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Changes in nitrogen oxides emissions in California
during 2005–2010 indicated from top-down
and bottom-up emission estimates
Min Huang1, Kevin W. Bowman1, Gregory R. Carmichael2, Tianfeng Chai3, R. Bradley Pierce4,
John R. Worden1, Ming Luo1, Ilana B. Pollack5,6, Thomas B. Ryerson6, John B. Nowak5,6,7,
J. Andrew Neuman5,6, James M. Roberts6, Elliot L. Atlas8, and Donald R. Blake9

1Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA, 2Center for Global and Regional
Environmental Research, University of Iowa, Iowa City, Iowa, USA, 3NOAA Air Resources Laboratory, College Park, Maryland,
USA, 4NOAA National Environmental Satellite, Data, and Information Services, Madison, Wisconsin, USA, 5Cooperative
Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado, USA, 6NOAA Earth
System Research Laboratory, Boulder, Colorado, USA, 7Now at Aerodyne Research Inc., Billerica, Massachusetts, USA,
8Department of Atmospheric Sciences, University of Miami, Miami, Florida, USA, 9Department of Chemistry, University of
California, Irvine, California, USA

Abstract In California, emission control strategies have been implemented to reduce air pollutants. Here we
estimate the changes in nitrogen oxides (NOx=NO+NO2) emissions in 2005–2010 using a state-of-the-art
four-dimensional variational approach. We separately and jointly assimilate surface NO2 concentrations
and tropospheric NO2 columns observed by Ozone Monitoring Instrument (OMI) into the regional-scale
Sulfur Transport and dEposition Model (STEM) chemical transport model on a 12 × 12 km2 horizontal
resolution grid in May 2010. The assimilation generates grid-scale top-down emission estimates, and the
updated chemistry fields are evaluated with independent aircraft measurements during the NOAA
California Nexus (CalNex) field experiment. The emission estimates constrained only by NO2 columns, only
by surface NO2, and by both indicate statewide reductions of 26%, 29%, and 30% from ~0.3 Tg N/yr in the
base year of 2005, respectively. The spatial distributions of the emission changes differ in these cases,
which can be attributed to many factors including the differences in the observation sampling strategies
and their uncertainties, as well as those in the sensitivities of column and surface NO2 with respect to NOx

emissions. The updates in California’s NOx emissions reduced the mean error in modeled surface ozone in
the Western U.S., even though the uncertainties in some urban areas increased due to their NOx-saturated
chemical regime. The statewide reductions in NOx emissions indicated from our observationally constrained
emission estimates are also reflected in several independently developed inventories: ~30% in the California
Air Resources Board bottom-up inventory, ~4% in the 2008 National Emission Inventory, and ~20% in the annual
mean top-down estimates by Lamsal et al. using the global Goddard Earth Observing System (GEOS)-Chem
model and OMI NO2 columns. Despite the grid-scale differences among all top-down and bottom-up
inventories, they all indicate stronger emission reductions in the urban regions. This study shows the potential of
using space-/ground-based monitoring data and advanced data assimilation approach to timely and
independently update NOx emission estimates on amonthly scale and at a fine grid resolution. Thewell-evaluated
results here suggest that these approaches can be applied more broadly.

1. Introduction

Nitrogen dioxide (NO2) is one of the six criteria air pollutants regulated by U.S. Environmental Protection Agency
(EPA) since the 1970s (http://www.epa.gov/air/nitrogenoxides), as both short- and long-term exposures to NO2

are harmful for human respiratory system [U.S. Environmental Protection Agency (EPA), 2013]. The primary
National Ambient Air Quality Standards (NAAQS) that aim at protecting human health are currently set at 100
ppbv for the 3 year averaged 98th percentile of hourly NO2 and at 53 ppbv for the annual meanNO2. In addition
to its own impacts on human health, NO2 is one of a group of highly reactive gaseous nitrogen oxides
(NOx=NO+NO2) that affects tropospheric chemistry and contributes to near-surface ozone (O3) and
particulate matter (PM) pollution. Ozone and PM also belong to the EPA-regulated six criteria air pollutants, and
the levels of their NAAQS tend to becomemore stringent in the future. For example, EPA proposed to lower the
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national primary O3 standard to a level within 60–70 ppbv [U.S. EPA, 2010]. Extended regions in the U.S. are
projected to violate the proposed standard, and higher costs for reducing the O3 levels are expected in
response to the potential new thresholds [McCarthy, 2010]. Therefore, it is important to understand NOx

concentrations and their temporal changes, the major factors affecting these changes (e.g., local and regional
emissions), and how these impact the distributions of secondary pollutants such as O3.

California is themost populous and the third largest state in theU.S. [U.S. Census Bureau 2010, 2011] and has diverse
topography, climate, and emission sources of air pollutants. The entire state has complied with the NAAQS NO2

standards [California Air Resources Board (CARB), 2014]. Various types of observations generally show significant
reductions in NOx over California during the past decades. A decreasing trend of ~3% yr�1 is found based on surface
in situ NOxmeasurements frommultiple monitoring networks, which are denser at populated regions and/or near
the major emission source regions (http://www.epa.gov/airtrends/nitrogen.html) [Pollack et al., 2013, and
references therein]. Satellites routinely measure NO2 as a whole column at certain time(s) of a day with
broad geographic coverage, and these NO2 columns over California reflect faster decreasing rates during
2005–2010 than those based on the surface observations, i.e., on average,>4% yr�1 statewide and>10% yr�1

over some urban regions [Russell et al., 2010, 2012]. The differences in NO2 trends determined by surface in situ
and satellite measurements can be attributed to the varied measurement uncertainties and sampling (spatial
and temporal) strategies, as well as the complex relationships between surface and column NO2.

The observed NOx in California is largely affected by local and regional NOx emissions. A majority (>80%) of
California’s NOx emissions come frommobile sources, mainly over the populated regions such as South Coast,
Bay Area, and the Central Valley [CARB, 2014; McDonald et al., 2012]. The decreasing trends in observed NO2

over California are largely due to the reductions in its anthropogenic NOx emissions by effectively switching
the fuel types and the implementation of combustion control. Timely updating the NOx emission estimates to
account for its temporal changes can help better interpret the distributions, trends, and variability of the
observed NOx.

Based on the existing emission estimates for a historical year, emissions for a later year can be derived using
two typical methods to reflect the temporal changes: (1) projecting bottom-up emission estimates from a
historical year to a future year, using the information of population and economic growth and the
implemented emission control measures between these two years, and (2) applying top-down approaches
by integrating observations, and usually, transport models are involved. Using the bottom-up method,
California Air Resources Board (CARB) estimated a 28% reduction in anthropogenic NOx emissions from
2005 to 2010 [CARB, 2014], above the nationwide changes of ~25% provided by Xing et al. [2013] and U.S.
EPA (http://www.epa.gov/ttnchie1/trends). These types of inventories are generally updated more
frequently in California than in many developing countries where the pollution levels are high in
magnitude and variability and the information for accurately projecting emissions is lacking. The top-down
emission estimates may be generated faster than the bottom-up inventories, but their accuracy
depends on model parameterizations and configurations, the characteristics of observations incorporated,
and the methods used. Following the method described in Lamsal et al. [2011], the same group of
researchers at Dalhousie University produced grid-specific annual mean NOx emission scaling factors from
2005 to 2010 using the global Goddard Earth Observing System(GEOS)-Chem chemical transport model
and Ozone Monitoring Instrument (OMI) NO2 columns. This product indicates a ~20% decrease in
California’s anthropogenic NOx emissions during this period (Figure S1 in the supporting information,
adapted from http://fizz.phys.dal.ca/~atmos/martin/?page_id=123). In another study, using a combined
Weather Research and Forecasting (WRF) (Eulerian)–FLEXible PARTicle dispersion (Lagrangian) modeling
system and aircraft observations in May–June 2010, Brioude et al. [2013] lowered the total reactive nitrogen
(NOy) emissions from the 2005 National Emission Inventory (NEI 05) by 32% and 27% in California’s Los
Angeles (LA) County and South Coast Air Basin, respectively. Updating NOx emissions on regional scales
over the entire state using ground-/space-based air monitoring data and advanced assimilation methods
that account for the life cycle of chemical species has not been covered in existing studies but is needed.
The effects of used models, observations, and methods on the assimilation results also need to be carefully
analyzed and discussed. A better understanding of current capabilities and limitations of top-down
techniques will timely improve emission estimates and model predictability and also assist the evaluation
of implemented emission control strategies and bottom-up emission projection methodology.
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Although O3 and its precursor species (NOx, carbon monoxide (CO), and volatile organic compounds (VOCs))
over many Californian areas showed decreasing trends in the past few decades based on various types of
measurements [e.g., CARB, 2014; Pollack et al., 2013; Russell et al., 2012; Warneke et al., 2012; Brioude et al.,
2013; Pusede and Cohen, 2012, and the references therein], a number of air basins/districts still violate the
current and projected O3 standards, most of which are located in the South Coast and San Joaquin Valley
[Huang et al., 2013; http://www.arb.ca.gov/adam/select8/sc8start.php; U.S. EPA, 2014]. Previous studies found
that emissions in California in spring and summer can affect air quality in downwind areas as far as thousands
of kilometers away, causing O3 exceedances over a broad region in the Western U.S. [Tong and Mauzerall,
2008; Langford et al., 2010; Huang et al., 2013; Burley et al., 2014; VanCuren, 2014]. Therefore, it is also
important to assess the impacts of NOx emission changes in California on the distributions of secondary
pollutants in California and its downwind states in the Western U.S.

