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We study the Hilbert space structure of classical spacetimes under the assumption that entanglement 
in holographic theories determines semiclassical geometry. We show that this simple assumption 
has profound implications; for example, a superposition of classical spacetimes may lead to another 
classical spacetime. Despite its unconventional nature, this picture admits the standard interpretation 
of superpositions of well-defined semiclassical spacetimes in the limit that the number of holographic 
degrees of freedom becomes large. We illustrate these ideas using a model for the holographic theory of 
cosmological spacetimes.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

How does the semiclassical picture arise from the fundamental 
theory of quantum gravity? Recently it has become increasingly 
clear that quantum entanglement in holographic [1,2] descriptions 
plays an important role in the emergence of the classical spacetime 
of general relativity [3–8]. This raises the possibility that entangle-
ment is indeed the defining property that controls the physics of 
dynamical spacetimes.

In this letter we take the view that entanglement in holographic 
theories determines gravitational spacetimes at the semiclassical 
level. Rather than proving this statement, we adopt it as a guiding 
principle and explore its consequences. This principle has profound 
implications for the structure of the Hilbert space of quantum 
gravity. In particular, it allows us to obtain a classical spacetime 
as a superposition of (an exponentially large number of) differ-
ent classical spacetimes. We show that despite its unconventional 
nature, this picture admits the standard interpretation of superpo-
sitions of well-defined semiclassical spacetimes in the limit that 
the number of holographic degrees of freedom becomes large.

To illustrate these concepts, we use a putative holographic 
theory for cosmological spacetimes, in which the effects appear 
cleanly. Our basic points, however, persist more generally; in par-
ticular, we expect that they apply to a region of the bulk in 
the AdS/CFT correspondence [9]. In the context of Friedmann–
Robertson–Walker (FRW) universes, we find an interesting “Russian 
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doll” structure: states representing a universe filled with a fluid 
having an equation of state parameter w are obtained as exponen-
tially many (exponentially rare) superpositions of those having an 
equation of state with w ′ > w (< w).

While completing this work, we received Ref. [10] by Almheiri, 
Dong and Swingle which studies how holographic entanglement 
entropies are related to linear operators in the AdS/CFT correspon-
dence. Their analysis of the thermodynamic limit of the area oper-
ators overlaps with ours. See also Ref. [11] for related discussion.

2. Holographic theory on screens

We begin by describing the holographic framework we work 
in. The AdS/CFT case appears as a special situation of this more 
general (albeit more conjectural) framework.

The covariant entropy bound [12] implies that the entropy on 
a null hypersurface generated by a congruence of light rays ter-
minated by a caustic or singularity is bounded by its largest cross 
sectional area A divided by 2 in Planck units. (The entropy on each 
side of the largest cross sectional surface is bounded by A/4.) This 
suggests that for a fixed gravitational spacetime, the holographic 
theory lives on a hypersurface—called the holographic screen—on 
which null hypersurfaces foliating the spacetime have the largest 
cross sectional areas [13].

The procedure of erecting a holographic screen has a large am-
biguity. A particularly useful choice [14,15] is to adopt an “observer 
centric reference frame.” Let the origin of the reference frame fol-
low a timelike curve p(τ ) which passes through a fixed spacetime 
point p0 at τ = 0, and consider the congruence of past-directed 
light rays emanating from p0. Assuming the null energy condition, 
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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the light rays focus toward the past, and we may identify the ap-
parent horizon, i.e. the codimension-2 surface on which the expan-
sion of the light rays vanishes, to be an equal-time hypersurface—
called a leaf—of a holographic screen. Repeating the procedure for 
all τ , we obtain a specific holographic screen, with the leaves pa-
rameterized by τ , corresponding to foliating the spacetime region 
accessible to the observer at p(τ ). Such a foliation is consonant 
with complementarity [16] which asserts that a complete descrip-
tion of a system refers only to the spacetime region that can be 
accessed by a single observer.

