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Double Negative: The Necessity Principle, Commognitive Conflict,
and Negative Number Operations

Jeffrey M. Rabin1, Evan Fuller2, and Guershon Harel3

Abstract: We use the DNR framework to analyze a classroom episode 
introducing negative integer exponents, comparing and contrasting our 
analysis with Sfard’s recent commognitive analysis of a similar episode 
concerning multiplication of signed numbers. Students in both episodes 
objected to the standard rules for integer products or exponents, and they 
persisted in preferring their own rules even after the teacher justified the 
standard ones. We examine how pattern-based justifications may not 
address students’ intellectual needs, and we suggest other pedagogical 
strategies that promote student reasoning.

Introduction.

Students face many challenges as they confront new mathematical 
ideas, especially ideas that extend the scope of previously secure 
knowledge, or require its modification. Brousseau (1997) distinguished 
between epistemological obstacles and didactical obstacles in this regard. 
Epistemological obstacles are inherent in resolving tensions between the 
new material and existing conceptual schemes, and may exhibit parallels 
with the historical path of development of the new ideas. Didactical 
obstacles result from the particular teaching strategies employed, either in 
presenting the new material or earlier in laying the foundations of the 
existing knowledge. Particular didactical obstacles might thus be avoided by 
alternative pedagogical choices. Epistemological obstacles cannot be so 
avoided, but can actually be beneficial for developing students’ 
mathematical thinking.

1 Department of Mathematics, UCSD, La Jolla, CA 92093 jrabin@ucsd.edu

12x 2x
( ) 1

1 2 (2 )(2 ), so 2 .
2

b b b b b
b

     

2 Department of Mathematical Sciences, Montclair State University, 
Montclair, NJ 07043 fullere@mail.montclair.edu

12x 2x
( ) 1

1 2 (2 )(2 ), so 2 .
2

b b b b b
b

     

3 Department of Mathematics, UCSD, La Jolla, CA 92093 
harel@math.ucsd.edu

12x 2x
( ) 1

1 2 (2 )(2 ), so 2 .
2

b b b b b
b

     

1

mailto:harel@math.ucsd.edu
mailto:jrabin@ucsd.edu


New material that students learn might take the form of results (e.g. 
theorems) deducible from current knowledge, or might consist of definitions 
or conventions logically independent of it. For example, the Pythagorean 
Theorem follows from appropriate geometric foundations, but the definition 
of a zero exponent is a pure convention. For us, a convention is an 
agreement about what a mathematical term or notation will mean, often 
extending the scope of an existing term like “multiplication” to a larger set of
numerical arguments in a way that preserves certain properties. Teachers 
may create didactical obstacles (such as confusion between definitions and 
theorems) if they are not aware of which category the new material belongs 
to and/or do not make their students aware of it. 

The distinction between theorems and conventions is actually more 
subtle than it initially appears. For example, a theorem may depend on 
previously adopted conventions, such as the axioms of geometry (e.g., the 
Pythagorean Theorem does not hold in non-Euclidean geometry). For a 
useful analogy, consider a game such as chess. The rules of chess are 
conventions, adopted because they lead to an interesting and enjoyable 
game. They did not have to be what they are, and indeed they evolved over 
time. However, once these rules are adopted, there are objective facts 
(“theorems”) about chess. For example, a king and queen can force 
checkmate against a lone king. Mathematics develops, both historically and 
in the classroom, in a cycle of adopting conventions, proving theorems about
their consequences, adopting further conventions, and so on. It is a 
legitimate part of this process to “look forward”, exploring the consequences
of alternative possible conventions before deciding which one to adopt. 
Furthermore, what is a convention or axiom in one instructional treatment of 
some topic may be a theorem in another. (When there are equivalent 
definitions of the same concept, either one can be adopted as “the” 
definition and the other is then a theorem.) Within a particular instructional 
treatment, however, it should be clear what is agreed upon as a convention 
and what is justified as a theorem. Students (and teachers) are often 
unaware of the major role of conventions in mathematics, and we believe 
this role should be made more explicit in the classroom.

In this paper we are concerned with the introduction of new material in
one topic area: negative numbers and arithmetic operations on them. This 
involves a dramatic extension of the previously developed whole number 
system. It depends on specific conventions, and it presents both 
epistemological and didactical obstacles. Our discussion focuses on a 
classroom episode in which the teacher introduces negative integer 
exponents. We compare and contrast it with similar episodes involving 
multiplication of signed numbers as presented and analyzed by Sfard (2007).

