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Abstract

A numerical technique has been developed to solve the three-dimensional
potential distribution about a point source of current located in'or on the
surface of a half-space containing an arbitrary three-dimensional conductivity
distribution. Self-adjoint difference equations are obtained for Poisson's
equation using finite-difference approximations in conjunction with an elemental
volume discretization of the lower half-space. Potential distribution at all
points in the set defining the subsurface are simultaneously solved for multiple
point sources of current. Accurate and stable solutions are obtained using
full, banded, Cholesky decomposition of the capacitance matrix as well as the
recently deveIOped Incomplete Cholesky-Conjugate Gradient Iterative method.

A comparison of the two- and three-dimensional simple block-shaped models,
for the collinear dipole-dipole array, indicates substantially lower anomaly
indices for inhomogeneities of finite strike-extent. In general, the strike-
extents of inhomogeneities have to be approximately 10 times the dipole lengths
before the response becomes two-dimensional. The saturation effect with
increasing conductivity contrasts appears sooner for the three-dimensional
conductive inhomogeneities than for corresponding models with infinite strike
lengths.

A downhole-to-surface configuration of electrodes produces diagnostic
total field apparent resistivity maps for three-dimensional buried inhomogeneities.
Experiments with various lateral and depth locations.of the current pole indicate
that mise a 1a masse surveys give the largest anomaly if a current pole is located

asymmetrically and preferably near the top-surface of the buried conductor.



Introduction

Full utilization of the electrical resistivity method in geophysical
prospecting has been Timited by an inability to ca]cu]ate the anomalies caused
by specific structures. The widespread application of the d.c. resistivity and
induced polarization methods as primary exploration tools coupled with develop-
ments in rapid, accurate, data acquisition techniques warrant more quantitative
interpretation of the geologic structure than is currently practiced. In the
past decade, substantial advances have been made in this direction through analog
and numerical modeling techniques for two-dimensional geologic structures (e.g. ,
McPhar Geophysics, 1966, Madden, 1967, Coggon; 1971, Lee, 1975, Jepsen, 1969,
Dey and Morrison, 1976). In complex geologic environments often encountered in
geothermal and mineral exploration, however, even a two-dimensional portrayal
of the structure is often inadequate and more complex solutions for three-
dimensional distribution of resistivity must be sought. |

Several solutions have been presented for the resistivity response of
three-dimensional structures. Some analog scale modeling (McPhar Geophysics,
1966) has helped to understand the responses for a model suite of restricted
physical dimensions and large conductivity contrasts. Numerical techniques
using integral equation formulations have been developed by Dieter et al. (1969)
and Bakbak (1977) for a single body located in a conductive half-space, and by
Hohmann (1975) and Meyer (1977) for a single rectangular, prismatic inhomogeneity
situated in a half-space with or without an isotropic overburden layer of uniform
thickness. These new techniques provide valuable information for the inter-
pretation of data obtained in simple geologic situations involving a single,
laterally bounded inhomogeneity. In practice, however, the conductive targets
occur as bodies of finite strike length, variable dip,and in the vicinity of

faults, beneath overburden of variable thickness and conductivity. It
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is, therefore, necessary to develop numericai modeling techniques to simulate
structures with a totally arbitrary three-dimensional distribution of electrical
conductivity.

In this paper a direct, explicit finite difference technique is employed
to solve for the potential distribution due to a point source of current in
or on the surface of a half-space with an arbitrary three-dimensional distribution
of conductivity. The finite-difference scheme is chosen because of the inherent
simplicity of the approximation forms which are also easily amenable to Dirichlet,
Neumann, . or mixed boundary conditions. Poisson's equation is dfscretized by
elemental volumes over an irregularly-spaced three-dimensional prismatic grid.

The unknown potential at all of the nodes in the grid are evaluated by using
Successive Overrelaxation, Incomplete Cho]esky-Cohjugate Gradient and Direct
Matrix Decomposition techniques to obtain accurate and stable solutions.

Using algebraic combinations of the potentials due to point current sources
of opposite sign located inside or on the surface of the half-space, any arbitrary
electrode configuration used in prospecting may be simulated. Results of
certain surficial and down-hole electrode configurations employed over a number
of three-dimensional structures are illustrated in the 1atter‘sections of this
paper.

Fundamental Relations

Ohm's Taw relates the current density J to electric field intensity E and

an isotropic conductivity o by

J= of

Since stationary electric fields are conservative,

E=-vs,



where ¢ is the electric potential.
Applying the principle of conservation of charge over a volume, and

using the equation of continuity, we obtain
-
v.d = ap/ats(x)s(y)s(z), (1)

where e is the charge density specified at a point in the cartesian x-y-z space
by the Dirac delta function.

Equation (1) can be rewritten for a generalized three-dimensional space as

- V. [o(x,y,2)v8(x,y,2) ] = dp/0ts(x-x )6 (y-y )e(z-2) , (2)

where (xs, Ye» 2 ) are the coordinates of the point source of injected charge.

s
Over an elemental volume AV about the charge injection point, the source

term of equation (2) can be rewritten as
ap/0t8(x-x,)s(y-y )6(z-2.) = 1/aVs(x-x )s{y-yg)s(z-2,),

where I is the current in amperes.

Hence, equation (2) becomes

V. [o(xy,2)ve(x.y,2)1 = 1/aV s(x-x)s (y-y)s(y-y )s (z-z.) .
(3)
In, this paper we will discuss methods for obtaining a numerical solution
to equation (3) subject to the following boundary conditions:
1) ¢(x,y,z) must be continuous across each boundary of the pﬁysica] property

distribution o(x,y,z) and

2) The normal component of J(z¢g3¢/on) must also be continuous across



each boundary.

The solution of ¢(x,y,z) is obtained by deriving the "difference equations"”
of (3) by a proper discretization of the (x,y,z) space over which the problem
is to be solved.

Equation (3) is defined in a set (x,y,z) €R which is assumed to be closed
and connected, to have a non-vbid interior and to have a sufficiently regular _

.-boundary T with outward normal n on which the boundary conditions are of the

type

a(x,y,2) ¢{x,y,2) + B(x,¥,2)3¢(x,y.2) = folx,y,z), (x,y,2) eR

amn

with a(x,y,z) > 03 B(x,y,z) > 05 o + 8 >0. ()
4

In physical simu]ation; we also have the conductivity distribution function

that is at least piecewise continuous in R and its closure, and which satisfies

C(Xsysz) > Os (X,y,Z) eR

Equation (3) is a self-adjoint, strongly connected and nonseparable elliptic
equation of second order (Varga, 1962). The procedure of finite-difference
discretization solves, numerically on a non-uniform rectangular prismatic mesh,

the problem
Lo(x,y,z) = -v.[o(x,y,2)ve(x,y,2)] = I(x,y,z) on R

subject to the boundary condition (4). The positivity of o(x,y,z) implies that



the operator L 1is positive definite.