With this construction, we can view a quantum state of the 
holographic theory as living on a leaf of the holographic screen 
obtained as above. We can then consider the collection of all pos-
sible quantum states on all possible leaves, obtained by considering 
all timelike curves in all spacetimes. It is often convenient to con-
sider Hilbert space HB spanned by the states living on the “same” 
leaf B .1 We can then write the full Hilbert space as [14,15]

H =
∑

B

HB +Hsing, (1)

where Hsing contains intrinsically quantum gravitational states 
that do not admit a spacetime interpretation, and we have defined 
the sum of Hilbert spaces by2

H1 +H2 = {v1 + v2 | v1 ∈ H1, v2 ∈ H2}. (2)

This formulation is not restricted to descriptions based on fixed 
semiclassical spacetime backgrounds. For example, we may con-
sider a state in which macroscopically different universes are su-
perposed. Time evolution of a quantum gravity state occurs within 
the space of Eq. (1).

Recently, Bousso and Engelhardt have identified two special 
classes of holographic screens [17,18]: if a portion of a holo-
graphic screen is foliated by marginally anti-trapped (trapped) sur-
faces, then that portion is called a past (future) holographic screen. 
They proved that the area of leaves A(τ ) monotonically increases 
(decreases) for a past (future) holographic screen. Furthermore, 
Ref. [19] proved that this area law holds locally. In many regu-
lar circumstances, including expanding FRW universes, the holo-
graphic screen is a past holographic screen, so that the area of the 
leaves monotonically increases, dA(τ )/dτ > 0. In this letter we fo-
cus on this case.

What is the structure of the holographic theory and how can 
we explore it? Recently, a conjecture has been made in Ref. [8]
which relates geometries of general spacetimes to the entangle-
ment entropies of states in the holographic theory. This extends 
the analogous statement [3,4,20] in AdS/CFT to more general cases. 
In particular, Ref. [8] proved that for a given region � of a leaf σ , 
a codimension-2 extremal surface E[�] anchored to the boundary 
∂� of � is fully contained in the causal region Dσ of σ : the do-
main of dependence of an interior achronal hypersurface whose 
only boundary is σ . This implies that the normalized area of the 
extremal surface E[�]

S[�] = 1

4
‖E[�]‖, (3)

satisfies expected properties of entanglement entropy, so that it 
can be identified with the entanglement entropy of the region �

1 In general, the equivalence condition for the label B is not well understood. For 
states representing FRW universes, however, we expect from the high symmetry of 
the system that B is uniquely specified by the leaf area (at least in some coarse 
sense).

2 Unlike Ref. [15], here we do not assume specific relations between HB ’s or 
Hsing. In particular, HB1 and HB2 for different leaves B1 and B2 may not be or-
thogonal.
in the holographic theory. Here, ‖x‖ represents the area of x. If 
there are multiple extremal surfaces in Dσ for a given �, then we 
must take the one with the minimal area.

3. Holography for FRW universes

Adopting the above framework, we now study the holographic 
description of (3 + 1)-dimensional FRW universes

ds2 = −dt2 + a2(t)

[
dr2

1 − κr2
+ r2(dψ2 + sin2 ψ dφ2)

]
, (4)

where a(t) is the scale factor, and κ < 0, = 0 and > 0 for open, 
flat and closed universes, respectively. We choose the origin of the 
reference frame, p(τ ), to be at r = 0. The holographic theory then 
lives on the holographic screen at

r = 1√
ȧ2(t∗) + κ

≡ rσ (t∗), (5)

where the dot represents t derivative, and t∗ is the FRW time on 
a leaf. For flat and open universes, the leaves always form a past 
holographic screen as long as the universe is initially expanding. 
Below, we focus on these cases.

For the purpose of illustrating our points, it is sufficient to con-
sider a “single” Hilbert space H∗ ∈ {HB} specified by a fixed leaf 
area A∗ . Specifically, we consider FRW universes with κ ≤ 0 having 
vacuum energy ρ
 and filled with various ideal fluid components. 
For every universe with ρ
 < 3/2A∗ , there is an FRW time t∗ at 
which the area of the leaf is A∗ . Any quantum state representing 
the system at such a time is an element of H∗ .

How does a state in H∗ encode information about the universe 
it represents? Consider an FRW universe with the energy density 
given by ρ(t). We can then determine the FRW time t∗ at which 
the leaf σ∗ has the area A∗ . Now, consider a spherical cap region 
of σ∗ specified by an angle γ (0 ≤ γ ≤ π ):

L(γ ) : t = t∗, r = rσ (t∗), 0 ≤ ψ ≤ γ , (6)

and determine the extremal surface E(γ ) anchored on the bound-
ary of L(γ ). The quantity

S(γ ) = 1

4
‖E(γ )‖, (7)

then gives the entanglement entropy of the region L(γ ) in the 
holographic theory.