In May 2010, a major multi-institution field campaign was coordinated by the National Oceanic and
Atmospheric Administration (NOAA), entitled California Nexus (CalNex): Research at the Nexus of Air Quality
and Climate Change. This field experiment provided measurements of various trace gases and aerosols in
California using a suite of measurement platforms, and assessing emission inventories is one of its major
research objectives [Ryerson et al., 2013]. In this paper, we use the full-chemistry version of the regional-scale
Sulfur Transport and dEposition Model (STEM) and its adjoint model at 12 × 12 km2 horizontal resolution to
assess the changes in NOx emissions during 2005–2010 over California and the impacts on O3 in the Western
U.S. during this month. Specifically, we characterize the uncertainties in bottom-up emission estimates that
have different base years in terms of statewide total emissions and their spatial variability. We also update a
selected bottom-up emission inventory via the assimilation of surface and satellite NO2 observations
separately and jointly using the four-dimensional variational (4D-Var) approach and evaluate the updated
chemistry fields using the nonassimilated observations (i.e., aircraft measurements during CalNex and O3 at
surface monitoring sites).

This paper first introduces the observational data used, the STEM model configurations, and the 4D-Var
method (section 2). In section 3.1, we evaluate the model a priori with surface, aircraft, and satellite
measurements. We then show the a posteriori NOx emission estimates, evaluate the updated NO2 and O3

distributions, and discuss the NOx emission trends during 2005–2010 indicated by multiple emission data
sets (section 3.2). Finally, the summary and suggested future work are presented in section 4.

2. Methods and Data Sets
2.1. Observations and Their Uncertainties
2.1.1. Tropospheric NO2 Column Measurements From OMI
OMI is a nadir-viewing charge-coupled device spectrometer on board the NASA Aura satellite launched in
2004. OMI has an across-track swath of 2600 km, subdivided into 60 across-track pixels, which provides daily
global coverage with ground pixel sizes of 13 × 24 km2 at nadir and significantly larger at the edges of the
swath. Covering 270–500 nm (in the ultraviolet (UV) and visible (vis) ranges) on the spectra, OMI measures a
few key chemical species including NO2 during the daytime (at local time ~1:40 P.M.) for air quality studies on
urban, regional, and global scales [Russell et al., 2010, 2011, 2012; Lamsal et al., 2008, 2011, 2013; Beirle et al.,
2011;Witte et al., 2011;Duncan et al., 2010, 2014; Valin et al., 2013, 2014; Bechle et al., 2013; Herron-Thorpe et al.,
2010]. Some of these studies have demonstrated the advantages of OMI’s finer spatial resolution over the
measurements from several other satellite instruments; e.g.,McLinden et al. [2012] showed that OMI presents
similar NO2 spatial distributions over the Canadian oil sands with Scanning Imaging Absorption Spectrometer
for Atmospheric Chartography (SCIAMACHY), Global Ozone Monitoring Experiment (GOME), and GOME2 but
in greater detail.

The OMI tropospheric NO2 vertical columns are retrieved in three steps: (1) determine a slant column density
from a spectral fit to the Earth reflectance spectrum with the differential absorption spectroscopy (DOAS)
approach, (2) quantify the stratospheric contribution to the slant column, and (3) apply air mass factor (AMF)
to convert the residual tropospheric slant column to the tropospheric column [Boersma et al., 2007, 2011a].
The AMFs depend on the viewing geometry, the atmospheric scattering (computed by a radiative transfer
model), and the vertical distribution of NO2 (i.e., the shape factor, or NO2 a priori profile, based on chemical
transport model calculations or some prior knowledge) [Palmer et al., 2001]. There are three tropospheric
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column NO2 products independently generated by the Royal Netherlands Meteorological Institute (KNMI),
NASA, and UC Berkeley. All of the three retrieval products use the same DOAS technique to determine the
slant column described in step (1). The KNMI and NASA algorithms differ in the above retrieval steps (2) and
(3). The Berkeley group uses the NASA method to subtract stratospheric contribution (step (2)), but modifies
its step (3) to determine the AMFs [Russell et al., 2011]. Notable differences have been found among the
various OMI NO2 products due to a number of factors such as surface albedo, terrain, and the NO2 a priori
profiles used in the retrieval [e.g., Russell et al., 2011; Heckel et al., 2011; Boersma et al., 2011b].

In this study, we use the destriped KNMI OMI NO2 column product in May 2010, the version 2.0, for model
evaluation and assimilation (Table 1). Miyazaki et al. [2012a, 2012b] find that the biases in the satellite
retrievals used in data assimilation can affect the emission a posteriori. Our choice from multiple versions
of OMI products is primarily based on previous analysis on their data quality in spring and summer [e.g.,
Lamsal et al., 2010; Boersma et al., 2008, 2009, 2011b]. As successful assimilation studies require accurate
observation operators, an additional reason we use the KNMI product is that it explicitly provides averaging
kernel vectors [Eskes and Boersma, 2003], which will be described in detail in the following paragraphs.
Careful validation of each OMI product with in situ measurements during the studied period and region can
be valuable but is beyond the scope of this study. Due to the lack of such information, no bias correction was
applied on the assimilated OMI columns. As the biases in OMI product can be spatially variable, taking the
suggestions by Heckel et al. [2011], discussions on the assimilation results on large spatial scales can reduce
the influences of omitting the bias correction. Cross validation with independent observations and emission
inventories will be performed to directly indicate the effectiveness of assimilation.

Following the recommendations in the Users’Guide [Boersma et al., 2011a] and recent studies [Duncan et al., 2014;
Pfister et al., 2013], we select the KNMI OMI data based on tropospheric column flag (=0, which also excluded the
unreliable pixels affected by the row anomaly that occurred since 2007), surface albedo (<0.3), cloud radiance
fraction (<0.3), solar zenith angle (<75°), viewing zenith angle (<45°), and the instrument detection limit
(>1.0×1015 molecule/cm2, same as in Lamsal et al. [2011]). The averaging kernels (AKs) A [Eskes and Boersma,
2003] and AMFs in the KNMI product were used to calculate the modeled tropospheric NO2 vertical columns ytrop
comparable to OMI’s by mapping the modeled xtrop vectors of NO2 subcolumns via the AKs, based on equations
(1) and (2) below, which were adapted from equations (6) and (5) in Boersma et al. [2011a].

Atrop ¼ A � AMFtotal=AMFtrop (1)

ytrop ¼ Atrop � xtrop (2)

where xtrop refers to the vector of the NO2 subcolumns in the STEMmodel vertical layers in the troposphere.
The AK vectors indicate the relative sensitivity of an instrument to the measured species within the vertical
layers throughout the column, and OMI shows lower sensitivity to NO2 near the surface (i.e., the values in A
are mostly<1.0 at these altitudes) than in the free troposphere (with the values in Amostly>1.0). Computed
from AMFs, A depends on many factors such as NO2 a priori profiles, surface albedo, and the presence of
clouds and aerosols [Eskes and Boersma, 2003]. Figure S2 demonstrates the impact of surface albedo on
the shape of A in California on a specific day. The A vectors in the KNMI product are specified at the
Tropospheric Model 4 (TM4) grid used in their retrieval. In our calculations of ytrop, the A vectors were
interpolated to the finer STEM model pressure levels using a univariate interpolation approach [Akima, 1970].
This interpolation is suggested in principle, but when the averaging kernel vectors are sensitive to changes on
small spatial scales, such as due to rapid cloud changes, the interpolation is discouraged [Boersma et al., 2011a].
However, in our case, OMI data measured under cloudy conditions were excluded from the analysis. The usage
of A here is designed to remove the measurement errors contributed from the TM4 a priori profiles.
2.1.2. Surface NO2 Measurements and Bias Correction
Hourly NO2 measurements in May 2010 from the Air Quality and Meteorological Information System
(AQMIS2, Table 1), maintained by CARB at a number of surface sites were also used for model evaluation and
assimilation. Most of the surface NO2 measurements taken by chemiluminescence (CL) detection with
catalytic conversion on a molybdenum surface are known to be sensitive to some other NOy species, most
strongly to alkyl nitrates (AN), peroxyacetyl nitrates (PAN), and nitric acid (HNO3). Therefore, they can have
variable positive biases [Winer et al., 1974; Dunlea et al., 2007; Steinbacher et al., 2007]. We applied bias
correction factors (CFs) on the original measurements before using them for quantitative analysis. These CFs
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were calculated based on the STEM model a priori (defined in section 2.2) chemical fields at the
corresponding grids of the surface sites, following equation (3) as suggested by Lamsal et al. [2008]:

CF unitlessð Þ ¼ NO2½ �= NO2½ � þ Σ AN½ � þ 0:95 PAN½ � þ 0:35 HNO3½ �ð Þ (3)

Similar bias correction methods have been used in other inverse modeling studies in the U.S. [e.g., Tang et al.,
2013]. We are aware that this bias correction approach has two major limitations:

1. Equation (3) was derived based on findings in multiple laboratory and field experiment studies. It focused on
the OMI overpass times, and the conversion efficiency for HNO3may be highly uncertain [Neuman et al., 1999;
Lamsal et al., 2008, 2010]. Therefore, there exist limitations to correct the biases in surface NO2 measurements
at all locations and times using this same equation.

2. The model-based CFs can introduce uncertainties. To examine how well this CF metric is represented
by the model, the modeled CF fields are compared in section 3.1.2 against those calculated from the
aircraft observations.

We also conducted assimilation of surface nitrogen monoxide (NO) measurements at California surface sites.
Although these measurements are not interfered by non-NO2 species, at many of these surface sites the
measured NO are of much poorer arithmetic precision than the measured NO2, and they can be more
strongly affected by local sources and therefore are not suitable for this study.