Discretization of the Three-Dimensional Resistivity Problem

To define the semi-infinite lower half-space with arbitrary conductivity
distribution, the set R is designed with artificial boundaries simulating the

infinitely distant planes in the horizontal (x- and y-directions) and the

vertical (z-direction) extent. Such a lower half-space is illustrated by the
grid shown in Figure 1. The grid is chosen to be a rectangular prism with
arbitrary, irregular spacing of the nodes in the x, y and z directions. The

nodes in the x-direction are indexed by i = 1, 2, 3, . . . L; those in the

y-direction by j = 1, 2, 3, . . . M, and the nodes in the z-direction by k = 1,

2, 3, . . . N, respectively. The infinitely distant planes at X = - « and + «

are represented by the nodes on the faces with i =1 and L, respectively. Similarly,
the infinite]y distant planes at y - « and + » are simulated by the nodes on the
faces with j = 1 and M, respectively and the bottom plane at z = » is represented

by the face with k = N. The primary potential due to.a point source on a half-space,
as well as the secondary perturbational potentials due to conductivity inhomo-
geneities in the lower half-space,fall inversely with the radial distance away

from the source. Hence, by assigning large numbers for L, M, and N with suitable
coarsening of the grid as i ~1, 1 ~L, j~>1, j>Mand k >N and appropriate
boundary conditions, the infinitely distant planes could be simulated by a finite

choice of L, M and N.

Boundary Conditions Applied on the Edge, T , of the Region R

Since the simulation of the whole space is restricted to the conductive lower
half-space alone in R, it is required that the boundary conditions be specified at
points (x,y,z) r UR. At the ground surface with z = 0, this is implemented by

applying the Neumann type condition



%1,3,k°%1,d,k

a¢1 =0, for all i = 1,2,..... Ly j = 1,2,3,....M with k=1
o _ - .

The termination of the lower half-space at x =+« , y =+ and z = + «
is done by extending the mesh far enough away from the sources and conductivity
inhomogeneities such that the total potential distribution at these planes approaches
asymptotic values. The boundary values at_these "infinitely distant planes”
can be specified from known so]hfions of hoﬁogéneous or Tayered primary distrib-
ution of conductivify. Inhomogeneities‘are“viewed as perturbations over this
distribution. If these values are specified at all nodes on the infinitely distant
planes, the boundary conditions on T become Dirichlet type. In the general
case of simu]atidn of arbitrary conductivify distrfbution, often a suitable primary
mdde] solution cannot be analytically computed. In such cases either ij the total
potential at these planes are assumed to be zero (Dirichlet Condition) or ii) at
these planes 95,5684 ,5.k is assumed to be zero (Neumann Condition). It is often
found that the firs;igggaabtion causes an undershoot and the second assumption
causes an overshoot in the numerically evaluated potentials beginning at some
distance from the point source (Coggbn,1971) when compared with analytic solutions.

In this paper, a mixed boundary condition is proposed for the infinitely
distant planes at x = + «, y = + and z = , using the asymptotic behaviour
of ¢(x,y,z) and 34(x,y,z) at large distances from the source point. The total
9

n
potential at large distances from the source as well as inhomogeneities have

the general form of

. A
d(X,y,2)= = — , (A = constant)
: k2 4 y2+z2 p
Hence ( ) :
aPpiX,Y,2 ,
- :__A/e\ .?]\ =;M.Z_)..Cose'
on r2 r r

where o is the angle between the radial distance r and the outward normal n . We

can, therefore, rewrite equation (4) as



36 (X,y,2) + ad(X,y,z) =0 ' (5)
on r ’
with o = cos ¢

Such a mixed boundary condition takes advantage of the physical behaviour
of the potential at the distant bounding planes and does not require an a priori
assumption of the nature of ¢ or 3¢ that are to be evaluated in terms of a
primary conductivity structure. ?E also has the inherent advantage of reducing
the amount of coarsening of the grid required as the bounding planes are approached
and reflections due to the virtual sources along the edge nodes are simultaneously

eliminated.

Discretization by Elemental Volume

The physical property distribution %35,k at any node (i,j,k) of the
prismatic grid (as shown in Figure 1) is discretized such that i3,k represents
the conductivity of a volume enclosed by the nodes i,j,k; i + 1, j, k; i, j + 1,
ks i+1, J+1, ks i, k+13i+1, 3, k+1;i,j+1,k+1andi+]1,
i+ 1, k+ 1. The numerical solution of equation (3) that consists of a discret-
ized set of ¢i,j,k at each node, is to be evaluated. The node (i,j,.k) is
assumed to represent the closed mesh region Avi’j,k about the node as shown in

Figure 1. It is seen that for‘a nodal point in the interior,

Vi g,k = (% + axy _q) - (ayg + ayy o q) - (azy + 4z - q)

8
and in the Timit as z ~ 0, for a nodal point on the ground surface,

AVi g,k = (axq + axy _ 1) (ay; + dyj - 1) -z

8
For each node (i,j,k) for which ¢i,j,k is unknown, we now integrate equation

(3) over the correspohding elemental volume Avi,j’k to obtain



- ff( v.[o(x,y,i)V¢(x,y,Z)] dx;dy,dz,

I
/f/ P e e "
AV | g

i,J.k
AV,

1,3,k »J sk

Is(xi-xs)G(yj-ys)é(zk-zs) . (6)

Using Green's theorem, the volume integral becomes

jj’(}v.l(O'Vd))dV . = I{ a g%—ds , (7)
S ° B

AV 9.k i,3.k

1

and equation (6) .is rewritten as .

30(X,y,2) 4 = - - -
J( o(X,y,2) ™ dsy 5 I8(x; XS)G(yj ¥s)8(zy-z.) ~(8)
34,3,k |

i, k is the surface enclosing the elemental

It is seen from equation (7) that over every element of R and on

where p, is the outward normal and S

volume Avi,j,k'

the boundary T, the boundary conditions given by equation (5) can be directly
implemented in the Teft hand side of equation (8).

The surface integral in equation (8) along the bounding surface Si j.k is

subdivided into six subsurfaces as indicated in Figure 2. For an interior node in

the discretization grid, by approximating —%%- by central difference and

integrating along each of the bounding faces of the elemental volume, AV, ik
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we get,
' 3bs
i,d,.k
O: & . —22= ds, .
ﬂ 1.J,K an 1,3,k
54,4,k
Pi.5-10k " Yok | "Zg-1 i1, b2y M,
' 1 "1=1,3-1,k=-1 i,d-1,k=-1 i-1,j-1,k
ij_1 ? 4 4
BX;_182 . AX ;02
=l Ky . — 1 K
4 1,J‘],k 4
+ ¢.i’j+'|’k - ¢1,j,k 5. . AZk_-I.AX_i_] + . . AZk_-I.AX_i N 5. . Ax,i_].AZk
AyJ i-1 ,Jsk'] 4 ) 1?J:k‘] 4 i-1 s\]’k 4
+ 0. . Efiﬁf&
.3,k
N ¢'i+],j,k - ¢'i,j,k . Ay._].AZk_] .o Ay..AZk_] .o, A,y._].AZk
Axi i,j-1,k-1 4 i,j.k-1 4 i,j-1,k 4
boy s ik
i,J,5K 4
bs N T AY. 1 .AZ Ay . AZ
+ 1'],Jak 1sJ’k O . ‘y!!-] k-] + g. . !! k-] + o . .
%51 i-1,3-1,k-1 A i-1,5,k-17 i-1,3-1,k
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J : . AY. -AZ AY .AZ
A il SO i 4
4 i-1,,k 4
el T Mg | M1, MYy, AXj1-MY5.9
vz, | i-1,3,k-1 1 i,3,k-1" 4 i-1,3-1,k-1 A
AX DY 5
¥ g, . i1
i,j-1,k-1 4
. . - b, . CAX. 4 .AY. AX.AY. AX. ~AY.
+ AT o B PR \01'-1 . k_ﬁ_ﬁ,r o, . k_1_y1+ oi g i1 k1_-1yj;1_
Azk d ’J9 4 LENE 4 1- ’J' ? 4
AX < AY
i™Vj-1
*o5,5-1,k

