
Lawrence Berkeley National Laboratory
Recent Work

Title
DISCRETE ANALYSIS OF STOCHASTIC NMR - I

Permalink
https://escholarship.org/uc/item/665297ps

Authors
Wong, S.T.S.
Roos, M.S.
Newmark, R.D.

Publication Date
1989-03-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/665297ps
https://escholarship.org
http://www.cdlib.org/


LBL-27008 ~- ~ 
Preprint 

l1t1 Lawrence Berkeley Laboratory 
iii:~ UNIVERSITY OF CALIFORNIA 

Submitted to Journal of Magnetic Resonance 
RECEIVED 

LAWRENCE 
BERKELEY LABORATORY 

Discrete Analysis of Stochastic NMR- I 
JAN 3 1990 

LIBRARY AND 
DOCUMENTS SECTION 

S.T.S. Wong, M.S. Roos, R.D. Newmark, and T.F. Budinger 

------~--
--~~~-~-----~ 

March 1989 

TWO-WEEK-LOAN COPY 

This is a Library Circulating Copy 
which may be borrowed for two weeks. 

I 
i 
I 
I 
! 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



• 

.. 

Discrete Analysis of Stochastic NMR - I 

S.T.S. Wong, M.S. Roos, R.D. Newmark and T.F. Budinger 

Donner Laboratory, Lawrence Berkeley Laboratory, University of California, 

Sam T. S. Wong 

Department of Radiology 

Brigham and Women's Hospital 

Harvard Medical School 

75 Francis St. 

Boston, MA 02115 

Berkeley, CA 94720 



Abstract 

Stochastic NMR is an efficient technique for high field in vivo imaging and spectroscopic 

studies where the peak RF power required may be prohibitively high for conventional pulsed 

NMR techniques. This paper presents a theoretical analysis of a stochastic NMR spectroscopy 

experiment that consists of exciting the spin system with RF pulses where the flip angles or 

tlle phases of the pulses are samples of a discrete stochastic process. The experiment is for­

mulated as a stochastic difference equation which is then converted to ordinary deterministic 

difference equations describing the input-output cross-correlation, average signal power and 

signal power spectrum. The solutions of these equations are used to study spectral distortions 

as the spin system is saturated with a high power excitation, to obtain an optimum excitation 

power level that gives the maximum signal-to-noise ratio and to evaluate the contribution of 

systematic noise to the overall signal-to-noise ratio of the experiment. The specific case of 

random flip angle excitation is analyzed. Results Sh()W that high power excitation may cause 

line broadening, a notch artifact and non-uniform response across the spectrum. Experimental 

results are also presented to show that the discrete analysis provides an accurate description 

of practical experiments. 
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Introduction 

In a conventional pulsed Ff-NMR experiment, a short (1 to 100 J.lSec) RF pulse is usually repeated 

at intervals comparable to the longitudinal relaxation time constant T1 (typically 10-2 to lOZ sec­

onds). This corresponds to a very small duty cycle for the RF amplifier. The power needed for an 

NMR experiment is determined by the excitation bandwidth, which is proportional to the range of 

chemical shift in the sample, which in turn is proportional to the magnetic field. The excitation 

bandwidth also determines the duration of the RF pulse in pulsed Ff-NMR. For a given range of 

chemical shift, an increase in the static field strength corresponds to a decrease in pulse duration. 

This implies that the peak RF power must be increased in order to deliver the same amount of RF 

energy to the sample. It may be difficult or unsafe to attain the necessary power in experiments 

with large conducting samples at high field. For example, a 20J.lsec RF pulse for 13 C spectroscopy 

of the human head in a 4.7 Tesla static field requires a peak power of approximately 400KW. 

In 1966, the same year that he introduced Ff-NMR, Ernst (1) also introduced the use of noise­

like RF excitation. Experiments that involve noise-like RF excitation are a sub-class of what we 

will call stochastic NMR. The noise-like RF delivers the excitation energy more evenly in time 

than conventional pulsed Ff-NMR, resulting in a reduction of the peak RF power requirement by 

several orders of magnitude. This makes stochastic NMR an efficient technique for high field in 

vivo imaging and spectroscopic studies where the peak RF power required may be prohibitively 

high for conventional pulsed NMR techniques. 

The impulse response of an unknown linear system is given by the cross-correlation of the 

input and output of the system when the system is excited by zero mean Gaussian white noise 

(Fig. 1a). Ernst (2) and Kaiser (5) applied this principle to stochastic NMR independently in 1970. 

The NMR spin system was excited by a stochastic RF signal. The first order input-output cross­

correlation was used to approximate the Free Induction Decay (FID) obtained by a conventional 
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pulsed Ff-NMR experiment (Fig. lb). The Fourier transform of the cross-correlation was shown 

to be an estimate of the spectrum. Ernst showed that stochastic NMR not only eases some of 

the difficulties in instrument design, but also provides a controllable resolution and a sensitivity 

similar to those of conventional pulsed Ff-NMR. Ziessow (3, 4) and Kaiser (7) have shown that 

with binary maximum length sequence (MLS) excitations, the input-output cross-correlation could 

be processed by Hadamard transforms which required no multiplication, and hence is even faster 

than the FFf. In addition, the periodicity of the binary MLS allowed coherent signal averaging 

to be used to improve the SIN ratio. Blumich and Ziessow (6) and Kaiser and Knight (8,9) have 

shown that the data obtained with stochastic excitation can also be used to obtain multi-dimensional 

spectroscopic data. This was demonstrated experimentally by BlUmich and Ziessow (1 0-16). 