Compared to the column amounts that are sensitive to fluxes from various origins and therefore are affected
by synoptic to local-scale meteorology, surface concentrations may be more sensitive to the near-surface
dynamics, which is usually challenging to model accurately, especially at the nighttime. The impacts of
transport errors on the assimilation of column or surfacemeasurements will need to be carefully evaluated by
conducting additional analysis using multimodel framework and single-model ensemble methods (e.g., a
large number of meteorological model simulations using different configurations) [Lauvaux and Davis, 2014,
and the references therein], and using the subsets of the available observations.
2.1.3. Aircraft Observations
We use the near-surface (below 2 km, above ground level (agl)) O3 and NO2 observations collected during
multiple NOAA WP-3D flights over California in May 2010 to assess the effectiveness of the assimilation of
surface and column NO2 observations (Table 1). These data were not assimilated and were saved to
evaluate the modeled chemistry fields. We also use the aircraft ANs, PAN, and HNO3 measurements to
evaluate the modeled CF fields. The NO2, O3, HNO3, PAN, and ANs (C1–C5) were measured by CL detection
with photolytic conversion (which is almost nonsensitive to non-NO2 species) [Pollack et al., 2011], CL
[Ryerson et al., 1998], Chemical Ionization Mass Spectrometry [Neuman et al., 2002], thermal
decomposition–Chemical Ionization Mass Spectrometry [Roiger et al., 2011], and Advanced Whole Air
Sampler [Colman et al., 2011] (https://www.eol.ucar.edu/content/documentation-2), with uncertainties
(accuracy/precision) in their original resolutions of 4%/(0.03–0.08) ppbv, 2%/(0.015–0.15) ppbv, 15%/0.012
ppbv, 20%/0.005 ppbv, and 10%/2%, respectively. Most of these measurements in this month were
taken over Southern California (SoCal). The 1 min merged data were used to evaluate the modeled NO2

and O3 in the following sections. Observations in this merged data set have a closer spatial resolution
(WP-3D aircraft has a top speed of ~12.4 km/min) to STEM’s. The observation-based CFs were calculated
using another merged data set in the resolution of the Advanced Whole Air Sampler.
2.1.4. Other O3 Measurements
Hourly O3 from U.S. EPA Air Quality System (AQS) and Clean Air Status and Trends Network (CASTNET) sites
in May 2010 are used to evaluate the modeled surface O3 in multiple STEM simulations. The AQS and
CASTNET O3 were measured by the UV absorbance method, with accuracy of ±2% and ±10%, respectively
[Office of Air Quality Planning and Standards, 2008; Zhang et al., 2012; CASTNET, 2011]. Daily OMI total O3

columns, also assimilated into the boundary condition model (details in section 2.2), were used in the online
Tropospheric Ultra-violet Visible (TUV) radiation model [Madronich et al., 2002] to generate the photolysis
rates for STEM. OMI total O3 column are shown to be ~0.4% higher than ground-based network of Dobson
and Brewer instruments [McPeters et al., 2008]. We also used Level 2 (L2) O3 profiles measured during both
daytime and nighttime from the Tropospheric Emission Spectrometer (TES) instrument [Beer, 2006] on board
the Aura satellite to assess the modeled O3 vertical distributions in the Western U.S. Details of TES O3 are
introduced in section S1.
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2.2. Model and Its Configurations

The model simulations were conducted using the full-chemistry version of the STEM model on a 12× 12 km2

Lambert conformal conic grid with 32 vertical layers in the troposphere over the Western U.S. (180 × 150 grid
boxes, approximate latitude/longitude ranges: 30–48°N/130–100°W). The model calculates gas-phase
chemistry reactions based on the Statewide Air Pollution Research Center (SAPRC) gaseous chemical
mechanism (SAPRC-99) [Carter, 2000] with 30 photolysis rates calculated online by the TUV radiation model.
STEM has been used and evaluated in a number of field campaigns in the past decade [Carmichael et al.,
2003a, 2003b; Tang et al., 2007, 2004; Stith et al., 2009; Adhikary et al., 2010; Huang et al., 2010, 2011]. STEM
simulations were conducted on 60 km and 12 km horizontal resolution grids for CalNex period, and the O3

fields have been carefully compared with various observations and other chemical transport models [Huang
et al., 2013; Lapina et al., 2014].

The STEM calculations were driven by meteorological fields generated by the Advanced Research Weather
Research and Forecasting Model (WRF-ARW) version 3.3.1 [Skamarock et al., 2008]. Huang et al. [2013]
overviewed the meteorological conditions in May 2010 and described in detail the WRF configurations and
the comparison of the simulated meteorological fields with aircraft observations.

The lateral boundary conditions for gaseous and aerosol species and top boundary conditions for 10 gaseous
species were downscaled from the archived (1° × 1° horizontal and 6-hourly temporal resolution) Real-time Air
Quality Modeling System (RAQMS) global real-time chemical analyses [Pierce et al., 2007] which assimilated
the OMI O3 columns and the Microwave Limb Sounder instrument (also on board the Aura satellite)
stratospheric O3 profiles. The assimilated RAQMS O3 profiles show fairly good agreement (<±20% mean
biases) with in situ measurements and ozonesondes in California [Pierce et al., 2011], which can also be
reflected in our comparison of STEM O3 against the TES L2 O3 profiles (section 3.2.4). Indicated from the
comparison between STEM-modeled NOx and aircraft NOx measurements in May 2010, the vertical structure
of NOx is also generally captured (<±10% biases for the median profiles) by RAQMS above ~2 km with an
underpredicted variability [Huang et al., 2013].

The bottom-up emission inventory used as the a priori in the assimilation in this study was the same set as
those in Huang et al. [2013], defined here as ESNEI05 (Table 2): The anthropogenic emissions came from NEI 05
(ENEI05, ftp://aftp.fsl.noaa.gov/divisions/taq/emissions_data_2005), which varies on weekdays and weekends

Table 2. Monthly Long Simulations Conducted in This Studya

Cases Assimilated Observations Emission Inputs (Short Forms and the Full Descriptions) Domain

FSNEI05 / ESNEI05: anthropogenic sectors from scaled NEI 05 Western U.S.b

FCARB10v13 / ECARB10v13: CARB inventory for year 2010,
projected from base year of 2008

(released in March 2013), including all sectors

Western U.S.

FNEI08 / ENEI08: anthropogenic sectors from
NEI 08 (from Harvard University where the NEI 08 inputs

for the standard GEOS-Chem simulations
were created from the same source emission

files developed by U.S. EPA)

Western U.S.

FSNEI05_ACOL / EACOL in California grid boxes
from the ACOL case; ESNEI05

in the rest of the model grid boxes

Western U.S.

FSNEI05_ASUR / EASUR in California grid boxes from
the ASUR case; ESNEI05

in the rest of the model grid boxes

Western U.S.

ACOL KNMI OMI tropospheric NO2 columns a priori: ESNEI05 a posteriori: EACOL Californiac

ASUR surface NO2 volume mixing ratios
corrected by model-based CFs

a priori: ESNEI05 a posteriori: EASUR California

ABOTH Both column and surface NO2 a priori: ESNEI05 a posteriori: EABOTH California

aIn the Case Names, “F” Represents Forward Simulations, “A” Represents Assimilation, and “E” Represents Emission Estimates.
bLatitude/longitude ranges for this domain defined in section 2.2.
cLatitude/longitude ranges for this domain defined in section 2.3.
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and includes diurnal cycles. We assume that this inventory represents the anthropogenic emissions in the
base year of 2005, in which California NOx emissions (~0.3 Tg N/yr) contribute to ~5% of the national NOx

emissions. The emissions for CO, NOx, and VOCs were scaled by �25%, �20%, and �15%, respectively,
primarily based on the information from the U.S. EPA emission trends during 2005–2010 (http://www.epa.
gov/ttnchie1/trends) but also accounted for the NOx emission trends in California indicated from the
emission scaling factor product by Lamsal et al. (Figure S1). The a posteriori emission estimates shown in
section 3.2 will be compared to the original NEI 05 to indicate the NOx emission trends during 2005–2010.
Anthropogenic NOx emissions contribute to >95% of the statewide NOx emissions in this inventory
(Figure 1b). About half of these emissions in California were contributed by sources in the urban areas that
cover only <5% of the entire state (Figure 1c); the definition of urban areas in this study is based upon the
International Geosphere-Biosphere Programme (IGBP)-modified Moderate Resolution Imaging
Spectroradiometer (MODIS) land use categories used in our WRF simulation (see details in Huang et al.
[2013]). The forward simulation using ESNEI05 is defined as FSNEI05 (Table 2). Two other simulations were
conducted in which the CARB (ECARB10v13) and NEI 08 (ENEI08) bottom-up anthropogenic emission inventories
were used (Table 2):

1. FCARB10v13. Same as ESNEI05 used in the assimilation, except that the emissions of all sectors in the
California grid cells were replaced with the daily varying gridded emission inputs released by CARB
in March 2013 (M. Huang et al., personal communication with CARB, 2013). The CARB emissions were
projected from the base year of 2008 to 2010, using region- and emissions-category-specific growth and
control factors contained in their “California Emissions Projection Analysis Model.”

2. FNEI08. NEI 08 (M. Huang et al., personal communication with Harvard University where the NEI 08 inputs
for the standard GEOS-Chem simulations were created from the same source emission files developed
by U.S. EPA, 2013), which also varies on weekdays and weekends and includes diurnal cycles.