4

(9)

Substituting equation (9) in (8), we obtain, for an interior node (i,j,k), the

discretized equation

ijk ijk , ijk ijk | ijk

C .¢; :, 1% C R +C by g s, *C big s, tC by
top 1,3.k-1 bottom 1’J’k+] left 1,3,k right +1,J,k front .Y 1.k
ijk ijk
+bgck' 04,5+1,k ¥ CP'¢i,j,k =18(x;-x,)8(y5-y5)8(zy -2 )
(10)
ijk
where C = coupling coefficient between the nodes (i,j,k) and (i,j,k-1)
top
) -1 AX.i_]A.Yj . AxiAyJ' AX1_1A¥j_] .

82,7 | Ci-Th3sk-1T AT TS I Y ) 0§,j-1,k-1



-12-

i ¥j-1
4 ’
- (10.1)
ijk
C = coupling coefficient between the nodes (i,j,k) and (i,j.k + 1)
bot
= - ————«] O, . ————————J—Axi-]Ay. + g, . AXiij + o, . ——————Axi-]ij_] + g, .
Az, i-1,3,k 4 ..k 4 i-1.3-1,k 4 1,3-1,k
AxiAy._]
4 - (10.2)
ijk
C = coupling coefficient between the nodes (i,j,k) and (i-1,3,k)
left
1 Ay AZ Ay ;AZ AY. AZ
R 3Tkl o kel o 3Tk
AX . i-1,3-1,k-1 i-1,J,k-1 i-1,j-1,k
i-1 4 4 4
By ;02
+ g. . .
1"'] sJak 4
- (10.3)
ijk
C = coupling coefficient between the nodes (i,j,k) and i+1,j,k)
right /
_ _lﬁ_ ) Y5 182y 4 . Ay.Azk_T+ ) AY; 107, .o
AX, isd-1,k-1 i,j.k-1 i,j-1,k i,J.k
i 4 4 4
BY 382}
4 - (10.4)
ijk ‘
C = coupling coefficient between the nodes(i,j,k) and (i,j-1,k)
front
_ 1 o M35 _18Z) 1 b MX38Z) 4 .o AXs 182y
ij_] i-1,j-1,k-1 4 i,j-1,k-1 4 i-1,3-1,k 4
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AX Az
LGP ik .
1,31, 4
-(10.5)
ijk .
C = coupling coefficient between the nodes(i,j,k) and (i,k+1,k)
back
i :1__ o AX; 182y 4 e o AX;AZ) 4 .o . Ax; 1Az, ..
AyJ i-1,3,k-1 4 i,3,k-1 4 1']stk 4 i,k
Ax;82,
4 ~(10.6)
ijk
and C = self coupling coefficient at node (i,j,k)
p .
ijk  ijk ijk ijk ijk ijk
=-1C +¢C + C +C +C + C
top bottom left right front back (10.7)

The self-adjoint difference equation (10) indicates that the solution ¢ at
the (i,j,k) node is dependent only on the values of ¢ at the adjacent nodes
(i.3,k-1), (,3,k+1), (i-1,3,k), (i+1,3,k), (i,3-1,k) and (i,j+1,k). The node
coupling coefficients are known functions of the geometry and predefined physical
property distribution at all nodes in the set R.

The difference equations for the nodes located on the 'infinitely distant'
edge I' of the set R are somewhat altered from that of an interior node, since
the asymptotic mixed boundary condition is to be implemented at these node locations.
At all nodes on the ground surface (z = 0), the Neumann condition is implemented as

3¢

95, = 0. For all other nodes located on the remaining faces, edges and corners,

the mixed boundary Condition'd%§-= Q.gg-cose (from equation (5))15 directly
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implemented while integrating over the appropriate bounding surfaces, for the
outward normal n oriented, in the x-, y-, or z- directions. For brevity, the
modified difference equations for only two typical locations of nodes on I' are
illustrated in the following.

Coup]ing coefficients for the difference equation (10) modified for a node

(1,3,k) located on the bottom face (excluding the edges and corner locations

on this plane) of the grid is given as

ijk AX; 1BY, AX;AY AX: 1AY;
C el T O e S e ke
top k-1 > 4 sJ s 4 > s 4

. MX5_18Y5
i,j-1,k-1 4 ?

bottom >

left

right i

— Os - —_—— + o. . ————— R
back Y. i-1 N | ,k'] 4 1stk'1 4



ijk ik gk ijk gk ijk

C =-|C +¢C +C +C + C
p top left right front back

ijk
-C

‘Zs'zklAzk-l

top.

r

where r is the radial distance from the source point to the node (i,j,.k).

Similarly, the coupling coefficients for a node (i,j.k) located on T at the

top, back, right corner of the discretization grid are derived as

ijk -~ ijk ijk
C = =C =0.0 ,
top back right

éJk i Ax1 ]Ay._] ’
bottom %i-1,3-15k 4Azk
ijk AY: qAZ
C :_Oi-]j-]k__l_]—k .
left T Aaxs
ijk AX; {AZ
C =-9 j-lk"‘J‘—“] <
front TR Apy.,
Jj=1
ijk
ijk ijk ijk ijk ijk |z_-z ‘ Az, + C 1 X -x.’ «AXs
and C = - |C +C  +C - |c ISk K" Jert! s 71 1-1
p bottom left front bottom
r2
1Jk
JY‘.Y,A.V]
front
+ 2
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In applying the mixed boundary condition at the nodes located on the edge

I, the radial distance to all the relevant nodes may be evaluated from the central
point on the top surface of the prismatic mesh. While for different source
Tocations the corresponding radial distances are slightly different, in the
asymptotic limit, at r, no substantial error arises from this assumption. This
assumption also enables the coupling coefficients thus generated to be invariant
for any arbitrary source location. It is found experimentally that this mixed
boundary condition at the edges of the grid produces a solution for ¢ that
allows a considerably better fit to the analytically computed solution at large
distances from the source Tocation.

