ILF or PHC related to sequence mem-
ory, and the Bayes factors of these correlations indicated
(albeit weak) evidence in favour of the null. Moreover,
supporting the unique role of the fornix, Bayesian multi-
ple regression analysis, comparing models with fornix,
PHC and ILF complexity scores as predictors of Sequence
Memory Performance (with Learning Session Perfor-
mance included in the null model) indicated that a model
with only fornix complexity was most probable, and
model averaging indicated that the data were most likely
under models including fornix complexity. This prepon-
derance of evidence supports the idea that memory for
items in temporal context is supported specifically by an
extended hippocampal system.

The fornix contains bidirectional pathways support-
ing direct hippocampal connections within the extended

hippocampal system (Aggleton et al., 2010; Aggleton
et al., 2015; Aggleton & Brown, 1999; Bubb et al., 2017).
The fornix may contribute to hippocampal functioning
by conveying theta rhythms, the prominent oscillation
band of the hippocampus (Buzsaki, 2002), through this
system (Aggleton et al., 2010; Jankowski et al., 2013). The
fornix directly connects the hippocampus to: the septum/
diagonal band of Broca, which supports the generation of
theta activity (Leao et al., 2015; Swanson &
Cowan, 1979); the supramammillary area, which has
been shown to influence the frequency of hippocampal
theta (Kirk, 1998; Pan & McNaughton, 2004), and the
anterior thalamic nuclei, which not only operate in con-
junction with the hippocampus through theta interac-
tions but also modulate hippocampal theta ( _Zakowski
et al., 2017). The fornix also connects the hippocampus to
the medial prefrontal cortex (Aggleton et al., 2015), a
region also implicated in the sequential binding of items
within events (Davachi & DuBrow, 2015). The fornix
may be both delivering theta rhythms to the hippocam-
pus and facilitating hippocampal influence on extended
hippocampal system theta. For example, fornix transec-
tion, disconnecting the septum from the hippocampus,
abolishes hippocampal theta (Rawlins et al., 1979), while
stimulating the fornical input from the hippocampus to
anterior thalamic nuclei modulates thalamic theta
(Jankowski et al., 2013; Tsanov et al., 2011).

Hippocampal theta is understood to be critical to the
temporal organization of active neuronal ensembles
(Buzsaki, 2002) and may therefore support temporal
organization of episodic memory (Buzs�aki &
Moser, 2013; Eichenbaum, 2017: Herweg et al., 2020;
Lisman & Redish, 2009; Skaggs et al., 1996). One specific
proposal is that theta oscillations, which provide time
windows for fast-acting long-term potentiation (LTP) and
depression (LTD), mediate item-context binding (see
Hanslmayr & Staudigl, 2014 for discussion). Indeed, MTL
theta phase coding is evident in humans learning image
sequences (Reddy et al., 2021). Moreover, using electro-
encephalography in conjunction with a sequence mem-
ory task like that used by Hsieh et al., and in the current
study, Crivelli-Decker et al. (2018) showed frontal mid-
line theta power (which may be influenced by hippocam-
pal theta, Hsieh & Ranganath, 2014, through connections
mediated by the fornix, Aggleton et al., 2015), to be lower
during items in consistent sequences than during items
in random sequences. Additionally, decreases in frontal
midline theta power (which may reflect elevated theta
connectivity, Solomon et al., 2019) correlated with RT of
semantic decisions on upcoming objects in consistent
sequences (Crivelli-Decker et al., 2018). It may be that
hippocampus-influenced frontal midline theta aids cod-
ing of temporal information specifically, rather than
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temporal and spatial information, as temporal duration
and not spatial distance has been shown to relate to fron-
tal midline theta power modulation (Liang et al., 2021).
Together, these results clearly link theta activity with
encoding and retrieval of sequence memory. Therefore,
sequence memory may rely on inter-regional functional
communication within and beyond the extended hippo-
campal system, mediated by theta connectivity conveyed
by the fornix, the latter in line with the findings from our
study.

