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Abstract of the Dissertation

Identification of arbitrarily shaped scatterers

embedded in elastic heterogenous media using

dynamic XFEM

by

Jaedal Jung

Doctor of Philosophy in Mechanical and Aerospace Engineering

University of California, Los Angeles, 2014

Professor Ertugrul Taciroglu, Co-chair

Professor Christopher S. Lynch, Co-chair

Numerical approaches for localization and shape quantification of multiple

arbitrarily-shaped scatterers (cracks, voids, and inclusions) embedded in het-

erogenous linear elastic media are described. A dynamic extended finite element

method (XFEM) equipped with scatterer-boundary parameterizations using cubic

splines is used to solve the forward (wave propagation) problem. The said com-

bination enables the modeling of scatterer boundaries with complex geometries

over a stationary background mesh. The inverse problem is cast as an optimiza-

tion problem whereby an appropriate measure of the discrepancies between wave

responses obtained from forward simulations and those that are measured from

the actual specimen is minimized. A gradient-based minimization that is steered

with a divide-alternate-and-conquer strategy serves as the inverse problem solver.

The divide-and-conquer approach enables isolating the global minimizer among

potentially multiple solutions, and the alternate-and-conquer approach enhances

the former strategy to tackle multiple scatterers. The approaches developed herein

are verified using using numerical experiments (i.e., synthetic data sets) involving

different types of scatterers. Effects of measurement noise are also investigated.
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CHAPTER 1

Introduction

1.1 An overview of vibration-based damage identification

techniques

Identification of damage in structures and structural components is a vast subject

comprising many threads of inquiry. A large branch is devoted to vibration-based

damage identification techniques using acceleration data in the low-frequency

range, typically less than 100 Hz. These efforts include identifying structures’ or

structural components’ modal characteristics through measurements made with

acceleration/velocity transducers—placed strategically within the structure—

during ambient vibration surveys or forced vibration testing with linear of eccen-

tric shakers (see, for example, Yu et al., 2007). These data are then analyzed to

identify and quantify damage within the specimen. This area is generally referred

to as “condition monitoring” when applied to mechanical systems (e.g., an engine

block) or “structural health-monitoring” when applied to civil structures (e.g., a

multi-story building). Developments in this area have been well summarized in

various surveys such as that by Doebling et al. (1998).

The present research focuses in a different, yet in many ways, closely related

application area, which is typically collectively referred to as nondestructive test-

ing (NDT). Again, the literature on NDT is vast—essentially going back to the

works of Sokolov (1935), and Firestone (1950)1. Today, NDT data collection and

1See, the book by Graff (1982) Graff (1982) for a detailed survey of the history of ultrasonic
testing and evaluation.
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interpretation techniques are diverse, and application areas range from mechanical

engineering to medicine (Shull, 2002).

The scope of present research is limited to the inspection of defects (e.g.,

akareflectors, scatterers, discontinuities) using waves that are excited in the acous-

tic/ultrasonic range of frequencies (i.e., 500 kHz to 25 MHz). In a broad sense,

damage-identification methods can be classified into four levels. Quoting Doebling

et al. (1998), these levels are:

• “Level 1: Determination that damage is present in the structure,

• Level 2: L1 plus determination of the location of the damage,

• Level 3: L2 plus quantification of the severity of the damage,

• Level 4: L3 plus prediction of the remaining service life of the structure.”

Even to the present day, vibration-based methods primarily provide only Level

1 and Level 2 damage identification. When a structural model is employed to inter-

pret the measurements, it is sometimes possible to attain a Level 3 identification.

Level 4 is essentially the utilization of the quantified damage information, and

this area typically combines Level 3 data into predictive formulas derived from

fracture/damage/fatigue mechanics, durability, etc.

Level 1 damage identification consists primarily of calculating frequency shifts

from a known type of damage. This approach is showcased in the study by

Juneja et al., 1997 who developed a “contrast maximization” technique in which

they match the response of the damaged structure to a database of structural

responses. The inverse problem, which is typically Level 2 or Level 3 damage

identification, consists of calculating the damage parameters—i.e., crack length

and location—from data. Lifshitz and Rotem’s (1969) work is among the first

in which such solutions were pursued. A similar study—wherein a model of the

2



structure was utilized in the damage detection problem—was carried out by Lynn

and Kumbasar (1967) who analyzed free vibration behavior of cracked rectangular

plates using a Green’s function. In later studies, the vibration characteristics of

rectangular plates with cracks was investigated using Fourier series by Hirano

and Okazaki (1980); and Bayissa and Haritos (2007) proposed a new damage

identification technique based on the statistical moments of the energy density

function of the vibration responses in the time-scale domain. Some of the recent

work focused on the use of wavelet analysis for damage identification (see, for

example, Rizzo and di Scalea, 2005; Rucka and Wilde, 2006; Bayissa et al., 2008;

Bagheri et al., 2009).

In conventional ultrasound methods (Krautkrämer and Krautkrämer, 1990),

the excitation is typically provided in the form of a band-limited pulse with center

frequencies ranging from 100 kHz - 15 MHz using an ultrasonic transducer. The

basic ultrasonic approaches to the damage identification problem are the, so-

called, “pulse-echo” or “pitch-catch” techniques. In the former, the transducer

(actuator) also acts as the receiver (sensor); while in the latter, transducer and

the receiver are not collocated. In either case, the generated waves are reflected by

the scatterer; and the arrival times and amplitudes of the received waves are used

for a Level 2 diagnostic. The advantages of these approaches include their ability

to detect even very small flaws that are located deeply in the tested specimen.

The basic disadvantage is the need to be close to the defect and the limited level

of information that may be gleaned from the data.

1.2 Motivation and background

Identification and quantification of hidden scatterers (e.g., damage or defects such

as cracks, voids, and inclusions) in an incipient stage before a fracture occurs in

structures is an integral part in predictive maintenance as well as structural health

3



monitoring (SHM) (Doebling et al., 1998; Hellier, 2003). Ultrasonic inspection—

one of the well-established nondestructive evaluation (NDE) methods for assessing

the current state of a structural system—has been widely applied in various areas

such as SHM (Hellier, 2003), medical imaging (Fatemi and Greenleaf, 1999; Ur-

ban et al., 2011) and geophysical prospecting (Jia et al., 2002; Wijk, 2003). In a

typical ultrasonic inspection, a single actuator and multiple sensors are positioned

along the boundary of the host medium. Mechanical waves produced by the ac-

tuators travel through the medium and are reflected/refracted when encountering

internal scatterers. From the wave signals returning back to each sensor, their

locations and sizes are identified. Such an approach utilizing ultrasonic waves,

however, has difficulties in the precise reconstruction of multiple scatterers within

a heterogeneous medium (Rose, 1989). This is primarily due to the interfer-

ence/superposition of multiply scattered waves from the scatterers (Wijk, 2003)

and the wave reflections from the internal interfaces between two media with dif-

ferent types of property (Zou et al., 2000). For accurate estimation of buried

scatterers, more sophisticated and systematic identification approaches based on

the finite element method (FEM) and the boundary element method (BEM) have

recently been proposed for different application areas (see, for example, Bonnet

and Guzina, 2009; Brigham et al., 2007; Kallivokas et al., 2013; Yuan and Guzina,

2012).

In general, parameter identification (here, inverse-scattering) problems can be

cast as minimization problems, wherein an objective (aka cost or error) func-

tional that quantifies the discrepancy between predictions of measurements form

a forward simulation run with a parametric model, and the measurements—e.g.,

displacements obtained via ultrasonic testing—themselves (Liu and Han, 2003).

The said identification process (here, seeking first the location, and subsequently,

the optimal shape parameters of the scatterers) requires two main ingredients:

(i) an accurate forward modeling method; and (ii) a robust optimization algo-
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rithm. The forward modeling predictions of measurements can be obtained for

a given set of iteratively estimated scatterer (aka updating) parameters. In the

inversion process, these parameters—describing the shape, size, and location of

each scatterer—are updated using a proper optimization method that steers them

towards the minimizer(s) of the objective functional.

A classical challenge in shape optimization and identification methods is the

need to employ an adequately general method for forward simulations—so that, for

example, arbitrary loading and boundary conditions, material heterogeneities, and

different sensor-actutor deployment schemes can be handled. As such, the classical

finite element method, at first, appears to be suitable choice for generating forward

simulations. However, iterative refinement of the location and the shape of the

scatterer(s) pose a significant challenge, in that the classical FEM would require re-

meshing of the entire domain for every iteration. This issue is not only a challenge

because of potentially intractable computational costs, but also because of lack

of robust and adequately general automatic re-meshing methods for arbitrary

domain geometries and topologies, as well as element types (Edelsbrunner, 2001).

In this thesis, this critical issue will be circumvented through the adoption of the

so-called eXtended Finite Element Method (XFEM), which obviates re-meshing

during the minimization procedure.

Since its inception by Belytschko and Black in 1999, XFEM has been continu-

ously improved, and utilized in a variety of applications, including the modeling of

crack propagation (Richardson et al., 2011), material interfaces and dislocations

(Belytschko and Gracie, 2007), multi-phase and free-surface flows (Sauerland and

Fries, 2013), bone fracture (Feericka et al., 2013), and biofilms (Smith et al., 2007)

to name a few. As stated above, XFEM is very well-suited for shape identifica-

tion and optimization problems because (i) re-meshing procedures are not required

to render the background mesh to conform perfectly to the arbitrarily evolving

boundary of a scatterer during an iterative identification procedure (Benowitz
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and Waisman, 2013; Jung and Taciroglu, 2014); and (ii) the host medium can be

arbitrarily heterogenous and anisotropic (Sukumar et al., 2001).

A key issue a in any generic inverse problem is to filter out multiple er-

roneous solutions (local minima), which inherently originate due to temporal

and spatial sparseness of the measurements. A remarkably fruitful avenue in

that regard has been the use of Genetic Algorithms (GAs) (Goldberg, 1989)

and other nature-inspired techniques such as the Artificial Bee Colony (ABC)

algorithm (Karaboga, 2005). This is because such heuristic algorithms facili-

tate an almost exhaustive search2; and they can be applied to complex (nonlin-

ear, multi-dimensional) optimization problems—including inverse scattering (Fan

et al., 2002)—with ease.

In recent years, and pertinent to the present study, Rabinovich et al. (2007)

proposed a combined XFEM-GA approach for single or multiple scatterers with

regular geometry (i.e., a straight line crack, a circle, or an ellipse). The same

approach of combining XFEM with heuristic minimization algorithms continued

to the present day with various algorithmic advances and some experimental val-

idation (Chatzi et al., 2011; Rabinovich et al., 2009; Sun et al., 2013; Waisman

et al., 2010).