So far, all the analyses of the stochastic experiment have assumed continuous random exci­

tation (1-5, 8-9, 17). Continuous random excitation is undesirable from a practical experimental 

point of view since the RF transmitter is usually gated off during data sampling in order to avoid 

saturation of the receiver. The discrete stochastic experiment, shown in Fig. 2 is more practical: 

A stochastic sequence of RF excitations, a( n ), is applied at intervals of TR seconds and one data 

point is sampled after every RF pulse. The theoretical analysis based on continuous excitation is 

at best an approximate description of this experiment. It is the aim of this paper to characterize the 

discrete stochastic experiment, obtaining analytic results that correspond exactly to experiments as 

they are implemented. 

The driven NMR spin system is intrinsically nonlinear. The magnetization response is a non­

linear function of the RF excitation. The FID that results from a single one pulse excitation is 

proportional to the linear component of the nonlinear magnetization response. When a sequence 

of pulses are applied, the response after the second pulse will no longer be a pure FID. This is 

why pulsed Ff-NMR requires a considerable time delay after data sampling before the next RF 

., 
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pulse is applied. In stochastic NMR, RF pulses with low power are applied in rapid succession. 

The spin system can easily be pushed towards the nonlinear regime. The first order input-output 

cross-correlation shown in Fig. lb will not always give the FID. The objective of this paper is to 

understand the performance of the discrete stochastic NMR spectroscopy experiment by analyzing 

the following aspects of the experiment: (1) The conditions under which the firstorderinput-output 

cross-correlation will be a faithful estimate of the FID obtained by a conventional pulsed FT-NMR 

experiment, (2) the saturation behavior when the excitation power is high, (3) the experimental 

parameters that maximize the SIN ratio, and (4) evaluation of the signal power spectrum as an 

alternative estimate of the real spectrum. 

In all previous analyses, the RF vector w~s assumed to lie along one axis in the rotating frame 

with the flip angle being random. This type of excitation will be denoted as random flip angle 

excitation. The analysis in a later section of this work will show that this type of excitation causes 

undesirable spectral distortions as the RF excitation power is increased. This result will be used 

to explain discrepancies and artifacts in earlier results (9,17). A subsequent paper (Part II (18)) 

will analyze two new types of random RF excitations that do not exhibit such artifacts. One type 

will be denoted as random phase excitation wherein the RF pulses have the same flip angles but 

the phase of the RF vector is random. The other type is denoted as random quadrature excitation 

where the RF vector consists of two orthogonal components that are statistically uncorrelated but 

have identical probability distributions. "' 

So far, binary random sequences and discrete Gaussian white noise are the two most favorable 

stochastic sequences to be employed in stochastic NMR experiment. Binary random excitation is 

popular because it can be approximated by pseudo-random binary MLS, it is easy to implement 

in hardware (19) and it allows the Hadamard transform to be used to speed up the calculation 
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of cross-correlations. Gaussian white noise has statistical properties that simplify the theoretical 

analysis tremendously. This paper will show that the performance of these two types of stochastic 

._, sequences is very similar. 

It is assumed throughout this work that the spin system consists of isolated spin 1/2 nuclei, 

so that the Bloch equations are applicable. The duration of each RF pulse is assumed to be short 

compared to the relaxation time constants, T1 and T2. This assumption allows the effects of each 

RF pulse to be represented by the multiplication of the magnetization vector with a rotation ma­

trix. The RF pulses are also assumed to be sufficiently short that off resonance dephasing of the 

magnetization is insignificant during the RF pulses. 

Derivation of explicit expressions describing th~ stochastic response and reconstructed spectra 

is facilitated by the assumptions that the excitation sequences are wide-sense stationary and that 

NMR spin system is stationary. A stationary spin system in this context means that the spins do not 

experience a change in spin characteristics, e.g. 71, T2 and resonance offs~t. during the experiment. 

Such a change of characteristics might be caused by macroscopic motion of the sample in the 

presence of a magnetic field gradient, application of a time varying gradient or a fluctuation in the 

static magnetic field. A stochastic sequence x( n) is said to be wide-sense stationary if it possesses 

finite second moments and its auto-correlation (x( n )x• ( m)) is a function only of the absolute 

difference In- mj. A variety of algorithms are available to generate pseudo-random sequences 

that are wide-sense stationary (20). 

A third assumption, required for data reconstruction, is ergodicity. Calculations of the input-

output cross-correlation, average signal power and signal power spectrum all involve taking the 

expectation of stochastic sequences. The expectation can be obtained by ensemble averaging. In 

terms of the stochastic NMR .experiment, this means repeating the experiment many times and 

'i'~ 
',J,o.i 
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taking the average of the results from each run. However, there is a waiting period at the beginning 

of the experiment for the average magnetization to acquire a steady state. The data collected in 

this period cannot be used in the reconstruction. This loss of experiment time can be avoided if the 

ensemble average is replaced by a time average. For example, the auto-correlation of the stochastic 

process x( n) is approximated by a finite sum over the time index n: 

1 N-1 

(x(n)x*(n- m)) ~ N 2: x(n)x*(n- m), 
n=O 

(1] 

where the symbol * is the complex conjugate operator. The process x ( n) is said to be ergodic if the 

approximation becomes an equality when N approaches infinity. Unfortunately, it is very difficult 

to show that a process is ergodic. However, computer simulated and experimental results for the 

stochastic NMR experiments with wide-sense stationary excitations using time averaging show 

excellent agreement with theory based on expectation. This implies that the ergodic assumption is 

not totally unjustified. The choice of N will be discussed in Part II (18). 

Discrete Formulation for Generalized Excitations 

This section will provide an analysis for a generalized stochastic RF excitation. The results of the 

generalized analysis will be made specific in the next section for the case of random flip angle 

excitation. The approach taken for the analysis is shown as a block diagram in Fig. 3. In the block 

diagram M(n) = [Mx(n),My(n),Mz(n)JT is the magnetization vector immediately after the nth 

RF pulse. The complex quantity Mxy( n) == Mx( n) + i My( n) is the transverse magnetization. 