Matrix Formulation

The self-adjoint difference equation (10) is obtained for each node 1n»the
set R, once the appropriate coupling coefficients are derived usiné the proper
boundary conditions. The set of difference equations for each node are then
assembled into a global or capacitance matrix form.. In the course of the assembly
each node is numbered in an order to minimize the bandwidth of the matrix
(Zienkiewiez, 1971). The set of simultaneous equations for all the nodes in

the grid can be written symbolically as

C =[S
[c] [ = [S] an

where C is an LMN X LMN matrix, called the capacitance matrix and is a function
only of the geometry and the physical property distribution in the grid. The
vector ¢ consists of the unknown solutions of the total potential at all the
nodes and the vector S contains the source terms of charge injection. It is to
be noted that for multiple source locations, the C-matrix remains unaltered and
a single decomposition of this matrix provides solutions for multiple S vectors,

through repeated backsubstitutions.
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- The capacitance matrix C has the following properties:

i) Cop>0,p=1,2,3. ..M,

.. L _ : V
i) Cpp 2 % Chqls P =1, 2, . . . LMW,
q =1

q#p
i.e. C is diagonally dominant ,

iii) C is symmetric, sparse and banded with only six non-zero co-diagonals ,
iv) C is irreducibie and has a strongly connected graph (Varga, 1962), and
v) C possesses Young's Property A (Young, 1954).

It has been shown by Varga (1962) that the explicit difference equations
‘that give rise to the matrix C with properties described above, are inherently

stable for irregular grid spacings.

Solution of the Matrix Equation
In reaiistic simulations of the geo]ogic models for electrical resistivity -

applications, the descretization grid generally results in 10,000 -
15,000 nodes at which the total potentials are to be evaluated for multiple
current injection points. Such discretizations result in matrices that are
rather unwieldy to handle even on a very large and fast machine (e.g. a CDC 7600).
We have attempted to solve such systems of equations using i) Successive Over-
relaxation methods, ii) Incomplete Cholesky-Conjugate Grédient method and ii1)
Banded Matrix Decomposition techniques.

Equation (11) results in a very sparse banded matrix that has been
traditionally solved using Successive Point Overrélaxation (Southwell, 1946)
or Alternating Direction Iterative methods (e.g. Varga; 1962, Douglass and Rachford;
19563 Gunn, 1964). In these methods, an initial assumed distribution of ¢;;
over the grid is relaxed by successive refinements through iterations. The

~ refinements in individual methods are either in terms of individual nodes,
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rows or columns of nodes or of ¢ijk alternately along a column and a row. The
refinement obtained upon an iteration is further updated by the use of an
optimal overrelaxation factor or by successive use of the Chebychev over-
relaxation acceleration parameter (Concus and Golub, 1973). In the large
grids under consideration (~10,000 - 15,000 nodal points), the successive
overrelaxation and the alternating direction iterative techniques (Doss, 1977)
require a minimum~of 200 - 300 iteration sweeps through the entire grid for
each location of the point source of current injection to produce solutions to
an accuracy of 1% to 5%. In addition, the convergence rates of these iterative
techniques are highly dependent on the dimensions of the grid spacings and
the nature of the physical property distributions. Although the operation
counts per iteration in these methods are relatively small (& 7 LMN to 15 LMN
multiplications @ 0.3 to 1 seconds of CP time on QDC 7600), the reliability of
an acceptable convergence level and reciprocity checks for arbitrary conductivity
distributions were often very poor.

A new iferative method called the Incomplete Cholesky-Conjugate Gradient
ICCG method for the solution of large, sparse systems of linear equations has
been proposed by Meijerink and van der Vorst (1976). This method, when applied
to the solution of large systems of elliptic partial differential equations,
produces highly convergent solutions 10 - 100 times faster than the traditional
Successive Overrelaxation or Alternating Direction Iterative methods (Kershaw,
1972). The cbnjugate-gradient method as originally proposed by Hestenes and

Stiefel (1952) when applied directly to solve for very large, sparse systems

with a high condition number (Amax/imin = 10 to 100) is not very effective as
an iterative method. However, in combination with an incomplete Cholesky de-

composition of the C matrix, the iterative scheme is shown to be very efficient

/
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(Meijerink and van der Vorst, 1976).

In standard Cholesky decomposition, the symmetric, positive definite matrix
C is written as |

c=tLl
where L is lower triangular. With this decomposition of C, the equation C¢ = S
is easily solved as ¢ = (LT)'] (L']S). In practice, however, for a sparse
matrix C, the L-matrix is full and is time consuming to generate in its entirety.
In the Incomplete Cholesky - Conjugate gradient method an approximate decompo-
sition of C is made such that .
C=LT +E (E = Error term)
with the new factorized L-matfix having the same sparsity pattern imposed on it
as the original C-matrix (ICCG (0), Ref. Meijerink and van der Vorst, 1976).
With the new approximation of (LLT)”], for C1, L']C(LT)J will be an approximate
identity matrix and the conjugate-gradient method applied to the matrix
L']C(LT)'] converges very rapidly. The solution of the system of equations C¢ = S
then is iteratively refined as indicated fn the following algorithm (Kershaw,
1977):
Let vy = S - Cé and p, = (LLh-1 Fos
$o being any arbitrary assumed vector ,

then |
= <ry, (LLh)=T rys

Qo
—de
i

<Pis cPi>

i * 4Py

i+ ri - aitpy

—
1
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v ¥ 1, (LLT)']ri PER

bi =

<rs ,(LLT)-]Y‘_i>

_ T,-1
p; + 1= (LL") ri+ 1+ bipi

where the subscript i indicates the iteration cycle.
The efficiency of the method depends on the validity of the approximation of

Ly ! for 71,

The self-adjoint equations of the difference form couple a node
most strongly to its nearest adjacent nodes . Eiiminating distant co%dfagona]s

in L, thus neglecting coupling to more distant nodes, is a good approximation.
The operation count of such an iteratioﬁ cycle is approximately 16 LMN multipli-
cations ( ~1 second of CP time on the CDC 7600 per iteration for a systém of
12000 equations). In the problem posed in our paper, this method yields a solution
with 1% to 3% accuracy for a large grid system (v 12000 nodes) in about 30 - 40
iterations per source Tocation. In our exppriménts,‘this method has given
adeqUate]y'acc0rate‘ké5u1fs'and is recommended when the total potential solutions
in the entire mesh need to be solved for only a few (1 to 5) current source
locations.

The third method that has been used to solve the large, sparse system is
based on a full-banded decomposition of the Cholesky type. The symmetric
triangular decomposition of the banded C-matrix is done in blocks using highly
ef ficient random disk access facilities and auxilliary out-of-core storage devices
(Reid, 1972; Wilson et al., 1974). For a symmetric matrix system of 11 ,628
| equations and a ha]f-band—width of 205 the decomposition process requires about
230 seconds of CP time on the CDC 7600 and the back-substitution for each of
the multiple source vectors requires approximately 7 seconds of CP time.

In our experiments, this method has yielded the most accurate and stable
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solution independent of the ifbegu]ar mesh‘geometry or the physical property
distributions. The economics of computation with this methdd to generate

' dipo]e-dipo]e'or bole—dipo]e pseudo-sections (with 13 - 15 source vectors) is
competitive with that of Incomplete Cholesky-Conjugate Gradient method and is
preferred because of its inherent stability and high degree of accuracy.