While successful, the aforementioned XFEM-GA algorithms entail a large

number of forward solves in order to converge on the optimum values; and the

computational cost exponentially increases with the number of updating param-

eters. Moreover, existing literature either has only dealt with simple inclusions

shapes, or elasto-static data. An alternative approach based a combination of

a classical gradient-based minimization method and elasto-dynamic XFEM had

been pursued by Jung and Taciroglu, since the inception of this present disserta-

tion in early 2010 (Jung, 2011)3.

2Heuristic algorithms such as GAs and ABC algorithms are computationally costly, but they
typically yield all of the minimizers.

3This research has culminated in several archival publications to date—namely, Jung et al.
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The outline and notable features of the proposed approach can be summarized

as follows:

• Forward wave propagation problem is solved using a dynamic XFEM frame-

work wherein the geometry and location of arbitrarily shaped scatterers

(e.g., cracks, voids, or inclusions) are represented with cubic splines, which

is unique to the present study. The forward solver can accommodate any in-

strumentation plan, excitation type (single/multiple, broadband/harmonic,

etc.), specimen geometry, and material heterogeneities and anisotropy.

• The inverse problem is solved using a gradient-based minimization method

that is enhanced with a divide-alternate-and-conquer algorithm that can be

used to localize multiple scatterers and to identify their shapes. The said

algorithms are also unique to the present study, and provide robustness with

regard to local minimizers.

• Parameters that define the cubic splines serve as the updating parameters,

which are adaptively increased to reduce the computational cost and to

improve the overall robustness of the proposed approach.

• While it will not be specifically pursued here, the proposed approach is

highly amenable to parallel programming.

1.3 Organization of this thesis document

The remainder of this thesis is organized as follows: Chapter 2 presents the dy-

namic XFEM formulation for a crack, a void, and an inclusion, as well as the

cubic spline modeling for arbitrary geometries. These ingredients collectively

serve as the forward solver for the shape localization and identification problem.

Chapter 3 provides the description of the gradient-based optimization method,

(2013) and Jung and Taciroglu (2014)—which form a part of this dissertation.
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and the robust search algorithms that are used in combination with it—viz., a

divide-alternate-and-conquer strategy—to identify multiple scatterers. Chapter 4

presents several numerical experiments that are carried out to verify the proposed

methodology and to assess its performance. Concluding remarks are presented in

Chapter 5.
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CHAPTER 2

Dynamic XFEM Endowed with Spline-Based

Interfaces for Solving the Forward Problem

2.1 The governing equations for wave propagation in the

time domain

We consider an inverse scattering problem in which a linear elastic heterogeneous

host medium occupies the open set Ω ⊂ R
2 bounded by Γ, as shown in Figure 2.1,

Figure 2.1: Initial-boundary value problem with cracks, voids, and inclusions

embedded within an elastic medium.
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such that

Γu ∪ Γt ∪ (Γd, Γh or ΓI) = Γ,

Γu ∩ Γt = ∅,

Γu ∩ (Γd, Γh or ΓI) = ∅, (2.1)

Γt ∩ (Γd, Γh or ΓI) = ∅,

where Γu and Γt denote the specified displacement and traction along the outer

boundary of Ω, respectively; Γd, the crack surfaces; Γh, the void surfaces; and ΓI ,

the material interfaces of inclusions.

The strong form of the governing equations describing elastic wave motion and

the initial conditions are

∇ · σ + b = ρü in Ω, (2.2)

u(x, 0) = 0 in Ω, (2.3)

u̇(x, 0) = 0 in Ω, (2.4)

where ∇· denotes the divergence operator; σ := σ(x, t), the Cauchy stress tensor;

x, the spatial position; t, time; b := b(x, t), the body force per unit volume;

ρ := ρ(x), the mass density; u := [u1(x, t) u2(x, t)]
T , the displacement vector; and

˙( ) and (̈ ) indicate the first and second partial derivatives of the state variables

with respect to time t, respectively. The associated boundary conditions are given

as

u = ū on Γu, (2.5)

σ · n = t̄ on Γt, (2.6)

σ · n = 0 on Γd and/or Γh, (2.7)

[|σ · n|] = 0 on ΓI , (2.8)

where n is the outward unit vector normal on the boundary of Ω; ū and t̄ are,

respectively, the prescribed displacements and tractions on Γu and Γt; the dis-

placement and traction boundary conditions are, respectively, held along Γu and
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Γt; the traction-free conditions are imposed on Γd and Γh; and the interface trac-

tion continuity conditions are assumed over ΓI .

The constitutive relationships for linear elastic media are defined as

σ = Cǫ, (2.9)

ǫ = 1
2

(
∇u+∇uT

)
, (2.10)

where C is the material elasticity tensor; ǫ is the strain tensor; and ∇ is the

gradient operator.

2.2 The weak form of the governing equations and its spa-

tial discretization

The weak form corresponding to the governing wave equation (2.2) is

∫

Ω

(∇ · σ) · δudΩ+

∫

Ω

b · δudΩ =

∫

Ω

ρü · δudΩ, (2.11)

where δu are the test functions that belong toH1(Ω)—i.e., the first-order Sobolev-

space continuous functions—except for the essential boundary Γu in Ω.

Using integration by parts and the divergence theorem, the discretized weak

form of linear elastodynamics for uh ∈ Uh and δuh ∈ Vh leads to

∫

Ω

ρüh · δuhdΩ+

∫

Ω

σ : δǫhdΩ =

∫

Γt

t̄ · δuhdΓ +

∫

Ω

b · δuhdΩ, ∀δuh ∈ Vh,(2.12)

with

Uh = {uh|uh ∈ (H1h)d,uh = ūh on Γu}, (2.13)

Vh = {δuh|δuh ∈ (H1h)d, δuh = 0 on Γu}, (2.14)

where H1h ⊆ H1 denote finite dimensional Hilbert spaces consisting of the shape

functions; uh and δuh are the finite element approximations of the trial and test

functions.
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2.3 Time integration of the discretized wave equations

From the weak form of Eq. (2.12) that is discretized using Eq. (2.31), we can

obtain the time-dependent discrete form of the equations of motion, as in

Ms̈+Ks = f , (2.15)

where M and K are, respectively, the global mass and stiffness matrices; s and s̈

denote, respectively, the displacement vector of the nodal degrees of freedom and

its second time derivative; and f is the time-dependent force vector. M, K, s and

f for each element e are defined as

Me =




Muu Mua

Mau Maa



 ,Ke =




Kuu Kua

Kau Kaa



 , (2.16)

se = {u1x,u1y, · · ·,u4x,u4y,a1x,a1y, · · ·,a4x,a4y}T , (2.17)

fe =
{

fu, fa
}T

, (2.18)

where the mass (or stiffness) components Muu (or Kuu), Mua (or Kua) and Maa

(or Kaa) are associated with the classical finite element approximation, and the

coupled and the enriched approximation of XFEM, respectively, defined as

Mpq =
∫

Ωe ρN
T
p NqdΩ (p, q = u, a), (2.19)

Kpq =
∫

Ωe B
T
pCBqdΩ (p, q = u, a), (2.20)

where Nu and Na are the standard and the enrichment shape functions for a

four-node quadrilateral finite element, respectively. These matrices are defined as

Nu =




N1 0 N2 0 N3 0 N4 0

0 N1 0 N2 0 N3 0 N4



 , (2.21)

Na =




N1ϕ

shift 0 N2ϕ
shift 0 N3ϕ

shift 0 N4ϕ
shift 0

0 N1ϕ
shift 0 N2ϕ

shift 0 N3ϕ
shift 0 N4ϕ

shift



 .

(2.22)
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Bu and Ba are the shape function derivative matrices, given by

Bu =








N1,x 0 N2,x 0 N3,x 0 N4,x 0

0 N1,y 0 N2,y 0 N3,y 0 N4,y

N1,y N1,x N2,y N2,x N3,y N3,x N4,y N4,x







, (2.23)

Ba =








(N1ϕ
shift),x 0 · · · (N4ϕ

shift),x 0

0 (N1ϕ
shift),y · · · 0 (N4ϕ

shift),y

(N1ϕ
shift),y (N1ϕ

shift),x · · · (N4ϕ
shift),y (N4ϕ

shift),x







. (2.24)

Finally, fu and fa are time-dependent applied force vectors for the classical and

enrichment components of the displacement approximation, given by

fu =
∫

Γt
(Nu)

T t̄ dΓ +
∫

Ω
(Nu)

Tb dΩ, (2.25)

fa =
∫

Γt
(Na)

T t̄ dΓ +
∫

Ω
(Na)

Tb dΩ. (2.26)

Note that the standard mass and stiffness matrices (Muu and Kuu), and the con-

ventional FE shape and shape-derivative functions (Nu and Bu) are used in all

elements except the enriched ones.

The Newmark time integration scheme is adopted to solve the discrete form

of Eq. (2.15) at the n-th time step, which is given by

Ms̈n +Ksn = fn. (2.27)

The discrete velocities and displacements are approximated at the n-th time step

with

ṡn = ṡn−1 + (1− α)∆ts̈n−1 + α∆ts̈n,

sn = sn−1 +∆tṡn−1 + (1− 2β)
∆t2

2
s̈n−1 + β∆t2s̈n . (2.28)

Substitution of these into Eq. (2.27) yields the discrete system of equations

(
M+ β∆t2K

)
s̈n = fn −K

(

sn−1 +∆tṡn−1 + (1− 2β)
∆t2

2
s̈n−1

)

. (2.29)
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After solving for s̈n, the vectors ṡn and sn are updated using Eq. (2.28). In the

present study, we utilize Newmark’s implicit time integration scheme (α = 1/2

and β = 1/4), which provides second-order accuracy and unconditional stability.

2.4 The eXtended Finite Element formulation

2.4.1 Standard XFEM

Based on the concept of partition of unity (Melenk and Babuška, 1996), the dis-

placement approximation of the general XFEM is given in the form

uh(x) =
∑

i∈I

Ni(x)ui +
∑

i∈I⋆

N⋆
i (x)ϕ(x)ai . (2.30)

The above approximation consists of a classical finite element approximation (in-

dicated by the summation with respect to i ∈ I), and an enriched approximation

(indicated by the summation with respect to i ∈ I⋆). In Eq. (2.30), I is the set of

all nodes; I⋆ ⊂ I is the set of the nodes with a discontinuity; Ni(x) and N
⋆
i (x) are

the finite element shape functions corresponding to the i-th node located at xi; ui

and ai are the standard and enriched nodal displacements at node i, respectively;

and ϕ(x) is the local enrichment function associated with the discontinuity. It is

noted that Ni(x) and N
⋆
i (x) are not necessarily equal to each other, but generally

Ni(x) = N⋆
i (x) are used (Belytschko et al., 2009).