Quadrature detection gives a signal proportional to Mxy( n ). From the Bloch equation, a stochastic 

difference equation describing the pulse-; to-pulse behavior of M ( n) is derived. Instead of solving 

this stochastic difference equation, it is combined with the excitation sequence a( n) to give a 

deterministic difference equation describing the cross-correlation of M(n) and a(n), which can 

then be solved to obtain the input-output cross-correlation. The Fourier transform of the cross­

correlation gives an estimate of the spectrum. The estimate can be used to study the saturation 
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effects as the excitation power is increased. 

From the stochastic difference equation an equation of the covariance matrix of M ( n) can be 

obtained. This equation is a set of six simultaneous equations with six unknowns which are the 

variances and covariances of Mx(n), My(n) and Mz(n). The average signal power is the sum 

of the variances of Mx(n) and My(n). A plot of the average signal power as a function of the 

excitation power will show the excitation power level that gives the maximum SIN ratio. The 

stochastic difference equation can also be turned into a difference equation for the auto-correlation 

matrix of the magnetization vector M ( n). The sum of the first two diagonal elements of the auto­

correlation matrix is the auto-correlation of the transverse magnetization. The Fourier transform 

of this sum gives the signal power spectrum. 

Consider the stochastic experiment depicted in Fig. 2 where the sample is excited by an RF 

pulse every TR seconds and one signal data point is sampled right after the pulse. With the as-

sumption of isolated spins the analysis need concentrate on only one spin species with relaxation 

parameters T1 and T2 and equilibrium magnetization Me. Assume that the RF vector lies only in 

the transverse plane and is proportional to the excitation sequence a(n) = [ax(n), ay(n), o]T. 

Without loss of generality, a( n) will be regarded as the RF vector. The average power of a( n) will 

be treated as the average RF power. Furthermore, a( n) is assumed to be an ergodic and wide-sense 

stationary stochastic sequence with mean J.L01 = [J.Lx, f.Ly, O]T and auto-covariance 

[2] 

where C 01 is the covariance matrix of a( n) and bnm is the Kronecker delta function. The trace of 

COt is the average random excitation power and is denoted as 

(3] 

With the right choice of constant of proportionality a can be regarded as the root mean square 

(RMS) flip angle and is expressed in radians in all the calculations. However, it is usually referred 

~ 

•. ·l 
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to in this paper in degrees. 

Assuming that the RF pulse duration is short compared with the relaxation time constants 1i and 11 

T2, the Bloch equations can be solved for the magnetization vector as it varies from one RF pulse 

to the next. The effects of the nth RF pulse can be summarized by a rotation matrix Ra ( n) which 

is a function of a( n ). Denote the amount of interpulse dephase of the transverse magnetization 

as (). It is a function of factors such as resonance offset, chemical shift, field inhomogeneities or 

applied magnetic field gradients. For the rest of this analysis assume that resonance offset is the 

only source of interpulse dephase. For a spin v Hz above resonance, 8 is given by 

and the effect of the interpulse dephase is summarized by the matrix 

~ cos 8 E2 sin 8 0 

Ro = -E2 sin 8 E2 cos 8 0 

0 0 

[4] 

where E 1 = e-TR!Tt and E2 = e-TR/T2. The pulse-to-pulse trajectory of the magnetization vector 

is described by the following stochastic vector difference equation 

M(n) = Ra(n) [Ro M(n- 1) + C], [5] 

where C is a constant vector given by 

0 

C= 0 [6] 

Me(l- Ei) 

and Me is the equilibrium magnetization of the sample in the static main field. 

The matrix Ro has eigenvalues with magnitudes smaller than one. This fact together with 

Eq. [2] imply thatthe mean (M(n)) and the covariance (M(n) MT(n)) will approach steady state 
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values for large enough n, and the magnetization vector M ( n) becomes a wide-sense stationary 

stochastic sequence. In addition, Eqs. [2] and [5] imply that Ra(n) and M(m) are uncorrelated 

·o~ for all m less than n. Taking the expectation of both sides of Eq. 5 and rearranging terms gives 

[7] 

where I-'M= (M(n)), 1-'n = (Ra(n)) and I is the 3x3 identity matrix. 

The first order input-output cross-covariance k1 ( m) is an estimate of the FID. It is defined as 

the cross-covariance of the complex input axy ( n) = [ax( n) + i ay ( n)] with the complex transverse 

magnetization Mxy( n) 

k1(m) - -\ ((Mxy(n)- (Mxy(n))) (axy(n- m)- (axy(n- m)))*) 
a 

- -\nt [(M(n) aT(n- m)) ~I-'M J.t;] B, 
a 

[8] 

where B = [1, -i, O]T and the superscript tis the complex conjugate transpose operator. k1(m) 

is independent of n because both the input and the output sequences are wide-sense stationary. 

When m is less than zero, a(n- m) and M(n) are uncorrelated and so (M(n) aT(n- m)) = 

(M(n))(a(n- m))T, i.e., k1(m) = 0. This is expected since the spin system is a causal system. 

