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ARTICLE

acCRISPR: an activity-correction method for
improving the accuracy of CRISPR screens
Adithya Ramesh1,6, Varun Trivedi 1,6, Sangcheon Lee1,6, Aida Tafrishi1, Cory Schwartz1,5,

Amirsadra Mohseni 2, Mengwan Li1, Stefano Lonardi 2,3 & Ian Wheeldon 1,3,4✉

High throughput CRISPR screens are revolutionizing the way scientists unravel the genetic

underpinnings of engineered and evolved phenotypes. One of the critical challenges in

accurately assessing screening outcomes is accounting for the variability in sgRNA cutting

efficiency. Poorly active guides targeting genes essential to screening conditions obscure the

growth defects that are expected from disrupting them. Here, we develop acCRISPR, an end-

to-end pipeline that identifies essential genes in pooled CRISPR screens using sgRNA read

counts obtained from next-generation sequencing. acCRISPR uses experimentally determined

cutting efficiencies for each guide in the library to provide an activity correction to the

screening outcomes via calculation of an optimization metric, thus determining the fitness

effect of disrupted genes. CRISPR-Cas9 and -Cas12a screens were carried out in the non-

conventional oleaginous yeast Yarrowia lipolytica and acCRISPR was used to determine a high-

confidence set of essential genes for growth under glucose, a common carbon source used

for the industrial production of oleochemicals. acCRISPR was also used in screens quantifying

relative cellular fitness under high salt conditions to identify genes that were related to salt

tolerance. Collectively, this work presents an experimental-computational framework for

CRISPR-based functional genomics studies that may be expanded to other non-conventional

organisms of interest.
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Functional genetic screening with pooled libraries of CRISPR
guides has been successful in discovering gene function,
identifying essential genes, and evolving new phenotypes1–3.

These screens work by inducing mutations across the genome to
disrupt gene function. Genome-wide transcriptional regulation is
also possible when a catalytically deactivated Cas endonuclease
(typically, Cas9 or Cas12a) fused to an activation or repression
domain is targeted to promoters4,5. For these screens to be
effective, the library should contain one or more active guide
RNAs for each targeted gene. Creating such libraries is challen-
ging due to imperfect design algorithms and an incomplete
understanding of how Cas endonucleases function across differ-
ent species. Further confounding guide design is the blocking
effect of chromatin structure on guide RNA targeted Cas9
endonuclease6,7. As a result of this imperfect design, CRISPR
screens are conducted with pooled libraries of guide RNAs that
have a broad range of activity8,9. High activity guides can assign
phenotypic changes to genome edits with high confidence, while
inactive and low activity guides can obscure gene hits by pro-
ducing false negatives. Computational and experimental methods
that can quantify the activity of each guide in a library and
account for the variance in activity are needed to correct
screening outcomes, accurately identify genotype-phenotype
relationships, and call essential genes with high confidence.

A common CRISPR library design strategy is to include many
guides targeting each gene or promoter. This strategy helps
ensure that every gene is targeted by an active guide, but doing so
increases the analytical complexity in assessing outcomes. Cur-
rent analysis methods use a Bayesian framework to infer guide
activity from screens obtained across several experimental con-
ditions; guide RNAs that elicit a fitness effect under several dif-
ferent conditions are indicative of high activity10,11. Reliable
measurements of guide activity can also be generated directly
from screening experiments. In the yeast species that we have
studied12, this can be achieved by disrupting the primary DNA
repair mechanism (typically, non-homologous end-joining or
NHEJ) and using negative growth selections to quantify the
activity of each guide, resulting in activity profiles across the
genome. Guide activity data, whether computationally or
experimentally produced, is used to identify and account for
inactive and low activity guides, leading to improved hit calling
and screen accuracy. Here we show that, given experimental
guide activity measurements from a single screen, significant hits
can be identified using average log2-fold change, thereby elim-
inating the need to process multiple screens and perform prob-
abilistic modeling of the data.

In this work, we develop an activity-correction CRISPR screen
analysis method—acCRISPR—that optimizes library activity to
generate accurate screening outcomes. Using guide RNA abun-
dance data from sample and control screens along with infor-
mation on the activity of each guide, acCRISPR computes a
fitness score for every targeted gene and identifies genes essential
to the screening condition. We demonstrate the utility of
acCRISPR by analyzing CRISPR-Cas9 and -Cas12a screens in
negative selection experiments in the oleaginous yeast Yarrowia
lipolytica. We focus on this yeast because it has the ability to
synthesize and accumulate lipids, and for its success as a host for
oleochemical biosynthesis13–15. Using previously derived guide
activity profiles of Yarrowia genome-wide Cas9 and −12a
libraries (see ref. 16), along with new growth screens, we use
acCRISPR to identify essential genes and call hits in high salt
tolerance screens. We independently validate acCRISPR predic-
tions by measuring growth of individual disruptions of a subset of
essential genes and tolerance genes in conditions akin to those of
the original genome-wide screens. We also evaluate the perfor-
mance of acCRISPR with computational predictions of guide

activity rather than experimentally determined values. Essential
gene analysis and functional genetic screening will help toward
developing a better understanding of Yarrowia’s genetics, and
acCRISPR analysis of the screens conducted in this work
enables this.

Results
acCRISPR optimizes sgRNA library activity and coverage.
acCRISPR uses raw read counts of guide RNAs from functional
screens as inputs and computes cell fitness effects, guide RNA
activity profiles, and calls essential genes. To demonstrate this
analysis pipeline, we conducted CRISPR-Cas9 and -Cas12a
genome-wide screens in the PO1f strain of Y. lipolytica. The
pooled guide libraries contain single guide RNAs (sgRNAs) that
target more than 98.5% of the protein-coding sequences with 6-
and 8-fold coverage for Cas9 and Cas12a, respectively. Guide
activity in these libraries was previously reported9,16; a cutting
score (CS), defined as the −log2 ratio of normalized read counts
obtained in PO1f Cas9/12a ΔKU70 to counts in the control strain,
was determined for each guide (Fig. 1a). The disruption of KU70
disables NHEJ DNA repair17, creating a link between guide
abundance in a negative selection growth screen and guide
activity. In the absence of the dominant DNA repair mechanism,
a double-stranded break causes cell death or significant impair-
ment in growth; sgRNAs with high activity are lost from the cell
population with higher frequency than those with lower activity,
thus linking CS to guide activity. The fitness screen inputs for
acCRISPR were generated using PO1f as the control strain and
PO1f Cas9 or Cas12a as the sample. Screens were conducted in
synthetic defined media with glucose as the sole carbon source.
An Illumina sequencing instrument was used to generate sgRNA
read counts after four days of culture. These data were used to
generate a fitness score (FS) profile, defined as the log2 ratio
between the normalized counts in the Cas9/Cas12a expressing
strain and the control. Raw guide RNA counts for Cas9 and
Cas12a screens are provided in Supplementary Data 1 and 2.

The first analytical step of acCRISPR is to convert raw guide
abundance values into CS and FS profiles (Fig. 1b, Supplementary
Data 3). First, an FS is computed for each gene as the average
log2-fold change of all guides targeting that gene, both active and
inactive. Then, the FS value for each gene is recalculated after
excluding sgRNAs with a CS below a given CS threshold (i.e., a
minimum value of CS for an sgRNA to be included in the
analysis, T). As guides with low CS are removed, the library
coverage is reduced along with the statistical power that multiple
guides provide. To capture this effect, we compute the ac-
coefficient as the product of the CS threshold (T) and the average
number of guides per gene, for a range of T values. The maximum
peak for the ac-coefficient indicates the CS threshold where the
library activity is maximized. The corrected FS profile generated
for the threshold corresponding to the peak is used to identify
essential gene hits; p-values for every gene in the dataset are
determined by comparing the FS of a gene to a null distribution
that represents the fitness of non-essential genes (see “Methods”
for more details).

acCRISPR accurately calls essential genes. We evaluated the
performance of acCRISPR against other established approaches
that classify essential genes using read counts or log2-fold changes
from CRISPR screens as input, namely JACKS10, MAGeCK-
MLE11, and CRISPhieRmix18. These methods have been validated
against a gold standard set of essential genes in mammalian cells
and were used here to compute fitness effects and call essential
genes in Yarrowia. The comparison of acCRISPR to the other
methods on our Cas9 screens is shown in Fig. 2. Similar analyses

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-04996-8

2 COMMUNICATIONS BIOLOGY |           (2023) 6:617 | https://doi.org/10.1038/s42003-023-04996-8 | www.nature.com/commsbio

www.nature.com/commsbio


of the CRISPR-Cas12a screens are shown in Supplementary
Fig. 1.

