
Lawrence Berkeley National Laboratory
Recent Work

Title
DOES THE f0 PARTICLE LIE ON THE POMERANCHUK TRAJECTORY?

Permalink
https://escholarship.org/uc/item/6674q70v

Author
Pignotti, Alberto.

Publication Date
1963-01-15

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6674q70v
https://escholarship.org
http://www.cdlib.org/


] 

UCRL-10600 Rev. 

University of California 

Ernest 0. 
Radiation 

lawrence 
laboratory 

TWO-WEEK LOAN COPY 

This is a library Circulating Copy 
which may be borrowed for two weeJ~s. 
For a personal retention copy. call 

Tech. Info. Division, Ext. 5545 

DOES THE t 0 PARTICLE LIE ON THE 
POMERANCHUK TRAJECTORY? 

Berkeley, California 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



Submitted to Phy~ica~-Review Letters ___ --~ 

0 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley, California 

Contract No. W .,.17405-eng-48 

UCRL-1 0600 Rev. 

DOES THE £',PARTICLE LIE ON THE POMERANCHUK TRAJECTORY? 

Alberto Pignotti 

January 15, 1963 



... 

UCRL-10600 Revo 

-2-

fit into the Regge-pole scheme as possibly belonging to the trajectory 

proposed by Igi.5 

We assume that a boson Regge trajectory as a function of the energy­

squared satisfies the dispersion relation6 

a(t) a(oo) 

with 

Im a( t) ~ 0 

1 
+ -rr dt 1 for (Hl) 

for (H2) 

As a consequence, all the derivatives of a(t) for t < t 
0 

are positive, 

and this implies a severe restriction on the behavior of a in that region. 

In particular, we expect to be able to put a lower bound to the slope of a 

at the origin, if a(oo) , a(o), and a(t
1

) for any negative value of t 
1 

are given. In some instances, this bound will be twice the slope of a 

straight line through a(t1) and a(O) . In order to derive this and. other 

related results, it will be useful to prove the following lemma: Let ~(t) 

satisfy the dispersion relation 

~( t) 1 
:!{ J 

a 

Im §( t ~) 
t' - t 

with Im ~(t) ;? 0 for a~ t < oo • It follows that 

and where the ~ sign holds for 

( 1) 

(2) 

t
3 
~ t 1 or t

3 
;? t 2 , and the ~ sign for t 1 -::; t

3 
-::;_ t 2 • Proof: From 

Eq. ( 1) we have 
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Im ~( t) > 0 for Im t > 0 , 

and 

Re s(t) > 0 

for t real and -oo < t < a • 

Im s( t) = 0 

Therefore the function 

11( t) = -1/~( t) ( 3) 

has no singularities except for a right-hand cut and a pole at infinity, and 

can be represented as7 

C + At + J 
a 

1 + t't 
t 1 

- t 
¢(t 1 )dt' ( 4) 

with c, A, and ¢(t) real, and ¢(t) 3 0 • From Eq. (4) it follows for 

t real and -oo < t < a that 

Tl"(t) ~ 0 • (5) 

Therefore, because 'l)(t) is a concave function for t <a , we have 

( 6) 

for t 1 < t 2 , t 1 , t 2 and t3 ~ a. Here again tne ~ sign holds for 

t
3

.::; t 1 or t
3 
~ t 2, and the ~ sign for t 1 .::; t

3
.::::; t 2 • Equation (2) 

follows trivially from Eqs. (6) and (3). This completes the lemma. 
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We now apply the above lemma to the function a(t)- a(oo). In 

... , particular, if we let t
1 
~ t

2 
= 0 and t

3 
== t in Eq. (2), we obtain for 

-oo < t < 0 

" 

or 

a( t) > a( co ) + [a(o) =a{oo)]
2 

1 

{
[a(o) - a(oo)]

2 
_ a(o) 

a( t) ~ a(oo) 

L(t) ( 7) 

(8) 

In the case of the Pomeranchuk trajectory, relations (7) or (8) plus the values 

of a(t) obtained in the high~energy· experiments provide a lower bound for 
8 

a' ( o) • 

Our aim is now to study what restrictions on the energy and width of a 

resonance follow from a given value of 0: 1 (0) • The idea is that the trajectory, 

which has a positive curvature up to threshold, has to stay above its tangent 

line at t == 0 until i.ts imaginary part has become appreciably large, and that 

when this happens, the Regge pole is so far from physical values of 2 that 

it is likely to give rise either to a very broad resonance or to no resonance 

at all. The detailed argument is as follows: We want to find under what 

restrictions it is possible to have a resonance at a value tR of the energy­

squared such that 

Rea(~) < a(O) + ~ a'(O) , (9) 