Form larger than zero, Eq. [5] gives 

(M(n) aT(n- m)) -I-'M 1-'; 

- J.tnRe [(M(n- 1)aT(n- m)) -I-'M J.t;] 

- J.tnRe [(M(n- 1) aT((n- 1)- (m- 1))) -J.LM JL;] 

- J.tnRe [(M(n) aT(n- (m- 1))) -J.LM J.t;], [9] 

where the fact that (M(n) aT(n- m)) is wide-sense stationary has been used. This is now an 

ordinary deterministic difference equation for (M(n) aT(n- m)) -I-'M 11-; with index m. The 

solution is 
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Combining Eqs. [8] and [10] gives 

kt(m) = ~ Bt (J.LRRe)m AB, 
a 

[11] 

where 

A= (M(n) aT(n)) - J.LM J.L~. [12] 

The Z -transform of k1 ( m) is defined as 

00 

Z{kt}(z) = L kt(m)z-m. [13] 
m=O 

The summation is not performed over negative m since k1 ( m) is zero for negative m. The product 

Ra( n) Re represents rotations and relaxation of the magnetization vector so its eigenvalues are 

less than one and (J.LR Re )m approaches zero as m approaches infinity. Substituting kt ( m) from 

Eq. [11] into Eq. [13], the Z-transform of k1(m) is given by 

Z { kt-}(z) ~nt 'f(J.LR~)mz-m AB 
a m=O 

- ~Bt (I- J.LR~z- 1 )- 1 AB. 
a 

[14] 

An estimate of the spectrum is given by the inverse Fourier transform of k1 ( m ), which can be 

obtained by evaluating the Z-transform of k1 ( m) on the unit circle of the complex Z-plane: 

Kt(w) - Z{k1}(e-iwTR) 

- ~Bt (I- J.LRRe ei.wTR)-1 A B. 
a 

[15] 

This is a description of the reconstructed spectrum for a general excitation sequence a( n ). 

The average signal power is defined as 

P - (M;(n) + M;(n)) 

- nt (M(n) MT(n)) B 

- Bt(MMT)B. [16] 
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The signal correlation matrix, ( M MT), is independent of n because M ( n) is wide-sense station­

ary. From Eq. [5] (M MT) is given by the solution of the matrix equation 

(M MT) = (Ra(n) Re (M MT) Rr R;(n)) + (.Ra(n) Re I-'M CT R;(n)) 

+(Ra(n) c p.LRr R;(n)) + (Ra(n) c cT R;(n)), 

which is a set of six simultaneous equations with six unknowns. 

The covariance of the complex signal Mxy is defined as 

r(m) - ([Mxy(n)- (Mxy(n))] [Mxy(n- m)- (Mxy(n- m))]•) 

- Bt [(M(n) MT(n- m))- I-'M J.LL] B. 

[17] 

[18] 

Form >_ 0, multiplying both.sides of equation Eq. [5] with MT(n- m), t~ng the expectation 

and then subtracting I-'M p.'f-t gives 

·T T (M(n)M (n- m))- I-'M I-'M 

- 1-'R Re [(M(n- 1) MT(n- m)) -I-'M J.L!'] 

- J.LRRe [(M(n- 1) MT((n- 1)- (m- 1)))- I-'M J.L!'] 

- J.LRRe [(M(n) MT(n- (m- 1)))- I-'M p.;]. [19] 

Once again, an ordinary deterministic difference equation is obtained. The solution is 

Similarly, form $ 0, 

The Z-transform of r(m) is then given by 

00 

Z{r }(z) = I: r(m) z-m 
m=-oo 



- Bt [(I- J.LRR.oz-1)-1 ((M MT)- J.LM J.L'ft) 

+((M MT)- J.LM p.'ft) (I- J.L~RJ z)-1 

-((M MT)- J.LM J.L'ft)] B. 

12 

[22] 

The power spectrum is the Z -transform of r( m) evaluated on the unit circle of the complex Z­

plane: 

S(w) - Z{r}(e-iwTR) 

Bt [(I- J.LR Ro eiwTR)-l ( (M MT) - J.LM J.L'ft) 

+((M MT)- J.LM J.L'ft) (I- JL~RJ e-iwTR)-l 

-((M MT)- J.LM J.L'ft)] B. 

Random Flip Angle Excitation 

[23] 

In this section. it is assumed, without loss of generality. that the RF e~citation vector lies only along 

the x-axis of the rotating frame. The excitation vector a( n) has only one non-zero component, 

ax( n ). satisfying two conditions. The first condition is that ax( n) has an even probability density 

function. i.e .• positive and negative flip angles are equally likely. This implies that ax( n) has a 

zero mean. For the case of non-zero mean excitation see reference (21). The second condition is 

that ax( n) represents the random flip angles of the RF pulses with a mean square value of o?- and 

The matrix Ro( n) is 

1 0 0 

Ro(n)= 0 cosax(n) sinax(n) 

0 -sinax(n) cosax(n) 
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which represents a rotation of the magnetization vector about the x-axis of the rotating frame for 

ax( n) degrees. The probability density function of ax( n) is assumed to be even, so (sin ax( n)) = 0 

and (cos ax(n)) = C,Oa(1), where C,Oa(t) = (eia,(n)t) is the characteristic function of the random 

variable ax( n ). The characteristic function of a Gaussian white noise sequence satisfying the 

above conditions is C,Oa(t) = e-a2
t'
1
12• A random binary sequence taking on two values, a and 

-a, each with probability 1/2 will also satisfy the above conditions. Its characteristic function is 

C,Oa(t) =cos( at). 