The recent advances in solving very large and very sparse systems using
minimal degree ordering in conjunction with the nested dissection algorithms
that take advantage of the non-zero element structure of the capacitance matrix
(e.g. George and Liu; 1976¢ Reid; 1976; Sherman, 1975) will provide signifi-
cantly more efficient solution techniques than the band or envelope methods
hitherto used. |

Determination of the Apparent Resistivity

In electrical kesistivity surveys a current source +I and a current sink
-1 are used to energize the conductive earth. A potential difference, AV, is
measured between two points located at arbitrary azimuthal orientations (for
surface arrays) or colatitudinal configurations (as in down-hole-surface arrays).

A parameter "Apparent Resistivity" is defined as a function
v
g = Gé%-

where, for the configuration illustrated in Figure 3,
1

8 = & (T v, = T/vs ¥ 177) -

For a homogeneous half-space, pa» 15 the true intrinsic resistivity of the
medium. If, however, the lower semi-infinite medium has an inhomogeneous three-
dimensional conductivity distribution, pg» indicates the resistivity of an apparent
homogeneous half-space that results in an identical AV for the transmitter-
receiver locations under consideration. A1l interpretations of electrical

resistivity work are done using the apparent resistivity concept described above.
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It can be seen that the d.c. potential distribution at any point is the super-
position of the solutions of two point sources of current Tocated at the transmit-
ting electrodes of amplitude +I and -I (the transmitting dipole).

Model Computations

In most of the results presented'in this paper a rectangd]ar prismatic grid
with 57 x 17 x 12 (11,628) nodes was used. In the central shallow paft of the
mesh, the nodes were finely spaced to provide a maximum resolution of one quarter
of the dipole length (used as an arbitrary unit distance) in the x-,y=-, or
z-direction for the model dimensions. To estimate the accuracy of the technique
described in the previous sections, a two-layered earth model was simulated. The
resistivity of the top layer of unit thickness was assumed to be 100 ohm-m and
that of the bottom layer to be 10 ohm-m. A collinear dipo]e-dipo]e array was
deployed with unit dipole length and with dipole separations N =1, 2, 3. . . 10.
The numerical results are shown in Figure 4 with circles and the analytically
computed response for the model is shown with a solid 1ine. It can be seen that
the numerical results approach the analytic solution with an absolute accuracy
of better than 5%. FQrther tests made with analytical solutions for an outcrop-
ping contact, buried conductive sphere and with numerical solutions for block-
shaped buried three-dimensional inhomogeneities (Meyer, 1977 and Bakbak, 1977)
generally indicated good agreement, with an absolute accuracy in the range of
3 - 10%.

Model Results

A) Dipole-dipole Configuration

A series of models have been used in the following analysis to illustrate
the effects of strike-length, depth -of burial, conductivity contrast, and a
conductive overburden layer for a single conductive inhomogeneity located in

a dissipative half-space. A standard test model was chosen with dimensions



1x2x2in the x, y, and z directions, respectively.
The surrounding host rock is assumed to havé a resistivity of 100 ohm-m and
the inhomogeneity is assigned a resistivity of 3 ohm-m.

i) Effect of the Strike Length

~a) Without Conductive Overburden Layer

The apparent resistivity pseudo-sections a]ohg a profile line on the
surface oriented normé1Ato the strike of the inhomogeneity are showh in Figures
5a, 5b, 5¢c, 5d, be for strike lengths of T, 2, 4, 6, and 10 units, respeétive]y.
The profile line bisects the strike-length fn each case. The pseudo-éectidn for
the éame inhomogeneity with infinite strike-]ength is shown in Figure 5f. For
strike lengths up to about 6 units, the most remarkable féature is the appearance
of a relative apparent resistivity 'high' directly below the location of the
inhomogenéity. The values here are larger than the resistivity of the surrounding
medium, and this zone underlies a zone of low apparent resistivities observed
at smaller dipole-separations. This feature has also been observed by Dieter
et al. (1969) and Bakbak (1977). As the strike length is increaééd, the flanking
‘high' zones grow in amplitude, while the 'high' directly below the location of
the inhomogeneity decreases in amplitude. The zone of low apparent resistivities
is best described by noting the progression of the 80 ohm-m contour in Figures
5a to 5f as the strike length is increased. The low resistivity zone increases
in size and the values decrease from approximately 20% below the half-space
value to over 50% in the case of the infinite strike 1en§th; With the strike
length of about 10 units, the pseudo-section closely resemb1e$ that of a fwo-
dimensional inhomogeneity in both pattern and amplitude.

b) With a Conductive OQverburden | ayer

The effect of varying strike lengths of the standardized inhomogeneity

when it is overlain by a conductive overburden of thickness 0.5 units and
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resistivity 10 ohm-m is illustrated in Figures 6a, 6b, 6c for strike lengths of

2, 6 units and infinity, respectiyely. The conductive overburden decreases

the énoma]y amplitude of the resistivity low substantially. The horizontal
spreading of thé current lines due to the screening effect of the conductive
overburden causes the three-dimensional model values to approach the two-dimensional
values for a strike length of only 6 units. At large dipole-separations, N = 7,

10, for a strike length of 2 units, the apparent resistivity values are somewhat
higher than those from the two-dimensional model.

Unlike the case without overburden, the difference in the response pattern
between the three- and two-dimensional models is much less. MWere the Tow resisti-
vity block of Figure 6¢c to be more deeply buried or less conductive the anomaly
would in all practical cases be indistinguishable from the three-dimensional
block of Figure 6a, which has a strike length of only 2 units.

ii) Effect of Depth of Burial

Figures 7 and 5b illustrate the apparent resistivity péeudo—sections
for the standardized conductive inhomogeneity with depths’of 0.5 and 1.0 units,
respectively. The low resistivity anomaly associated with the body shows a
sharp drop in amplitude with increasing depth of burial. The anomalous resisti-
vity 'high' observed directly below the body at large dipole-separations grows
in amplitude as the top of the inhomogeneity approaches the ground surface.

A conductive overburden layer of thickness 0.5 unit and resistivity 10 ohm-m

overlies the standardized inhomogeneity with‘depths of bukia] of 0.5 units
and 1 unit in Figures 8 and 6a, respectively. The anomaly patterns are consi-
derably more diagnostic for the shallower depth to the top of the body although
the anomaly amplitude is not very large. In our model studies, the response

of such a conductive target appears to be indistinguishable from the two-layered



earth response for depths of burial greater than 1.5 units.

A summary of the effects of depth of buriai and conductivity contrasts of
the standardized three-dimensional body together with a}two-dimensional model
of identical cross-section is shown in nguré 9. A normalized anomaly index (AI)
is defined as -
amax - amin

Al = — x 100%
background

In the pseudo-sections of apparent resistivity there appear zones of
relatively high as well as low values, due to the presence of a conductive
target. The anomaly index (AI) is a measure of the distortion in the half-space
response caused by the inhomogeneity. In the characteristic diagram, the Al
measure shows substantially higher distortion for two-dimensiona]ztargets
compared to the three-dimensiona] targets of identical Cross-section for various
conductivity contrasts. 'w1th increased depth of burial, the rate:of drop in
the anomaly Tevel for both two- and three-dimensional bodies is approximately
the.same, although for comparable depths of burial the three-dimensional
targets have much Tower detectability.