Output values for the fitness effect of genes in Yarrowia from
acCRISPR, JACKS, and MAGeCK-MLE (FS uncorrected (FSunc),
W, and β) are in good agreement. The pairwise Pearson and
Spearman r-values are 0.65 or greater (Fig. 2a). CRISPhieRmix

was less successful at capturing raw fitness effects from the
Yarrowia screen (Pearson r < 0.37) and the majority of genes were
identified as essential. JACKS and MAGeCK-MLE also output
guide activity predictions (X and π); these values did not correlate
well with the acCRISPR analysis of the CS profiles, which were
directly obtained from the screening experiment.

Fig. 1 acCRISPR analysis of CRISPR-Cas screens. a Growth screens in Y. lipolytica were conducted with pooled libraries of single guide RNAs (sgRNAs) (6-
and 8-fold coverage of >98.5% of CDSs, for Cas9 and Cas12a respectively). A guide’s cutting score (CS) is equal to the −log2 fold-change of normalized
guide abundance in PO1f Cas9/12a ΔKU70 to the control strain. Fitness scores (FS) are similarly defined, but with the PO1f Cas9/12a strain as the sample.
b acCRISPR takes normalized sgRNA read counts from the control, CS, and FS strains and computes a series of outputs: CS per guide, FS per gene, the ac-
coefficient (the product of CSthreshold and library coverage), and p-value per gene from significance testing against a non-essential gene population at the
maximum ac-coefficient. The data sets shown here are from Cas9 screens in Y. lipolytica PO1f. Screens were conducted at 30 °C with glucose as the sole
carbon source. Genes with an essentiality p-value < 0.05 were classified as essential.

Fig. 2 acCRISPR analysis of CRISPR-Cas9 screens defines a high confidence set of essential genes. a Heat maps showing Pearson (below diagonal) and
Spearman (above diagonal) correlation coefficients for comparison of gene fitness effects (uncorrected FS (FSunc), W, β, and -P; left) and sgRNA cutting
efficiencies (CS, X, and π; right) from acCRISPR and three established essential gene identification algorithms, JACKS, MAGeCK-MLE and CRISPhieRmix.
‘n.a.’ denotes that sgRNA cutting efficiency values for CRISPhieRmix are not available. b The average number of sgRNAs per gene (top) and the number of
essential genes predicted (bottom) with increasing CS threshold as well as for uncorrected FS. The data points colored in pink are the guides per gene and
the number of essential genes determined at the maximum ac-coefficient. c Fitness scores of genes with (solid line) and without (dashed line) acCRISPR
processing with a CS threshold (T) of 4.5. d The number of essential genes identified by JACKS, MAGeCK-MLE, CRISPhieRmix, FSunc, and acCRISPR are
compared to previously reported essential gene sets for Yarrowia (FS-CS9 and transposon analysis19) and S. cerevisiae20. Values at the top of each bar
indicate the percentage of the total number of genes identified as essential by the respective method.
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We next applied CS correction to the Cas9 screening data. The
ac-coefficient curve for the Cas9 screen for each choice of the CS
threshold T is shown in Fig. 1b. The number of essential genes
and the average number of guides per gene for the same values of
the threshold T are shown in Fig. 2b. As T increased from 0.5 to
4.0, the number of genes classified as essential also increased, an
effect likely caused by removing false negatives resulting from
poor activity sgRNAs targeting essential genes. The optimum
library activity, indicated by the peak of the ac-coefficient,
occurred at threshold T= 4.5 with an average coverage of 2.78
guides per gene. The peak for the ac-coefficient in the CRISPR-
Cas12a library indicated the optimal CS threshold of T= 1.5,
with an average coverage of 2.97 guides per gene (Supplementary
Fig. 1).

The optimized acCRISPR analysis of the Cas9 screen identified
1903 essential genes (see Supplementary Data 4), a number
similar to the 1954 essential genes reported for a transposon-

based screen19. Without the activity correction, only 702 genes
could be classified as essential, a value significantly below what
was expected; based on the analysis of other yeast species ~15% to
~30% of protein-coding genes are expected to be essential (e.g.,
19.9% for S. cerevisiae and 26.1% for S. pombe20,21). The Cas12a
screens conducted here identified 1375 genes as essential
(Supplementary Data 4) when the acCRISPR pipeline was used,
and only 335 when all sgRNAs (both active and inactive) were
included in the analysis. JACKS and MAGeCK-MLE also under-
predicted the number of essential genes in the Cas9 and Cas12a
screens (JACKS, 102 and 0; MAGeCK-MLE, 535 and 1218), while
CRISPhieRmix classified nearly all genes as essential (7724
and 7538).

CRISPR-Cas9 and -Cas12a screens help define a consensus set
of essential genes. The acCRISPR analysis of the Cas9 and -12a
screens provides the opportunity to define a consensus set of
essential genes for Yarrowia growth on glucose. First, we vali-
dated the essential gene set via a Gene Ontology (GO) enrichment
analysis22,23, with the expectation that functional terms known to
be essential would be enriched (FDR-corrected p < 0.05; see
Supplementary Data 5 and 6 for all GO and GO-Slim terms
pertaining to molecular function (MF), biological process (BP)
and cellular component (CC)). As expected, genes involved in
transcription, translation, cell cycle regulation, cofactor metabo-
lism, and tRNA metabolic processes showed significantly lower
FS values (t-test, p < 0.05) compared to the average FS of all genes
in both the Cas9 and Cas12a screens. The FS values of genes in
these functional groups along with other enriched GO-Slim terms
are shown in Fig. 3a.

A previously published transposon-based screen identified
1954 essential genes19. Experimental conditions (2% glucose in
SD-Leu media) were consistent with the Cas9 and Cas12a
experiments conducted here, thus providing a large data set from
which we can identify a consensus set of essential genes. One
thousand six hundred and twelve genes were common to at least
two of the three different screens (Fig. 3b and Supplementary
Data 7). Enriched GO-Slim terms in this set were consistent with
those expected for essential genes and we consider these genes as
the consensus set for Yarrowia growth on glucose (see
Supplementary Data 8). To verify the essentiality of genes in
the consensus set, we tested 15 essential genes from this set and 5
non-essential genes (i.e., genes non-essential in all 3 screens)
using the CRISPR-Cas9 system and measured their abundance in
glucose after 2 days of growth (Supplementary Fig. 2; see Methods
for details on the experimental procedure). Of the 15 essential
genes tested, 12 were called as essential in all three screens, while
3 others were called as essential in the Cas9 and Cas12a screens,
but not in the transposon screen. As expected, cells containing
essential gene knockouts showed no or minimum growth
throughout the validation experiment, whereas disruptions of
non-essential genes exhibited substantial growth over the same
time period. One-tailed t-test indicates that the growth of non-
essential gene knockouts is significantly higher (p < 0.0001) than
that of the essential gene knockouts. The essential genes identified
in the consensus set were also compared to known essential genes
in S. cerevisiae and S. pombe. Of these, 824 genes were identified
to have homologs in S. cerevisiae, of which 54.6% were found to
be essential in both species. Seven hundred and eighty-two genes
had homologs in S. pombe and 60.9% of those were found to be
commonly essential between both species (Supplementary Fig. 3).