The mean of the rotation matrix Ra( n) is 

1 0 0 

1-'R = 0 C,Oa(1) 

0 0 

0 

C,Oa(1) 

Equation [7] gives the mean magnetization vector 

0 
Me(1- Et)C,Oa(1) O 

I-'M= 1- Et C,Oa(1) 

The matrix A from Eq. [12] is 

A= -Me(1- Et)ci'a(1) 
1- Et C,Oa(1) 

1 

0 0 0 

1 0 0 

0 0 0 

[24] 

[25] 

[26] 

where cf'a(1) is the first derivative of C,Oa(t) evaluated at t = 1. Equation [15] can now be evaluated 

to give an estimate of the spectrum 

Kt(w) = -iMe(1- Et)cf'a(1) 1- ~ei(O+wTR) 
a 2[1-EtC,Oa(1)] D(w) 

[27] 

where 
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The first part of the right side of Eq. [27] is dependent on T1 and the excitation power, but inde­

pendent of w and T2• Define the second part as 

1 _ Ez ei(9+wTR) 

F(w) = D(w) . [28] 

F( w) has T2 dependence, but no T1 dependence. The function F( w) is periodic with a period of 

211' /Tn rad/sec, or 1 /Tn Hz. Integrating F( w) over one period gives 211' /TR, which is independent 

ofT2 and the excitation power. Therefore, the integrated line intensity is purely determined by T1, 

TR and the excitation power. The line shape is determined only by Tz, Tn, Band the excitation 

power. In conventional Ff-NMR with Tn comparable to T1, the integrated spectral intensity is also 

determined by T1, Tn and the excitation power. However, the line shape is independent of B, i.e., 

independent of resonance offset. Figure 4a shows the line shape (the absorption part) of K 1 ( w) 

for Gaussian white noise excitations with different RMS flip angles, i.e. with different excitation 

power. Figure 4b is a plot of the corresponding integrated spectral intensity as a function of the 

RMS flip angle. The plot is normalized by the integrated spectral intensity at a = 0°. This is made 

possible by the fact that K 1 ( w) is well defined even when a = 0. Figure 5 shows the shape of lines 

at different resonance offset frequencies. These plots show the following saturation characteristics: 

(1) At low excitation power the line shape resembles a Lorentzian line, (2) the line width (measured 

at half height) increases as the excitation power is increased, (3) spectral distortion appears at the 

negative of the resonance offset frequency as the excitation power is increased, (4) the integrated 

line intensity decreases rapidly as the excitation power is increased and (5) the response across the 

spectrum is non-uniform in the sense that a line at resonance has a width at half height different 

than a line off resonance. 

To understand the saturation characteristics, consider the line shape function F( w) defined in 

Eq. [28]. For both the Gaussian white noise sequence and the random binary sequence, <pa( 1) 
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approaches unity as the excitation power c2- approaches zero. F( w) then reduces to 

[29] 

which· approximate a Lorentzian line with line width 1j1rT2 Hz. A Lorentzian line with the same 

line width is 
1 

1- i(w- 0/TR)Tz. 

Figure 6 shows that the only difference between F1 ( w) and the Lorentzian line is a slightly larger 

baseline offset in F1 ( w). The larger baseline offset is a consequence of aliasing due to under sam­

pling of the random magnetization response. The narrower Ft ( w) is relative to the total bandwidth 

1/TR, the smaller the baseline offset will be. This is usually the case in spectroscopy. Therefore, 

any line in the form of F1 ( w) will be referred to as a Lorentzian line in this paper. With the as-
' 

sumption that the interpulse dephase is only caused by the resonanc~ offset, 0 = 21rvTR, .the line is 

centered at v Hz. The reconstructed spectrum at low excitation power, e.g. the line with a = 1.15° 

in Fig. 4, resembles that obtained by a conventional FT-NMR. 

As the excitation power is increased, <pa( 1) decreases from unity. The line shape becomes 

dependent on the resonance offset, v. Figure 5 shows the shape of the absorption part of K 1(w) 

for lines at different resonance offsets. When the line is on resonance, i.e. 0 = 0, F( w) reduces to 

1 
Fz(w) - -------~--=--==­- 1- Ez<pa(1) eiwTR 

[30] 

which is also a Lorentzian line centered at the origin. The line width in Henz is now increased to 

1 1 
-ry:;-- -T log<pa(1). 
7r.L2 7r R 

[31] 

For lines not at resonance, F(w) cannot be simplified. At w = -0/TR, the numerator of F(w) 

reduces to (1- .Ez). In general TR is much smaller than Tz, as a result Ez is very close to unity and 

F( w) vanishes at w = -0 /TR, the negative of the resonance offset. This creates a notch artifact for 
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lines with a resonance offset which is small relative to the line width (Fig. 5). When the resonance 

offset is large relative to the line width and such that 

2V'Pa(1) 
cosB< 1 +'Pa(1)' 

the notch artifact becomes less significant. However, the line shape is now given by 

where 

1 
F3(w) ex-----===----

1- EzV'Pa(1) ei(wTR-e') 

B'=cos-1 [cosB 1 +'Pa(1)]. 
2Jcp01 (1) 

(32] 

(33] 

The line is Lorentzian centered at a new resonance offset v' = fJ' /27rTn. The line width in Hertz 

is 
1 1 

-;:;;-- -
2 

T. logcpa(1), 
7r.L2 7r n· 

(34] 

which means that the line broadening is half that of the line at resonance. Consequently, the line 

height is about twice that at resonance (Fig. 5). For Gaussian white noise exCitation and random 

binary excitation, the function cp01 ( 1) is smaller than unity for a < 90° and is a monotonically 

decreasing function of a. Equations [31] and [34] show that the line width at half height increases 

as the excitation power, a, is increased. 

The foregoing results explain the discrepancy between the results obtained by Bartholdi et 

a/. (17) and those of Knight & Kaiser (9). Bartholdi eta/. analyzed the experiment with continuous 

Gaussian white noise excitation. However, they did so only for spins at resonance. They obtained a 

Lorentzian line with a line broadening of u2 /27r Hz, where u2 is the excitation power per unit time. 

In the analysis above, a Gaussian white noise excitation has cp01 ( 1) = e-a
2 12• Assume Tn to be very 

small relative toT 1 and define u2 = a 2 /Tn, Eq. [31] then gives the same line broadening for spins 

at resonance. Knight and Kaiser also obtained results based on continuous excitation. However, 

they used a laboratory frame where each spin is offset by its .Larmor precession frequency. They 
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obtained a smal1line shift and a line broadening of u'l/47r Hz. For spins off resonance, Eq. [34] 

gives the same line broadening and Eq. [33] also predicts the same line shift The results of the 

two groups of researchers are different halves of the complete solution. 