We focus on the case in which the expansion of the universe is 
dominated by a single fluid component with w or negative space-
time curvature in (most of) the region probed by the extremal 
surfaces anchored to σ∗ . This holds for almost all t in realistic 
FRW universes. In this case, S(γ ) becomes extensive with respect 
to A∗ [21], so that

S̃(γ ) = S(γ )

A∗/4
, (8)

is independent of A∗ . This effectively counts the number of Bell 
pairs between L(γ ) and its complement per (qubit) degree of free-
dom.

We may express S̃(γ ) as a function of the fractional volume 
that L(γ ) occupies on σ∗

F (γ ) = 1

2
(1 − cosγ ), (9)

i.e. s(F ) ≡ S̃ (γ (F )). In Fig. 1, we plot this quantity for flat uni-
verses with w = −1 (vacuum energy), −0.98, −0.8, 0 (matter), 
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Fig. 1. The normalized entanglement entropy s(F ) for flat universes with w = −1, 
−0.98, −0.8, 0, 1/3, 1 (solid lines, from the top to the bottom) and for a curvature 
dominated open universe (dashed line).

1/3 (radiation), 1 and for a curvature dominated open universe.3

This shows how a state in the holographic theory encodes the 
information about the spacetime it represents. For example, s(F )

decreases monotonically in w for any fixed F .
There are simple geometric bounds on s(F ). The maximin con-

struction [8,22] states that the extremal surface is the one having 
the maximal area among all possible codimension-2 surfaces each 
of which is anchored on ∂L(γ ) and has minimal area on some in-
terior achronal hypersurface bounded by σ∗ . This implies that s(F )

obeys [21]

F (1 − F ) ≤ s(F ) ≤ 1

2
−

(1

2
− F

)
sgn

(1

2
− F

)
. (10)

The universes dominated by a w = −1 component and curvature 
saturate the upper and lower limits, respectively.

4. Qubit model

Unlike the case of asymptotically AdS spacetimes, entanglement 
entropies in the holographic theory for FRW universes obey a vol-
ume law. (From the viewpoint of the holographic theory, A∗ is a 
volume.) This motivates us to consider the following toy model for 
holographic states representing FRW universes.

Consider a Hilbert space for N (� 1) qubits H = (C2)⊗N . Let 
(≤ N) be a nonnegative integer and consider a typical superposi-
tion of 2 product states

|ψ〉 =
2∑
i=1

ai |xi
1〉|xi

2〉 · · · |xi
N 〉, (11)

where {ai} is a normalized complex vector, and xi
1,··· ,N ∈ {0, 1}. 

Given an integer n with 1 ≤ n < N , we can break the Hilbert space 
into a subsystem � for the first n qubits and its complement �̄. 
We are interested in computing the entanglement entropy of �, 
SEE(�).

Suppose n ≤ N/2. If  ≥ n, then i in Eq. (11) runs over an in-
dex that takes many more values than the dimension of the Hilbert 
space for �, so that Page’s argument [23] tells us that � has max-
imal entanglement entropy: SEE(�) = n ln 2. On the other hand, if 
 < n then the number of terms in Eq. (11) is much less than both 
the dimension of the Hilbert space of � and that of �̄, which limits 
the entanglement entropy: SEE(�) =  ln 2.

3 In the case of a strictly single w = −1 component or an exactly empty open 
universe, the leaf is located at an infinite affine distance from p0. We view this as 
a mathematical idealization. Realistic universes are obtained, e.g., by introducing an 
infinitesimally small amount of additional matter.
We therefore obtain

SEE(�) =
{

n n ≤ ,

 n > ,
(12)

for  < N/2, while

SEE(�) = n, (13)

for  ≥ N/2. Here and below, we drop the irrelevant factor of ln 2. 
The value of SEE(�) for n > N/2 is obtained from SEE(�) = SEE(�̄)

since |ψ〉 is pure.
The behavior of SEE(�) in Eqs. (12), (13) is reminiscent of that 

of s(F ) in Fig. 1. The correspondence is given by

n

N
↔ F , (14)