It is also 1ﬁterest1ng to note that the Al  of three-dimensional bodies
show a saturation for contrasts in excess of 30. The AT for the two-dimensional
case is still rising for a contrast of 100.

Profile Lines Shifted .Along the Strike pirection.

The strike-extent of a three-dimensional inhomogeneity could be mapped by
observations made along parallel profile lines normal to the strike. For the
standardized inhomogeneity, fhis effect is shown in pseudo-sections illustrated
in Figures 6b, 10a, 10b and 10c for line shifts of 0.0, 0.5, 1.0, 3.0 units from
the center of the surface projection of the inhomogeneity. The patterns in

the apparent resistivity pseudo-sections do not alter appreciably, for y = 0
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(line bisecting the strike length) and y = 0.5. For the line at y = 1.0 unit
(a]png the surface projectidn of one edge of the body), the resistivity 'Tow'
zones shrinks laterally in the profiles, while the basic pattern is maintained.
For the line at y = 3.0 units (Figure 10c) the effect of the inhomogeneity
is substantially reduced in that a small anomaly of the order of 5% indicates
the presence of a conductive target on one side of the profile.

Very similar patterns are observed for these lines when the Standardized
inhomogeneity is overlain by a'conductive overburden layer.

With only one profi]eb1ine; say. that of Figure 10c, it would be impossible

to deduce whether a conductive inhomogeneity was buried directly beneath the

Tine or off to one side.

A. Basin and Range Geothermal Model

An analysis of a more complicated model has arisen from a field study of
the geothermal potential in a typical Basin and Range geologic section. In
such sections, the sediments are typically separated by steep normal faults
from more resistive bedrock of the adjacent ranges. The bounding faults are
hypotheéized to be conduits for ascending hot water. Portions of the sedi-
mentary section'adjacent to the fault could act as reservoirs for hot water.
To date, modeling used in the interpretation of resistivity surveys has
considered only reservoirs of infinité strike length. It is probable, however,
that only certain portions of the fault act as conduits ‘so that the resulting
reservoir would have limited strike length.

To assess the effectiveness of the resistivity method in Such cases we
have analyzed the responses of the three dimensional model described in
Figures 11a and b. Six profile lines oriented parallel and perpendicular to
the strike are indicated in the plan view (Figure 11a). The conductivity

section on the line through the center of the body and perpendicular to



strike is}shown in Figure 11b. Pseudo sections of apparent ‘resistivities on
these lines are shown in Figures 12a to 12f.

Two additional pseudo sections along Tine 1 are shown for the fault
model with no conductivity inhomogeneity and with a conductive inhomogeneity
of infinite strike length. (Figures 13 and 14, respectively). The most
striking result is that for 1ine 1 on a profile perpendicular to strike, the
anomaly caused by the three—dimensional'inhomogeneity is considerably less
than its two-dimensional counterpart. The two-dimensional conductive reservoir
(Figure 13) could be easi1y delineated, but the pseudo sections of Figure 12a
could be interpreted as a sloping fault contact displaced somewhat to the left
of its actual position. The anomaly patterns in the pseudo sections of lines
1, 2 and 3, and for the pseudo section of Figure 14, are very similar. Each
could be interpreted as a fault contact with only subtle differences in location
and dip.

For the profile, line 4, parallel to strike and direct1y over the body
the anomaly is quite distinctive and clearly defines the location and extent
of the conductor. Parallel Tines not over the body, Figures 12e and 12f, show
typical responses of quarter space models and do not show any effect of the
nearby body. While these 1ines can be used to delineate the width of the
body they also reveal the importance of closely spaced lines in detecting the
body at all. |

Reservoirs of significant dimension could easily be missed using the
conventional approach of oriénting dipole-dipole lines perpendicular to strike.

B. Down-Hole to Surface Resistivity Maps

Detailed delineation of subsurface conductivity distributions can often be
effected by uti]izing drill holes and a combination of surface and downhole

electrodes. One such configuration involves lowering a current electrode down
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the hole and measuringAthe voltages on the surface using orthogonal receiving
electrode pairs (dipo]es).. Thé other current electrode is placed, effectively,

at infinity. ‘Quantitative analysis of this configuration has been limited to the
case of single spheroidal bodies buried in a uniform half space, Merkel and
Alexander (1971) Daniels (1977). For more comprehensive analysis it is necessary
to include conductive overburden_]éyers, faults, bounded near-surface inhomogenities,
and arbitrary shapes of bodies. The three dimensidna] a]gorithm developed in

this study is ideally suited for down-hole studies since there are no restrictions

on the location of current sources, or in the definition of any arbitrary conduct-
ivity structureé.

To illustrate the abp]ication of this technique we have analyzed the down hole
to surface resistivity array for a simple tabular three-dimensional body.

The dimensions of this body and the coordinate axes are shown in the plan and
section views of Figure 15. The resistivity of the tabular body is 1 ohm meter
and that of the surrounding half space is 100 ohm m. Maps of apparent
resistivity are made using the total electric fields obtained with orthogonal
receiver dipoles on the surface. The maps encompass an area of 16 units in the
x-direction by 14 units in the y-direction.

Figures 16 a,b,c, and d afe the maps of total field apparent resistivities
obtained with a current pole Tocated at depths of 0.5, 1.0, 1.5 and 2.0 units,
respectively, along a vertica]v1iné passing through the center of the body. When
the electrode is above the body (Figure 16a) apparent resistivities close to that
of the half space are observed near the hole. Within a radius of 2 units the values
fall some 30%. At greater radii the values return to the half space resistivity.
When the downhole electrode contacts the top of the body (Figure 16b) a pronounced

low of 9 ohm-meters is observed over the center of the body. With increasing
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distance away from the hole the apparenf resistivities increase to the background
values. For the case of the electrode within the body (Figure 16c) the central
low increases to 23 ohm-meters and the values approach the half space values
within a radius of 3 units. Finally, when the electrode is beneath the body the
central Tow rises to 68 ohm-meters and a narrow annulus of anomalously high
values (120 ohm-meters) encloses the surface projection of the.body. With
increasing radial distance from the hole the values rapidly approach the surrounding
half space resistivity. |

There is usually no difficulty in detecting a body if the drill hole passes
through it. A more interesting case, therefore, is that of Figures 17, where the
electrode is Towered down a hole located one unit away from the edge of the body.
Figures 17 a,b,c,d, are the maps of total field apparent resistivities for an
electrode buried at depths of 0.5, 1.0, 1.5, and 2.5 units respectively. In all
of these maps a localized apparent resistivity high is observed in the vicinity
of the hole. A zone of lTow values 1lies above the body and an arcuate zone of |
anomalously high values lies on the side of the body opposite the hole. Unlike
the previous case, the maximum anomaly is now developed when the g]ectrode is
at the depth of the center of the body. The change in the anomaly amplitude and
pattern as the current electrode moves from within the body to a point three units
away from the edge of the body, at a depth of 1.5 units, is shown in Figures 16c,
18a (electrode contacting the left side of the body) and in Figures 17c and 18b,
where the electrodes are 1 and 3 units away from the edge of the body, respectively.
Even at three units distance the anomaly caused by the body is substantial (an
Anomaly Index of approximately 80%) and the lateral position is well resolved in
aj] cases. These results suggest that the array may be very
_useful in delineating conductive bodies missed in a drilling program. In this

context, it is important to note that single profiles would not be as diagnostic
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as the surface maps.