acCRISPR can use sgRNA activity predictions as an alternative
to CS. We recognize that generating experimental CS profiles is
not always feasible (for example, in organisms for which it is not

Fig. 3 Defining a set of consensus essential genes in Y. lipolytica.
a Enriched GO-Slim biological process terms for Cas9 and Cas12a essential
gene sets and FS distribution of essential genes associated with each GO-
Slim term. Enriched terms were determined using a hypergeometric test
(FDR-corrected, p < 0.05). The FS values for each GO-Slim term were
found to be significantly lower than those of all genes by one-tailed
unpaired t-test (p < 0.0001). Blue and red dotted lines indicate the mean FS
of all genes for Cas9 and Cas12a datasets respectively. b Venn diagram of
the essential genes identified from CRISPR-Cas9, CRISPR-Cas12a, and
transposon screening, and their overlap. The consensus set of essential
genes, comprising genes common to at least two of the three screens,
contains 1612 unique genes.
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possible to have NHEJ-deficient screens or in cases where a
double stranded break is likely to be repaired by homology
directly using a second allele as a template). Thus, we sought to
test the performance of acCRISPR using computationally pre-
dicted sgRNA activity scores in Yarrowia. Among the large set of
guide activity prediction tools available for Cas9, we selected
DeepGuide16, uCRISPR24, Designer v125, Designer v226, SSC27,
CRISPRscan28, and CRISPRspec29 (Fig. 4 and Supplementary
Data 9). For Cas12a, only a few prediction algorithms have been
developed, for example, DeepGuide16 and DeepCpf130, which
have been shown to predict sgRNA activities in Yarrowia with
reasonable accuracy (Supplementary Fig. 4 and Supplementary
Data 10). Using the predicted activity scores, we implemented
acCRISPR to compute the maximum ac-coefficient (Supple-
mentary Table 1) and determined a set of predicted essential
genes. The consensus set identified in Fig. 3 served as a reference
to evaluate the success of each prediction method. Of all pre-
diction methods, DeepGuide was found to have the highest
sensitivity for both Cas9 (62.8%) and Cas12a (51.7%) datasets
(where sensitivity is the percentage of the consensus set that is
captured by the predicted set). The higher performance of
DeepGuide is likely a consequence of its training set, that is the
Yarrowia CS profiles generated in our screens. Other methods
captured a smaller fraction of the consensus set, with sensitivity
ranging from 26.0 to 44.9%. While the predicted guide activities
were not successful at capturing the full set of essential genes in
Yarrowia, those that were identified were called with high con-
fidence; each of the tested methods maintained precision rates
above ~75% (where precision is the number of predicted essential
genes overlapping with the consensus set divided by the total
number of essential genes predicted).

In addition to evaluating the success of different guide
prediction algorithms, we determined sensitivity and precision
metrics for Cas9 and Cas12a screens using acCRISPR, JACKS,
MAGeCK-MLE, CRISPhieRmix, and uncorrected FS profiles,
with CS as an input (Fig. 4 and Supplementary Fig. 4). acCRISPR
analysis of the Cas9 screen captured nearly all of the consensus
set (sensitivity of 89.1%) with high precision (75.5%). Except for
CRISPhieRmix, the other methods failed to capture the majority
of the consensus set. CRISPhieRmix classified nearly all Yarrowia
genes as essential, thus capturing nearly 100% of the consensus

set but with low precision (20.8%). Results of a similar analysis
with the Cas12a screen are reported in Supplementary Fig. 4; the
Cas12a screen captured 66.7% of the consensus set with 78.1%
precision.

acCRISPR identifies biologically insightful hits related to salt
tolerance. To further demonstrate the utility of acCRISPR, we
conducted high salt tolerance screens from which we identified
genetic hits that produced significant effects on cell fitness. Tol-
erance to high salinity is an industrially beneficial trait that can
reduce costs associated with process sterilization and enable
growth in lower-cost water sources (e.g., seawater or
wastewater)31. The CRISPR-Cas9 strain was grown in the pre-
sence and absence of two different levels of salt concentration
([NaCl] of 0.75 and 1.5 M) and acCRISPR was used to identify
significant hits for each salt stress condition. As a control, the
Cas9-containing strain was grown under standard growth con-
ditions (no added NaCl). In place of FS, these screens defined a
tolerance score (TS), which is equal to the log2 ratio of sgRNA
abundance under the stress condition (i.e., in the presence of salt)
to that grown under control conditions (Fig. 5a). A low TS
indicated that gene disruption conferred a growth disadvantage
under the applied stress (see Supplementary Fig. 5 for corrected
TS profiles in tolerance screens conducted at 0.75M and 1.5M
NaCl).

acCRISPR analysis of the salt tolerance screens (Supplementary
Fig. 6) identified 721 and 884 gene hits in 0.75M and 1.5M NaCl
respectively (Supplementary Data 11). The two screening
conditions were found to share 344 significant genes in common
(Fig. 5b). Similar to the essential gene screening outcomes, we
sought to validate a subset of the gene hits (see Methods
for experimental details). The validation set included four
genes: YALI1_E24201g (TS1.5M NaCl=−4.5), YALI1_E23961g
(TS1.5M NaCl=−4.2), YALI1_F12478g (TS1.5M NaCl=−4.9), and
YALI1_A07277g (TS1.5M NaCl=−4.7; significant only in 1.5 M
NaCl). YALI1_E24201g and YALI1_E23961g were selected for
validation because homologs of these genes are known to affect
salt tolerance in other species. The GO-term of YALI1_E24201g
suggests this gene encodes for 4-coumarate-CoA ligase, which has
been shown to enhance abiotic stress tolerance, including salt

Fig. 4 Performance of acCRISPR using predicted sgRNA activity profiles in Y. lipolytica. Raw sgRNA counts from control and treatment strains used for
fitness score calculations were provided as input to acCRISPR along with sgRNA activity scores from a range of guide activity prediction tools
(DeepGuide16, uCRISPR24, Designer v226, CRISPRspec29, CRISPRscan28, Spacer Scoring for CRISPR (SSC)27, and Designer v125 left). The violin plot shows
the distribution of min-max normalized CS (denoted by ‘acCRISPR’) and sgRNA activity scores from each prediction tool. Dashed lines represent the
median of the normalized score and the dotted lines represent the first and third quartiles. Essential genes were identified using predicted sgRNA efficiency
scores from each tool after first determining the maximum ac-coefficient. The % sensitivity and % precision in identifying genes from the consensus set are
shown (right). Bars indicate the values of these two metrics for each prediction tool as well as for JACKS, MAGeCK-MLE, CRISPhieRmix, uncorrected FS
(FSunc), and acCRISPR.
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tolerance, in various plant species32–34. YALI1_E23961g is
homologous to methionine sulfoxide reductase (MXR1) in
S. cerevisiae and has been shown to improve resistance to
oxidative stress35. The other two gene hits selected for validation,
YALI1_F12478g (a queuine tRNA-ribosyltransferase) and
YALI1_A07277g (a hypothetical protein), have no known
connection to stress tolerance. In all four cases, gene disruption
in individual experiments that mimicked the screening conditions
resulted in significantly lower (p < 0.01) growth than the
disruption of a gene with a higher TS value that was not called
as significant by acCRISPR, thus validating the called hits
(Supplementary Fig. 7).

Overall, the results reported here support the validity of our
acCRISPR analysis in identifying novel gene hits related to salt
stress tolerance; the full list of hits will enable us to identify new
cellular functions related to stress tolerance as well as identify
mutational targets for engineering new strains with increased
tolerance.