These multiple emission inputs were mass-conservatively regridded into STEM grid using the Model-3 I/O API
tools (http://www.cmascenter.org/ioapi/documentation/3.1/html/AA.html#tools), and necessary mapping was
conducted for VOC species from the chemical mechanism that each inventory was originally developed upon to
SAPRC-99 where necessary. The NOx emissions in these bottom-up inventories will be compared quantitatively
in section 3.2.1.

2.3. The 4D-Var Assimilation Method

We assimilated surface NO2 and OMI NO2 columns separately and jointly to update the bottom-up NOx

emissions in each model grid by assimilating surface NO2 and satellite NO2 columns (cases ASUR, ACOL, and
ABOTH in Table 2). The 4D-Var approach is used, which requires the adjoint model of STEM [Sandu et al., 2005],
and has been previously applied by Chai et al. [2009] to update emission estimates in the Northeastern U.S. by
assimilating satellite (i.e., SCIAMACHY) NO2 columns in a coarser STEM model grid. This method seeks the
optimal solution to minimize the cost function J in equation (4) by applying the large-scale bound-constrained

Figure 1. (a) Monthly-mean a priori NOx (NO + NO2) emission estimates (i.e., ESNEI05 in Tables 2 and 4) used in the assimilation, including sources from all sectors.
(b) The contributions of the anthropogenic sources to the total NOx emissions shown in Figure 1a. (c) The urban regions (filled in red) defined in our WRF simulation,
based on the IGBP-modified MODIS land use classification, which shows expanded urban areas in California than what the WRF-default U.S. Geological Survey
classification indicates (see details in Huang et al. [2013]).
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limited-memory Broyden-Fletcher-Goldfarb-Shanno minimization routine [Zhu et al., 1997] through a number
of iterations, as implemented in STEM by Chai et al. [2006, 2007, 2009]. In this study, the optimization proceeds
until the cost function is reduced to <0.001 of its initial value or the number of iterations reaches 25.

J x0; εð Þ ¼ 1
2

x0 � xb0
� �T

B�1 x0 � xb0
� �þ 1

2
ε� 1ð ÞTE�1 ε� 1ð Þ þ 1

2

XN

i¼0
yi � xið Þð ÞTOi

�1 yi � xið Þð Þ
(4)

where B, E, and O are error covariance matrices for the model background x0, for NOx emission scaling factor
ε, and the available observations yi (in this study, column or/and surface NO2) at any instant time tiwithin the
assimilation window, respectively. The observation operator  maps the model space x onto the
observation space. Here we used the similar configurations to those applied by Chai et al. [2009] in their basic
cases that only controlled NOx emissions. This means that the second and third terms in equation (4) are
considered, which represent a departure from initial emission inventories, and a measure of misfit between
the model and observations, respectively. Chai et al. [2009] discussed cases that controlled O3 initial
conditions (in which the first term in equation (4) was also counted) together with NOx emissions and did not
find significant improvement in their results. In this study, emission scaling factor was controlled instead of
the emission rates for several advantages as described by Hakami et al. [2005]. We used a 24 h assimilation
window for each day of May 2010, a uniform uncertainty of 0.5 for ε, and the uncorrelated observation
errors for surface NO2 and OMI NO2 columns. The observation errors for surface NO2 were based on 20% of
the grid-averaged observations that mainly account the uncertainties of the CFs (section 3.1.2). The
observation errors for OMI NO2 were based on the measurement errors included in the KNMI product. Ideally,
observation errors should account for both measurement errors and representative errors (e.g., the standard
deviation of measurements located in each model grid as defined in Chai et al. [2007] or using the
superobservation approach as in Miyazaki et al. [2012a] and Eskes et al. [2003]). In our cases, the
representative errors are small in most grid cells and ignored because of the similar spatial scales that
the observations and the model resolution represent. Observation errors may not always be uncorrelated,
especially for remote sensing L2 data. However, estimating the observation error correlation is still very
challenging and has not been widely applied in both weather and chemical assimilation research and
operation [Stewart et al., 2008, 2013; Silver et al., 2013]. For the applications that use dense observations in
coarse model grids, sometimes, data thinning (discarding data nearby) and superobbing (grouping data
nearby) are performed to compensate the impact of omitting error correlation on assimilation results. As we
aim at conducting assimilation on fine model grids, we do not use any of these methods that could cause the
loss of information from the observations. The measurement errors are often correlated with the retrieved
columns. If the higher retrieved columns are assigned higher errors, then these observations can have smaller
influences on the a posteriori. To help reduce the impact of omitting the off-diagonal values in the error
covariance matrices, and the possible unrealistic observation errors used in the assimilation, future work will be
conducted including the test of constant observation errors, and the assignment of different weights between
the multiple terms in J. Complexities introduced from the retrieval processes into satellite L2 retrievals, which
affect the assimilation, can ultimately be avoided by the assimilation of satellite L1 products (radiances).

The domain for our assimilation cases is a subdomain (90 × 90 grid boxes, approximate latitude/longitude
ranges, ~32–42°N/126–114°W) of the Western U.S. domain. It covers California where the observations were
dense during the studied period. The assimilation generated grid-specific daily-varying scaling factors on NOx

emissions in this subdomain. We also conducted simulations over the entire Western U.S. domain with these
scaling factors applied to the sub-domain grids (cases FSNEI05_ASUR, FSNEI05_ACOL, and FSNEI05_ABOTH in Table 2),
and the resulting chemistry fields over the entire Western U.S. domain were evaluated with independent
measurements in the Western U.S. All of the assimilation results are presented on a monthly scale in
section 3.2.

2.4. Adjoint Sensitivity Analysis

The distributions of the adjoint variable reflect backward in time the change of chemical distributions of the
species or model inputs/parameters that influence a defined response function (e.g., air quality-related
metrics such as surface or column NO2 at any given receptor(s) at a specific time). These values can (1) help
understand the specific processes that lead to a state of the atmosphere, (2) identify areas where
perturbations/uncertainties in the concentration of the chemical species of interest at earlier times or model
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inputs/parameters will result in significant changes in the defined response function, and (3) help interpret
the 4D-Var assimilation results. Adjoint sensitivity analyses have been applied in a number of previous studies
from global to regional scales for gases and aerosols [e.g., Chai et al., 2006; Zhang et al., 2009; Kopacz et al.,
2011; Zoogman et al., 2011; Carmichael et al., 2008; Hakami et al., 2006; Bowman and Henze, 2012; Huang et al.,
2013; Lapina et al., 2014].

In this study, we use adjoint sensitivity to demonstrate what NOx emission sources influence the modeled
surface or column NO2 (defined as the response function Ji in equation (5)) in the selected grid box(es) close
to the OMI overpass time (22 UTC) on 9 May and 16 May to represent the windy and stagnant weather
conditions, respectively (Table 3).

λENOx ¼
∂Ji

∂ENOx

ENOx

Ji
(5)

where i = 1 or 2 denotes the response function for column or surface NO2, respectively. The normalized
adjoint sensitivity λENOx in equation (5) is a function of time and space, and we will present results temporally
averaged through the studied days and those at selected times within the studied period (Table 3).

The Long Beach area has one of the world’s largest ports, and its air quality is affected by both maritime
(mainly shipping) and terrestrial emissions in SoCal [Huang et al., 2011]. Similar to the findings by Brioude et al.
[2013], our assimilation results indicate significant emission changes in 2005–2010 around the Long Beach
area (details in section 3.2). Therefore, we will be focusing on results from the Long Beach case study. To
discuss the impact of receptor locations on the spatial distributions of λENOx , on the windy day of 9 May,

two additional cases were conducted in which Riverside and Joshua Tree National Park are selected to be the
receptor grid boxes, respectively (Table 3). Both locations suffer from chronic air pollution, in part affected by
emission sources in upwind inland areas such as the Greater LA.

3. Results and Discussion
3.1. Evaluation of the Modeled NO2 and CFs in the FSNEI05 Case
3.1.1. Evaluation of NO2 Spatial Distributions
Figures 2a–2c compare the modeled NO2 from the FSNEI05 case with OMI tropospheric NO2 columns, surface
NO2 (after the model-based CFs were applied to the original measurements), and the near-surface aircraft
NO2 measurements, respectively. Although the maximum numbers of observations in each grid for surface
(>1000), aircraft (>50), and column NO2 (~5) vary significantly in this month, the three sets of comparisons
show qualitatively similar spatial distributions of the model biases: The model overpredicts NO2 over the
populated regions such as South Coast, Fresno, and the Bay Area by up to>50%, indicating the errors in the a
priori emission inventory and the model chemistry. NO2 is generally underpredicted by up to a factor of >5
over the remote regions where NO2 concentrations are low, as a result of the underpredicted transported
background NO2 and the uncertainties in the model chemistry. The correlation coefficient r, root-mean-
square-error (RMSE) andmean absolute error (MAE) for each pair of comparison were derived from themodel
grid-averaged data (Table 4). The spatial distributions of modeled and observed NO2 are indicated to have
best and worst consistency with surface (r= 0.84; RMSE/MAE= 49%/38% of the observed mean values) and
aircraft (r= 0.53; RMSE/MAE= 130%/72% of the observed mean values) observations, respectively. This is