If the approximated form—i.e., Eq. (2.30)—is used, then it is difficult to im-

pose essential boundary conditions of ui on uh(xi) because the enrichment terms

do not vanish on the enriched nodes—i.e., uh(xi) 6= ui. Moreover, additional

calculations for evaluating all of the terms in the approximation are required to

find the actual displacement value uh(xi). To overcome these shortcomings, the

shifted—instead of the standard—enrichment functions are used, which were first
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(a) (b) (c)

Figure 2.2: Examples of enriched nodal sets for (a) curved cracks, (b) arbitrar-

ily shaped voids and (c) arbitrarily shaped inclusions, marked by solid lines (�:

enriched nodes near crack tips, •: enriched nodes near crack faces, N: enriched

nodes near voids or inclusions, ♦: nodes corresponding to zero/void degrees of

freedom).

suggested by Belytschko et al. (2001) as

uh(x) =
∑

i∈I

Ni(x)ui +
∑

i∈I⋆

N⋆
i (x)ϕ

shift
i ai, (2.31)

where ϕshift
i = [ϕ(x)− ϕ(xi)]. In the following subsections, we present XFEM

approximations with these shifted enrichment functions for different types of scat-

terer geometries.

2.4.2 XFEM for a general crack

Based on the concept of partition of unity (Melenk and Babuška, 1996), the ap-

proximated displacements for general cracks can be decomposed into two parts:

(i) a conventional finite element approximation part (denoted by the summation

with respect to i ∈ I); and (ii) an enrichment approximation part (respectively,

denoted by the summation with respect to j ∈ I, and k ∈ IΛ) (Fries and Be-
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lytschko, 2010) as

uh(x) =
∑

i∈I

Ni(x)ui +
∑

j∈IΓ

Nj(x) [ψsign(x)− ψsign(xj)] bj

+
∑

k∈IΛ

Nk(x)

(
4∑

α=1

[Fα(x)− Fα(xk)] c
α
k

)

. (2.32)

Here, I denotes the set of all nodes in the computational domain (including the

cracks, voids, and inclusions); IΓ, the set of the enriched nodes of elements fully

cut by the cracks Γd (marked with red-filled circles in Figure 2.2(a)); IΛ, the set

of the enriched nodes containing the crack tips (marked with blue-filled squares

in Figure 2.2(a)); N(i, j or k)(x), the standard finite element shape functions asso-

ciated with the (i, j or k)-th node at the location of x(i, j or k); ui, the standard

nodal displacement vectors at node i; bj and cαk , respectively, the enriched nodal

displacement vectors involving the discontinuous function ψsign(x) and the asymp-

totic crack-tip function Fα(x) at node j and k.

The discontinuity in the interior of the cracks is described by means of the

signed-distance level set function ψsign(x) (Figure 2.3), whose value is defined as

ψsign(x) = sign(ψ(x)) =







−1 if ψ(x) < 0 (below crack path),

0 if ψ(x) = 0 (along crack path),

1 if ψ(x) > 0 (above crack path),

(2.33)

with

ψ(x) = ± min ‖x− xΓd
‖ ∀xΓd

∈ Γd ∀x ∈ Ω, (2.34)

where ‖ · ‖ denotes the Euclidean norm.

The structural behavior around the crack tips in isotropic elastic media can

be characterized by using crack-tip enrichment functions which are defined by the

asymptotic displacements (Fleming et al., 1997) below,

[F1, F2, F3, F4] =
√
r

[

sin
θ

2
, cos

θ

2
, sin θ sin

θ

2
, sin θ cos

θ

2

]

, (2.35)
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Figure 2.3: Construction of the level set functions (ψ) (left). The contour plot

of ψ within search areas (white circles) for curved cracks that are marked by the

solid lines (right).

where r and θ are the polar coordinates in the local crack-tip coordinate system

as shown in Figure 2.4.

Figure 2.4: Coordinate system (r, θ) for a crack tip.
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2.4.3 XFEM for a crack located at a material interface

For the case of a bi-material crack when the crack is located at the interface

between materials (see Figure 2.2(b)), the XFEM approximation is defined as

follows

uh(x) =
∑

i∈I

Ni(x)ui +
∑

j∈IΓ

Nj(x) [ψsign(x)− ψsign(xj)] bj

+
∑

k∈IΛ

Nk(x)

(
12∑

α=1

[Fα(x)− Fα(xk)] c
α
k

)

, (2.36)

where only the crack-tip enrichment portion of Eq. (2.32) that corresponds to

the general crack is replaced. The set of crack-tip enrichment functions are those

introduced by Sukumar et al. (2004), and are given as follows

[Fα(r, θ, ε), α = 1-12] =
√
r

[

cos(ε log r)e−εθ sin
θ

2
, cos(ε log r)e−εθ cos

θ

2
,

cos(ε log r)eεθ sin
θ

2
, cos(ε log r)eεθ cos

θ

2
,

cos(ε log r)eεθ sin θ sin
θ

2
, cos(ε log r)eεθ sin θ cos

θ

2
,

sin(ε log r)e−εθ sin
θ

2
, sin(ε log r)e−εθ cos

θ

2
,

sin(ε log r)eεθ sin
θ

2
, sin(ε log r)eεθ cos

θ

2
,

sin(ε log r)eεθ sin θ sin
θ

2
, sin(ε log r)eεθ sin θ cos

θ

2

]

,

(2.37)

where ε is the bi-material constant, given by

ε =
1

2π
log

(
1− β

1 + β

)

, (2.38)

and β is the second Dundurs parameter (Dundurs, 1969) given by

β =
µ1(κ2 − 1)− µ2(κ1 − 1)

µ1(κ2 + 1) + µ2(κ1 + 1)
. (2.39)

Here, µi and κi denote the shear modulus and the “Kolosov” constant for the i-th

material (i = 1, or i = 2), respectively. The Kosolov constant is given in terms of
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Poisson’s ratio as

κi =







3− νi
1 + νi

for plane stress,

3− 4νi for plane strain.
(2.40)

2.4.4 XFEM for a void

The XFEM approximation for voids can carried out by using an enrichment func-

tion V (x) (Sukumar et al., 2001) given by

uh(x) = V (x)
∑

i∈I

Ni(x)ui, (2.41)

where

V (x) =







1 if x ∈ Ω,

0 if x /∈ Ω.
(2.42)

As illustrated in Figure 2.2(b), the nodes at the elements enclosing the inter-

nal boundary of voids (N) have V (x) = 1, while V (x) = 0 is assumed at the

nodes of the elements inside the voids (♦). Hence, the XFEM solution can be

obtained simply by numerical integration of element matrices in the same way as

in conventional FEM only over Ω.

2.4.5 XFEM for a inclusion

For the modeling the inclusions, the XFEM displacement approximation function

suggested by Moës et al. (2003) can be used, which employs a level set function

ζ , as in,

uh(x) =
∑

i∈I

Ni(x)ui +
∑

j∈IΓ

Nj(x)

[
∑

i∈I

Ni(x) |ζi| −
∣
∣
∣
∣
∣

∑

i∈I

Ni(x)ζi

∣
∣
∣
∣
∣

]

aj, (2.43)

where

ζ(x) = ± min ‖x− xΓI
‖ ∀xΓI

∈ ΓI ∀x ∈ Ω. (2.44)
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Figure 2.5: The contour plot of ζ within search areas (white circles) for inclusions,

the interface of which is shown by solid lines. Note that for voids, the level set

function ζ is used as well, in order to distinguish the nodes inside and outside the

voids.

The level set function ζ (see, Figures 2.2.c, and 2.5) plays a crucial role in the

representation of closed geometries (i.e., inclusions and voids). As this is closely

related to the discussion of parametric cubic splines, the determination of the sign

and magnitude of ζ is deferred to §2.5.3 and §2.5.4.

2.5 Parametric cubic spline methods

In this section, we briefly explain how to construct the open/closed geometries

of arbitrarily shaped scatterers (cracks/voids or inclusions) using cubic splines1.

In particular, the parametric cubic spline method allows closed geometries to be

constructed with a relatively few number of control points and shape parameters,

which is a highly favorable attribute for the optimization problems at hand.

1This formulation may also be found in (Jung and Taciroglu, 2014).
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Figure 2.6: Representation of an open curve geometry with cubic splines.

2.5.1 Representation of open curves

Cubic splines are used for representing curved cracks with a minimal number

of discrete control points/segments. As shown in Figure 2.6, each discrete curve

segment (marked with the numbered squares) is made up of control points (marked

with filled circles). Each control point bears three shape parameters—viz., the x

and y coordinates and the curve slopes (θ). For the generic i-th curve segment,

the cubic interpolating spline function is given by

y = aix
3 + bix

2 + cix+ di, (2.45)

where the coefficients are determined by







ai

bi

ci

di







=











x3i x2i xi 1

x3i+1 x2i+1 xi+1 1

3x2i 2xi 1 0

3x3i+1 2x3i+1 1 0











−1





yi

yi+1

θi

θi+1







. (2.46)
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Figure 2.7: Representation of a closed-curve geometry with cubic splines.

2.5.2 Representation of closed curves

Parametric cubic splines are used for the modeling the boundary of an arbitrarily

shaped void or inclusion. This approach offers the following two advantages: (i)

the variables x and y are uncoupled from each other (through the use of a curvilin-

ear coordinate system), which makes it easier to construct complicated geometries

compared to conventional cubic spline methods; (ii) each individual control point

of the cubic spline segments has two shape parameters, x, y coordinates, excluding

θ.

The parametric cubic spline functions are defined with respect to an indepen-

dent variable s ∈ [0, 1] for xi and yi along the i-th curve segment as

xi(s) = axi
(s− s0)

3 + bxi
(s− s0)

2 + cxi
(s− s0) + dxi

,

yi(s) = ayi(s− s0)
3 + byi(s− s0)

2 + cyi(s− s0) + dyi, (2.47)

where s is equally spaced by (1/n) over s ∈ [0, 1] for simplification; s0 indicates

the value of s at the starting point of each segment; n is the total number of

control points. In the closed-loop case (see, Figure 2.7), the (n+1)th control point
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is added in the sequence (i.e., i = 1, 2, . . . , n, 1), and Pn+1 = P1 wherein Pi

denotes xi and yi in each set of cubic spline functions, respectively. The coefficients

corresponding to the cubic spline functions xi(s) and yi(s) are given by,

aPi
= (P ′′

i+1 − P ′′
i )/6h,

bPi
= P ′′

i /2,

cPi
= (Pi+1 − Pi)/h− P ′′

i+1h/6− P ′′
i h/3,

dPi
= Pi, (2.48)

where h is the spacing between segments, which is chosen as h = 1/n for con-

venience. Also, the second derivatives P ′′
i is determined by solving the following

(n+ 1)× (n+ 1) matrix












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



2 1 0 · · · 1 2

1 4 1 · · · 0 0

0 1 4 1 · · · 0
...