~ > [ Re a( ~) - a( 0) ] Ja 1 
( o) • ( 10) 

We know that Re a(tR) has to be equal to the spin of the resonance in. question, 

but that this conditi.on is not sufficient to ha,ve a resonance. In addi.tion, our 
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experience with the nonrelativistic case shows that at t = tR 1 Re a must 

still be increasing steeply as a function of t , and Im a must still be 

small. The width of the resonance in the energy variable is related to these 

two properties and is given approximately by the function6 

l Im a(t) 

Vt d 
dt Re a(t) 

t=t 
R 

( 11) 

We require that the trajectory considered present these two characteristics 

at t = ~ by assuming 

Re a(t) has at most one inflection point for t < tR 

t - t 
Im a( t) .:;;; Im a(~) ~ _ t~ 

9 

(H3) 

(H4) 

From assumption (H3) and the fact that a"(t) > 0 for t.:;;; t 0 it follows that 

d 
dt Re a(t) < [Re a(tR) - a(o)]/~ ( 12) 

for the values of ~ satisfying relation (lO)o Our next step is to put a 

lower bound to Im a(~) such that, combined with Eqso (11) and (12), it will 

provide a restriction on the permissible values for r(~) o It is clear that 

such a bound for Im a(~) exists and is larger than zeroj because if we had 

Im a(~) = 0 , from assumptions (Hl), (H2), and (H4) all the derivatives of 

Re a would be positive up to t = tR , and therefore Re a would not satisfy 

relation (9). This suggests splitting a into two parts, (3 and r , one 

of which has a zero imaginary part for t < tR • Therefore, we define 
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Im 13(t) = Im o:(t) for t 0 < t < tR 

( 13a) 

Im o:(21t - t) for tR < t < 2~ - t 0 

2~-t 

13(t) 1 J 0 Im 13( t 1
) dt' = -

1{ t' - t (13b) 

to 

and 

y(t) = o:( t) - 13( t) • ( 14) 

From the above definitions i.t follows that 13(oo) = 0, 13(0) > 0, 13(tR) = 0, 

y(oo) = o:(oo) , y(O) < o:(O) , y(~) = Re o:(tR) • In order to have 

Im y(t) ~ 0 on the real axis we assume further10 

Im o:(t) ~ Im o:(2~ = t) for (H5) 

which is consistent with the properties discussed above. Thus we can apply our 

lemma to the function y(t) - y(oo) • We let t 1 -+ t 2 = 0 and t
3 

= t ~a = tR 

in Eq. (2) and obtain 

y(t) - y(oo) ~ 
2 [r( o) - r( oo)] 

r ( o ) - r ( oo ) - tr ' ( o ) 

The denominator in this expression is positive because it is so at t = 0 and 

y( t) is finite for t ~ tR • We can therefore write for t = tR 

[y(O) ~ r.(C?)][y(~) = y(O)] 
r'(o) ~ ·', · ,\ .... _ ·· 

· ~[r(~) - r(oo)] 

[ o:( o) - o:( oo ) ][ Re a:( tR) - r ( o) ] 
< 

~ [ Re a:( 1t) - a:( oo ) ] 

( 15) 
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Now, from assumption (H4) we have 

and 

where 

1 

and 

1 
Bl( tR) = ( ) 

l! tR - to 

It then follows that 

and (16) 

From relations (15) and (16) we obtain a lower bound for Im a(tR) • This 

result combined with relations (11) and (12) gives the final bound 

( 17) 

We want to apply the above results to the Pomeranchuk trajectory, 

which controls the high-energy behavior of total cross sections and therefore 

satisfies the condition3,ll 

a( o) = 1 • (H6) 



i 

\\ :.. Su~;,;,,~_d ~o Phy~-~cal Review Let-te_r: _ .. -~ 

0 

UNIVERSITY OF CALIFORNIA 

Lawrence Radiation Laboratory 
Berkeley, California 

Contract Noo W ,J7405-eng-48 

UCRL-1 0600 Revo 

DOES THE£', PARTICLE LIE ON THE POMERANCHUK TRAJECTORY? 

Alberto Pignotti 

January 15, 1963 



UCRL-10600 Rev. 