For the analysis of the average signal power write ( M MT) as 

The individual components are obtained by solving Eq. [17]: 

rxx _ M2(1 -E)21+E1c.pa(1) Eisin
2

8(1-c.pa(2))(1+.EJic.pa(1)) 
e 

1 1 - E1 tpa(1) 2Q ' 
[35] 

_ M2(
1

-E)21+E1c.pa(1) Ei(1-Ei)sin8cos8c.pa(1)(1-c.pa(2)) 
rxy e 

1 1- E1 tpa(1) 2Q ' [36] 

- M2(1- Et)2 1 + E1 c.pa(1) 
ryy e 1-E1c.pa(1) 

(1 - c.pa(2) )(1 - EJi cos2 8- Ei cos 28 c.pa(1) + E~ cos2 8 c.pa(1)) 
X 2Q . . [37] 

and 

rxz = ryz = 0 [38] 

where 

1 
Q - (1 - Ei)(1 - Eicos 28 tpa(1))[1 - 2(Ef + Ei)(1 + tpa(2)) + Ef Ei tpa(2)] 

+2Ei(l - Ei) sin2 8( 1 + Ei tpa(l) )[~(1 + tpa(2)) - Ef tpa(2)] 

+~Ei(l-Ef)sin2 8(1-c.pa(2))(1 +Eic.pa(l)). [39] 

The expression for r zz is not shown since it is not required for the ensuing analysis. The average 

signal power is given by p = rxx + ryy. 

Figure 7a is a plot of the average signal power as a function of the RMS flip angle a of a 

Gaussian white noise excitation. It has a peak at 1.15°. This means that the SIN ratio is at a 
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maximum when the excitation sequence has aRMS flip angle of 1.15°. Notice that the SIN ratio is 

independent of the spectral resolution. Define amax as the RMS flip angle that gives the maximum 

SIN ratio. For the example in Fig. 7a amax is only 1.15°. The integrated spectral intensity plot " 

in Fig. 4b does not show a maximum response at amax. because the spectral estimate K1 ( w) is 

defined to be normalized by the RF excitation power (Eq. [15]), while no such normalization is 

applied to the average· signal power. 

The Ernst angle is the flip angle that gives the maximum signal in a conventional Ff-NMR 

experiment that consists of one RF excitation every TR seconds. Figure 7b shows that amax is 

approximately the Ernst angle, cos-1 ( e-TR/T1 ). For the same spin system a conventional Ff-NMR 

experiment with TR = 0.1s will have an Ernst angle of 35°. The peak RF power is proportional 

to the square of the RF field strength, i.e., the square of the flip angle. Therefore, the peak power 

required for the stochastic experiment is roughly three orders of magnitude smaller than that for 

the conventional Ff-NMR experiment. 

In many cases T R is much shorter than T1, so a max will be less than 10° and cpa ( 1) very close to 

unity. The notch artifact is usually insignificant at this low level of excitation. However, for12.large 

such that the natural line width, 1/7T'T2, is small compared with the line broadening, log cpa(1 )/1T'TR, 

at a= amax• the difference in line broadening between on resonance and off resonance lines may 

still be large. To minimize this non-uniform response, the excitation level must be dropped below 

amax. resulting in a lower SIN ratio. 

It is important to recognize that a hard pulse assumption has not been required in the treatment 

presented here. The only requirement of the RF pulse is that of short duration so that the RF 

bandwidth is large compared to the chemical shift range of interest. When this requirement is not 

satisfied, there will be errors in the RF flip angle. For example, when the chemical shift range 
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of interest is 15% of the RF bandwidth, the maximum error in the flip angle is 1% and the phase 

error in the transverse magnetization after the RF pulse is linear across the spectrum from -15° to 

15°. These errors are independent of the RF flip angle. Theoretical derivation of K1 ( w) with the 

flip angle errors incorporated into the RF rotation matrix Ra ( n) is straightforward and will not be 

shown here. The results show that the only effect of these errors is to introduce a linear phase into 

K 1(w), which can be corrected easily. 

To evaluate the signal power spectrum as an estimate of the spectrum Eqs. [22] and [23] are 

made specific for random flip angle excitation to give 

S(w) = 
P- ~ei(8+wTR)[rxxcpa(1) + ryy + irxy(l- cpa(1))] 

D(w) 
+ P- ~e-i(8+wTR)[rxxcpa(1) + ryy- irxy(1- cpa(1))] _ p 

. D(w)• · 
[40] 

The power spectrum shown in Fig. 8a closely resembles the absorption part of Kt ( w) (Fig. 4a) at 

low excitation power. At higher excitation power, the notch artifact is less prevalent. An advantage 

of using the spectral density as an estimate of the real spectrum is that it is calculated from the signal 

sequence only, so that the excitation sequence a:( n) need not be stored or regenerated. However, ··. , 'i: 

as shown in Fig. 8b, the response is still non-uniform across the spectrum. It will be shown in Part 

II {18) that the non-uniform response can be eliminated with a different excitation scheme. 