...
. . .

. . .
. . .

...

0 0 · · · 1 4 1

1 0 · · · 0 0 −1























P ′′
1

P ′′
2

P ′′
3

...

P ′′
m

p′′m+1







=
6

h2







P2 − P1 − Pm+1 + Pm

P3 − 2P2 + P1

P4 − 2P3 + P2

...

Pm+1 − 2Pm + Pm−1

0







.(2.49)

Here, the sub-matrix for rows i = 2 to m takes a tridiagonal form.

2.5.3 Determination of the sign of the level set function ζ

In order to determine the sign (+ or −) of the level set function ζ , which differ-

entiates between the outside and inside of voids/inclusions with closed curves, we

use the modified crossing number method. In the conventional crossing number

method, the number of times that a ray—drawn from a point, previously known

to be either inside or outside of a closed shape, to a target point—crosses the

boundaries of the geometry is counted. After that, from the total crossing num-

ber, the sign at the target location is determined. if the crossing number is even
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Figure 2.8: An illustration of the modified ray-crossing method for determining

the sign of the level set function ζ : purple-filled circles are the control points;

numbered squares mark each spline segment between the control points; oc are

the centroid of the geometry; ζ1−4 are points along the search line (red-dashed

line) at the inside or outside of the geometry; o1−3 are the intersection points

between the curve segments and the search ray.

(or odd), then the target point is on the same (or opposite) side of the geome-

try. However, in this approach, we must recognize a priori that the given target

point’s location is either inside or outside the geometry. Hence, a novel modified

crossing number method is proposed herein, making up for the weakness of the

conventional approach, as well as localizing the calculation area near the object.

Figure 2.8, as an example, illustrates how to determine the signs at the points

ζ1−3 located in the inside or outside of the geometry, which takes the following

steps:

i. Set the centroid oc of the closed geometry from the given information—

i.e., control points (purple-filled circles) and cubic curve segments (numbered

24



Table 2.1: Determining the sign at points ζ1−3.

ζ1 ζ2 ζ3

ocζi − oco1 − + +

ocζi − oco2 − − +

sign + − +

squares).

ii. Draw a ray passing through each target point in question (here, ζ1−3).

iii. Calculate the distances from oc to ζ1−3 and from oc to each intersection point

(o1 and o2) between the ray (red-dashed line) and the cubic curve segments

(2 and 8).

iv. Record the signs at ζ1−3 (see, Table 2.1), based on the distances from oc to

ζ1−3 against oco1 and oco2, respectively (e.g., for oco1, ζ1 < 0 : ocζ1 − oco1;

ζ2, 3 > 0 : ocζ2, 3 − oco1).

v. Multiply the signs recorded at ζ1−3, i.e., sign(ζi) = sign(ocζi − oco1)×
sign(ocζi − oco2) at ζi, i = 1, 2, 3.

It is expedient to note here that (i) the crossing number is not counted exceptively

as in the case of ζ4, wherein the ray goes through the tangent point o3 lying on

the curve segment 9 ; and (ii) the centroid oc is assumed not to be situated on

the boundary of the object, which can be checked by using the parametric cubic

spline functions that represent each curve segment.

Figure 2.9 displays the example of the sign of ζ for arbitrarily shaped ge-

ometries using the modified ray-crossing number method for which the blue- and

white-colored areas correspond to negative and positive ζ values, respectively.
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Figure 2.9: A plot of the sign of ζ for arbitrarily shaped geometries using the

modified ray-crossing number method; blue-colored/empty areas indicate the neg-

ative/positive sign of ζ .

2.5.4 Determination of the magnitude of the level set function ζ

In the present study, the magnitude of the level set function ζ is defined by the

shortest distance from any point within the computational domain to the surface

of the targeted two-dimensional void/inclusion formed by cubic spline curves.

From §2.5.2, the parametric cubic spline function for any point (xΓh/I
, yΓh/I

)

within a certain curve segment along the boundary of Γh or ΓI is given by

xΓh/I
(s) = ax(s− s0)

3 + bx(s− s0)
2 + cx(s− s0) + dx,

yΓh/I
(s) = ay(s− s0)

3 + by(s− s0)
2 + cy(s− s0) + dy. (2.50)

The distance between (xΓh/I
, yΓh/I

) and any given point (x, y) is

d(s) =

√
(

x− xΓh/I
(s)
)2

+
(

y − yΓh/I
(s)
)2

. (2.51)

Here, the shortest distance is the optimal value of s obtained by solving the

minimization problem of Eq. (2.51). For the minimal d(s), the basic polynomial
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equation in terms of s is derived below by substituting Eq. (2.50) into Eq. (2.51),

and by differentiating the resultant equation with respect to s (Benowitz and

Waisman, 2013).

0 =(3a2x + 3a2y)(s− s0)
5 + (5axbx + 5ayby)(s− s0)

4

+ (2b2x + 2b2y + 4axcx + 4aycy)(s− s0)
3

+ (−3axx− 3ayy + 3bxcx + 3bycy + 3axdx + 3aydy)(s− s0)
2 (2.52)

+ (−2xbx + c2x − 2yby + c2y + 2bxdx + 2bydy)(s− s0)

+ (−xcx + cxdx − ycy + cydy) .

Note that the correct answer can be sifted out from the multiple answers in the

above equation (2.52) by which the specific range of s in each curve segment is

constrained by each s0 denoting the starting point at curve segments.
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CHAPTER 3

A Gradient-based Minimization Method

Enhanced with Robust Search Algorithms for

Solving the Inverse Problem

3.1 The objective functional

In an identification problem, which is often cast as a minimization problem, the

objective functional plays a key role, which converts the morphological difference

(size, shape, and location) between the estimated and actual (target) scatterers

into a quantitative value. The objective functional adopted here is defined1 as

L(ξ) = 1

Ns

∫ T

0

[
Ns∑

i=1

∥
∥uD(xs

i , t; ξ)− uM(xs
i , t)
∥
∥

]

dt, (3.1)

where uD(xs
i , t; ξ) and uM(xs

i , t), respectively, indicate the computed and mea-

sured wave responses—herein, the displacement of the system variables recorded

at the i-th sensor’s location xs
i—corresponding to the estimated and actual scat-

terers. The term ξ denotes the set of unknown shape parameters; Ns, the number

of sensors; T , the observation duration; ‖ · ‖, the Euclidean norm of a vector.

It is expedient to note that, in the present study, synthetic uM(x, t)—which are

computationally generated via dynamic XFEM—instead of actual experimental

measurements will employed for method verification and accuracy assessment.

1See, also Jung et al. (2013), and Jung and Taciroglu (2014).
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Figure 3.1: Examples of the backtracking line-search for a single shape parameter:

(a) for L(ξ(1)) ≤ L(ξ(2)), the step-length is reduced by a factor of 0.8; (b) for

L(ξ(1)) > L(ξ(2)), the step length is increased by a factor of 1.2. In both cases,

the computations are repeated until L(ξ(2)) at the next step is greater than L(ξ(2))
at the current step. Here, Θ∗

(1) and ξ∗
(2) indicate the optimal step-length and the

solution at the current iteration, respectively; and ξ(2) = ξ(1) + gΘ(1).

3.2 Gradient-based minimization

ξ∗ is the global minimum of the objective functional (Eq. 3.1), satisfying the first-

order necessary condition ∇ξL(ξ∗) = 0 for the optimality. The gradient of the

objective functional in this study is approximately established by using a finite

difference method as in

∇ξjL ≈ Lξj+∆ξj − Lξj−∆ξj

2∆ξj
(3.2)

where ξj indicates the j-th component of the unknown shape parameter vectors

ξ.

In order to find the optimal solution (i.e., the global minimizer), we use a

gradient-based method, which entails the following procedures:

i. Assign the initial values to the unknown shape parameters ξi and step length
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Θi in which the subscript of (i) indicates the current inverse iteration.

ii. Compute a search direction at the current iteration using the steepest descent

method—i.e., the gradient vector g = −∇ξL.

iii. Find the optimum step size Θ∗
i using the backtracking line-search method,

which accelerates the convergence of the optimization.

iv. Update the values of the set of current shape parameters: ξ∗
i+1 = ξi +

g

|g|
Θ∗

i ,

and then set ξi+1 = ξ∗
i+1.

v. Iterate the procedures (i) to (iv) until the resulting updated parameters meet

the given error tolerances (see Eq. 4.7).

For the case of curved cracks, it should be noted that the gradient of the curve

slope (θ) is much less sensitive to the variation of θ than other shape parameters

(x and y). Therefore, a weighting factor (W = 105) is added into the optimization

method as in

θi+1 = θi −
[ ∇θiL
|∇ξjL|

Θi

]

W. (3.3)

In order to find the optimal step-length Θ∗ along the search direction at each

iteration, a backtracking line-search method is employed (Nocedal and Wright,

2006). For instance, under the assumption that the predicted scatterer is placed

near a basin of attraction (a local or global minimizer), for the case of L(ξ(1)) ≤
L(ξ(2))

(
= L(ξ(1) + gΘ(1))

)
, the step-length is reduced at a rate of 0.8 until the

following condition is satisfied: L(ξ(2)) by the next step-length is greater than

L(ξ(2)) by the current step-length (see, Figure 3.1.a). On the other hand, the

step-length is raised by multiplying it by 1.2, for the case of L(ξ(1)) > L(ξ(2)),
until the same condition as that above is fulfilled (see, Figure 3.1.b). Then, the

step-length leading to the minimum solution ξ∗
(2) is chosen as the optimal step-

length Θ∗
(1) at the current iteration.
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3.3 A divide-and-conquer strategy for detecting a single

scatter

A divide-and-conquer strategy2 is proposed here to tackle solution multiplicity

(local minimizers). In this approach, multiple initial estimates are used in in-

dependent inverse problems that all use the same sensor data. In case there is

no a priori knowledge regarding the location and the geometry of the scatterer,

these said initial estimates can be uniformly distributed within the host domain.

The premise of this approach is that the majority of the converged solutions will

converge to the global (true) minimizer, and that any local minimizer that is inad-

vertently detected can simply be discarded by comparing the objective function’s

value there with that at other locations. The said premise was shown to hold by

Jung et al. (2013) wherein the method’s performance under solution multiplicity

due to measurement noise and sensor sparsity were investigated.