DOES THE * PARTICLE LIE ON THE POMERANCHUK TRAJECTORY'/ 
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Two experimental groups have recently reported on the discovery of 

a ~n resonance at about 1250 MeV that is probably an I = 0, J = 2 
1 2 state, ' 

It was conjectured that this resonance, called f 0 ; is the "particle" predicted 

by Chew and Frautschi on the basis of the Regge-pole scheme. 3 In that case~ it 

should lie on the Pomeranchuk trajectory. A. Ahmadzadeh ~nd I. Sakmar have 

tried to test this conjecture, starting from a four-parameter expression for 
4 

the imaginary part of the Pomeranchuk -t.rajectory o:( t) , They assume the 

usual pr,operties for this trajectory and con.clude that the f 0 cannot lie on 

it, if at the same time one accepts the published analysis of the high-energy 

pp scattering in terms of the Pomeranchuk trajectory. The purpose of this 

letter is to prove that, as conjectured by Ahmadzadeh and Sakmarj this result 

is independent of the choice of an Ansatz for Im a(t) , provided some current 

ideas on Regge trajectories are correct. In the first part; some general bounds 

derived for boson Regge trajectories are used to relate values of a(t) for 

negative t to the slope of the trajectory at t = 0 • Then it is shown how 

this slope restricts the possible values for the energy and width of a 

resonance that lies on the same trajectory. When these results are applied to 

the Pomeranchuk particle, it is concluded that either the slope of the Pomeranchuk 

trajectory has been seriously overestimated from the pp data, or the 

Pomeranchuk particle is likely to have an energy less than·or approximately 

equal to the o-meson energy. Experimental work directed towards testing the 

latter possibility is encouraged, In that case, the r0 resonance still could 
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fi:t into the Regge-pole scheme as possibly belonging to the trajectory 

proposed by Igi. 5 

We assume that a boson Regge trajectory as a function of the energy­

squared satisfies the dispersion relation6 

a(t) == a( oo) 1 dt' for t
0 

> o , (Hl) 

with 

Im a( t) ~ 0 for (H2) 

As a consequence, all the derivatives of a(t) for t < t 0 are positive, 

and this implies a severe restriction on the behavior of ex in that region. 

In particular, we expect to be able to put a lower bound to the slope of ex 

at the origin, if a(oo) , a(o), for any negative value of t 
1 

are given. In some instances, this bound will be twice the slope of a 

straight line through a(t1) and a(O) • In order to derive this and other 

related results, it will be useful to prove the following lemma: Let ~(t) 

satisfy ·the dispersion relation 

00 

g( t) 1 J Im g( t~) dtn , :::: 

t' - t :rc 
( 1) 

a 

with Im ~(t) ;? 0 for a~ t < oo • It follows that 

g( t3) ~ 
s(t1 ) g(t2) (t2 - t 1) 

< ' (t2 - t
3

) s(t2) + Ct
3 

- t 1) s(t1) 
(2) 

and where the ~ sign holds for 

t
3 
~ t 1 or t

3 
;? t 2 , and the ~ sign for t 1 ~ t

3 
~ t 2 • Proof: From 

Eq. ( 1) we have 
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Im !;( t) > 0 for Im t > 0 , 

and 

Re !;( t) > o 

for t real and -oo < t < a • 

Im !;( t) = 0 

Therefore the function 

TJ( t) = -1/s< t) ( 3) 

has no singularities except for a right-hand cut and a pole at infinity, and 

can be represented as7 

(X) 

,(t) = C + At + J 
a 

1 + t't 
t' - t 

¢(t' )dt' ( 4) 

with c, A, and ¢(t) real, and ¢(t) 3 0 • From Eq_. (4) it follows for 

t real and -oo < t < a that 

ll"(t) ~ 0 • (5) 

Therefore, because Tl(t) is a concave function for t <a , we have 

( 6) 

for t 1 < t 2 , t 1 , t 2 and t
3 
~ a • Here again the ~ sign holds for 

t
3 
~ t 1 or t

3 
~ t 2, and the ~ sign for t 1 ~. t

3 
~ t 2 • Eg_uation (2) 

follows trivially from Eg_s. (6) and (3). This completes the lemma. 
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We now apply the above lemma to the function a(t)- a(oo). In 

,., particular, if' we let t 1 ~ t 2 == 0 and t
3 

= t in Eq. (2), we obtain for 

-oo < t < 0 

or 

a( t) > a( oo ) + [a(o) -a(oo)]
2 

a( o) - a( oo ) + a' ( 0) it i 

1 

{
[a(o) - a(oo)]

2 
_ a(o) 

a(t) - a(oo) 

== L(t) ( 7) 

(8) 