Discussion
A central challenge in analyzing CRISPR screens is deconvoluting
the effect of poorly active guides from guides that create genome
edits and elicit fitness effects. One approach to solving this
challenge is to interrogate each edit in an arrayed format. The
physical separation of different genetic perturbations throughout
the screen also makes this approach more easily combined with
-omics based profiling for further characterization of mutants.
However, this requires extensive laboratory automation to
achieve the throughputs that are accessible to pooled screens,
where one can test the effect of all library mutants in a single
culture. On the other hand, pooled screens lack distinct separa-
tion between mutants and thus rely on next generation sequen-
cing methods to quantify the effect of genetic perturbations on
cell fitness. Thus, resolving the effect of non performing guides
becomes ever more important in this context. acCRISPR
addresses this issue in pooled screens by optimizing the screen’s
ac-coefficient, a parameter that balances the trade-off between
guide activity and coverage to maximize the performance of the
library. In contrast to existing methods that infer sgRNA activity
by modeling multiple screening conditions, acCRISPR uses an

experimentally derived measure of guide activity obtained
from an additional treatment sample in which DNA repair by
NHEJ is disrupted. This additional data enabled acCRISPR to
outperform other approaches in determining an accurate set of
essential genes.

acCRISPR was developed and validated using CRISPR-Cas9
and -Cas12a screening data to define essential genes in the
oleaginous yeast Y. lipolytica. The other methods tested here,
JACKS, MAGeCK-MLE, and CRISPhieRmix, are most commonly
used to analyze the outcomes of mammalian cell CRISPR screens,
and were found to be incompatible with our Yarrowia data; only
a small percentage or all genes were identified as essential. This
incompatibility is likely because the overlap between the fitness
effect profiles of the non-targeting controls and the active sgRNA
population is greater in mammalian cells compared to Yarrowia
(Supplementary Fig. 8 and see refs. 18,36). CRISPhieRmix, which
uses the non-targeting population to form the null distribution,
greatly overestimates the number of essential genes in Yarrowia,
classifying nearly all genes as essential. The relative fitness effects
that targeting and non-targeting sgRNAs have may also be harder
to resolve in mammalian cells due to alternative splicing, poly-
ploidy, and redundant gene function. acCRISPR, on the other
hand, uses sgRNA targeting non-essential genes to construct the
null model, thereby making it more adaptive to the Yarrowia
dataset, and potentially more adaptable to other datasets.

While acCRISPR’s use of an experimentally derived CS dataset
is empowering, it also increases the technical difficulty of the
experiments and is not necessarily accessible in all organisms
(e.g., activity profiles across mammalian cell genomes and the
genomes of other species have not yet been defined). We also
recognize that alternate repair mechanisms could mask CRISPR
Cas9/12a cutting. For example, we have previously observed
error-prone microhomology mediated end-joining (MMEJ) DNA
repair in Yarrowia17. sgRNA that produce such cases will likely
result in negative CS and FS values, indicating that despite poor
guide activity, gene editing still occurred at a rate sufficient to
affect cell fitness. Analysis of the CS and FS values per guide
reveal that only 1.2% and 2.1% of guides from the Cas9 and
Cas12a libraries respectively fit this pattern (see Supplementary
Data 3). The primary feature of acCRISPR is to remove guides
with low CS, as such the majority of cases where an alternative

Fig. 5 acCRISPR analysis of salt tolerance screens. a Schematic of the CRISPR-Cas9 stress tolerance screens in Yarrowia. Analogous to fitness score (FS),
the tolerance score (TS) is used to define the effect of each guide on cell growth under a stress condition. TS is equal to the log2-fold change of sgRNA
abundance in the treatment to the control, where the control is a Cas9-expressing strain grown under standard culture conditions. b Outcomes of high salt
tolerance screens. Venn diagram (top) shows the overlap of gene hits identified in the salt (0.75M and 1.5M NaCl) screens. Selected hits are shown
(bottom), including the gene ID, the TS value from the 1.5M NaCl condition, and putative gene function.
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repair mechanism was active will likely be removed from the final
analysis.

The ability to use predicted sgRNA activities in place of
experimental activity scores may help address the limitation of
requiring an experimental dataset. acCRISPR analysis with
predicted activity resulted in high precision but modest sensi-
tivity, thereby capturing a small portion of the essential genes
but with high confidence (Fig. 4). While prediction methods
have proven effective at designing active CRISPR sgRNAs,
predictive power is still limited to the organism from which the
training data was generated8,16,37. As better guide design
algorithms are developed, we anticipate an improvement in
acCRISPR performance in resolving essential genes when using
predicted guide activities in place of experimentally derived CS
distributions.

acCRISPR analysis of the screens conducted here represents a
meaningful step toward understanding Yarrowia genetics. Thus
far, there have only been a few attempts at classifying essential
genes9,19. We use the CRISPR-Cas9 and -Cas12a screens con-
ducted here along with the outcomes of a transposon screen
conducted under similar conditions (see ref. 19) to define a
consensus set of essential genes for growth on glucose. This set
contains 1612 genes that were classified as essential in at least two
of the three independent screens, a subset of which were inde-
pendently validated (Fig. 3 and Supplementary Fig. 2). While a
considerable number of essential genes were called by 2 or 3 of
the different technologies, a number of genes were unique to each,
likely due to mechanistic differences between the mutagenesis
strategies. For example, transposon-based screens have sequence
biases for insertions and are known to miss shorter genes38,39; the
more restrictive PAM of Cas12a leads to lower genome-wide
coverage; Cas9 has been shown to have higher rates of off-target
effects, which could lead to false predictions; and specific to our
experiments, the Cas12a library contains more inactive and low
activity guides, thus reducing the number of genes targeted by
highly active sgRNAs. Defining a consensus set mitigates these
differences as well as other potential issues with functional
genomic screens (e.g., plasmid instability) and leads to calling a
high confidence set of essential genes—that is, those that were
called in more than one screen. GO term enrichment analysis
suggests that genes in the consensus set have functions expected
to be essential (e.g., genes related to transcription, translation, and
cell cycle among others; Supplementary Data 8), while those
unique to each method have no enriched functions (Supple-
mentary Data 12).

With respect to the high salt tolerance screens, acCRISPR
analysis also helps to advance our understanding of Yarrowia
genetics by identifying high confidence hits with significantly
decreased cell fitness, a subset of which were independently
validated. This information promises to guide future strain
engineering seeking to improve production host tolerance to
harsh environmental conditions.

acCRISPR is an end-to-end pipeline for the analysis of pooled
CRISPR screens. It takes a hybrid approach that combines
experimental and computational methods to determine the
activity of each guide in a pooled CRISPR screen and uses this
information to correct screening outcomes based on guide
activity. We use this pipeline to generate new knowledge on the
genetics of Y. lipolytica, including the identification of a con-
sensus set of essential genes for growth on glucose and calling loss
of fitness hits for growth under high salt conditions. While this
work focuses on analyzing screens conducted in Y. lipolytica, the
same experimental-computational workflow can be readily
applied to other organisms in which accurate computational
prediction or genome-wide functional screens can be used to
estimate sgRNA activities.

Methods
acCRISPR framework. acCRISPR performs essential gene identification by cal-
culating two scores for each sgRNA, namely the cutting score (CS) and the fitness
score (FS). CS and FS are the log2-fold change of sgRNA abundance in the
appropriate treatment sample with respect to that in the corresponding control
sample (see Supplementary Data 13 for replicate correlations of sgRNA abundance
in control and treatment samples for Cas9 and Cas12a screens). Let us call C1 and
T1 the control and treatment samples, respectively, for determining cutting scores.
The cutting score CSi of sgRNA i is defined as follows

CSi ¼ �log2
xT1 ;i

xC1 ;i

 !
ð1Þ

where xC1 ;i
and xT1 ;i

indicate the total normalized read counts of sgRNA i in
samples C1 and T1, respectively, averaged across all replicates in their respective
samples. A pseudocount of one is added to each raw count before normalization to
prevent division by zero.

Similarly, let us call C2 and T2 control and treatment samples, respectively, for
the estimation of the fitness score. The fitness score FSi of sgRNA i is defined as
follows

FSi ¼ log2
xT2 ;i

xC2 ;i

 !
ð2Þ

where xC2 ;i
and xT2 ;i

are average total normalized read counts in samples C2 and T2,
respectively, for sgRNA i. FSi represents the change in fitness when a gene targeted
by sgRNA i is knocked out.