Here, the method described by Jung et al. (2013) is extended to have a

second phase so that arbitrarily shaped scatterers can be identified efficiently.

Similar to the original method, uniformly spaced initial estimates with regular

shapes—straight lines for a curved crack or circles for a complex-shaped void and

inclusion—are used in the first step. This first phase is intended to only approxi-

mately localize the inclusion with a small number of updating parameters. Once

the localization is achieved, the last converged geometric representation of the

scatterer is switched to a parametric cubic spline set, and a second phase of min-

imization is carried out to refine the estimated shape. The second step can be

repeated by adding control points until a pre-determined objective function norm

is achieved (or otherwise, until the solution becomes worse3). This two-phase

strategy will be described in more detail later with the aid of a flowchart (see,

2See, also Jung et al. (2013).
3Increasing the number of updating parameters will not necessarily yield a better solution,

unless the number of independent sensor measurements are also increased (Hjelmstad, 1996).
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Chapter 4).

Remarks : It should be possible to determine the general types and the num-

ber of scatters in advance through a relatively crude localization technique (e.g.,

bulk ultrasonic testing techniques of pitch-catch or pulse-echo (Krautkrämer and

Krautkrämer, 1990), which use excitation frequencies in the range of 100 kHz to

15MHz), and this could be used to reduce the number of initial estimates in the

divide-and-conquer approach. It is also expedient to note that the divide-and-

conquer strategy proposed here is extremely well suited for parallel computing,

not only because each inversion problem in the first identification phase is inde-

pendent of the others, but also because each approximation for the gradient of the

objective functional (i.e., each index j in Eq. (3.2)) can be solved independently.

As such, the increasing number of the shape parameters and initial estimates can

be counteracted by a proportional increase in the number of processors dedicated

to these computations.

3.4 A divide-alternate-and-conquer strategy for detecting

multiple scatters

For a single arbitrarily shaped scatterer a gradient-based minimization method

that was enhanced with a two-phase divide-and-conquer methodology was de-

scribed earlier. In the first phase, the objective is to deterring the approximate

location of a target scatterer by using a minimal number of unknown shape pa-

rameters, so that multiple initial estimates with simple geometries (e.g., straight

lines for a curved crack, or circles for an arbitrarily shaped void or inclusion) are

uniformly distributed over the entire spatial domain, and then the values of ob-

jective functional of all estimated sets at the converged locations are investigated

by carrying out independent identification of each set.

From the resultant data sets, the global minimizer can be easily distinguished
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from local minimizers by comparison of the objective functional values, because

the value the global minimizer yields, should be lower than those of the local min-

imizers. At the second phase, the simple geometry of the approximately localized

estimate is iteratively refined using parametric cubic splines. In order to enhance

the reconstruction of the estimated scatterer’s shape, new control points are in-

serted between existing ones until either a pre-determined error norm is attained

or the total number of control points exceeds a pre-determined number.

Here, the two-phase divide-and-conquer strategy is modified to identify multi-

ple scatterers with arbitrary shapes. That is, we hold on to the divide-and-conquer

approach in the first step to seek and localize multiple global minimizers, and an

alternate-and-conquer approach is subsequently employed to delineate the bound-

ary of each scatterer using cubic splines. The applicability of these approaches to

the case of multiple scatterers will be discussed and demonstrated in detail later

in Chapter 4, with the assistance of numerical experiments.
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CHAPTER 4

Numerical Experiments

Herein, the forward dynamic XFEM solver is rigorously verified first using several

benchmark solutions. This is followed by a set of simulated tests through which

the proposed shape localization and identification method is observed to work

remarkably well. A study on how the deployment configuration of the sensors

affects the solution multiplicity of the inverse problem is also provided.

4.1 Verification of the dynamic XFEM implementation

Forward benchmark problems for a line crack, a void, and an interfacial crack

are solved in order to verify our implementation of dynamic XFEM. The XFEM

solutions are compared either with analytical solutions, when possible, or solutions

obtained using conventional FEM.

4.1.1 Stationary mode-I semi-infinite crack problem

We obtain the XFEM solution for the setting seen in Figure 4.1(b), where we

consider a mode-I crack within a plane-strain (infinite extent in the anti-plane

direction) two-dimensional solid specimen subjected to a uniform tensile stress,

σ(t) = σ0H(t), where H(t) denotes the unit step function, given by

H(t) =







0 if t < 0,

1 if t ≥ 0.
(4.1)

The domain length is L = 10 m; the crack length is a = 5 m; and the vertical
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Figure 4.1: (a) An infinite plate with a crack under a plane-strain setting, for

which an analytical solution is available; (b) A stationary crack within a bounded

plane-strain two-dimensional solid domain model, which is used for obtaining the

XFEM solution that corresponds to the analytical solution of the setting (a); (c)

The normalized stress intensity factor as a function of normalized time for 40×100

and 80× 200 element meshes.
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position of the crack from the top surface is h = 2 m. Two regular meshes—

namely, 40×100 and 80×200—are used, which comprise four-noded quadrilateral

elements. The material is linear elastic, having the parameters given in Table 4.1.

Table 4.1: Material constants for the mode-I semi-infinite specimen.

Material constant Value

Young’s Modulus, E 200 GPa

Poisson’s ratio, ν 0.3

mass density, ρ 8000 kg ·m3

tensile stress, σ0 500 MPa

The analytical solution for the mode-I stress intensity factor, KI , was given by

Freund (1990) for the case of a infinite plate with a crack, as seen in Figure 4.1(a).

While the XFEM solution for the bounded two-dimensional solid domain model

(shown in Figure 4.1(b)) contains a rigid body mode, this ill-posed boundary

condition is needed to render the stress solution identical to the problem in Figure

4.1(a). Nevertheless, it is valid to compare the analytical solution with this XFEM

solution only until the reflected stress wave field of the XFEM solution from the

bottom boundary reaches the crack-tip. Therefore, the total XFEM simulation is

limited, in this particular problem, to t ≤ 3tc := 3h/cd = 1.009× 10−3 sec, where

cd is the dilatational wave speed. Since the tensile wave reaches the crack at time

tc, the analytical mode-I stress intensity factor can be written as,

KI =







0 if t < tc,

2σ0
1− ν

√

cd(t− tc)(1− 2ν)

π
if t ≥ tc.

(4.2)

Figure 4.1(c) displays the normalized stress intensity factor as a function of

normalized time for the coarse mesh (40 × 100) and the finer mesh (80 × 200),

where it can be seen that the XFEM results show a very good agreement with

the analytical solution. Inevitably, some error near t = tc occurs, because XFEM
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Table 4.2: KI/K0 and KII/K0 for centre-crack under remote tension.

Analytical solution Present XFEM Sukumar et al. (2004)

KI/K0 1.008 1.010 1.010

KII/K0 −0.1097 −0.1049 -0.1126

begins to calculate KI from the vicinity of the crack-tip region before the tensile

stress wave reaches the crack-tip. The finer mesh yields better results near t = tc,

because a smaller region retains the same number of elements (Menouillard et al.,

2010).

4.1.2 Elastodynamic Mode I center-crack problem

A rectangular bar with a centrally located crack shown in Fig. 4.2 is loaded in

the axial direction by uniform tension P = σ0. The material of the strip is

linear elastic, having Young’s modulus E = 200 GPa, Poisson’s ratio ν = 0.3, and

density ρ = 5000 kg/ m3. The normalized mode I stress intensity factorKI/σo
√
πa

is plotted against time t, also in Fig. 4.2. The numerical results determined by

Dynamic XFEM are in very good agreement with Chen’s results (1975).

4.1.3 A void in an aluminum medium

An aluminum host with a void is considered. The excitation is applied on the

upper boundary, while all of the other boundaries are fixed. The dynamic XFEM

results are compared to those obtained from the conventional FEM solver. Fig-

ure 4.3 displays snapshots of the amplitudes of displacement fields at 14 µs, 20 µs,

and 26 µs, obtained via dynamic XFEM and conventional FEM. Excellent agree-

ment is observed between the two solutions.
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Figure 4.2: Rectangular bar with a centrally located crack: problem geometry

and boundary conditions (left); normalized KI computed via XFEM compared

with Chen’s (1975) solution (right).
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Figure 4.3: The amplitudes of the displacement field of elastic waves in the

isotropic homogeneous medium (aluminum) with a void at (a) 14 µs, (b) 20 µs,

and (c) 26 µs. (a-1, b-1, c-1): XFEM results; (a-2, b-2, c-2): conventional FEM

results.

4.1.4 A crack in infinite bi-material media

A bi-material interface crack problem is considered. The crack is located along the

interface of two elastic homogeneous isotropic materials under Mode-I loading. A

symmetric and semi-infinite half specimen with domain size 20 × 40, discretized

using a 100× 200 elements, is considered under plane-strain conditions, as shown

in Figure 4.4. The analytical solutions for KI and KII are given by Rice and Sih

(1965), as

KI + iKII = (σ0 + iτ)(1 + 2iǫ)
√
πa(2a)−iǫ, (4.3)

where τ is the shear stress; ǫ is the bi-material constant (see Eq. (2.38)); and 2a

is the crack length. The material constants used for the numerical simulation are

chosen as E1/E2 = 22, ν1 = 0.2571 and ν2 = 0.3. In this case, the normalized
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Figure 4.4: bi-material interface crack under remote tension (half-model).
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Figure 4.5: A schematic of multiple initial estimates (solid lines) for detecting a

single target curved crack (a red dashed line) in two-dimensional bounded speci-

men of size 0.1m× 0.1m with uniform 64× 64 mesh; a wave source (a red circle);

and sensors (blue squares).

analytical solutions from Eq. (4.3) is

KI

K0

= 1.008,
KII

K0

= −0.1097, (4.4)

where K0 = σ0
√
πa and a = 1. It may be observed from Table 4.2 that the

stress intensity factors are in good agreement with the analytical solutions, and

the values obtained from the present XFEM are reasonable, as compared to those

of Sukumar et al. (2004).
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X

Y

Figure 4.6: A schematic of the experimental setup for numerical implementations

of multiple target scatterers (dashed lines): the two-dimensional 0.1m × 0.1m

aluminum specimen surrounded by wave sources (red circles) and sensors (blue

squares) is modeled by uniform 64× 64 meshes.
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Figure 4.7: The Ricker-pulse loading signal with a central frequency of

fc = ωr/(2π) = 0.1 MHz: (a) the Ricker pulse time signal; (b) Fourier ampli-

tude spectrum of the Ricker pulse signal.