In the case of the Pomeranchuk trajectory, relations (7) or (8) plus the values 

of a(t) obtained in the high-energy· experiments provide a lower bound for 
8 

a'(O) • 

Our aim is now to study what restrictions on the energy and width of a 

resonance follow from a given value of a 1 (0) • The idea is that the trajectoryy 

which has a positive curvature up to threshold, has to stay above its tangent 

line at t == 0 until i.ts imaginary part has become appreciably large, and that 

when this happens, the Regge pole is so far from physical values of 2 that 

it is likely to give rise either to a very broad resonance or to no resonance 

at all. The detailed argument is as follows: We want to find under what 

restrictions it is possi.ble to have a resonance at a value tR of the energy­

squared such that 

(9) 

i.e., 

'tn > [ Re a( ~) - a( o) ] fa' ( o) • ( 10) 

We know that Re a(tR) has to be equal to the spin of the resonance in question, 

but that this condition is not sufficient to have a resonance. In addi.tion, our 
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experience with the nonrelativistic case shows that at t = tR , Rea must 

still be increasing steeply as a function of t , and Im a must still be 

small. The width of the resonance in the energy variable is related to these 

two properties and is given approximately by the function6 

1 Im a(t) 

Vt d 
dt Re a(t) 

t=t 
R 

( 11) 

We require that the trajectory considered present these two characteristics 

at t = ~ by assuming 

Re a(t) has at most one inflection point for t < tR 

t - t 
Im a(t) ~ Im a(~) ~ _ t~ 

9 

(H3) 

(H4) 

From assumption (H3) and the fact that a"(t) > 0 for t ~ t 0 it follows that 

d 
dt Re a(t) < [Re a(tR) - a(O)]/~ ( 12) 

for the values of ~ satisfying relation (10)., Our next step is to put a 

lower bound to Im a(~) such that, combined with Eqs. (11) and (12), it will 

provide a restriction on the permissible values for r(~) . It is clear that 

such a bound for Im a(tR) exists and is larger than zeroj because if we had 

Im a(~) = 0 , from assumptions (Hl), (H2), and (H4) all the derivatives of 

Re a would be positive up to t = tR , and therefore Re a would not satisfy 

relation (9). This suggests splitting a into two parts, ~ and 7, one 

of which has a zero imaginary part for t < tR • Therefore, we define 
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Im 13(t) = Im a(t) for t 0 < t < tR 
( 13a) 

== Im a(2~ - t) for tR < t < 2~ - t 0 

13(t) 1 ?-to Im 13( t') dt' -
1( t' - t ( 13b) 

to 

and 

r(t) == a(t) - 13(t) . ( 14) 

From the above definitions it follows that 13(oo) = 0, 13(0) > 0, 13(tR) == 0 

r(oo) == a(oo) , r(o) < a(o) , r(tR) = Re a(tR) • In order to have 

Im r(t) ~ 0 on the real axis we assume further10 

Im a(t) ~ Im a(2~ ~ t) for (H5) 

which is consistent with the properties discussed above. Thus we can apply our 

lemma to the function y(t) - y(oo) • We let t 1 ~ t 2 = 0 and t
3 

= t ~a= tR 

in Eq. (2) and obtain 

r(t) - r(oo) ~ 
2 [r(o)- r(oo)] 

r(o) - r(oo) - tr'(O) 

The denominator in this expression is positive because it is so at t == 0 and 

r(t) is finite for t ~tR • We can therefore write for t == ~ 

[a:( o) - a( oo ) ][ Re a:( tR) - 7 ( 0) ] 
< 

~ [ Re a:(~) - a( oo ) ] 

( 15) 
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Now, from assumption (H4) we have 

and 

where 

tnc~~ tq)] BO(tR) 
1 [ c~-t~ + 2tR = 1C(~ - to) -to .en t 

0 

and [ t 2 

] Bl(tR) 
1 .tn R = 1C(tR - to) t 0(2tR - t 0 ) 

It then follows that 

and (16) 

From relations (15) and (16) we obtain a lower bound for Im a(tR) o This 

result combined with relations (11) and (12) gives the final bound 

(17) 

We want to apply the above results to the Pomeranchuk trajectory, 

which controls the high-energy behavior of total cross sections and therefore 

satisfies the condition3,ll 

a(O) = 1 • (H6) 
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We also take 

o:(co) ? -1 (H7) 

as suggested by the work of Gribov and Pomeranchuk~ 12 ·It can be easily veri-

fied that the bounds given by relations (7), (8), and (17) are increasing 

functions of o:( oo) • Therefore we replace in these relations a( co) = -1 

and our results are valid a fortiori if a(oo) > -1. Finally we put t 0 = 4m~2 

and Re a(tR) 

from Eq. (17) 