Figures 19 a, b, and c are maps of the total field apparent resistivity
over a body of infinite strike length (in the y-direction). The cross section
of body and its depth are identical to the three dimensional model used in the
previous studies. The depths and locations of the current electrode are identical
to those used in constructing the maps of Figures 16a, 16b and 17c respectively.

When the electrode is Tocated centrally and above the body (Figure 19) the
anomaly pattern is considerably different from that observed over the three
dimensional body (Figure 16a). The apparent resistivity values are lower over
the entire map area and, in fact, only reach the minimum value (25 ohm meters)
at a radial distance of 5 units from the hole. As in the three dimensional
case the maximum anomaly 1is produced when the electrode contacts the upper surface
of the body (Figure 19b). 1In both Figures 19a and 19b the contours show the
elongation in the y direction and in contrast to the three-dimensional case
background va]ues are not approached near the edge of the map.

When the electrode is located one unit away from the edge of the body and
at a depth of 1.5 units (where the maximum anomaly occurrs) the two-dimensional
body produces an apparent resistivity map (Figure 19c) quite distinct from the
map of the corresponding three dimensional model (Figure 17c). In the two
dimensional case an elongated low resistivity zone appears offset from the body
on the side away from the current electrode. Surrounding half space resistivities
are not approached within the confines of the map. In both cases a resistivity
high occurs in the vicinity of the hole.

With a single hole ambiguities could arise between the anomalies produced
by a uniform horizontal layer and those from a three dimensional body_within the
hole through its center. This ambiguity is removed with the data from a second

hole. In this context, mise a la masse sukveys are best conducted with an
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electrode Tocated off the axis of symmetry. Moreover the largest anomalies are

produced when the electrode is in contact with the top or sides of the body rather

than within the body.

Remarks

A general algorithm to simu]ate the response of an arbitrary three dimensional
resistivity distribution to arbitrary arrays of current and receiver electrodes
has been developed. We have illustrated the application of this algorithm with
several simple models using both surface and downhole arrays. The finite difference
mesh describing the conductive'haif space and the boundary conditions used make
the algorithm easily amenable to the simulation of irregular topography. In
addition, the apparent Induced Polarization response is readily obtained by
assigning the intrinsic percent frequency éffect to the resistivity of each elemental
wvolume in the discretization process. Finally, the magnetometric resistivity
response is easily calculated since the current flow in the lower space is derivable

from the potentials at the nodes and the specified conductivities.
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Figures

Three-dimensional discretization grid with rec-
tangular cubic elements. The dotted lines show
the elemental volume AV, 3.k about a Node (i,j.k).
H] 9

Node locations and conductivity distribution on
the six subsurfaces of Sj 3.k about a node (i,j,k).
Electrode locations in an arbitrary resistivity
array

Comparison of the analytic and numerical solution
with finite-difference discretization over a
two-layered earth model.

Apparent resistivity pseudo-sections of the stand-
ard test model with stroke lengths of a) 1.0 unit,
b) 2.0 units, c¢) 4.0 units, d) 6.0 units, e) 10.0
units, and f) infinity.

Apparent resistivity pseudo-sections of the stand-
ard test model under a conductive overburden

layer with strike lengths of a) 2.0 units, b)

6.0 units, and c) infinity.

Apparent resistivity pseudo-sections of the stand-
ard test model at a depth of burial of 0.5 units.

Apparent resistivity pseudo-section of the stand-
ard test model loCated directly under an over-
burden Tayer of thickness 0.5 units.

Characteristic diagram of the Anomaly Indices
for the standard test model.

Apparent resistivity pseudo-sections of the stand-
ard test model with the profile line shifted

from the center of the body by a) 0.5 units, b)
1.0 unit and ¢) 3.0 units in the strike-direction.

Plan and sectional views of the Basin and Range
geothermal model.
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Apparent resistivity pseudo-sections of the Basin
and Range model along a) the profile line 1, b)

the profile line 2, c) the profile line 3,°d) the
the profile line 4, e) the profile line 5, and f)
the profile 1ine 6 as indicated in the plan view.

Apparent resistivity pseudo-section of the two?
dimensional Basin and Range model with no con-
ductive reservoir zone near the fault.

Apparent resistivity pseudo-section of the two-
dimensional Basin and Range model with the con-
ductive reservoir zone.

Plan and sectional view of the test model used
for the downhole to surface electrode configurations.

\ Maps of total field apparent resistivities with

the current pole located along the vertical axis
of the test model at depths of a) 0.5 units, b)
1.0 unit, ¢) 1.5 units, and d) 2.5 units below
the surface.

Maps of total field apparent resistivities with
the current pole located 1.0 units away from the
edge of the test model at depths of a) 0.5 units,
b) 1.0 unit, c) 1.5 units, and d) 2.5 units be-
low the surface.

Maps of total field apparent resistivities with
the current pole located at a depth of 1.5 units
and a) 0.0 units and b) 3.0 units away from the
edge of the test model. ’

Maps of total field apparent resistivities over
the test model with infinite strike length with
the current pole Tocated along the vertical axis
at depth of a) 0.5 units, b) 1.0 units, and c¢)
with the current pole located 1.0 units away from

the edge of the body at a depth of 1.5 units.



-36-

L 94nbL4
8G19-01L218 X

Z

} N

\
LY
\
\
1
=%=4
¥\

ii Tx \
%\+
N

NEANATANA

NI NEANEANERN

NI




o
o
L

i+, Vo sk

L)-12, kel
, T )
Az,
Otk | Gt kel
t-l,j-T/E,k W-Vek
' O, otk |k
8z,
!
X e
L VZ.k”
oy oo ax ]
(i) Front Face (XZ Piane}
i'l/z.],k'l
?
AZ
k-l
F et | T
i'w,jrl,k i'w:ivk i'VZ,j’l,k
Grjik [Ttk
1 )
t'VZ) ’k‘l

b av,, —— av; —

(iii) Left Face (YZ Plane)

ir i"-k"/Z

Egithed | T el

ih l k'V2
Kkl

Tk

[
i, j#,k-l/2

k-1

e — % —ofe— BX; —]

(v) Top Face (XY Plane)

IS .
L2k

L)+HV2, ket

Ok

L)+ k

OI,|,k

i.i+L/2.k+l

—e
AR K

(it) Back Face (XZ Plane)