Another undesirable property associated with signal power spectra is non-additivity. The 

derivation for S(w) in Eqs. [18]-[23] is rigorous only for an isolated line. When there are two 

or more lines in the spectrum, cross products of the transverse magnetization must be included in 

Eq. [18]. The derivation of the cross product terms is very similar to that for r( m ), however, the 

results are much more complicated and will not be shown here. The results show that the cross 

product terms are significant only in regions where there is significant overlap of lines. When two 

lines are far apart, the contributions of the cross product terms are centered at the resonance offset 

frequencies of the two participating lines and are less than 1%. 
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So far only results for Gaussian white noise excitations have been considered. The dependence 

of K 1(w), P and S(w) on the type of excitation that is used is embedded in 4?a(1), 4?a(2) and 

cf>a(1). Power series expansion shows that the differences in these functions between Gaussian 

white noise excitation and random binary excitation are 

a4 ( 7a2 ) 
~cpa( 1 ) =·12 1 - 30 +... ' 

where ~cpa(t) = Gaussian 4?a(t) -Binary 4?a(t). For a = amax < 0.175 rad (= 10°) the 

fractional differences, ~cpa(l)/cpa(l), ~cp~(2)/cpa(2) and ~cf>a(1)/<Pa(l), are negligible. This 

means that the response to Gaussian white noise excitation and random binary excitation will be 

almost identical. 

Experimental Verification 

To verify the theoretical results in the previous sections, stochastic NMR experiments were per-

formed on a 0.5T whole body imaging system. The analysis that has been presented is independent 

of field strength, and the results will be applicable to studies at any field strengths. As discussed 

earlier, except at large flip angles, random binary excitation and Gaussian white noise excitation 

give almost identical responses. The hardware implementation of a Gaussian white noise sequence 

is substantially more difficult than MLS. Therefore results obtained with binary MLS excitation 

will be presented. The 0.5T whole body imaging system was developed by IBM Corporation, 

Massachusetts Institute of Technology and Lawrence Berkeley Laboratory. The spectrometer de­

sign allows many different types of NMR experiments, including stochastic NMR, to be performed 



21 

with very few hardware modifications. All experiments were performed at the proton frequency 

of21MHz. 

The RF transmitter has 16 2-word ECL registers that determine the magnitude and phase of 

an RF pulse. These registers are loaded by software and selected using four TIL digital logic 

lines. These four lines are usually driven by the pulse programmer which compiles and runs the 

pulse program. To implement stochastic NMR with binary :MLS excitation, a circuit was built to 

interpose two 31-bit :MLS generators between the pulse programmer and transmitter. The 31-bit 

:MLS generator was a 31-bit shift register with the exclusive-OR of the 3rd bit and the 31st bit fed 

back to form the first bit (19). One pseudo-random binary number was generated at the output of 

the 31st shift register after every clock pulse. 

The sample was a 1 Ocm sphere filled with copper sulphate doped water. The 11 and T2 of the 

sample were measured to be 160ms and 140ms respectively (using conventional NMR techniques). 

However, due to the static field inhomogeneity (1 ppm), the effective T2, Ti, is 45ms. All exper­

iments used a TR of 200J.LS, which gave an optimum RMS flip angle of about 2.8°. The duration 

of the RF pulse was 25J.LS, corresponding to an excitation bandwidth of about 40kHz. The width 

of the reconstructed spectrum was 1/TR = 5kHz, i.e., 12.5% of the RF bandwidth. Spins at large 

resonance offset would experience RF flip errors. The reconstructed K1 ( w) was therefore phase 

corrected to remove the linear phase resulted from the RF flip errors. The flip angles of the RF 

pulses were calibrated by a conventional NMR experiment. The excitation sequence has a length 

. of N(=65536) which is a very small fraction of the period of the 31-bit MLS (231 - 1). Such a 

sub-sequence behaves like a random binary sequence. 

Initial results showed that there was an unexpected component with a very broad line width 

in addition to the resonance due to the aqueous solution. The broad component was significant 
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only when the excitation power was high, i.e., when the line from the copper sulphate solution was 

highly saturated and gave very little signal. This component was attributed to plastic in the probe 

assembly and was subtracted from all subsequent studies to correct the baseline 

Figure 9 is a plot of the average signal power as a function of the RMS flip angle. The symbol * 

represents experimental data and the solid line is the corresponding theoretical prediction. The plot 

shows good agreement between theory and experiment. The analysis in earlier sections showed 

that there will be line broadening and a notch artifact in K 1 ( w) as the excitation power is increased. 

Figure 10 is a side-by-side comparison of experimental and theoretical line shapes of K 1 ( w). There 

are three important features of the spectra that should be noticed: (1) the line width, (2) the notch 

artifact and (3) the noise-like distortions. The experimental line broadens and the notch artifact 

gets worse as the RMS flip angle is increased, as predicted in Fig. lOb for random binary flip angle 

excitation. The noise-like distortion increases as the RMS flip angle increases in agreement with 

Bllimich and Ziessow's observations (10). The analysis in Part II (18) will show that the noise-like 

distortion is due to undesirable third and higher order auto-correlations of the MLS and can be 

reduced by using a different MLS generator. 

Theoretical analysis showed that the signal power spectrum has less notch artifact than K 1 (w ). 

Figure 11 a shows the signal power spectra of the same data sets used to obtain ](1 ( w) in Fig. 1 Oa. 

They show good agreement with the theoretical predictions shown in Fig. lOb except for a DC 

offset that will be shown in Part II (18) to result from the measurement noise. The notch artifact is 

indeed smaller than that in K 1(w). It is very interesting to notice that the signal power spectrum 

shows significantly less noise-like distortion even when the excitation power is very high. This 

may be another advantage of the signal power spectrum over K 1 (w) as an estimate of the real 

spectrum. 

·• 
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Conclusions 

The discrete stochastic NMR experiment in Fig. 2 has been analyzed. Closed form expressions 

for the first order input-output cross-correlation, the average signal power and the signal power 

spectrum have been obtained for a generalized RF excitation sequence. These expressions were 

made specific for random flip angle excitations. They show that, at very low excitation power level, 

the spin system behaves linearly and the first order input-output cross-correlation is a faithful esti­

mate of the FID obtained from a conventional FT-NMR experiment. However, when the excitation 

power is high, the reconstructed spectral estimate K 1 ( w) has a notch artifact at the negative of the 

resonance offset and the response across the spectrum is non-uniform, i.e., the line broadening de­

pends on the resonance offset The amount of spectral distortion increases with excitation power. 