Given a CS-threshold T, acCRISPR creates a CS-corrected library by removing
any sgRNA from the original library that has a cutting score less than T. However,
if no sgRNA for a given gene has a CS that exceeds T, the sgRNA with the highest
CS that targets that gene is kept in the CS-corrected library.

The fitness score FSg for a gene g is calculated as the average of fitness scores of
all sgRNA targeting gene g, as follows

FSg ¼
∑
iϵg

FSi

mg

ð3Þ

where mg represents the total number of sgRNA targeting gene g in the CS-
corrected library. FSg indicates the overall change in fitness in a particular screening
condition when gene g is knocked out. Since the knockout of an essential gene
reduces cell fitness, essential genes would have lower fitness scores compared to
non-essential genes.

acCRISPR identifies essential genes from a screening dataset by first creating a
null distribution and then computing a p-value. The null distribution is assumed to
be Gaussian with mean µ and standard deviation σ. This distribution represents the
population of fitness scores of non-essential genes. Previous studies on essential
gene identification in different yeasts have found ~20% of genes in the yeast
genome to be typically essential for growth19–21. In addition, studies in mammalian
cells have identified ~20% or fewer genes as essential for survival of various cell
lines of interest40–43. Thus we hypothesize that genes having FS values higher than
the 20th percentile in the screening dataset are putatively non-essential. The value
of µ is assumed to be equal to the median of all gene FS values and σ is computed as
follows:

(i) 1000 putatively non-essential genes are randomly sampled and sgRNA
targeting these genes are pooled together to form an ‘sgRNA pool.’

(ii) A set of N sgRNA are randomly sampled from this pool and assumed to
target a pseudogene, the FS of this pseudogene is calculated as the average
fitness score of the sampled sgRNA. This step is repeated to generate a total
of 1000 pseudogenes.

(iii) The standard deviation of the fitness scores of these 1000 pseudogenes is
computed.

(iv) Steps (i)-(iii) are repeated 50 times and σ of the null distribution is
calculated as the average of the 50 standard deviations (obtained in step
(iii)).

(v) In these calculations, the value of N is initialized to the average coverage of
the original library rounded off to the nearest integer. If the total number of
sgRNA to be sampled from the sgRNA pool (using this value of N) is more
than twice the pool size, N is reduced until this value drops below 2.

To identify essential genes, the resulting null distribution is used to perform a
one-tailed z-test of significance for every gene in the dataset to determine whether
its fitness score is significantly lower than µ. The raw p-values from the z-test are
adjusted for multiple comparisons by FDR-correction and genes having corrected
p-values less than a certain threshold (default: 0.05) are deemed as essential. Since
every CS-threshold would result in a different essential gene set, the final set of
essential genes is decided based on the value of a metric called the ‘ac-coefficient’,
which is defined as:

ac� coefficient ¼ CS� thresholdð Þ � ðavg:coverage of CS corrected libraryÞ ð4Þ
The CS-threshold at which the ac-coefficient is maximum is considered

optimum, and the set of essential genes obtained at this threshold is taken as the
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final essential gene set. In order to find the maximum ac-coefficient amongst values
at different CS-thresholds, only those thresholds should be considered at which the
average coverage of the library is >2, since a genome coverage of <2 would reduce
statistical power to accurately determine gene essentiality.

acCRISPR also has the ability to analyze CRISPR screening data to identify
genes that result in both positive or negative fitness effects. In this case, the fraction
of genes directly related to the phenotype is typically less than the number of
essential genes. Thus, we assume that 95% of genes in the screening dataset (i.e., FS
values between the 2.5th percentile and 97.5th percentile) are putatively non-
significant, and use them for calculating the null distribution parameters (µ and σ).
Further, acCRISPR uses a two-tailed test of significance to identify hits.

Implementation of acCRISPR with different input datasets. acCRISPR takes
raw sgRNA counts from genome-wide screens as input and processes them to
calculate CS and FS per sgRNA, as described in the previous section. However, if
CS and FS values have already been calculated previously or are readily available,
they can be directly provided as input by skipping log2-fold change calculation
from raw counts.

For the CRISPR-Cas9 and -Cas12a datasets, acCRISPR was first implemented
using raw sgRNA counts for all targeting sgRNA in the libraries. In subsequent
acCRISPR runs, CS and FS values from the first run were input to the method (i.e.,
log2-fold change calculation was skipped) along with a CS-threshold to identify
essential genes using a CS-corrected library. For essential gene identification, a one-
tailed test of significance was performed.

For implementing acCRISPR using guide activity scores from prediction
algorithms, the predicted activity of each guide was provided in place of an
experimentally derived CS value along with FS as input for each run. Guide activity
and CS thresholds used for analyzing datasets can be found in Supplementary
Table 1.

For the salt tolerance datasets, raw sgRNA counts from the control and
treatment samples were used to calculate TS for each sgRNA (in the same manner
as FS calculation) in the specific screening condition. These sgRNA TS values were
used as input to acCRISPR in conjunction with the already calculated CS values
from the essential gene analysis. Before implementing acCRISPR, sgRNA having
very low normalized abundance (<2.5% of the mean normalized abundance) in the
control sample for TS calculation were discarded from the library. Significant genes
from acCRISPR were then determined by performing a one-tailed test of
significance. In all cases, genes having FDR-corrected p-value < 0.05 were
considered as significant.

Implementation of other CRISPR screen analysis methods. For implementing
JACKS10 and CRISPhieRmix18, PO1f and PO1f Cas9/Cas12a strains of Y. lipolytica
were used as control and treatment samples respectively.

Raw sgRNA counts from these two strains were provided as input to JACKS
v0.2. To obtain p-values from JACKS, 500 genes classified as ‘non-essential’ by the
transposon analysis19 were randomly sampled and provided separately as negative
control genes for the CRISPR-Cas9 and -Cas12a datasets. The raw p-values
were FDR-adjusted and genes having a corrected p-value < 0.05 were deemed as
essential.

Raw sgRNA counts from untransformed library samples were used as control
(initial sgRNA abundance) and those from PO1f Cas9/Cas12a were used as
treatment for MAGeCK-VISPR v0.5.611. Since the data being analyzed came from
negative selection screens, two-tailed raw p-values from Wald test were converted
to one-tailed p-values, followed by FDR-correction. Genes having FDR-adjusted
p-value < 0.05 were considered as essential.

CRISPhieRmix v1.1 was implemented using R 4.0.2 (Rstudio 1.4.1106) by
providing log2-fold changes of all sgRNA as input. The log2-fold changes were
calculated in a manner similar to that of fitness scores. Log2-fold changes of non-
targeting sgRNA in the respective libraries were provided as negative controls. The
parameter screenType was set to ‘LOF’ since the sgRNA log2-fold changes were
obtained from negative selection screens. Genes having FDR-adjusted (1 –
genePosteriors) values <0.05 were deemed as essential.

Microbial strains and culturing. All strains used in this work are presented in
Supplementary Table 2. We describe the parent Yarrowia strain used for molecular
cloning, and the related culture conditions here.

Yarrowia lipolytica PO1f (MatA, leu2-270, ura3-302, xpr2-322, axp-2) is the
parent for all mutants used in this work. Cas9 and Cas12a expressing strains were
constructed by integrating UAS1B8-TEF(136)-Cas9-CYCt and UAS1B8-TEF(136)-
LbCpf1-CYCt expression cassettes into the A08 locus9,44. The PO1f Cas9 ku70 and
PO1f Cas12a ku70 strains were constructed by disrupting KU70 using CRISPR-
Cas9 as previously described17.