Table 3. Adjoint Sensitivity Analysis Conducted in This Study

Date Receptor in Californiaa
J1 (Column) or J2 (Surface)

in Equation ((5))
Temporally Averaged Results

Throughout the Day
Instantaneous Results at Selected

Times Within the Day

9 May 2010 Long Beach J2 Y N
9 May 2010 Long Beach J1 Y N
9 May 2010 Riverside J1 Y Y, at 01, 08 and 15 UTC
9 May 2010 Joshua Tree National Park J1 Y N
16 May 2010 Long Beach J2 Y N
16 May 2010 Long Beach J1 Y N

aThe respective center latitude/longitude/elevation of the model grid boxes at Long Beach, Riverside, and Joshua Tree National Park are 33.7°N/118.2°W/7.5m,
33.9°N/117.5°W/336.7m, and 33.8°N/115.9°W/871.8m.
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possibly due to the different sampling densities. In all comparisons, MAE values are 31%–44% lower than the
RMSEs, indicating moderate variances in the individual errors. In the comparisons with observed surface and
column NO2 which are associated with relatively larger observation errors, ~15% and ~34% of the model
errors fall within the observation errors, respectively.
3.1.2. Evaluation of the CFs
To evaluate the CFs used to correct the surface NO2 observations (mentioned in section 2.1.2) and to estimate
the observation errors of the bias-corrected surface NO2 used in the assimilation case ASUR, we compare the
observed and model-based CF values, calculated using equation (3) along the near-surface flight tracks
(Figures 3a and 3b). Note that the observation-based CFs represent the higher bound of the CFs, as the
observed ANs do not include the multifunctional or long-chain ANs and therefore are not identical to the
actual total ANs and the lumped organic nitrates treated in the model. The CFs are >0.8 in a few urban

Table 4. Evaluation of the Modeled NO2 Fields in Case FSNEI05 With OMI, Surface, and Aircraft Measurementsa

Observations Compared r Mean Observation RMSE MAE

OMI NO2 columns (within the assimilation domain) 0.63 2.04 1.97 (97%) 1.28 (63%)
OMI NO2 columns (California only) 0.62 2.38 2.36 (99%) 1.44 (60%)
Bias-corrected surface NO2 0.84 5.98 2.94 (49%) 2.25 (38%)
Aircraft near-surface NO2 0.53 1.15 1.49 (130%) 0.83 (72%)

aThe units of mean observations, RMSEs, and MAEs are the same as the compared observations (i.e., ×1015 molecule/cm2

for OMI columns; ppbv for surface and aircraft measurements), and r is unitless. Values in the parentheses indicate the % of
the mean observed values.

Figure 2. Evaluation of the modeled NO2 a priori fields in May 2010. The modeled NO2 fields were compared with (a) OMI tropospheric NO2 columns, (b) bias-cor-
rected surface NO2, and (c) aircraft near-surface (<2 km agl) NO2 measurements. Statistics for the evaluation are in Table 4.
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regions (South Coast, Fresno, Sacramento, and the Bay Area), while they can be as low as <0.3 in many rural
and remote areas where plumes are typically aged and NOz (NOz=NOy�NOx) species make larger
contributions to NOy. The model-based CFs show similar spatial variability to the observations, with
correlation coefficient r and RMSE of 0.55 and 0.24, respectively, >70% of which differing from the
observations by no larger than ±0.20. The CFs are generally overpredicted over the urban regions and
underpredicted in the Central Valley (Figure 3c). Over SoCal, the CFs are close to the previous calculations by a
regional model(Comprehensive Air Quality Model with Extensions) for the year 2005 [Bechle et al., 2013] and
higher than the GEOS-Chem results at the OMI overpass times in Spring 2005 [Lamsal et al., 2008] due to the
different time periods studied and model resolutions used. To evaluate the model’s capability of capturing
the observed temporal variability, the data on all flight days in May 2010 were binned with an hourly interval.
The observed and modeled CFs are shown as box-and-whisker plots for each time bin, indicating fairly good
consistency (discrepancies of the hourly mean values <0.20) in most time bins (Figure 3d). Based on the
evaluation of modeled CF fields, we estimate the observation errors used in the assimilation case ASUR to be
~20%. The uncertainties shown in the modeled CFs were influenced by a number of reasons such as the a
priori NOy emissions, transport, and the model chemistry, which can also be the sources of uncertainty in the
4D-Var results.

3.2. Inversion Results
3.2.1. Updated Emission Estimates and the Implications of Emission Trends
The separate (cases ACOL and ASUR) and joint (case ABOTH) assimilation of column and surface NO2 generated
three sets of grid-specific NOx emission scaling factors for each day of May 2010. We first analyze results in
cases ASUR and ACOL. The monthly mean relative changes in NOx emissions (RCNOx) from the a priori are
shown in Figures 4a and 4b for cases ACOL and ASUR, respectively. In both cases, the updates in NOx emissions
mainly occur in the Greater LA region, the Bay Area, and the Central Valley where the emissions are high and
dominantly from the mobile sources. These results indicate that the applied emission control strategies to
this emission sector during the past years effectively changed the NOx emissions in these regions. The RCNOx

Figure 3. Evaluation of the modeled bias correcting factors (CFs) with those calculated based on the aircraft near-surface
(<2 km agl) observations: (a) observed and (b) modeled CFs along the flight tracks and (c) their differences. These data
were temporally averaged in each model grid box. (d) The temporal variability of observed (pink) and modeled (light blue)
CF values, shown as box-and-whisker plots (minimum, first quartile, medium, third quartile, maximum). The data are binned
with an hourly interval, and the mean values for data in each bin are shown as red and blue dots for observed andmodeled
CFs, respectively.

Journal of Geophysical Research: Atmospheres 10.1002/2014JD022268

HUANG ET AL. ©2014. American Geophysical Union. All Rights Reserved. 12,939



generated in the ASUR case overall show stronger spatial variability than in the ACOL case. This is mainly due to
the significantly (i.e., tens to hundreds of times) larger number of surface observations assimilated, which is
primarily affected by the different sampling time frequency. Other factors also contribute to the different
results in the ACOL and ASUR cases. For example, the method to correct the biases in surface NO2may have led
to the opposite signs of RCNOx values in the Central Valley and some suburban areas in SoCal. Omitting bias
correction on OMI NO2 observations can introduce biases to the results in case ACOL. In addition, modeled
column and surface NO2 at a given receptor grid can be sensitive to NOx emission sources at different
locations, as shown in the adjoint sensitivity analysis to be presented in section 3.2.3. The RCNOx values that
resulted from jointly assimilating surface and column NO2 (case ABOTH) are closer to those in case ASUR than
case ACOL, indicating the stronger control in the joint assimilation by the larger number of surface
observations. Overall, the RCNOx values in case ABOTH indicate larger reductions from the a priori than results
in cases ACOL and ASUR (Figure 4c; note that the differences were scaled by 5 in the figure), most notably in
SoCal and the Bay Area.

The spatial distributions of NOx emissions in various bottom-up and top-down inventories (ECARB10v13, ENEI08,
and the a posteriori estimates) are compared against ENEI05 and illustrated in Figure 5. These inventories all
indicate decreases in NOx emissions from ENEI05 over multiple urban areas (e.g., the Greater LA and Bay
Area, Sacramento, Fresno, and Bakersfield). Over many rural and remote regions, the a posteriori estimates do
not show higher NOx emissions than ENEI05 as ECARB10v13 and ENEI08 demonstrate, and ENEI08 shows the
highest positive differences from ENEI05. The differences of NOx emissions in these inventories were
quantified over large spatial scales and summarized in Table 5a. Over the entire state, the ACOL, ASUR, and
ABOTH cases lowered the a priori by ~8%, ~11%, and ~13%, respectively. These indicate reductions in ENEI05 by
~26%, ~29%, and ~30%, respectively. The agreement in the three sets of a posteriori estimates statewide
(<4% of differences) results from the offsetting in their different spatial distributions as shown in Figure 5.
These a posteriori estimates are significantly lower than those in ENEI08 (~4% reduction from ENEI05) as they
represent different base years. These large differences indicate that the strongest decreases in emissions
during 2005–2010 occurred after the economic recession started since late 2007. The a posteriori estimates
are similar to those in ECARB10v13, which indicates a statewide ~30% reduction from ENEI05. This consistency
strengthens our confidence in the used 4D-Var assimilation system, as well as in CARB’s emission projection
system, for the purposes of studying emission trends on relative large spatial scales.

Our EACOL indicates ~7% larger NOx emission reduction during 2005–2010 than ELamsal (i.e., those derived
from the emission scaling factor product created by Lamsal et al. in Figure S1, using GEOS-Chem on a
1° × 1.25° horizontal resolution grid) for four major reasons: (1) the used model and its resolution: As
suggested in previous studies over the North America, regional models on a 4–12 km horizontal resolution
can better capture pollutants’ spatial gradients and interpret satellite data [e.g., Valin et al., 2011; Fishman
et al., 2011], and our results indicate that such factors can also affect the accuracy in top-down emission
estimates, (2) the used top-down methodology: The 4D-Var method in this study takes account of important

Figure 4. The relative changes (%) from the a priori NOx emission estimates made in (a) case ACOL that assimilated OMI
NO2 columns and (b) case ASUR that assimilated surface NO2. (c) The differences in a posteriori NOx emissions between
the ABOTH and ASUR cases, scaled by a factor of 5 (i.e., 5 × (EABOTH� EASUR)). Cases were defined in Table 2.
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atmospheric processes which are ignored in the mass balance types of approaches, such as transport and
chemical transformation, (3) the studied period: ELamsal and our a posteriori estimates are annual mean and
monthly mean based, respectively, and (4) the used OMI data version and filtering criteria: ELamsal may be
generated using an earlier version of OMI data than the KNMI v2.0 used in this study, which can be associated
with different uncertainties. ELamsal only focused over areas dominantly affected by anthropogenic emission
sources (i.e., contributing to>50% of the total emissions). Our study also considers areas dominantly affected
by nonanthropogenic emission sources. As emissions in these regions contribute little to the statewide
total emissions, this factor is not a major contributor. Future work is suggested to prioritize the impact of each
factor on the differences between EACOL and ELamsal.