The plot of the average signal power as a function of the RMS flip angle for the random flip 

angle excitation, Fig. 9, shows that the RMS flip angle that maximizes the SIN ratio, O'max• is 

usually much smaller than that for conventional FT-NMR. This allows a reduction by several orders 

of magnitude in the peak RF power required for the stochastic NMR experiment. The optimal flip 

angle amax is approximately given by the Ernst angle formula. The major drawback of the random 

flip angle excitation is that amax can be large enough to invoke a nonlinear response which results 

in a non-uniform response across the spectrum. Consequently the SIN ratio must be sacrificed in 

order to avoid spectral distortion. 

The power spectrum resembles the absorption part of K 1 ( w) but with much less notch artifact. 

The power spectrum can be calculated directly from the signal sequence, and so the excitation 

sequence need not be stored or regenerated. Experimental results show that it is much less sensitive 

to the undesirable characteristics of the higher auto-correlations of the maximum length sequences 

(MLS) and hence shows much less noise-like distortion than K 1 ( w). However, it still exhibits a 

non-uniform spectral response and it is non-additive. 
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Theoretical analysis shows that, at low excitation power levels, the performance of random 

binary sequences and Gaussian white noise sequences is almost identical. This is desirable since 

the random binary sequence can be approximated by MLS which are easy to generate both with 

hardware and software. 

Random flip angle excitation produces spectral distortions that force a sacrifice of the SIN ratio 

of the reconstructed spectrum. Part II (18) will show that most of these distortions can be removed 

by randomizing the phase of the RF vector. 
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Figure Captions 

Figure 1 (a) Identification of the impulse response h(t) of a linear system by the cross­

correlation of the input x( t) and the output y( t) of the system. (b) The same principle 

applied to the stochastic spectroscopy experiment and spectral estimation . 

Figure 2 Scheme for RF excitation and Data acquisition during a NMR experiment with 

discrete stochastic RF excitation. 

Figure 3 Block diagram of the approach taken for the theoretical analysis. 

Figure 4 K 1 ( w) for random flip angle excitation with Gaussian white noise. (a) Line shape · 

(absorption part) and (b) integrated line intensity normalized by the value at a= 0°. 

T1 = 0.5s, T2 = lOms, TR = O.lms and v = 250Hz. 

Figure 5 Line shape of K 1 ( w) with different resonance offset frequencies. The excitation 

is Gaussian white noise random flip angle excitation with a = 15°. T1 = 0.5s, T2 = 
!Oms and TR = O.lms. All the plots are on the same vertical scale. 

Figure 6 A comparison of the line shape of [1 - ~eiwTR]- 1 (dotted line) with a Lorentzian 

line with the same line width (solid line). 

Figure 7 Random flip angle excitation with Gaussian white noise. (a) Average signal power 

versus the RMS flip angle. (b) amax versus Tt/TR. The symbol"' represents theoreti­

cal values and the solid line is cos-1 ( e-TR/T1 ). T1 = 0.5sec, T2 = !Oms, TR = O.lms 

and v = 250Hz. 

Figure 8 Power spectrum S( w) for Gaussian white noise random flip angle excitation. T1 = 

0.5s and TR = O.lms. (a) S(w) with different RMS flip angles. v = 250Hz and 

T2 = 10ms. The plots have different vertical scale. (b) S(w) for 11 evenly spaced 

resonances. a= 1.15° and T2 = lOOms. 
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Figure 9 Average signal power for random binary flip angle excitation. The excitation se­

quence is a sub-sequence of a 31-bit MLS generator. The symbol * represents ex­

perimental data point and the solid line is the theoretical prediction. T1 = 160ms, 

Ti = 45ms, Tn = 0.2ms and v = 500Hz. 

Figure 10 Line shapes of K 1 (w) for random binary flip angle excitation. (a) Experimental 

results using a 31-bit MLS generator and (b) theoretical predictions with random bi­

nary sequences. T1 = 160ms, Ti = 45ms, Tn = 0.2ms, N = 65536 and v = 60Hz. 

Figure 11 Signal power spectrum for random binary flip angle excitation. (a) Experimental 

results using a 31-bit MLS generator and (b) theoretical predictions with random bi­

nary sequences. T1 = 160ms, Ti = 45ms, Tn = 0.2ms, N = 65536 and v = 60Hz. 
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Symbols 

0 oh 

0 uppercase oh 

0 zero 

1 ell 

1 one 

k lowercase kay 

K uppercase kay 

nth italic n superscript italic th 

Tt italic tee subscript 1 

T2 italic tee subscript 2 

B theta (Greek) 

J.1. mu (Greek) 

J.l.x mu (Greek) subscript italic x 

J.La bold mu (Greek) subscript alpha (Greek), a vector 

1-LM bold mu (Greek) subscript italic M 

1-LR bold mu (Greek) subscript italic R 

Q' alpha (Greek) 

O'x alpha (Greek) subscript italic x 

Ct bold alpha (Greek), a vector 

w omega (Greek) 

Dnm delta (Greek) subscript italic nm 

.6. upper case delta (Greek) 

cpa variation of phi (Greek) subscript alpha (Greek) 

7r pi (Greek) 
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v nu (Greek) 

(j sigma (Greek) 

A bold A 

B boldB 

c boldC 

Ccx bold C subscript alpha (Greek) 

M bold, italic M, a vector 

Mxy italic M subscript italic xy 

Rc, bold R subscript alpha (Greek), a matrix 

Re bold R subscript theta (Greek) 

z calligraphic Z 
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