Yeast culturing was conducted at 30 °C in 14 mL polypropylene tubes or
250 mL baffled flasks as noted, at 225 RPM. Under non-selective conditions, Y.
lipolytica was grown in YPD (1% Bacto yeast extract, 2% Bacto peptone, 2%
glucose). Cells transformed with sgRNA-expressing plasmids were selected for in
synthetic defined media deficient in leucine (SD-leu; 0.67% Difco yeast nitrogen
base without amino acids, 0.069% CSM-leu (Sunrise Science, San Diego, CA), and
2% glucose). CRISPR screens for determining tolerance to high salinity were done

in SD-leu containing a final concentration of 0.75M and 1.5 M sodium chloride.
The desired salinity was achieved by the addition of an appropriate quantity of
autoclaved 5M sodium chloride stock solution.

All plasmid construction and propagation were conducted in Escherichia coli
TOP10. Cultures were conducted in Luria-Bertani (LB) broth with 100 mg L−1

ampicillin at 37 °C in 14 mL polypropylene tubes, at 225 RPM. Plasmids were
isolated from E. coli cultures using the Zymo Research Plasmid Miniprep Kit.

Plasmid construction. All plasmids and primers used in this work are listed in
Supplementary Tables 3 and 4. The plasmids used to construct Cas9 and Cas12a
expressing strains of Y. lipolytica PO1f and the sgRNA expression plasmids were
previously reported (see refs. 9,16). We describe the construction of these plasmids
again here to provide a complete accounting of this work.

For CAS9 integration, we constructed the vector pHR_A08_Cas9, which
integrates a UAS1B8-Cas9 expression cassette into the A08 locus of Y. lipolytica
PO1f. First, pHR_A08_hrGFP (Addgene #84615) was digested with BssHII and
NheI, and CAS9 was inserted via Gibson Assembly after PCR via Cr_1250 and
Cr_1254 from pCRISPRyl (Addgene #70007). Integration was accomplished as
previously described using a two plasmid CRISPR-mediated markerless
approach44. The creation of the Cas9 genome-wide library expression plasmid was
facilitated by removing the Cas9-containing fragment from pCRISPRyl using
restriction enzymes BamHI and HindIII, and circularizing. The M13 forward
primer was used to ensure correct assembly of the construct.

LbCAS12a integration was accomplished in a similar manner. We first
constructed pHR_A08_LbCas12a by digesting pHR_A08_hrGFP (Addgene
#84615) with BssHII and NheI, and the LbCAS12a fragment was inserted using the
New England BioLabs (NEB) NEBuilder® HiFi DNA Assembly Master Mix. The
LbCAS12a gene fragment was amplified along with the necessary overlaps by PCR
using Cpf1-Int-F and Cpf1-Int-R primers from pLbCas12ayl. Successful cloning of
the LbCas12a fragment was confirmed with sequencing primers A08-Seq-F, A08-
Seq-R, Tef-Seq-F, Lb1-R, Lb2-F, Lb3-F, Lb4-F, and Lb5-F. To create the Cas12a
sgRNA genome-wide library expression plasmid (pLbCas12ayl-GW) the UAS1B8-
TEF- LbCas12a-CYC1 fragment was removed from pLbCas12ayl with the use of
XmaI and HindIII restriction enzymes. Subsequently, the primers BRIDGE-F and
BRIDGE-R were used to circularize the vector, and the M13 forward primer was
used to ensure correct assembly of the construct.

The gRNAs library vector was constructed using pCas9yl-GW (SCR1’-tRNA-
AvrII site) as the backbone. The library was generated by digesting pCRISPRyl with
BamHI and HindIII and circularizing to remove the Cas9 gene and its promoter
and terminator using (NEBuilder® HiFi DNA Assembly). The methods used to
create the guide library are provided below in the sgRNA library cloning
subsection.

The LbCas12a sgRNA expression plasmid (pLbCas12ayl) was similarly
constructed, but a second direct repeat sequence at the 5’ of the polyT terminator
in pCpf1_yl (see ref. 16) was added. This was done to ensure that library sgRNAs
could end in one or more thymine residues without being construed as part of the
terminator. To make this mutation, pCpf1_yl was first linearized by digestion with
SpeI. Subsequently, primers ExtraDR-F and ExtraDR-R were annealed and this
double-stranded fragment was used to circularize the vector (NEBuilder® HiFi
DNA Assembly).

sgRNA library design. sgRNA library design for the Cas9 and Cas12a CRISPR
systems was accomplished as previously described in refs. 9,16. The critical elements
of the design are described again here.

Using the annotated genome of PO1f’s parent strain (CLIB89; [https://www.
ncbi.nlm.nih.gov/assembly/GCA_001761485.1]45) as a reference, custom
MATLAB scripts were used to design up to 8 unique Cas12a sgRNAs per gene.
First, a list of all sgRNAs (25 nucleotides in length) with a TTTV (V=A/G/C)
PAM were identified in both the top and bottom strand of each CDS (List A). A
second list containing all possible 25nt sgRNAs with a TTTN (N= any nucleotide)
PAM from the top and bottom strands of all 6 chromosomes in Y. lipolytica was
also generated and used as a reference set to test for sgRNA uniqueness (List B).
The uniqueness test was carried out by comparing the first 14nt of each sgRNA
(seed sequence) in List A to the first 14nt of every sgRNA in List B. Any sequence
that occurred more than once was deemed as not-unique and was removed from
List A. sgRNAs that passed the uniqueness test were then picked in an unbiased
manner, with even representation from the top and bottom strands when possible,
starting from the 5’ end of the CDS. When possible eight unique sgRNAs were
selected for each gene. In cases where eight unique guides were not available, all
unique guides were selected. In addition to the gene targeting guides, 651 non-
targeting control guides were also designed. Random 25nt sequences were
generated and each sequence was queried against the PO1f genome. Only sgRNA
sequences in which the first 10nt were not found anywhere in the genome were
selected and used as part of the control set.

The Cas9 sgRNA library was similarly designed, with the following differences.
Working with the annotated CLIB89 genome, custom MATLAB scripts were used
to identify unique sgRNAs (NGG PAM+ 12 bp closest to the PAM) located within
the first 300 bp of the gene. Subsequently, the top 6 sgRNAs from this filtered list
were ranked based on their on-target activity score (Designer v125) and the top 6
guides were selected. 480 sgRNAs with random sequence were also added to the
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library as non-targeting controls. These guides were confirmed not to target
anywhere within the genome by ensuring that the first 12 nt of the sgRNA did not
map to any genomic locus9.

sgRNA library cloning. The Cas12a library targeting the protein-coding genes in
PO1f was ordered as an oligonucleotide pool from Agilent Technologies Inc. and
cloned in-house using the Agilent SureVector CRISPR Library Cloning Kit (Part
Number G7556A) as previously described in ref. 16.

First, the backbone pLbCas12ayl-GW was linearized and amplified by PCR
using the primers InversePCR-F and InversePCR-R. To verify the completely
linearized vector, we DpnI digested amplicon, purified the product with Beckman
AMPure XP SPRI beads, and transformed it into E. coli TOP10 cells. A lack of
colonies indicated a lack of contamination from the intact backbone.

Library ssDNA oligos were then amplified by PCR using the primers OLS-F and
OLS-R for 15 cycles as per vendor instructions using Q5 high fidelity polymerase.
The amplicons were cleaned using the AMPure XP beads prior to use in the
following step. sgRNA library cloning was conducted in four replicate tubes using
Agilent’s SureVector CRISPR library cloning kit (Catalog #G7556A). The
completed reactions were pooled and subjected to another round of cleaning.