N
↔ s

(1

2

)
, (15)

for  ≤ N/2.4 In fact, we can consider the N = A∗/4 qubits to 
be distributed over σ∗ with each qubit occupying a volume of 4
in the holographic theory. The identification of Eq. (14) is then 
natural. The quantity  controls what universe a state represents. 
For fixed , different choices of the product states |xi

1〉|xi
2〉 · · · |xi

N 〉
and the coefficients ai give eN independent microstates for the 
FRW universe with w = f (/N). The function f is determined 
by Eq. (15); in particular, f = −1 (> −1) for /N = 1/2 (< 1/2).5

Below, we assume that this model captures essential features 
of the holographic theory.6 An important point is that the set of 
states with a fixed  does not comprise a Hilbert space. Moreover, 
the set of states with any fixed  spans the entire Hilbert space, 
containing all FRW universes corresponding to all values of . For 
example, we may obtain a state with any w ′ < w by superpos-
ing ew′ −w states with w , where w ≡ N f −1(w). We may also 
obtain a state with w ′ > w as a superposition of carefully cho-
sen ew states with w .7 These statements do not depend on the 
details of the model and are manifestations of the fact that entan-
glement, and thus spacetime geometry, cannot be represented by 
a linear operator at the microscopic level. Fig. 2 depicts a sketch of 
the Hilbert space structure described here.

5. Superpositions

One might worry that the Hilbert space structure described 
above may not allow for a consistent interpretation of superpo-
sitions of semiclassical universes. For example, consider two states 
representing universes with w1 and w2 (w1 > w2), which contain 
respectively e1 and e2 product states (1 < 2). Their super-
position contains e1 + e2 ≈ e2 product states. Does this mean 
that a superposition of w1 and w2 universes always leads to a 
w2 universe, making any reasonable many worlds interpretation 
of spacetime impossible?

4 States with  > N/2 cannot be discriminated from those with  = N/2 using 
SEE(�) alone. The identity of these states is not clear. Below, we focus on the states 
with N/4 ≤  ≤ N/2.

5 For the present purpose, the curvature dominated universe can be regarded as 
the universe filled with a fluid having w = +∞: f = +∞ for /N = 1/4.

6 The holographic theory may have degrees of freedom representing the region 
outside Dσ∗ , which may be entangled with those described here. We assume that 
this does not affect the analyses below based on xi

1,··· ,N unless we probe more than 
half of them; the extra degrees of freedom may become relevant if we consider 
n ≥ N/2. This property indeed appears if the extra degrees of freedom are modeled 
by an additional N qubits, and the FRW states are taken as typical superpositions 
of 2 product states in the enlarged Hilbert space.

7 These superpositions must also change the matter content filling the universe.
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Fig. 2. A sketch of the Hilbert space for FRW universes, where we have chosen 
three values of w = −1, 0, 1/3 for illustrative purposes. Note that while the figure 
is drawn in 3-dimensional space, the actual dimension of the Hilbert space (as well 
as that of a region with a fixed w) is exponentially large. In particular, to go outside 
a region with a fixed w , an exponentially large number of microstates must be 
superposed. The same is true to go to a smaller region with w ′ > w .

Below we show that this is not the case. In particular, in-
formation about each semiclassical spacetime is contained in the 
exponentially differing size of the coefficients when the state is 
expanded in the product state basis.

We regard universes with the equation of state parameters 
falling in a range δw � 1 to be macroscopically identical. Here, δw
is a small number that does not scale with A∗ . We then find that 
a superposition of less than eO (δwA∗) microstates representing a 
universe with some w leads only to another microstate represent-
ing the same w universe. In other words, eN = eA∗/4 microstates 
of the universe with any w form an “effective vector space” unless 
we consider a superposition of an exponentially large, � eO (δwA∗) , 
number of microstates.