Lamsal et al. [2011] calculated a “beta” term, defined as the ratio of the changes in surface NOx emissions and
the changes in modeled tropospheric NO2 columns in 2006, based on their GEOS-Chem base simulation
and a sensitivity simulation in which the anthropogenic NOx emissions were perturbed by 15%. In California,
their beta values range from ~0.7 to ~1.2. In this study, the ratio of the changes in the monthly mean

Figure 5. Differences betweenNOx emissions inmultiple inventories and the NEI 05: (a) ECARB10v13� ENEI05, (b) ENEI08� ENEI05,
(c) EACOL� ENEI05, (d) EASUR� ENEI05, and (e) 10 × (EABOTH� EASUR). Emission inventories were defined in Table 2.

Table 5a. Differences (in Percent) in Statewide and Subregionala NOx Emissions Between Multiple Sets of Emission
Estimates and ENEI05

b

Emission Estimates Statewide SoCal CenCal NoCal

ECARB10v13 �30.46 �34.80 �24.85 �28.66
ENEI08 �3.75 4.57 �9.00 �15.79
ELamsal �19.53 �21.69 �21.77 �5.13
EACOL �26.42 �29.63 �24.00 �22.39
EASUR �28.58 �30.82 �27.88 �24.25
EABOTH �30.02 �33.22 �28.38 �24.78

aDefinitions of the subregions: SoCal (southern California), south of 35°N; CenCal (central California), 35–38°N; NoCal
(northern California), north of 38°N. These subregions contribute to ~49%, ~31%, and ~20% of the statewide a priori NOx
emissions, respectively.

bThe full descriptions for each emission data set are in Table 2.
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California NOx emissions in case ACOL,
over the changes in the modeled
column NO2, turns out to be ~0.9. The
differences and uncertainties of this
relationship in both studies, resulting
from the different top-down
approaches, models, and studied
periods, are worth further investigation.

The differences of NOx emissions in
these inventories were then quantified
over three subregions (i.e., SoCal,

CenCal, and NoCal) in Table 5a. Over the SoCal region (south of ~35°N) that contributes to almost half of
the total NOx emissions in California in the a priori emissions, the ACOL, ASUR, and ABOTH cases lowered the a
priori by ~12%, ~14%, and ~17%, respectively, corresponding to the reductions from ENEI05 by ~30%, ~31%,
and ~33%. These reductions are larger than those over the entire state, but similarly, they are most
significantly different from ENEI08, which indicates a ~5% of increase. They are also close to (<5% smaller
than) the ~35% of emission reduction indicated by ECARB10v13 and againmoderately differ from ELamsal, which
lowered ENEI05 by ~22%. The reduction in NOy emissions indicated by Brioude et al. [2013] (~27% for a
smaller region in SoCal) and our a posteriori estimates over SoCal are similar, suggesting that chemical
transformation (not considered in the former study) and the types of observations integrated (aircraft data
in the former study; surface or/and satellite data in our cases) may not always be the controlling factors
when deriving the top-down NOx emission estimates over large spatial and temporal scales. These
conclusions are based on our monthly results over SoCal where fresh plumes were dominant and dense
observations were available and need to be further validated for other regions/periods.

Over the CenCal (35–38°N) andNoCal (north of ~38°N) regions that contribute to 31% and 20%of the statewide
total NOx emissions in the a priori, compared to independent inventories, all three a posteriori estimates are also
closer to ECARB10v13 than ELamsal and ENEI08. Among the three a posteriori estimates, again EACOL and EABOTH
indicate the lowest and highest reductions from ENEI05, respectively. EACOL is the closest to ECARB10v13 over
CenCal, in contrast to its largest differences from ECARB10v13 over SoCal, NoCal, and the entire state.

The differences of NOx emissions in these inventories were also summarized for California’s urban (as defined
in Figure 1c) and nonurban regions in Table 5b. In the urban regions, the three a posteriori estimates all
indicate more than 30% of decreases from ENEI05, significantly greater than the ~12% of reduction indicated
by ENEI08. EACOL and EABOTH indicate the lowest (~30%) and highest (~39%) reductions from ENEI05,
respectively, and EABOTH shows the smallest discrepancy from ECARB10v13 (~40%). Over the much broader
nonurban areas, the changes in emissions from ENEI05 are, in general, less strong. ECARB10v13, EACOL, ESUR, and
EABOTH indicate similar reductions (20–22%), in contrast to the increase of ~4% indicated by ENEI08. Among
the three a posteriori estimates, again, EABOTH shows the smallest discrepancy from ECARB10v13, and EACOL
suggests ~3% larger reductions than EASUR.
3.2.2. Cross Validation of NO2 and O3 Fields With Aircraft Measurements
The STEM-modeled NO2 and O3 fields in the simulations using various sets of emission estimates are
compared against the observed NO2 and O3 along WP-3D flight tracks near the surface in this month. The
spatial patterns of model errors (|Cmodel-Cobs|) in case FSNEI05 and the rest of the simulations are shown in
Figures S3 and S4 for NO2 and O3, respectively. The modeled NOy were also compared with the aircraft
measurements, and the spatial patterns of the differences in modeled NOy errors are qualitatively similar to
those of NO2 over many regions (not shown). Three statistical metrics (r, RMSE, and MAE) to evaluate these
simulations are summarized in Table 6 over the entire state and three subregions.

We first evaluate the effectiveness of assimilation by comparing case FSNEI05 with the FSNEI05_ASUR,
FSNEI05_ACOL, and FSNEI05_ABOTH cases. Errors in modeled NO2 a posteriori dropped over most urban regions
while increased over many rural areas in the Central Valley, and FSNEI05_ASUR shows the largest increases in
modeled NO2 errors over these rural regions among the three a posteriori (Figure S3). On large spatial scales,
referring to case FSNEI05, the use of the a posteriori emission estimates lowered the modeled NO2

discrepancies along the flight tracks over the entire state (Table 6). In contrast to SoCal and NoCal, the a

Table 5b. Differences (in Percent) in Urban and Nonurban NOx Emissions
Between Multiple Sets of Emission Estimates and ENEI05

a

Emission Estimates Urban Nonurban

ECARB10v13 �40.57 �20.16
ENEI08 �11.71 4.36
EACOL �30.29 �22.47
EASUR �37.42 �19.58
EABOTH �39.06 �20.81

aThe definitions of urban and nonurban regions in California are con-
sistent with those in the WRF model simulation, as shown in Figure 1c.
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posteriori emissions led to higher modeled NO2 errors along the flight tracks in CenCal, especially in the
FSNEI05_ASUR and FSNEI05_ABOTH cases. This can be due to the more uncertain and sparse monitoring data that
we assimilated, as well as the complex meteorology, topography, and plume ages that the model may not
represent well in this region. The changes inmodeled O3 and its uncertainties can be affected by those in NOx

(and other precursors’) emissions, as well as other factors such as the chemical regimes of the studied regions.
Over the NOx-limited areas, the lower a posteriori NOx emissions led to decreases in modeled O3 fields,
resulting in reduced modeled O3 errors near Fresno, Bakersfield, and rural areas in SoCal, where O3

concentrations were overpredicted in the FSNEI05 case and increased modeled O3 errors over some rural areas
in the Central Valley where O3 concentrations were underpredicted in the FSNEI05 case. The lower a posteriori
NOx emissions caused larger errors in NOx-saturated regions such as the Greater LA areas, where O3

concentrations were overpredicted in the FSNEI05 case (Figure S4). The modeled O3 errors were reduced on
large spatial scales, except in the FSNEI05_ACOL case over the CenCal region (Table 6). Discussions on modeled
O3 will be continued in section 3.2.4, focusing on the surface.

The modeled NO2 and O3 fields using independent bottom-up inventories (FCARB10v13 and FNEI08) were also
evaluated with the aircraft observations and compared with the evaluation of our a posteriori chemical fields.
The differences in modeled NO2 and O3 errors between FNEI08 and FSNEI05 vastly disagree with those in the
other pairs of comparison (Figures S3 and S4). On large spatial scales, case FNEI08 results in the largest
discrepancies from the aircraft observations among all simulations, and case FCARB10v13 generates closer NO2

and O3 fields to the aircraft measurements than those in case FSNEI05. The spatial patterns of differences in
model errors between FCARB10v13, FSNEI05_ASUR, FSNEI05_ACOL, FSNEI05_ABOTH, and FSNEI05 are qualitatively
similar over certain regions such as SoCal and Fresno (Figures S3 and S4), but overall, no strong correlations
were found. This indicates that the updates on NOx emissions by integrating monitoring data qualitatively
match those by using CARB’s bottom-up emission projection model to some extent, which was indeed
reflected in Figure 5. However, the a posteriori estimates still notably differ from ECARB10v13 on small spatial

Table 6. Statistics of the Model Evaluation Against Aircraft Near-Surface NO2 and O3 Measurements in California for
Various Forward Simulations (Definitions in Table 2)a

NO2 O3

Regions Cases r RMSE (ppbv) MAE (ppbv) r RMSE (ppbv) MAE (ppbv)

Statewide FSNEI05 0.53 1.49 0.83 0.58 11.44 8.67
FCARB10v13 0.51 1.42 0.76 0.60 9.89 7.91

FNEI08 0.50 1.76 0.95 0.51 16.13 11.50
FSNEI05_ACOL 0.57 (+) 1.34 (+) 0.78 (+) 0.52 (�) 11.72 (�) 9.11 (�)
FSNEI05_ASUR 0.48 (�) 1.44 (+) 0.78 (+) 0.58 (+) 11.16 (+) 8.53 (+)
FSNEI05_ABOTH 0.48 (�) 1.44 (+) 0.78 (+) 0.58 (+) 11.15 (+) 8.54 (+)