Two amplification bottles containing 1 L of LB media and 3 g of high-grade
low-gelling agarose were prepared, autoclaved, and cooled to 37 °C (Agilent,
Catalog #5190-9527). Eighteen replicate transformations of the cloned library were
conducted using Agilent’s ElectroTen-Blue cells (Catalog #200159) via
electroporation (0.2 cm cuvette, 2.5 kV, 1 pulse). Cells were recovered and with a
1 h outgrowth in SOC media at 37 °C (2% tryptone, 0.5% yeast extract, 10 mM
NaCl, 2.5 mM KCl, 10 mM MgCl2, 10 mM MgSO4, and 20 mM glucose.) The
transformed E. coli cells were then inoculated into two amplification bottles and
grown for two days until colonies were visible in the matrix. Colonies were
recovered by centrifugation and subject to a second amplification step by
inoculating an 800 mL LB culture. After 4 h, the cells were collected, and the pooled
plasmid library was isolated using the ZymoPURE II Plasmid Gigaprep Kit
(Catalog #D4202) yielding ~2.4 mg of plasmid DNA encoding the Cas12a sgRNA
library. The library was subject to a NextSeq run to test for fold coverage of
individual sgRNA and skew.

The Cas9 library was constructed by the US Department of Energy’s Joint
Genome Institute as a deliverable of Community Science Project (CSP) 503076.
Experimental details as previously described in ref. 9 are included here for
completeness. The pooled sgRNA library targeting the protein-coding genes of
PO1f was ordered as four oligo pools each consisting of 25% of the designed
sgRNAs from Twist Bioscience and cloned. The separation into different sub-
libraries was done to test different methods of assembly; the details of each
approach are briefly described here.

For sub-libraries 1 and 3, second-strand synthesis reactions were conducted
using the primer sgRNA-Rev2 and T4 DNA polymerase (NEB), gel extracted, and
purified using Zymo Research Zymo-Spin 1 columns. For sub-libraries 2 and 4,
oligos were amplified with primers via Q5 DNA polymerase (NEB) using 0.2
picomoles of DNA as a template for 7 cycles, and column purified. Library 2 had
overlaps of 20 bp on either side of the spacer and was amplified with 60mer_pool-F
and spacer-AarI.rev. Library 4 had overlaps of ~60 bp on either side of the spacer
and was amplified with primers pLeu-mock-sgRNA.fwd and sgRNA-Rev2.
Libraries 1, 3, and 4 were cloned into the AarI digested pCas9yl-GW vector using
the Gibson Assembly HiFi HC 1-step Master Mix (SGI-DNA). Library 2 was
digested with AarI and cloned into pCas9yl-GW digested with AarI using Golden
Gate assembly with T4 DNA ligase (NEB).

The cloning method for library 4 resulted in the least number of spacers missing
in the propagated library. Cloned DNA was transformed into NEB 10-beta E. coli
and plated. Sufficient electroporations were performed for each library to yield
a > 10-fold excess in colonies for the number of library variants. The plasmid
library was isolated from the transformed cells after a short outgrowth.

Yeast transformation and screening. Transformation of the Cas9 and Cas12a
sgRNA plasmid libraries into Y. lipolytica was done using a method previously
described in refs. 9,16. For Cas12a experiments, 3 mL of YPD was inoculated with a
single colony of the strain of interest and grown in a 14 mL tube at 30 °C with
shaking at 200 RPM for 22–24 h (final OD ~ 30). Cells were pelleted by cen-
trifugation (6300 × g), washed with 1.2 mL of transformation buffer (0.1 M LiAc,
10 mM Tris (pH= 8.0), 1 mM EDTA), pelleted again by centrifugation, and
resuspended in 1.2 mL of transformation buffer. To these resuspended cells, 36 µL
of ssDNA mix (8 mg/mL Salmon Sperm DNA, 10 mM Tris (pH= 8.0), 1 mM
EDTA), 180 µL of β-mercaptoethanol mix (5% β-mercaptoethanol, 95% triacetin),
and 8 µg of plasmid library DNA were added, mixed via pipetting, and incubated
for 30 mins. at room temperature. After incubation, 1800 µL of PEG mix (70% w/v
PEG (3350MW)) was added and mixed via pipetting, and the mixture was incu-
bated at room temperature for an additional 30 min. Cells were then heat shocked
for 25 min at 37 °C, washed with 25 mL of sterile Milli-Q H2O, and used to
inoculate 50 mL of SD-leu media. Dilutions of the transformation (0.01% and
0.001%) were plated on solid SD-leu media to calculate transformation efficiency.
Three biological replicates of each transformation were performed for each con-
dition. Transformation efficiency for each replicate from the Cas9 and Cas12a
experiments is presented in Supplementary Table 5.

Transformation for the Cas9 library was done in a very similar manner. Briefly,
half the amount of cells, DNA, and other chemical reagents described above were
used for a single transformation and multiple transformations were done and
pooled as necessary to ensure adequate diversity to maintain library representation
and minimize the effect of plasmid instability (100x coverage, 5 × 106 total
transformants per biological replicate).

Screening experiments were conducted in 25 mL of liquid media in a 250 mL
baffled flask (220 RPM shaking, 30 °C). Cells first reached confluency after two
days of growth (OD600 ~ 12), at which time 200 µL, which includes a sufficient
number of cells for ~500-fold library coverage, was used to inoculate 25 mL of
fresh media. The cells were again subcultured upon reaching confluency after
four days of culture, and the experiment was stopped after reaching confluency
again on day six of the screen. Glycerol stocks of day 2 cultures were also
prepared and used to start other growth screens as discussed in a following
subsection.

On days two, four, and six, 1 mL of culture was removed to isolate sgRNA
expression plasmids for deep sequencing. Each sample was first treated with DNase
I (New England Biolabs; 2 µL and 25 µL of DNaseI buffer) for 1 h at 30 °C to
remove any extracellular plasmid DNA. Cells were then isolated by centrifugation
at 4500 × g, and the resulting cell pellets were stored at −80 °C prior to sequencing.

Y. lipolytica salt tolerance screens. CRISPR-Cas9 growth screens with high
salinity were conducted in synthetic defined media deficient in leucine. Media were
prepared with two different salt concentrations as defined in the microbial strains
and culturing subsection. 150 μL (~1 × 107 cells) of Day 2 glycerol stocks of PO1f
Cas9 strain transformed with the sgRNA library were used to inoculate 250 mL
baffled flasks containing 25 mL of three different media: SD-leu, SD-leu (0.75 M
NaCl), and SD-leu (1.5 M NaCl). Three biological replicates were cultured for each
different media condition. Outgrowth following inoculation was done at 30 °C at
225 RPM. Cells were grown for two days, and fresh media was inoculated with at
least 1 × 107 cells and grown for another two days. The experiment was halted after
4 days of outgrowth following inoculation. On the last day, 1 mL of culture was
removed, treated with DNase I, pelleted, and processed to extract plasmids as
described above. Extracted plasmids were quantified by qPCR, and amplified with
forward (Cr1665-Cr1668) and reverse primers (Cr1669-Cr1671, Cr1673, and
Cr1709) containing the necessary barcodes and adapters for NGS using NextSeq.
Growth of the PO1f Cas9 strain in SD-leu was used as a control in the salt tolerance
screens to select for genetic perturbations that conferred a growth disadvantage
only under the stressed condition.

Library isolation and sequencing. Frozen culture samples from pooled CRISPR
screens were thawed and resuspended in 400 µL sterile, Milli-Q H2O. Each cell
suspension was split into two, 200 µL samples. Plasmids were isolated from each
sample using a Zymo Yeast Plasmid Miniprep Kit (Zymo Research). Splitting into
separate samples here was done to accommodate the capacity of the Yeast Mini-
prep Kit, specifically to ensure complete lysis of cells using Zymolyase and lysis
buffer. This step is critical in ensuring sufficient plasmid recovery and library
coverage for downstream sequencing. The split samples from a single pellet were
pooled, and the plasmid copy number was quantified using quantitative PCR with
qPCR-GW-F and qPCR-GW-R and SsoAdvanced Universal SYBR Green Super-
mix (Biorad). Each pooled sample was confirmed to contain at least 107 plasmids
so that sufficient coverage of the sgRNA library is ensured.