How about a superposition of states representing universes 
with different w ’s? Consider two normalized microstates of the 
form given in Eq. (11):

|ψ1〉 =
e1∑
i=1

ai |xi
1xi

2 · · · xi
N 〉, (16)

|ψ2〉 =
e2∑
i=1

bi |yi
1 yi

2 · · · yi
N〉, (17)

where N/4 ≤ 1 �= 2 ≤ N/2, and the coefficients ai and bi are 
random as are the binary values xi

1,··· ,N and yi
1,··· ,N . We are in-

terested in understanding the physical meaning of the normalized 
superposition

|ψ〉 = c1|ψ1〉 + c2|ψ2〉. (18)

The reduced density matrix for the first n qubits (n < N/2) is

ρn = trn+1···N |ψ〉〈ψ |. (19)

Because of the normalization conditions

e1∑
i=1

|ai|2 =
e2∑
i=1

|bi|2 = 1, (20)

ρn takes the form

ρn = |c1|2ρ(1)
n + |c2|2ρ(2)

n , (21)

up to corrections exponentially suppressed in N . (For a detailed 
derivation, see Ref. [21].) Here, ρ(1)

n (ρ(2)
n ) are the reduced density 

matrices we would obtain if the state were genuinely |ψ1〉 (|ψ2〉):
ρ
(1)
n =

e1∑
i=1

|ai|2|xi
1 · · · xi

n〉〈xi
1 · · · xi

n|, (22)

with ρ(2)
n given by 1 → 2, ai → bi , and xi

1,··· ,n → yi
1,··· ,n . The 

matrix ρn thus takes the form of an incoherent classical mixture. 
Moreover, the simple form of the matrices in Eqs. (21), (22) implies 
that the entanglement entropies are also incoherently added

Sn = |c1|2 S(1)
n + |c2|2 S(2)

n + Sn,mix, (23)

where S(1,2)
n are the entanglement entropies obtained if the state 

were |ψ1,2〉, and

Sn,mix = −|c1|2 ln |c1|2 − |c2|2 ln |c2|2, (24)

is the entropy of mixing (classical Shannon entropy), suppressed by 
factors of O (A∗) compared with S(1,2)

n .8 This indicates that unless 
|c1| or |c2| is exponentially small in N , the state |ψ〉 admits the 
usual interpretation of a superposition of macroscopically different 
universes with w1,2 corresponding to 1,2.

Similarly, unless a superposition involves exponentially many 
microstates, we find

|ψ〉 =
∑

i

ci|ψi〉 ⇒ ρn = ∑
i |ci |2ρ(i)

n ,

Sn = ∑
i |ci |2 S(i)

n + Sn,mix,
(25)

for n < N/2, up to exponentially suppressed corrections. Here, 
Sn,mix = − 

∑
i |ci |2 ln |ci |2 and is suppressed by a factor of O (A∗)

compared with the first term in Sn . We thus conclude that the 
standard many worlds interpretation applies to classical space-
times under any reasonable measurements (only) in the limit that 
e−N is regarded as zero, i.e. unless a superposition involves ex-
ponentially many terms or an exponentially small coefficient. This 
picture is consonant with the observation that classical spacetime 
has an intrinsically thermodynamic nature [24], supporting the 
idea that it consists of a large number of degrees of freedom.

We expect that the picture given here persists in the existence 
of excitations on semiclassical backgrounds. These excitations can 
be represented by non-linear/state-dependent operators at the mi-
croscopic level, along the lines of Ref. [11]. (For earlier work, see 
Refs. [25–27].) In fact, since entropies associated with the excita-
tions are typically subdominant in A∗ [1,28], they have only minor 
effects on the overall picture. Therefore, we effectively obtain a di-
rect sum structure [15] for the Hilbert space

HB=FRW,A∗ ≈
⊕

w

HA∗
w , (26)

despite the much more intricate structure of the fundamental 
Hilbert space.

Finally, this fundamental Hilbert space structure suggests that 
the time evolution operator leading to the change of the leaf area 
is also non-linear at the fundamental level. This does not require 
the time evolution of semiclassical degrees of freedom to be non-
linear, since the definition of these degrees of freedom would also 
be non-linear at the fundamental level. Detailed discussions on the 
time evolution in the holographic theory of cosmological space-
times will be presented in Ref. [21].

8 In the present model, this term is absent for n < 1,2. This is an artifact of the 
specific toy model adopted here, arising from the fact that two universes cannot be 
discriminated unless n is larger than one of 1,2; see Eq. (12).
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