SoCal FSNEI05 0.49 2.37 1.45 0.52 13.59 9.71
FCARB10v13 0.48 2.24 1.34 0.47 9.33 7.18

FNEI08 0.49 2.85 1.76 0.46 22.47 16.62
FSNEI05_ACOL 0.58 (+) 1.96 (+) 1.20 (+) 0.48 (�) 12.31 (+) 8.89 (+)
FSNEI05_ASUR 0.36 (�) 2.35 (+) 1.38 (+) 0.48 (�) 12.81 (+) 9.29 (+)
FSNEI05_ABOTH 0.36 (�) 2.35 (+) 1.38 (+) 0.48 (�) 12.73 (+) 9.23 (+)

CenCal FSNEI05 0.50 1.15 0.69 0.15 12.21 9.70
FCARB10v13 0.50 1.11 0.63 0.27 11.27 9.39

FNEI08 0.46 1.24 0.75 0.06 15.74 11.38
FSNEI05_ACOL 0.55 (+) 1.14 (+) 0.71 (�) �0.07 (�) 13.59 (�) 11.30 (�)
FSNEI05_ASUR 0.45 (�) 1.20 (�) 0.73 (�) 0.22 (+) 12.12 (+) 9.66 (+)
FSNEI05_ABOTH 0.45 (�) 1.20 (�) 0.73 (�) 0.22 (+) 12.12 (+) 9.67 (+)

NoCal FSNEI05 0.46 0.60 0.40 0.53 8.32 6.65
FCARB10v13 0.55 0.45 0.34 0.46 7.56 6.09

FNEI08 0.49 0.54 0.39 0.51 10.31 8.04
FSNEI05_ACOL 0.51 (+) 0.53 (+) 0.38 (+) 0.53 (�) 8.26 (+) 6.60 (+)
FSNEI05_ASUR 0.54 (+) 0.48 (+) 0.36 (+) 0.53 (�) 8.14 (+) 6.47 (+)
FSNEI05_ABOTH 0.57 (+) 0.46 (+) 0.34 (+) 0.53 (�) 8.21 (+) 6.55 (+)

aThe best cases (with higher r values/lower errors) are in bold, and whether the assimilation improved (+) or exacer-
bated (�) the model performance (relative to case FSNEI05) is indicated. The subregions were defined in Table 5a.
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scales. Overall, case FSNEI05_ACOL shows the best performance in modeled NO2 over the entire state and
SoCal but not as good as case FCARB10v13 in NoCal and CenCal. This can be due to the smaller
number/worse coverage of the observations we assimilated and the challenges of well-simulating
complex atmospheric processes over these areas. The FCARB10v13 case also, in general, shows the best
performance in modeled O3, in that the emissions of non-NOx O3 precursors (such as VOCs and CO) in
ECARB10v13 are most up-to-date. Further efforts should be devoted to interpreting the similarities and
differences in ECARB10v13 and the a posteriori estimates and integrating observations to update the
emissions of non-NOx species.
3.2.3. Emissions Affecting the Column and Surface NO2: Case Studies
The impacts of same-day NOx emissions on modeled NO2 are interpreted by the adjoint sensitivity λENOx . In

separate adjoint cases, we define the column and surface NO2 at 22 UTC in the Long Beach grid as the
response functions J1 and J2 in equation (5), and the spatial distributions of λENOx can help explain the

different 4D-Var results in cases ASUR and ACOL. Improvement in air quality in Long Beach area can
benefit from emission control from ocean-going vessels, various emission sources around the port (http://
www.polb.com/environment/air/emissions.asp), and sources (primarily mobile) from other regions inland.
Therefore, we chose this location to be the receptor in the adjoint case study, and the adjoint results on 9
May (Figures 6a–6c) and 16 May (Figures 6d–6f ) are contrasted to discuss the effects of meteorological
conditions. The surface λENOx values in each horizontal grid were averaged from 00 to 22 UTC of the same
day, and their spatial distributions are illustrated for the column (Figures 6b and 6e) and surface adjoint
cases (Figures 6c and 6f ). The temporally averaged λENOx values in each grid were plotted as a function of

their distances from the Long Beach grid (Figures 6a and 6d).

Themodeled surface and column NO2 in Long Beach grid on both days are shown to bemost sensitive to the
same-day NOx emissions within ~40 km (where the temporally averaged normalized λENOx values are>0.001),

including sources from both maritime and terrestrial regions. Due to the stronger impact of regional

Figure 6. Adjoint sensitivity (fractions of total are shown) of Long Beach (b, e) column and (c, f ) surface NO2 at 22 UTC (near OMI overpass time) on 9 May (Figures 6b
and 6c) and 16 May (Figures 6e and 6f) 2010 to the same day (temporally averaged during 0–22 UTC) surface NOx emissions in the model domain. (a, d) The fractions
of temporally averaged sensitivity in each grid were shown as a function of distance from the Long Beachmodel grid. The differences in adjoint sensitivities on 2 days
are due to the meteorological conditions.
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transport, the column NO2 in Long Beach is sensitive to NOx emissions over slightly broader regions than its
surface NO2. The differences in the λENOx spatial distributions on these 2 days and between the column and

surface cases vary and depend on the meteorological conditions that control the regional transport patterns
and chemical transformation. On the windy day of 9 May, surface and column NO2 in Long Beach were
affected by farther emission sources than on a more stagnant day of 16 May. The differences in λENOx between
the column and surface cases are larger over the South Coast region on 16May due to the impacts of regional
aged plumes.

Brioude et al. [2013] found that NOy emissions near the port regions in SoCal dropped by a factor of ~5 in
2005–2010 by integrating aircraft measurements on multiple days during CalNex. Our assimilation reduced
the ESNEI05 in the grids around the Long Beach area (averaged in a 3 × 3 kernel with the Long Beach grid box
in the center) by 33%, 56%, and 57% in the ACOL, ASUR, and ABOTH cases, respectively. These differences over
the Long Beach area indicate that the types of assimilated observations can significantly affect the a
posteriori emission estimates on small spatial scales. The adjoint sensitivity cases here only partially explain
the different monthly RCNOx in various assimilation cases. As discussed in section 3.2.1, other factors such as
different observational sampling strategies and their uncertainties also contribute. Untangling the impacts
from individual factors in future will benefit the improvement in observing systems and the
assimilation results.

We also explore the impact of receptor locations on the spatial distributions of λENOx . In two additional adjoint

cases, we define the response functions to be column NO2 at 22 UTC on the windy day 9 May in Riverside (RS)
and Joshua Tree National Park (JOT) grid boxes, respectively. The spatial distributions of the temporally
averaged λENOx in these cases are shown in Figures 7b and 7c to compare with those in the Long Beach case

(Figure 7a, same as Figure 6b). Due to the stronger impact of regional pollution transport, the modeled
column NO2 in both receptor grid boxes on this day are shown to be strongly (normalizedλENOx values>0.001)

sensitive to the same-day NOx emissions in the Greater LA regions. Column NO2 in the JOT grid box is also
highly sensitive to the same-day NOx emissions in other California urban regions such as San Diego,

Figure 7. Adjoint sensitivity (fractions of total are shown) of columnNO2 at 22 UTC on 9May 2010 at (a) Long Beach (LB), (b)
Riverside (RS), and (c) Joshua Tree National Park (JOT) to the same day (temporally averaged during 0–22 UTC) surface NOx
emissions in the model domain. Adjoint sensitivity of column NO2 at 22 UTC on 9 May 2010 at RS to surface NOx emissions
in the model domain at (d) 01 UTC, (e) 08 UTC, and (f) 15 UTC. Purple stars in each figure indicate the receptor grid box.
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Bakersfield, and Fresno that are hundreds of kilometers away. Figures 7d–7f show that nearby sources affect
modeled column NO2 in the RS grid box a few hours after being emitted, and it takes longer than half a day
for the farther emission sources (e.g., those in the Bay Area) to be transported to SoCal receptor sites and
affect the modeled column NO2 there. This example demonstrates that the length of simulation window can
affect the adjoint sensitivity calculations as well as the 4D-Var results.

Our analysis indicates that over areas similar to Long Beach that are mainly affected by weak winds and fresh
plumes, the mass balance types of approaches [e.g., Martin et al., 2003] in grid horizontal resolutions coarser
than ~40 km may be reasonable for updating NOx emissions using the observations of the similar spatial
resolutions. As the footprints (i.e., the ground scenes detected by satellites) of future geostationary satellites
over the North America are designed to be much smaller (e.g., ~4 km for TEMPO and GEO-CAPE) [Chance
et al., 2013; Fishman et al., 2012] and the model resolutions tend to become finer (as also suggested in
section 3.2.1), advanced top-down approach such as the 4D-Var assimilation method should be applied to
improve the emission estimates, which accounts for the complex chemical transport and transformation
processes. The 4D-Var method can also overcome the limitations in the mass balance approaches to study
the regions affected by a mixture of local emissions and regional transported plumes such as RS and JOT.
The strong sensitivities within the widespread distances of ~40 km to hundreds of kilometers are still smaller
than those generated in a global model analysis by Turner et al. [2012]. As Figure 7 indicates, this difference
can be due to the different simulation windows (~1 day versus 3weeks) and the defined receptor regions
(several model grid boxes versus multiple continents), but it can also be affected by model resolution and
domain (12 km in the Western U.S. versus 2° × 2.5° globally).
3.2.4. Impacts of Emission Updates on Modeled Monthly Mean Daily Maximum 8 h Average O3