To prepare samples from the Cas12a screen for next-generation sequencing,
isolated plasmids were subjected to PCR using forward (ILU1-F, ILU2-F, ILU3-F,
ILU4-F) and reverse primers (ILU(1–12)-R) containing all necessary barcodes
and adapters for next-generation sequencing using the Illumina platform
(Supplementary Table 6). Schematics of the amplicons from the Cas9 and Cas12a
screens submitted for NGS are depicted in Supplementary Fig. 9. At least 0.2 ng of
plasmids (~3 × 107 plasmid molecules) were used as template for PCR and
amplified for 16 cycles and not allowed to proceed to completion to avoid
amplification bias. PCR product was purified using SPRI beads and tested on the
bioanalyzer to ensure the correct length.

Samples from the Cas9 screens were prepared as previously described in ref. 9

Briefly, isolated plasmids were amplified using forward (Cr1665-Cr1668) and
reverse primers (Cr1669-Cr1673; Cr1709-1711) containing the necessary barcodes,
pseudo-barcodes, and adapters (Supplementary Table 7). Approximately 1 × 107

plasmids were used as a template and amplified for 22 cycles, not allowing the
reaction to proceed to completion. Amplicons at 250 bp were then gel extracted
and tested on the bioanalyzer to ensure correct length. Samples were pooled in
equimolar amounts and submitted for sequencing on a NextSeq 500 at the UCR
IIGB core facility.

Generating sgRNA read counts from raw reads. Next-generation sequencing
raw fastq files were processed using the Galaxy platform46. Read quality was
assessed using FastQC v0.11.8., demultiplexed using Cutadapt v1.16.6, and
truncated to only contain the sgRNA using Trimmomatic v0.38. Custom
MATLAB scripts were written to determine counts for each sgRNA in the library
using Bowtie alignment (Bowtie2 v2..4.2; inexact matching) and naïve exact
matching (NEM). The final count for each sgRNA was taken as the maximum of
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the two methods. A large majority of data points were derived from inexact
matching with Bowtie, in only a few cases where Bowtie failed to give proper
alignment, was the exact matching value used. Parameters used for each of the
tools used on Galaxy for Cas12a and Cas9 screens are provided in Supple-
mentary Tables 8 and 9 respectively. MATLAB scripts are provided as part of the
GitHub link found below in the “Code availability” section. Supplementary
Data 14 provides further information correlating the NCBI SRA file names to the
information needed for demultiplexing the readsets. Analysis of raw Cas9 and
Cas12a libraries revealed 721 and 12 sgRNA, respectively, that were found to be
either missing or having very low normalized abundance (<5% of the normalized
mean abundance of the library) and were discarded from further analysis (see
Supplementary Data 15 for raw sgRNA counts of the untransformed Cas9 and
Cas12a libraries).

Gene ontology enrichment analysis. GO annotations for the CLIB89 reference
genome of Y. lipolytica47 were obtained from MycoCosm (mycocosm.jgi.doe.gov).
GO analysis for the essential gene sets was performed using the Galaxy platform46.
First, GO-slim annotations for CLIB89 were obtained using GOSlimmer v1.0.1.
Next, the GO annotation and GO-slim annotation files were used to perform GO
enrichment and GO-slim enrichment analyses respectively, using GOEnrichment
v2.0.1. For this analysis, the list of essential genes from a particular dataset was
provided as the study set, and the list of all genes covered by the corresponding
library was provided as the population set. GO terms/GO-slim terms having FDR-
corrected p-value < 0.05 from the hypergeometric test were considered to be over-
represented.

Finding essential gene homologs in S. cerevisiae and S. pombe. Sequences of
essential genes in the Y. lipolytica consensus set from the CLIB89 strain were
aligned to genes in S. cerevisiae and S. pombe using BLASTP. S. cerevisiae essential
genes (phenotype:inviable) were retrieved from the Saccharomyces Genome
Database (SGD), and S. pombe essential genes were taken from Kim et al.21. Pairs
of query and subject sequences having >40% identity from BLASTP were deemed
as homologs.

Experimental validation of essential genes and salt tolerance genes. Selected
hits from the essential gene and salt tolerance screens were validated by performing
single gene knockouts using CRISPR-Cas9 genome editing and measuring the
growth of these knockouts. Gene knockouts were made by using high-activity
sgRNAs (i.e., sgRNA with cutting scores >5.0; see Supplementary Table 10 for a
complete list). For construction of sgRNA expression vector, pCas9yl-GW was
digested with AvrII, similar to the construction of sgRNA library plasmids. Primers
for sgRNA cloning were obtained from Integrated DNA Technology (IDT). Each
primer contained 20 bp of homology flanking either side of a 20 bp target sequence.
A mixture of two primers was placed in a thermocycler to anneal the oligos
together and create double stranded DNA. Next, the annealed oligonucleotide was
inserted by HiFi DNA Assembly (New England BioLabs, NEB) into a linearized
pCas9yl-GW vector. Successful cloning of the sgRNA fragment was confirmed by
Sanger sequencing.

Cells containing integrated Cas9 were grown in YPD before being subjected to
transformation of plasmid containing an sgRNA. All transformants were then
inoculated in 17 × 100 mm round-bottomed polystyrene tubes containing 3 mL of
SD-Leu media and allowed to grow for 16 h at 30 °C and 200 rpm shaking. Cells
were then subcultured in 2 mL of fresh media with a starting OD600 of 0.025. After
2 days of growth, cell density was determined by measuring OD600 using a
Nanodrop 2000c (Fisher Scientific) and a 1 cm pathlength cuvette. In the case of
essential genes, a culture containing cells with an empty vector was used as a
positive control, while the wildtype strain containing no plasmid was used as a
negative control. Two biological replicates were performed for each sample.

Validation of salt tolerance genes was performed using high salinity media (SD-
Leu containing 1.5 M NaCl). Cas9 expressing cells were transformed with plasmid
containing sgRNA and transformants were grown in SD-Leu for 16 h. This was
followed by inoculation in 2 mL of high salinity media to an initial OD600 of 0.025.
Inoculation in SD-Leu devoid of salt was used as a reference condition. After 4 days
of growth in the presence and absence of salt stress, cell density was determined by
measuring the OD600. Sample containing cells with an empty plasmid was used as a
positive control. Two biological replicates were performed for each sample.

Implementation of sgRNA activity prediction tools. DeepGuide predicted CS
values for CRISPR-Cas9 and -Cas12a datasets were obtained using DeepGuide
v1.0.016. sgRNA activity prediction scores from Designer v125, Designer v226,
CRISPRspec29, CRISPRscan28, SSC27, and uCRISPR24 were obtained using
CHOPCHOP v348. Similarly, DeepCpf1 scores were obtained using DeepCpf130.

Calculation of sensitivity and precision. Sensitivity measures the fraction of the
consensus set of essential genes that is covered by predicted essential genes from a

given method and is computed as:

% Sensitivity ¼ No:of predicted essential genes overlapping with theconsensus set
Size of the consensus set

� �
� 100

ð5Þ
Precision measures the fraction of predicted essential genes from a given

method that overlap with the consensus set and is calculated as:

% Precision ¼ No:of predicted essential genes overlapping with the consensus set
Total no: of predicted essential genes

� �
� 100

ð6Þ

Statistics and reproducibility. All statistical analyses performed in this study are
described in the relevant Methods subsections.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sgRNA sequencing data for all CRISPR-Cas9 and -Cas12a screens generated for this
study have been deposited in the NCBI SRA database under accession code
PRJNA857832. Source data for main figures in the study not included in Supplementary
Data 1-15 is provided in Supplementary Data 16. Any remaining information can be
obtained from the corresponding author upon reasonable request.

Code availability
Source code for acCRISPR can be found at https://github.com/ianwheeldon/acCRISPR.
This GitHub page includes system requirements, instructions for installation, and usage
examples. Custom Matlab scripts that were used for the design of the Cas12a CRISPR
library and processing of Illumina reads to generate sgRNA abundance for both Cas9 and
Cas12a screens can also be found at the same link. A permanent repository of the
software has been created and archived to Zenodo (https://doi.org/10.5281/zenodo.
784762349).
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