4.2 Description of the problem geometry and boundary

conditions

To carry out numerical experiments for multiple arbitrarily shaped cracks, voids,

or inclusions (steel), two-dimensional plane-strain homogeneous (aluminum) or

heterogeneous (aluminum and steel) specimens are considered. All of these speci-

mens have the same dimensions (i.e., 0.1m×0.1m) and are modeled using 64×64

finite element meshes, as shown in Figures 4.5 and 4.6. Either one or two time-

dependent loading sources are positioned on the top and bottom surfaces, and

multiple sensors are deployed along the boundary of the specimen for detecting

a single or multiple target scatter, respectively. The lower left/right corner is

assumed to be fixed. The material properties of aluminum and steel are given in

Table 4.3.

A modified Ricker pulse with a central frequency fc = 0.1 MHz, whose fre-
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quency range is about 0 to 3fc MHz, is used as the excitation signal of each source

as shown in Figure 4.7 and is given by:

f(t) =







−50× (0.25η2 − 0.5)e−0.25η2 − 13e−13.5

0.5 + 13e−13.5
[kN/m2] t ≤ t̄,

0 t > t̄.

(4.5)

where η = ωrt−3
√
6; t̄ = 6

√
6/ωr; ωr = 2πfc; the total time period of observation

for each forward simulation is 80 µs; and each time step is 0.1 µs.

It is noted that the finite element mesh size should be smaller than the shortest

wavelength calculated using the material property of the host medium and the

frequency range of the given excitation source. Also, it is expedient to note

that the mesh size and source frequency has an effect on the size of detectable

target scatterers. Specifically, scatterers that are smaller than a single element—

or scatterers smaller than the smallest wavelength that can be propagated by the

forward solver—can not be detected/localized, in general.

Table 4.3: Material properties of aluminum and steel. Young’s modulus, E; Pois-

son’s ratio, ν; mass density, ρ.

Material Property Value

Aluminum E 71.5 GPa

ν 0.33

ρ 2800 kg/m3

Steel E 200 GPa

ν 0.25

ρ 7800 kg/m3
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Figure 4.8: The amplitudes of the displacement field of elastic waves within the

isotropic homogeneous medium (aluminum) at (a) 9 µs, (b) 17 µs, and (c) 21 µs.

4.3 Simulated inverse-scattering tests for various multi-

sensor deployment patterns

Figure 4.8 displays the snapshots of the spatial distribution of wave responses

of the two-dimensional aluminum specimen without any embedded scatterers.

The compressional and shear waves are clearly observed. The distribution of the

magnitude of the objective functional with respect to two shape parameters xc

and yc—i.e., the x and y coordinates of the centroid of a horizontal line crack

whose length is 0.025m—are shown in Figure 4.9. That is, we compute the value

of the objective functional for a given (estimated) line crack (e.g., the blue dotted

line in Figure 4.9(a-1)) as its centroid is varied through the entire domain for each

case of 1, 3 or 15 sensors (shown in Figures 4.9(a), (b), (c), respectively). As it

may be observed from Figure 4.9, for every sensor deployment case, the objective

functional has a global minimum. As one might expect, the attraction basins

become larger and the objective functional becomes less wrinkled (i.e., fewer local

minima) with increased number of sensors.
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Figure 4.9: Two- and three-dimensional contour plots of the objective functional

for (a) 1, (b) 3 and (c) 15 sensors deployed for a fixed-length (2.5 cm) crack that is

relocated throughout the host domain. The solid lines indicate the actual cracks;

the blue dotted line in (a-1) is one of initial estimates. The last row displays

histograms of the number of iterations for 12 initial estimates distributed evenly

on the host domain. The blue and yellow bars indicate sequences that converged

to the global minimizer (i.e., the actual crack location) or some local minimum,

respectively.
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Figure 4.9(c-2) also provides a visualization of the tracking process for finding

the global minimum using the gradient-based optimization. It starts at an arbi-

trary initial guess location marked as 1 and then, converges at 8 , corresponding

to the identified location parameters xc = 0.05031, yc = 0.05013, which are very

close to the target location—i.e., center of the line crack at xc = 0.05, yc = 0.05.

Figures 4.9(a-4, b-4, c-4) display the histograms that indicate the number of it-

erations corresponding to 12 different initial estimates that were evenly distributed

on the host domain for each of the three different sensor configurations. The blue

and yellow bars on these histograms indicate results that converged to the global

minimizer (i.e., the actual target location) and to local minima, respectively. The

height of each bar indicates how many iterations took place during each trial. The

iterations were terminated when |L(n)| ≤ 3× 10−5 or when
∣
∣L(n−1) −L(n)

∣
∣ < 10−6

(for slowly converging iterations). It is useful to note here that during these nu-

merical experiments, the former criterion was satisfied only when the iterations

converged to the global minimizer, whereas the latter criterion was always the

cause of termination when the iterations wandered, or they were stuck at a local

minimum.

An interesting observation can be made regarding the convergence behavior for

different sensor configurations: It took fewer iterations for the optimizer to find

the solution when the number of sensor were fewer. However, for fewer sensors,

only a small subset of initial guesses were successful. As the number of sensors

were increased, almost all of the initial guesses converged to the actual solution;

but it took more iterations to satisfy a given absolute convergence criterion (i.e.,

|L(n)| ≤ 3× 10−5). While this may appear somewhat counter-intiutive, it is actu-

ally observable in Figures 4.9(a-1, b-1, c-1) wherein it can be clearly seen that the

objective function values are, in fact, increasing throughout the feasible domain,

as the number of sensors are increased (while at the same time the global mini-

mizer becomes nearly the only basin of attraction). As such, it is more difficult to
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Figure 4.10: A flowchart for identification of a single arbitrarily-shaped scatterer.

satisfy the absolute convergence criterion when there are more data to assimilate.

This, however, is essentially a scaling problem, and it appears that the simple

remedy is to normalize the objective function by the number of sensors.

4.4 Identification of several types of single and multiple

scatterers in homogeneous and bi-material host media

4.4.1 Identification of an arbitrarily shaped single scatter using the

divide-and-conquer strategy

We now investigate the performance of the proposed identification method for

three different types of internal scatterers—a crack, a void, and an inclusion—

with arbitrary shapes in a homogeneous and a bi-material host.
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Figure 4.11: The demonstration of the step of the divide-and-conquer approach:

eighteen initial (straight line crack) estimates are used to search for a curved crack

(the red dashed line): the initial estimated (blue dashed-dotted lines marked with

numbers 9, 11, 12, 14, 15 and 17) converged near the global minimum; the others

(orange solid lines) fell either into local minima or did not converge at all.
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Figure 4.12: Evolutionary detection process for (a) L-shaped and (b) S-shaped

curved cracks (dashed line) using first (a-1, b-1) a straight line, and subsequently

(a-2, b-2) cubic splines. The iteration number is shown with a boxed numeral

(initially estimated scatterer is marked as 1).
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Figure 4.13: Evolutionary detection process for a concave-shaped void (dashed

line) using first (a) a circular shape, and subsequently (b) parametric cubic splines.

The iteration number is shown with a boxed numeral (initially estimated scatterer

is marked as 1).

The shape-parameter identification process described briefly earlier comprises

two main steps/phases. As illustrated in Figure 4.10, first, multiple initial esti-

mates are seeded and ultimately one solution—corresponding to the lowest con-

verged value of the objective functional—among the entire set of multiple initial

scatterers is selected. This first step corresponds to the flowchart region from

“Start” to the second diamond-shaped “decision box” (i.e., the diamond that in-

cludes the convergence criterion CI) in Figure 4.10. In the second phase, the

geometric representation of the scatterer is switched to a set of cubic splines and

a second round of optimization is carried out. This corresponds to the remain-

der of the flowchart—i.e., the region from the second decision diamond to the
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Figure 4.14: Evolutionary detection process for a potato-shaped inclusion (dashed

line) using first (a) a circular shape, and subsequently (b) parametric cubic splines.

The iteration number is shown with a boxed numeral (initially estimated scatterer

is marked as 1).
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Figure 4.15: Evolutionary detection process for a curved crack (dashed line) in

bi-material (aluminum (upper-half plane) and steel (lower-half plane)) using first

(a) a straight line, and subsequently (b) parametric cubic splines. The iteration

number is shown with a boxed numeral (initially estimated scatterer is marked as

1).
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(a) (b)

Figure 4.16: (a) A horseshoe-shaped scatterer; (b) the contour plot for the horse-

shoe-shaped scatterer with the value 1 outside the scatterer (red) and −1 inside

the scatterer (white).
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Figure 4.17: Evolutionary detection process for a horseshoe-shaped void (dashed

line) using first (a) a circular shape, and subsequently (b) parametric cubic splines.

The iteration number is shown with a boxed numeral (initially estimated scatterer

is marked as 1).
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convergence criteria II and III in Figure 4.10. These criteria are chosen as

CI (n)

(
= CII (n)

)
=

∣
∣L(n−1) − L(n)

∣
∣

L(n)

≤ 10−3,

CIII (n) = L(n) ≤ 1.1× 10−6 or P(n) > 16, (4.6)

where P(n) indicates the total number of shape control points at the current step;

and L(n−1) and L(n) are the values of the objective functional at two successive

iterations. In the present study, the control points are added between each point

and re-positioned by the cubic spline method, whenever CII is satisfied. P(n) is

defined through the recursive relationships P(n) = 2P(n−1) − 1 with P1 = 2 for a

curved crack, and P(n) = 2P(n−1) with P1 = 4 for a void/inclusion, respectively.

Figure 4.19 displays the convergence behavior of the uniformly distributed mul-

tiple initial estimates in an aluminum specimen based on the divide-and-conquer

strategy. Each initial estimate has four shape parameters—viz., the x and y co-

ordinates of their end points. The orange-colored initial scatterers (marked with

numbers 1–8, 10, 13, 16 and 18) are relatively far from the target scatterer (the

red dashed line), and converged to various local minima (i.e., CI was satisfied) or

wandered until the maximum number of iterations were reached (here 100). On

the other had, the initial estimated marked with blue dashed-dotted lines (marked

with numbers 9, 11, 12, 14, 15, 17) converged near the scatterer (i.e., to the global

minimum of the first phase). From here on, we can choose only one solution out

of the converged set {9, 11, 12, 14, 15, 17}, which yielded the lowest value of

objective functional and continue on with the second phase.

The performance of the proposed identification method for various types scat-

terers are demonstrated in Figures 4.12 (two different curved cracks), 4.13 (concave

void), 4.14 (potato-shaped inclusion), 4.15 (curved crack at a bi-material inter-

face) and 4.17 (horse-shoe-shaped void). In these figures, the iterative procedure

is visualized by displaying the successive (converging) estimates of the scatterer.