2 as is the case for the Pomeranchuk particle. We then obtain 

for ~ > l/0: I ( 0) o 

( 18) 

In Fig. 1 the function L(t) from relations (7), (H6), and (H7) is 

plotted for o:'(O) = 1/80, 1/50, and 1/35 • The values of o:(t) obtained 

by the Brookhaven and Cornell groups from the analysis of the high-energy data 

are also indicated.13' 14 If we apply the inequality (8) to the three values 

for lower It I , we obtain a 1 ( 0) > 1/29 with 9~ confidence. Eventually 

one may expect this bound to be lowered by the presence of other than 

statistical errors in these data. However, the values of ~(tR) obtained 

from Eq. (18) and plotted in Fig. 2 show that unless a'(O) is less than 

1/80, then r(8o) has to be much larger than t~e experimental width of the 

0 f resonance. Therefore, within the scheme presented here, and provided the 

analysis of the high-energy pp data is accepted, this resonance cannot lie 

on the Pomeranchuk trajectory. The Pomeranchuk particle might be found at a 
2 15,16 

value of t smaller than or approximately equal to 30m~ • Alternatively 

one may conclude that other £-plane singularities for pp scattering (e.g., 

the P' and ru Regge poles) have conspired to simulate a falsely large slope 

for the Pomeranchuk trajectory. 
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to a boson Regge trajectory. We call t the value of t at which a 
g 

vanishes. In Eq. (2) let t 1 = tg , t 2 = 0 , and t
3 

= t ; then for 

t < t < 0 we have g 

t a( oo )[a( 0) - a( oo ) ] 
a( t) < a( oo ) + . ~ta( o) + t a( oo ) • 

g 
(Fl) 

Let t
1 
~ t 2 = t , t

3 
= 0 ; it follows that, for -oo < t < 0 , 

a'(t) < [a(t) - a(oo)][a(t) ~ a(o)]/t[a(o) - a(oo )] 

Finally, from relations (3) and (5) we obtain for t < t 0 

a" ( t) > 2 [a' ( t) ] 2 
a( t) - a( oo) • 
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Re a(t0 ) > 1 [see A. 0. Barut and D. E. Zwanziger, Phys. Rev. 127, 974 

(1962)]. Moreover, the maximum for Re a(t) is expected to occur at 

approximately the same energy as the inflection point for Im a(t). 

Therefore, as Re a(t) has not yet reached its maximum at the resonance 

energy, Im a(~) is presumably still concave, which is stronger than 

required by the linear assumption (H4). Obviously this hypothesis has to 

be modified for trajectories such that Re a(t0 ) < 0.5. 

10. A weaker bound may be chosen without modifying the essence of our results. 

However such a change is hardly expected to be necessary, and it would 

make our proof more complicated. 
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angular distribution around the p peak that can be attributed to an 

I = 0 state because they were not present in the analogous experiment 

+ 0 - 0 with ~ ~ or ~ ~ On the other hand, Dr. Takeda has pointed out 

to me that if the Pomeranchuk particle has about the same energy as the 

p meson, its width is likely to be less than the experimental resolution, 

on the basis of the measured cross sections for + p and 0 
p 

.A. Ahmadzadeh and I. Sakmar have also suggested the possible connection 

of the Pomeranchuk particle with other experimental information for 
2 4 

t < 30m • 
~ 

16. The possibility of the Pomeranchuk trajectory "bending down" soon and 

never reaching 2 cannot be excluded. However, this is not likely to occur 

if the quantum numbers of the f 0 have been assigned correctly, which would 

imply that another trajectory with the same quantum numbers as the 

Pomeranchuk, but below it at t = 0, is able to reach Re a= 2 • 
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FIGURE LEGENDS 

Fig. 1. Curves a, b, and c are lower bounds for a(t) given by Eqs. (7), 

(H6), and (H7) for a•(o) ~ 1/80, 1/50, and 1/35, respectively • 

The experimental data are from Ref. 13. 

Fig. 2. Curves a, b, and c show lower bounds for r(~) given by Eq. (18) 

for a'(O) ~ 1/80, 1/50, and 1/35, respectively. The experimental 

0 values for the energy squared and width of the f are indicated 

(Refs. 1 and 2). 
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This report was prepared as an account of Government 
sponsored work. Neither the United States, nor the Com­
m1ss1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­

mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on beha1 f of the 
Commission'' includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 
of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 