However, our interpretation, that is, the fornix sup-
ports sequence memory through its role in communica-
tion of theta-based processes between the hippocampus
and an extended hippocampal system, is likely incom-
plete. One shortcoming is that the precise relationship
between inter-regional theta synchronization and local
activity is not currently well understood (Solomon
et al., 2019). Furthermore, the fornix also carries some
(albeit light) non-hippocampal connections, including
those between the entorhinal cortex and the anterior tha-
lamic nuclei (Saunders & Aggleton, 2007; Saunders
et al., 2005), both of which have been shown to conduct
forms of temporal coding (Bellmund et al., 2019;
Nelson, 2021). Future studies could incorporate measure-
ment of extended hippocampal theta rhythms into this
study design and test for relationships between individual
differences in hippocampal theta modulation, the extent
of theta-based communication (e.g., phase/amplitude
coupling), fornix microstructure and sequence retrieval
performance. However, this may require invasive record-
ing (e.g., Solomon et al., 2018), as measuring electrophys-
iological signals from deep sources non-invasively with
magnetoencephalography, for example, is possible but it
would be challenging to distinguish the individual
regions of this extended hippocampal network (Pu
et al., 2018).

In this study, extending previous work from our lab
that focused on DTI measures, we adopted a recently
developed dimensionality reduction framework to take
advantage of redundancies in dMRI measures
(Chamberland et al., 2019; Geeraert et al., 2020; see also
Guberman et al., 2022; Gagnon et al., 2022). By combin-
ing multiple measures through PCA (Chamberland
et al., 2019; Geeraert et al., 2020), we found that the two
major components, PC1 and PC2, were contributed to
mostly by FWE-MD, FWE-RD and FWE-AD and FWE-
FA, NDI and ODI, respectively. We therefore considered
these components to capture the properties of tissue
restriction and complexity, respectively. The PCA compo-
nents reported in this study share similarities with those
reported in previous studies (Chamberland et al., 2019;
Geeraert et al., 2020). PC1 is similar to the first compo-
nent reported in Chamberland et al. (2019), which was

also named ‘restriction’ and was negatively influenced by
RD and positively influenced by a measure of fibre den-
sity. PC1 is also similar to the second component in
Geeraert et al. (2020), named ‘myelin and axonal pack-
ing’ and influenced negatively by RD and MD and posi-
tively by NDI. PC2 overlaps with the first component in
Geeraert et al. (2020), which they named ‘tissue complex-
ity’ because it was influenced positively by FA and nega-
tively by ODI. Although there are minor differences in
the resulting components across studies (as would be
expected when there are differences in the microstructure
measures and tracts considered), the commonalities in
the components confirm the usefulness of microstructure
data reduction as a method to characterize tract
properties.

The positive correlation between fornix PC2 and our
RT difference index of sequence memory suggests that
increased fornix tissue complexity (reduced fornix axon
coherence) relates to better sequence memory
(as indexed by faster RTs when making semantic deci-
sions about objects in consistent vs. random sequences).
The causes of inter-individual variation in white matter
microstructure are not fully understood but presumably
reflect both environmental and genetic influences (Cahn
et al., 2021; Luo et al., 2022). Studies examining white
matter FA and ODI over age indicate that tissue complex-
ity changes during early development, perhaps support-
ing development of complex behaviours. For example,
scores on the tissue complexity component in Geeraert
et al. (2020) increased with age in children. Positive and
negative correlations have also been identified in chil-
dren between white-matter ODI and reading skill and
between FA and reading skill, respectively (Huber
et al., 2019), suggesting increased tissue complexity is
linked to better performance, even when controlling for
age. Since our cohort comprises young adults, an age
group in which age-related FA increases plateau and age-
related ODI increases are slower than that of older adults
(Chang et al., 2015), it is likely that we captured stable,
peak inter-individual differences in fornix complexity.
Related findings have linked increased white matter fibre
complexity (i.e., lower FA values) to better scene/place
memory (Gomez et al., 2015; Tavor et al., 2014) (see also
Giacosa et al., 2016, for links between reduced fibre
coherence and acquired expertise in adults). Further,
improvement on a car-racing game in humans (and on
the Morris water maze in 4 months old rats) led to FA
decreases in the fornix (Hofstetter et al., 2013). One possi-
bility is that fornix complexity reflects individual differ-
ences in the extent to which fornix axons disperse to
reach target sites (Mathiasen et al., 2019; Poletti &
Creswell, 1977). There is evidence that variation in
microstructural properties of white matter tracts can
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influence the timing of neural signalling that maintains
oscillatory neural activity within and between neural
“coalitions” (Bells et al., 2019). Individual differences in
fornix microstructure may therefore influence the precise
frequency (or other properties) of theta rhythmicity and
hence individual differences in the efficiency of theta-
mediated item-context binding (McNaughton
et al., 2006).