For the initial estimates of the first phase the divide-and-conquer approach,
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regular geometries that are appropriate for the type of scatterer—namely, a

straight line for cracks, and a circular void/inclusion for the rest—are used to

scan the approximate position and geometry. Here, the convergence and segmen-

tation of the scatterer is decided based on criteria CII and CIII in Equation (4.7),

respectively. In all of the aforementioned experiments, reasonable estimates were

obtained in fewer than 30 iterations for most cases (only an s-shaped crack re-

quired 58 iterations).

Two different curved cracks were considered in Figure 4.12: (a) an L-shaped

curved crack and (b) an S-shaped curved crack, wherein each of the target geome-

tries was successfully reconstructed by using two and nine control points, marked

as the iteration number 21 and 58, respectively.

Next, a concave-shaped void marked as 34 and a potato-shaped inclusion

marked as 22 shown in Figures 4.13 and 4.14 were effectively detected with eight

control points.

The converged estimate of the scatterer depicted by nine control points—

marked as 21 in Figure 4.15—accurately reconstructed an arbitrarily-shaped

curve located between bi-material interfaces, in spite of the disturbance of wave

reflection from the bi-material interface.

The proposed identification method was finally applied to detect a fairly com-

plex (a horse-shoe-shaped) scatterer (Fig. 4.16-a) by using the approximate level

set function shown in Figure 4.16-b. Unlike the earlier examples shown in Fig-

ures 4.13 and 4.14, the centroid of the horseshoe-shaped scatterer is outside the

convex-hull of its geometry, which could cause difficulties in both phases of the

identification. In the current study, it was approximately described by using a

level set function defined as +1/ − 1 at the nodes on the outside/inside of the

geometry, based on the cubic spline functions for each segmentation. Figure 4.17

displays the sequence of shape estimates for this problem: the final estimate scat-

terer comprised sixteen control points, closely matched the target scatterer at
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Figure 4.18: A flowchart for identification of multiple arbitrarily shaped scatterers:

the left and right column on the flowchart are correspond to the divide-and-con-

quer and alternate-and-conquer strategies, respectively.

iteration no. 28 .

4.4.2 Identification of arbitrarily shaped multiple scatters using the

alternate-and-conquer strategy

In this section, a divide-alternate-and-conquer algorithm for localization and

shape identification of multiple scatterers is described in detail, and an exam-

ple is provided. This approach is literally divided into two main—namely, the

divide-and-conquer and the alternate-and-conquer—procedures. These respec-

tively correspond to the left and right columns of the flowchart given in Figure

4.18. Here, the convergence criteria I, II, and III corresponding to CI , CII , and
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Figure 4.19: An illustrative example of the divide-and-conquer approach: Eighteen

uniformly-spaced initial estimates (circles) are employed to seek multiple voids

(here a circle and an irregularly shaped void, both of which are marked with black

dashed lines): the initial estimates (blue dashed-dotted lines marked with numbers

3, 6, 10, 13 and 16) converged near the global minimum; the others (orange solid

lines) fell into local minima. Each arrow (→) indicates the converged locations.
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Figure 4.20: Histogram of the normalized objective functional values (Λi) for the

i-th initial estimates (i = 1 − 18). Here, Λi = (〈L〉 − Li)/〈L〉; the bracket 〈〉
indicates the average value of L1−18.
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Figure 4.21: A demonstration of the alternate-and-conquer approach: (a) the

shape of scatterer A is identified while the scatterer B is held fixed; (b) the shape

of scatterer B) is identified while the scatterer A is held fixed; (c) (a)-optimization

mode is repeated. Here, the i of Ai/Bi denotes the number of iterations.
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Figure 4.22: The variation of Λ with the iteration number, i, during the detection

process (a) to (c) in Figure 4.21 for multiple voids. Here, Λi = Li/L0.
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Figure 4.23: Evolutionary identification procedure for multiple curved cracks

(dashed lines) from (a) to (e): (a) the estimated scatterers (solid lines) are lo-

calized by using the divide-and-conquer strategy; (b)-(e) the scatterers’ shapes

are refined by using cubic splines and the alternate-and-conquer strategy.
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Figure 4.24: Evolutionary identification process for multiple voids (dashed lines)

from (a) to (d): (a) the initial-estimated scatterers (solid lines) are localized by

using the divide-and-conquer strategy; (b)-(d) the scatterers’ shapes are refined

by using cubic splines and the alternate-and-conquer strategy.
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Figure 4.25: Evolutionary identification process for multiple inclusions (dashed

lines) from (a) to (d): (a) the initial-estimated scatterers (solid lines) are localized

by using the divide-and-conquer strategy; (b)-(d) the scatterers’ shapes are refined

by using cubic splines and the alternate-and-conquer strategy.
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Figure 4.26: The variation of Λ with the iteration number, i, during the alter-

nate-and-conquer process: (I) (b)-(e) in Figure 4.23 for multiple curved cracks; (II)

(b)-(d) in Figure 4.24 for multiple voids; (III) (b)-(d) in Figure 4.25 for multiple

inclusions. Here, Λi = Li/L0.
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CIII are appropriately chosen in consideration of computational cost:

CI (n)

(
= CII (n)

)
=

∣
∣L(n−1) −L(n)

∣
∣

L(n)
≤ 5× 10−4,

CIII (n) : L(n) ≤ 1.3× 10−6 or P(n) > 17, (4.7)

with

P(n) =







2P(n−1) − 1 with P0 = 2 for a curved crack,

2P(n−1) with P0 = 1, P1 = 4 for a void/inclusion.
(4.8)

where P(n) denotes the total number of shape control points at the n-th step

(n → n + 1 in the process of adding shape control points to the current selected

scatterer’s set in the flowchart). The new control points are positioned along the

cubic spline curves connecting the existing control points.

In order to localize multiple unknown scatterers, the divide-and-conquer strat-

egy is used as the first phase. This procedure is identical to that used for detect-

ing a single scatterer. As shown in Figure 4.19, multiple initial estimates 1–18

(orange/blue-colored circles) are uniformly distributed in the computational do-

main, and the minimization process for each estimate is performed independently

until the convergence criterion I (CI , see Eq. 4.7) is satisfied.

From each of the independent inversions, the converged locations of the initial

estimates are displayed with arrows (→) in the figure wherein the blue dashed-

dotted estimates (3 , 6 , 10 , 13 and 16) converge to the same position near each

target scatterer (global minimum) while the others (orange-colored estimates 1–

18 except 3 , 6 , 10, 13 and 16) are positioned on various different locations

(local minima).

Values of the objective functional at each of the converged esti-

mates are also compared. The histogram in Figure 4.20 shows the

quantitative difference of the normalized objective functional values, Λ
(

Λi =
〈L〉−Li

〈L〉
, i = 1− 18, 〈〉 denotes an average quantity

)

, between the cases
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(colored with blue) that converged to the global minimum and the cases (colored

with orange) that fell into local minima. The initial estimates that converged

near the target scatterers (the black dashed lines) have relatively low values of L
compared to those that converged to (or wandered into) locations far from the

target scatterers. Therefore, we can easily identify and select the candidate sets

that converged towards the global minimizers from the set of initial estimates.

In the subsequent (second) phase (i.e., the right-column of the flowchart on

Figure ??), we optimize the shape of each candidate scatterer using cubic splines.

As mentioned earlier, the beginning total number of shape control points in this

phase for the case of voids/inclusions is changed from P0 = 1 (i.e., the center

point of the circle) to P1 = 4 (i.e., 4 points on the edge of the circle in the x and

y coordinates) by passing through the procedure that adds shape control points

to the current chosen scatterer set.

Figure 4.21 illustrates the alternate-and-conquer procedure from (a) to (c):

(a) shape optimization is carried out for the scatterer A. Meanwhile, the shape

and position of scatterer B is held fixed; (b) the shape of the scatterer B with

4 control points is optimized, while the geometry of the scatterer A is held fixed

at its last converged state; (c) the optimization stage (a) is repeated, but this

time by using 8 control points. That is, the optimization process alternates be-

tween A and B (or among multiple candidate scatterers). The variation of the

value of Λi(= Li/L0) corresponding to iteration number, i, at each stage of the

optimization—i.e., (a), (b), and (c)—is shown in Figure 4.22. These results in-

dicate that multiple voids are successfully identified, even though small peaks

occur during transitions (e.g., between (a) and (b), and (b) and (c)) due to the

small change in the geometry when additional shape control points are inserted.

Note that each of the aforementioned iterations entail a series of forward analy-

ses because of the finite difference approximation of the search gradient, and the
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backtracking line-search scheme1.

To investigate the performance and effectiveness of the proposed identification

approach for various types of multiple arbitrarily shaped scatterers (cracks, voids,

or inclusions) within a homogeneous/heterogeneous medium, numerical studies

are performed as shown in Figures 4.23, 4.24, and 4.25. These figures visualize

the sequence of convergence for the estimated scatterers: figures (a) display the lo-

calization of the estimated scatterers yielded by the divide-and-conquer algorithm

(phase 1), and the other figures (b) to (d)/(e) show the iteratively refined shapes

of the unknown scatterers obtained through the alternate-and-conquer algorithm

(phase 2).

As explained in previous section for the divide-and-conquer approach, the

starting geometries of initial estimates (e.g., a straight line for a crack and a

circle for a void/inclusion) are determined based on the anticipated types of tar-

get scatterers, which can be determined via conventional bulk ultrasonic testing.

Then, the candidate estimates in the vicinity of global minimizers are selected and

their locations and sizes are approximated in the second phase (see, Figures 4.23.a,

4.24.a, and 4.25.a).

Using the alternate-and-conquer approach subsequently, the geometries of tar-

get scatterers are gradually and successfully reconstructed by increasing the num-

ber of cubic spline curves as observed in (b) to (d)/(e) of Figure 4.23, 4.24, and

4.25. That is, 3, 5, 9, and 17 number of shape control points are used to re-

spectively represent the curved cracks in Figure 4.23.b-e, while arbitrarily shaped

voids/inclusions are described with 4, 8 and 16 number of shape control points in

Figure 4.24.b-d, and 4.25.b-d, respectively. Also, the variations of the normalized

objective functional (Λi = Li/L0) are investigated as illustrated in Figure 4.26.I-

1Specifically, each iteration denotes forward analyses twice the current total number of
shape parameters and the additional (ς) parameters due to the finite difference approxima-
tion and the backtracking line-search scheme, respectively. For example, in the case of a circular
void/inclusion with 4 control points (i.e., 8 shape parameters), 2 × 8 + ς forward analyses are
carried out during each iteration.
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Figure 4.27: Evolutionary detection process for a curved crack (dashed line) using

first (a) a straight line, and subsequently (b) cubic splines. The iteration number

is shown with a boxed numeral (initially estimated scatterer is marked as 1). Note

that the measurements (uM) were polluted by noise with an amplitude equal to

10% of the root-mean-square of the clean signal).