L+ Y2,k

[

Gt [Ciiket

i"VZJ".k

1+l2, 1.k
Gtk [k

i+Y/2, k¢!

s, jtk

(iv) Right Face (YZ Plane)

Li-lLk+l2
p

i+l,fka

itk |Gk
k)2 )
Gik ik
i, jH, k2
(vi) Boitom Face (XY Piane)

NODE LOCATIONS AND CONDUCTIVITY ON THE SIX SUBSURFACES
OF 5;;k ABOUT A NODE (i, j,k)

Figure 2

XBL 7710- 6157



~38-

+I -I

Figure 3



b 903

100
T T | J ! '
" —— ANALYTIC
50| o N
‘ o NUMERICAL
R
(Qm) [
20
10
l 3 2 !

DIPOLE SEPARATION, N

l:c?-'______ Na ———————-n-oq

¥

Figure 4




-40-

MODEL | -~ 3D
DIPOLE - DIPOLE PSEUDO SECTION OF APPRRENT RESISTIVITY
THE PROFILE LINE 1S AT 90 DEGREES TO STRIKE ANC IS AT Y=0.C

-6 -5 -4 -3 -2 -l 0 1 H 3 N s ]
L L [ W L L L Y SO N NN N— |
102:2 100.9  100.9  101.5 102 95.5  90.2 9.5 IQ28 1016 10Ll 1023
2 1026 1014 4023 404 09.6 89.6 "QM.1 102.6  109.0
3 103.5  103.4 104 8.5 s 80 18 86.6 .2 105.1 3
¢ 1054 1 ®.7  80.5 4.8 849 60.5  O5.1 N6 [
®
s 1087 e%.4 82,5 #e.5  90.2 88,8  83.0 .7 5
s 859 650 R0 W2 W3 WE 62 5
] 87.6 W.6 .6 2 I .o 7
» ‘g0 w4 e 9.2 95 1
3 105l | 100.8 9
10 10171013 1049 10
MODEL 2R - 3D
DIPOLE - DIPOLE PSEUDD SECTION OF APPARENT RESISTIVITY
THE PROFILE LINE 1S AT 90 DEGREES TO STRIKE AND IS AT Y=0.0
-+ -5 -4 -3 -2 -1 0 i 2 3 ] 5 5
L ] L | J 1 L 1 I A L j|

102.2  104.0 101,0 101.0 109 .7 8.2 N7 IQ!'Z
0.7 10,8 1029 10§,

woL.e 10,2 102.%
. / :
8.2 ‘Goi.7  109.2 1032

L] 109.% 1043 108, 0. 9.0 & 1060 L]
4 108.4 1.2 [
s m.(\ 4] 9 H
6 6
? L6 9.5 952 9.2 9.6 927 7
. W 97 9.7 W0 W s
9 Lo o lﬂﬂ.s"iﬁ 9
10 02,8 1021 i02.6 10
MODEL 3 - 30

DIPGLE - DIPOLE PSEUDD SECTION OF APPARENT RESISTIVITY
THE PROFILE LINE IS AT S0 DEGREES TO STRIKE AND IS AT Y=0.0

-8 -5 | -3 -2 =1 [ ] ? 3 4 H L}
- IR | . i L 1 L L

i S 1 i J

102.3  101,0 1061 102,43 109 .6 ¢.5 N.6 |Qs.s ez 1013

1023

102.8 10019  i0%.6 105 .5 /Q,a.o 103.9  103.5

’ 104.3 1052 108 7.2 1070 3
L} oS a
q& s 1
H 10,7 @ ] H
s 2 0.8 LR P 6
S~
? .8 .7 8.8 9.1 9.0 BL7 ?
[ 07,0 828 WS N8 9.8 [
L] ®o MY N9 W2 9
i sore—1e PO 157 10
X~Z RESISTIVITY CROSS-SECTION AT Y=0 FOR MODEL | - 3D
-+ B “« ] -2 -1 (] ' 2 s [} s ]

! L L i i 1 1 | SR S 0
B

BLANK = 100.0
A A =300 [°
-9
o
s

Figure 5



HMODEL 4 - 3D

i

DIPOLE - DIPOLE PSEUDD SECTION OF APPARENT RESISTIVITY
THE PROFILE LINE IS AT 90 DEGREES TO STRIKE AND IS AT Y=0.0

B -s -3 -2 -1 [} ! 2 s s 3
[ L 1 1 L (i L e
N
1 102.9 1060 1013 1024 104, W6 0S8 W6 KUY 1024 1004 1024
2 103.0 1022 N2 108, 4 Gero ous  dose
L 104.7  108.2 100, .7 107.9 3
[ 108.6 ) 4 s M
B m;’v
. 1(@. '285 b9 H
] Y 72,8 3.0 69.7 ] 8
1 n.smya——vm\vs,v 1
. 6,7 8.0 B8NS 655 [)
8.9 9.2 %K1 3
0 %9 .. 9.6 10
MODEL S - 3D
DIPOLE - DIPOLE PSEUDD SECTION OF APPARENT RESISTIVITY
THE PROFILE LINE IS AT 90 DEGREES TO STRIKE AND IS AT Y=0.0
b -5 ~ -3 -2 -1 ] 1 2 3 M H 6
L 1 § i 1 1 1 1 ! 1 1 i J
N .
1 1023 1010 10L4 10T 104 QU8 1027 1016 1025
2 1032 1026 1050 4 Yggel 105N 103
3 108.5  107.6 mi\ws.u 3
\ 17 .8 "
A
s 1 6 1) 5
oy
[ 1/@95.3 7.0  $8.6 S$B.6 51,3 Skl 6
5.2 6L8 — 525 7
59.7 4 L6 0.4 8
N3 [
19 oy &‘.180 82,5 10
) MODEL SA - 2D
DIPOLE - DIPOLE PSEUDD SECTION OF APPRRCNT RESISTIVITY
THE PROFILE CINE 1S AT 90 DEGRLES TO SiRIKE AND 1S AT (-0.0
6 5 -« -3 2 4 9 ' 2 3 N 5 3
{ L i ] 1 | 1 ] 1 L 1 | J
N
i 10,3 101.2 102.8 Qe 1028 1016 0LS
2 1027 103.3  108.9 108 .7 Qge.s w061 1038
3 L3 1073 N0 ge. s 3
N ufs u ¢8 \ 5.3 N
5 u7.;’> . s
Loy
3 oy &s 532 515 6 She S8.L 6
] ao{z 6.4 Sh2 5.0 7
"B0.5  BL3 622 GAW 6D [
m§5 6.1 q
10 8.8 0.1 0.6 10
X-Z RESISTIVITY CROSS-SECTION AT Y=0 FOR MODEL 4 - 3D
- -5 ~ -3 -2 -1 o i 2 s [ s 6
o L Y L 1 L. L i I 1 L . -
14 1
2 BLAMK = 100.0 | ,
A =3.00
3 o
(& -
H




-A2-

MODEL 6A - 3D
DIPOLE - DIPOLE PSEUDD SECTION OF APPARENT RESISTIVITY
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