The impacts of updated California NOx emissions on surface O3 in the Western U.S. are also evaluated. The
differences (FSNEI05_ACOL� FSNEI05 and FSNEI05_ASUR� FSNEI05) in monthly mean daily maximum 8 h average
(MDA8, NAAQS primary standard metric) O3 in May 2010 are shown in Figures 8a and 8b, and the differences
between the FSNEI05_ABOTH and FSNEI05_ASUR cases are shown in Figure 8c (scaled by 5). The updates in
California’s NOx emissions (8–13% reductions from the a priori) result in up to 4 ppbv decreases in MDA8 O3

Figure 8. Impact of assimilating (a, d) column NO2 (case FSNEI05_ACOL) and (b, e) surface NO2 (case FSNEI05_ASUR) on mod-
eled monthly mean daily maximum 8 h average (MDA8) O3 over the Western U.S., relative to case FSNEI05. (c, f ) Compare
MDA8 O3 in cases FSNEI05_ABOTH and FSNEI05_ASUR, scaled by 5. Figures 8a–8c show the absolute differences, averaged
throughout the month; Figures 8d–8f show the changes in model errors (|Cmodel� Cobs|) at the AQS (circles) and CASTNET
(triangles) surface sites, averaged only for the days that observations were available at each site.
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from the FSNEI05 case in some California regions
and the downwind states but an increase in O3 in
few of California’s urban areas such as the Greater
LA region and the Bay Area by up to 5 ppbv
due to the NOx-saturated chemical regimes that
they belong to, as also indicated in our analysis
along the WP-3D flight tracks during this month
(section 3.2.2) and in previous studies [e.g., Huang
et al., 2011; Chai et al., 2013]. Even through the
changes in MDA8 O3 show stronger spatial
variability in cases FSNEI05_ABOTH and FSNEI05_ASUR
than in FSNEI05_ACOL, we find the similar domain-
averaged reductions of 0.2–0.3 ppbv in all three
cases. This indicates that the offsetting of regional
differences occurred not only in the three sets of a
posteriori NOx emission estimates in California
but also in the resulting modeled MDA8 O3 fields
over the Western U.S. Although the a posteriori
NOx emission estimates are also close to
ECARB10v13 over California, the domain-averaged
difference in MDA8 O3 between FCARB10v13 and
FSNEI05 is significantly larger (~0.5 ppbv, Figure 9)
due to the different emissions of non-NOx O3

precursors in ECARB10v13.

Huang et al. [2013] compared the simulated
MDA8 in case FSNEI05 with the O3 measurements
at the AQS and CASTNET surface sites and
reported a ~5 ppbv mean bias, a ~6 ppbv mean
error, and a ~9 ppbv RMSE over the Western U.S.
model domain. These uncertainties may be
largely attributed to those in the local and
regional emission inputs and the model

chemistry, as the median profiles of TES and modeled O3 in this month differ by <10% in the free
troposphere (Figure 10), which was found dominantly influenced by upper tropospheric air, hemispheric
pollution transport, and aged regional pollution during CalNex [Neuman et al., 2012]. The O3 mean bias at the
AQS and CASTNET sites dropped by ~0.5 ppbv (~10%) in the FSNEI05_ASUR and FSNEI05_ACOL cases from case
FSNEI05, and case FSNEI05_ABOTH indicates a further reduction in the mean bias of ~0.1 ppbv. The reductions in
mean errors and RMSEs in all three a posteriori cases are ~0.3 ppbv (5% and 3% reductions inmean errors and
RMSEs, respectively). The errors in modeled O3 at surface sites were amplified by up to 5 ppbv in a few of
California’s urban areas in SoCal and the Bay Area but were generally reduced inmany rural areas in SoCal and
California’s downwind states (e.g., Utah, Colorado, Arizona, and New Mexico) ranging from <1 to 4 ppbv
(Figures 8d and 8e). The spatial patterns of the changes in model error at the surface are qualitatively similar
to those along the near-surface flight tracks in California (Figure S4) and are also similar to the differences
between cases FCARB10v13 and FSNEI05 (Figure 9). However, FCARB10v13 indicates 0.6–0.7 ppbv lower domain
wide mean error, mainly because the more updated non-NOx emissions in ECARB10v13 led to its better
performance especially over California’s urban regions. In order to further improve the simulated O3

distributions in top-down studies, additional observational information will need to be integrated to
constrain the emissions of non-NOx species (especially VOCs) in future studies, particularly in the urban areas.
Alternatively, assimilating O3 monitoring data and controlling the initial conditions as in Chai et al. [2006,
2007] can directly improve themodeled O3 fields. Figures 8 and 9 also show that the surface sites in operation
then did not cover many regions (e.g., Nevada) where the O3 distributions changed. Future satellite products,
which will have a broader spatial coverage, fine footprint, higher temporal frequency, and higher sensitivity
to the boundary layer are expected to improve the evaluation of the modified chemistry fields.

Figure 9. Differences in modeled surface MDA8 O3 over the
Western U.S., between cases FCARB10v13 and FSNEI05, scaled by
1/5. (top) The absolute differences, averaged throughout the
month. (bottom) The changes in model errors at AQS (circles)
and CASTNET (triangles) surface sites, averaged only for the
days that observations were available at each site.
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Huang et al. [2013] have shown that SoCal
anthropogenic pollution (by ~22 million people) can
contribute to O3 in the mountain states in the similar
magnitude of those from East Asian (>1.5 billion
people) sources estimated by Lin et al. [2012] during
the CalNex period. They concluded that a relatively
small but nearby pollution source can impact a
receptor region almost as efficiently as a much larger
source that has been diluted over greater transport
distances. In this study, we further demonstrated that
the impacts of decreasing trend of California’s NOx

emissions on O3 in the mountain states may have
compensated those from the Asian pollution
associated with an opposite trend [Cooper et al., 2014].
We have also emphasized that improving the
estimates of regional anthropogenic emissions
(in California and other Pacific states) can help improve
the air quality prediction and source contribution
analysis of O3 in the mountain states.

4. Summary and Future Directions

As the observing systems and modeling techniques are
being improved, using top-down approaches for timely
updates of emission inventories that account for the
temporal changes in emissions has become a promising
area of research. Such studies help interpret the
distributions, trends, and variability of the observed air
pollutants. They are expected to also improve themodel
predictability and assist evaluating the implemented
emission control strategies and bottom-up emission
projection methodology.

This study explored the capabilities and limitations of assimilating existing space- and ground-based NO2

observations separately and jointly into the STEM regional chemical transport model at 12 × 12 km2

horizontal resolution to help quantify the NOx emission changes in California from 2005 to 2010, using the
4D-Var method. The emission estimates constrained only by NO2 columns, only by surface NO2, and by both
indicate statewide emission reductions of 26%, 29%, and 30% from 2005 to 2010, respectively. The spatial
distributions of the emission changes differed in these cases, which can be attributed to many factors
including the differences in the observation sampling strategies and their uncertainties, as well as those in
the sensitivities of column and surface NO2 with respect to NOx emissions. By comparing with the
nonassimilated surface and aircraft measurements, we showed that the modeled NO2 and O3 fields in the
Western U.S. were overall improved in response to the updates in California’s NOx emissions.

We also examined the consistency of our top-down estimates with several independent inventories. The
statewide reductions in NOx emissions indicated from our observationally constrained emission estimates are
also reflected in several independently developed inventories: ~30% in the CARB bottom-up inventory, ~4%
in the 2008 National Emission Inventory, and ~20% in the annual mean top-down estimates by Lamsal et al.
(Figure S1) using the global GEOS-Chem model and OMI NO2 columns. Despite the grid-scale differences
among all top-down and bottom-up inventories, they all indicate stronger emission reductions in the urban
regions. Interpretation of the discrepancies among various NOx inventories on grid scale, as well as improving
the estimates of other O3 precursors’ emissions, can benefit future air quality modeling and policy decision.

These “top-down” approaches in future studies may be improved in the aspects of assimilated observations,
the used model, and the assimilation setup. U.S. EPA has set high priority for evaluating the catalytic
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conversion/CL-detection method (the Federal Reference Method since the 1970s) to monitor surface NO2,
including its comparison with the photolytic conversion/CL detection method that has recently been defined
as Federal Equivalent Method [Hall et al., 2012]. A geostationary satellite TEMPO over the North America will
be launched in 2018–2019 [Chance et al., 2013]. Alternative terrain pressure, albedo, and NO2 a priori profiles
have been used in vertical column NO2 retrievals [Russell et al., 2011], which provided useful information for
quantifying and reducing biases in the current retrievals. Therefore, in the near future, it will be possible to
use space- and ground-based monitoring data of multiple species associated with lower uncertainties that
are sampled more broadly and frequently. Recent field campaigns (e.g., DISCOVER-AQ and SEAC4RS) that
provided vertical profiles of multiple chemical species under various weather conditions can advance our
understanding of the relationships between surface and column observations. They may also benefit the
AMF calculations and the effectiveness of data assimilation. Great efforts should be made to keep improving
the model meteorology, chemistry, and deposition that affect the assimilation results. More experiments
should be conducted to improve the configurations of the assimilation, such as careful selections of control
variables and assimilation windows, and better estimates of errors. Developing the assimilation of slant
column retrievals will need to be considered to avoid the impact of uncertainties in vertical column retrievals
introduced from the AMFs and the AKs (as discussed in section 2.1.1).

This work is a critical step toward advancing our understanding of the changes in emissions and distributions
of air pollutants. It also shows the potential of using space-/ground-based monitoring data and advanced
data assimilation approach to timely and independently update NOx emission estimates on a monthly scale
and at a fine grid resolution. The well-evaluated results here suggest that these approaches can be applied
more broadly.
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