III corresponding to (b) to (d)/(e) of Figure 4.23, 4.24, and 4.25. It is noted that

low or high peaks of Λ appear at the occasions when the new shape control points

are inserted to the existing set. This is because the existing geometry of the scat-

terer is slightly altered in this insertion. However, the said peaks are dramatically

and quickly decreased within a few iterations following the insertions.

4.5 Analysis of effect of noise on the identification

In the numerical experiments thus far, the effects of measurement noise or mod-

eling errors on reconstructions were not considered. Herein, an example on the

effects of noise on the identification is investigated. For this purpose, we consider

the same L-shaped crack used earlier (Fig. 4.12.a) for a single scatterer, but we

inject a zero-mean Gaussian random noise with standard deviation that is equal

to 10% of the root mean square (RMS) of the original signal into each sensor’s
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(a) (b)

(c) (d)

Figure 4.28: Evolutionary identification process for multiple voids (dashed lines)

from (a) to (d): (a) the initial-estimated scatterers (solid lines) are localized by

using the divide-and-conquer strategy; (b)-(d) the scatterers’s shapes are refined

by using cubic splines under the alternate-and-conquer strategy. Note that a

random noise with 10% of the root-mean-square value of the noise-free signal

response is injected into the measurements (uM).
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Figure 4.29: The variation of Λ with the iteration number, i, during the detection

process (b) to (d) in Figure 4.28 for multiple voids. Here, Λi = Li/L0.
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reading. The results of this numerical experiment are displayed in Figure 4.27.

As in the case of the noise-free problem, the identification procedure starts at

the initially estimated scatterers’ positions marked with 1 and subsequently, con-

verges to the geometry marked with 54. This final converged geometry has five

control points. While the number of iterations more than doubled compared to

the noise-free case (which required 21 iterations to satisfy the same convergence

criteria), the final result is still very accurate under this relatively high noise level.

For multiple scatterers whose sizes are smaller than the scatterers used

before—for example, in Figure 4.28—multiple voids with arbitrary shapes are

localized (a) and reconstructed (b)-(d) by following the optimization procedure of

the divide-alternate-and conquer approach under the same conditions. Figure 4.29

displays the convergence behavior of Λ (Λi = Li/L0) in each subprocess ((b)-(d))

of the alternate-and-conquer approach. The value of Λ during the period between

(b) and (c) sharply declines, while its value in the period (d) is almost retained

due to the effect of the injected noise. In spite of the relatively high level of the

noise, the finally converged geometries are still fairly accurate as visualized in

Figure 4.28.d.
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CHAPTER 5

Concluding Remarks

A systematic numerical approach is presented for localization and shape identi-

fication of the multiple internal scatterers (such as cracks, voids, or inclusions)

with arbitrary shapes in a homogeneous/heterogeneous elastic host medium.

For the forward problems, a dynamic XFEM approach endowed with para-

metric representation (here cubic splines) of internal boundaries is devised. This

combination allows updating the unknown geometry of a scatterer without re-

meshing during an iterative identification procedure.

For the inverse problems, the unknown shape parameters of each scatterer are

optimized based on a gradient-based minimization method that is enhanced with

a divide-alternate-and-conquer approach. This combination enables localization

and shape identification of multiple scatterers, while avoiding local minima.

Numerical experiments involving various types of multiple arbitrarily shaped

scatterers clearly demonstrate the effectiveness and accuracy of proposed numer-

ical techniques. The overall approach is also shown to be robust against fairly

large values of measurement noise.

Possible future extensions of this work include:

• Experimental validation: The proposed methods should be validated us-

ing real-life experimental data. The experiments can mimic the numerical

examples provided in this thesis.

• Three-dimensional problems : This avenue may be pursued by employing the
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so-called NURBS to represent the geometry of three-dimensional inclusions

(Cottrell et al., 2009; Sevilla et al., 2011).

• Medical imaging and identification: The burgeoning field of “elasticity imag-

ing” appears to yield data that can be used to localize and identify tumors

(Urban et al., 2011) with the proposed methods.

• Property identification: The elastic/viscoelastic material properties of the

inclusions could be determined along with their shapes and locations.

• Optimizing the computational performance: The methods proposed here can

be optimized to enhance numerical performance, especially by exploiting the

apparent granularity of the divide-and-conquer algorithm through parallel

programming.

• Absorbing boundary conditions : In most real life problems, signals attenuate

due to material and geometric damping. It would be expedient to imple-

ment absorbing boundary representations, such as Perfectly Matched Layers

(Kucukcoban and Kallivokas, 2011), to handle such problems.
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APPENDIX A

Auxiliary Stress Fields

The auxiliary stresses derived by Westergaard (1939) and Williams (1957) are

σ11 =
1√
2πr

{

KI cos
θ

2

[

1− sin
θ

2
sin

3θ

2

]

−KII sin
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2

[

2 + cos
θ

2
cos
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2

]}

(A.1)

σ22 =
1√
2πr
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1 + sin
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σ33 = ν(σ11 + σ22) (A.3)
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1√
2πr

KIIIcos
θ

2
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(A.5)
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2
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(A.6)

and the auxiliary displacements are

u1 =
1

2µ

√
r

2π

{

KI cos
θ

2
(k − cosθ) +KII sin

θ

2
(k + 2 + cosθ)

}

(A.7)

u2 =
1

2µ

√
r

2π

{

KI sin
θ

2
(k − cosθ)−KII cos

θ

2
(k + 2 + cosθ)

}

(A.8)

u2 =
1

2µ

√
r

2π
KIII sin

θ

2
(A.9)

where µ is the shear modulus and k is the Kosolov constant.
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APPENDIX B

The J- and Interaction Integrals

The domain forms of the interaction integrals are used to calculate the mixed-

mode stress intensity factors. J-integral is a method of calculating the strain

energy release rate, and the independent property on its path helps to evaluate

the integral in the far-field with the crack-tip. For a general mixed-mode situation,

the J-integral is related to the stress intensity factors (KI , KII) as

J =
K2

I

E∗
+
K2

II

E∗
(B.1)

where

E∗ =







E for plane stress

E
1−ν2

for plane strain
(B.2)

where E is Young’s modulus and ν is Poisson’s ratio. The J-integral takes the

form

J =

∫

Γ

(

Wni − σjknj

∂uk
∂xi

)

dΓ (B.3)

where W is the strain energy density. Eq. (B.3) can be written in the equivalent

form using the Dirac delta, which is easier to implement in finite element code as

J =

∫

Γ

(

Wδ1i − σij
∂ui
∂x1

)

njdΓ (B.4)

In order to calculate the mixed-mode stress intensity factors, an auxiliary stress

state is superimposed onto the stress and displacement fields from the XFEM

analysis. The auxiliary stress and displacement states at the crack-tip are intro-

duced by Westergaard (1939) and Williams (1957) for a homogeneous crack, and

75



by Sukumar et al. (2001) for the case of a bi-material crack, which are given in

Appendix A.

Hereafter, the XFEM states are denoted with superscript (1) as u
(1)
ij , ε

(1)
ij and

σ
(1)
ij , while that from the auxiliary state as u

(2)
ij , ε

(2)
ij and σ

(2)
ij . The J-integral for

the two superposed states is

J (1+2) =

∫

Γ

(

1

2
(σ

(1)
ij + σ

(2)
ij )(ε

(1)
ij + ε

(2)
ij )δ1i − (σ

(1)
ij + σ

(2)
ij )

∂(u
(1)
i + u

(2)
i )

∂x1

)

njdΓ

(B.5)

The J-integrals for the pure state 1 and the auxiliary state 2 can be separated in

Eq. (B.5), which leaves an interaction term such that

J
(1+2)
i = J

(1)
1 + J

(2)
1 + I(1,2) (B.6)

where I(1,2) is the interaction integral and is given by

I(1,2) =

∫

Γ

[

W (1,2)δ1j − σ
(1)
ij

∂u
(2)
i

∂x1
− σ

(2)
ij

∂u
(1)
i

∂x1

]

njdΓ (B.7)

where W (1,2) is the interaction strain energy density

W (1,2) = σ
(1)
ij ε

2)
ij = σ

(2)
ij ε

(1)
ij (B.8)

Recalling the relationship between J and K, we can write Eq. (B.1) as

J
(1+2)
1 =

(K
(1)
I +K

(2)
I )2

E∗
+

(K
(1)
II +K

(2)
II )

2

E∗
(B.9)

Expanding and rearranging terms from the above equation yields

J
(1+2)
1 = J

(1)
1 + J

(2)
1 +

2(K
(1)
I +K

(2)
I +K

(1)
II +K

(2)
II )

E∗
︸ ︷︷ ︸

I(1,2)

(B.10)

The stress intensity factors for the current state can be obtained by separating

the two modes of fracture. By setting K
(2)
I = 1 and K

(2)
II = 0, so that K

(1)
I is given

by

K
(1)
I =

I(1,ModeI)E∗

2
(B.11)
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Figure B.1: Conventions for domain J: domain A is enclosed by Γ, C± and Γ0.

Unit normal mj = nj on Γ0 and m = −nj on Γ.

A similar procedure, K
(2)
I = 0 and K

(2)
II = 1, can also be followed such that K

(1)
I

is

K
(1)
II =

I(1,ModeII)E∗

2
(B.12)

The contour integral mentioned above is not in a form best suited to finite

element calculations. A weighting function Q is introduced so that it has a value

equal to unity on the contour Γ and zero at the outer contour Γ0 as shown in

Fig. B.1.

Within the area enclosed by a closed path Γ, Γ0, and C
±, the weighting func-

tion Q is an arbitrary smooth function varying in between zero and unity. The

interaction integral for a closed path C = Γ ∪ C+ ∪ Γ0 ∪ C− can be written as

I(1,2) =

∫

C

[

W (1,2)δ1j − σ
(1)
ij

∂u
(2)
i

∂x1
− σ

(2)
ij

∂u
(1)
i

∂x1

]

QmjdΓ (B.13)

where mj are components of unit normal vector to the closed curve C acting
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outward to the area A. It should be noted here that mj = −nj on the contour Γ

and mj = nj on Γ0, and C
±. The crack faces are considered to be traction free.

Using the divergence theorem and passing the limit to the crack-tip, we get

I(1,2) =

∫

A

[

−W (1,2)δ1j + σ
(1)
ij

∂u
(2)
i

∂x1
+ σ

(2)
ij

∂u
(1)
i

∂x1

]

∂Q

∂xj
dA (B.14)
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