A limitation with this study is that the sample used
was entirely female, reflecting the availability of a partici-
pant sample for this work. We have no predictions about
sex differences in temporal memory, so we anticipate that
inclusion of male participants would result in similar
findings, and consistent with this, previous work examin-
ing fornix microstructure and memory performance in
young healthy adults reported no effects of participant
sex (Hodgetts et al., 2020; see also Cahn et al., 2021).
Considering our tractography methods, it should be
noted that although the individual diffusion metrics used
here have been histologically validated independently
(Sato et al., 2017; Schilling et al., 2018), components
resulting from their reduction with PCA have not
(Gagnon et al., 2022; Geeraert et al., 2020). It is not clear,
therefore, that any one underlying tract property would
be wholly reflected in one component (i.e., complexity
could influence PC2, but it could also influence PC1 to a
lesser extent). Furthermore, virtual tract renditions are
created from estimations of water diffusion directionality,
not from the anatomy itself, and characterization of fibres
is limited by the MRI technique (e.g., the magnetic gradi-
ent amplitudes determine resolution thereby limiting the
minimum detectable fibre diameter; McNab et al., 2013).
Although we constructed virtual tract renditions using
anatomical knowledge and were informed by previous
research, it is not possible to test the specificity of the
tractography methods, for each participant, without
knowing the true underlying anatomy (Schilling
et al., 2020).

Relatedly, it is possible that our approach to
structure–function relationships is too anatomically
coarse. We chose to construct the ILF as a single bundle
in line with established and reproducible protocols (see
also Bullock et al., 2022; Radwan et al., 2022). However,
the ILF may be divided into distinct sub-bundles, only
some of which are relevant to object-in-sequence mem-
ory. While there is no established protocol for structurally
subdividing the ILF (Herbet et al., 2018; Latini
et al., 2017; Panesar et al., 2018), a different approach,
which combines fMRI and dMRI to identify functionally
defined white matter sub-bundles (fSuB) (Grotheer
et al., 2022), may prove useful in future studies. That said,
previous work from our group has shown the clear func-
tional relevance of the ILF treated as a unified bundle to

object and semantic cognition (Hodgetts et al., 2015,
2017), suggesting our (weak) null findings for the ILF
may not simply be due to a lack of functional relevance
of the ILF considered in its entirety.

Similarly, we averaged across right and left ILF and
PHC tract values. While this may also have contributed
to the null findings for the ILF and PHC, in particular as
the ILF has been shown to have lateralized properties
(e.g., Latini et al., 2017), we did not have specific hypoth-
eses regarding finding inter-hemispheric differences for
the ILF or PHC because the previous fMRI study of this
paradigm did not find significant differences between left
and right PrC and parahippocampal cortex for coding of
object and sequence information respectively (Hsieh
et al., 2014). Increasing the number of tract-behaviour
correlation tests, by testing left and right ILF and PHC
tract values separately, would have increased the chance
of type 1 error, or type 2 errors if we corrected for the
increased number of tests. Moreover, our previous work
on the link between ILF microstructure and object and
semantic cognition included bilateral ILF metrics and
found relationships between microstructure and cogni-
tion (Hodgetts et al., 2015, 2017), one of which found no
significant inter-hemispheric differences (Hodgetts
et al., 2017) and the other found behaviour-
microstructure correlations bilaterally (Hodgetts
et al., 2015).

Lastly, it should be noted that although we have
shown a relationship between fornix microstructure and
performance during the retrieval phase (Sequence
Memory Performance) independent of performance dur-
ing the initial learning phase (Learning Phase perfor-
mance), we do not conclude that fornix microstructure
selectively influences retrieval and not learning of
sequences, rather that it may influence learning and
retrieval of sequences (see, e.g., Postans et al., 2014;
Hodgetts et al., 2020, for evidence of a role of fornix micro-
structure in spatial learning). Unfortunately, due to the
task design, we do not have a more sensitive measure of
learning. For example, we could not perform slope ana-
lyses on RT improvements over sequence repetitions in
the learning phase (see Hodgetts et al., 2020) because the
semantic question changed at the third repetition, thereby
causing an increase in RT halfway through the repetitions.

In summary, this study demonstrated the specific
importance of the fornix in supporting memory of objects
within a temporal context, extending previous work dem-
onstrating the importance of the hippocampus as a key
region supporting binding of spatial–temporal informa-
tion (Davachi & DuBrow, 2015; Graham et al., 2010;
Ranganath, 2010). Furthermore, and going beyond previ-
ous DTI studies, use of a recently developed microstruc-
ture dimensionality reduction technique allowed us to
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posit that fornix fibre complexity may underlie inter-
individual variation in sequence memory performance,
potentially by mediating individual differences in theta-
mediated network communication efficiency/complexity
within an extended hippocampal-fornix system critical
for episodic memory.
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