Sfard’s analysis is based on her theoretical framework of 
commognitive conflict. Learning about negative numbers is framed as the 
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acquisition of a new discourse that is incommensurable with the old 
discourse of natural numbers. The terminology recalls Kuhn’s analysis of 
scientific revolutions (Kuhn, 1970), according to which these result in such a 
dramatic revision of concepts and terminology from the old science to the 
new that statements in one scientific language cannot even be translated 
into the other, let alone arbitrated by some common set of criteria. Therefore
Sfard seems to view the epistemological obstacles involved in this negative 
number “revolution” as far outweighing any didactical obstacles: “As implied 
by the commognitive analyses, the difficulties revealed on these pages, 
rather than being an unintended result of particular instructional approaches,
were part and parcel of the process of learning” (Sfard 2007, p. 612). 

Our own analysis is based on the DNR theoretical framework (Harel, 
2008a, 2008b), as outlined below. Although there are common elements in 
the two analyses, we place more weight on the potential for removing 
didactical obstacles. Extending arithmetic to include negative integers does 
require adopting conventional definitions, but these can be necessitated on 
the basis of existing knowledge and problematic situations (and therefore 
need not be accepted purely on authority). Thus, we see more continuity 
than incommensurability between the existing knowledge and the new 
material.  We use the Necessity Principle to make conjectures about 
students’ intellectual needs relevant to learning about negative numbers, 
and to suggest alternative instructional treatments addressing these needs. 

Our work makes several contributions. First, we extend the limited 
research on teachers’ understanding of the distinction between 
mathematical conventions and facts (Levenson, 2012) and corresponding 
pedagogical strategies. Second, despite copious anecdotal evidence that 
teachers and students alike are mystified by the rules for signed number 
operations, there is surprisingly little research on the basis for their 
difficulties (one example is Thompson & Dreyfus, 1988) . We apply the 
Necessity Principle of the DNR system to conjecture the intellectual needs 
underlying some student difficulties. Indeed, both our episode and Sfard’s 
feature students objecting on intellectual grounds to the justifications 
presented by their teachers, which we interpret as evidence that these 
justifications do not address their intellectual needs. Third, teachers often 
make use of numerical patterns to justify mathematical claims. We confirm 
Sfard’s observation that such justifications may not be convincing to 
students, or even understood by them as justifications. Our analysis 
indicates why pattern-based justification may not address students’ needs 
and what strategies might improve on it. Finally we provide examples of how
an analysis based on the Necessity Principle can lead to concrete 
pedagogical recommendations.

The Signed Number Multiplication Episodes

3



In examining mathematical discourse, Sfard (2007) analyzed teaching 
episodes concerning the rule for multiplication of signed numbers. These 
took place in an Israeli junior secondary school in a class of 12- to 13-year-
old students. The class was observed over thirty one-hour meetings devoted 
to the topic of negative numbers, and the discussion of multiplication of 
signed numbers spanned several class periods. The observations of interest 
began when students were given the task of deciding the value of the 
product of a positive number with a negative number, e.g. (+2)  (5). One 
group decided that multiplication by +2 means adding the other number to 
itself, so the answer is 10. However, another student, Roi, argued that the 
unsigned product 10 should always be given the sign of the “bigger number”
(in absolute value). This leads to the same answer in this case, but for 
example (+7)  (5) would be +35 (since 7>5)4. A class discussion ensued, 
and not only did the students fail to collectively agree on the “correct” rule 
as the teacher had expected, but the majority endorsed Roi’s proposal. We 
note that the teacher had provided students with three visual 
representations to support their thinking: the number line, arrows (vectors 
on the number line), and “magic cubes” which increase or decrease the 
temperature of a liquid they are added to. However, these representations 
did not seem to play any significant role in the students’ thinking or 
argumentation in the episodes quoted. Ultimately, the teacher resolved the 
debate using her own authority:

T: I want to explain what Sophie [an advocate of the “correct” rule] 
said. What she said is true … and this is the right answer. 

During a subsequent class, students were asked to determine the 
value of a product of two negative numbers, e.g. (3)  (2). Without a 
positive factor, there is no interpretation in terms of repeated addition, and 
most students could not obtain an answer, although Roi’s rule is still 
applicable (and incorrect). The teacher then presented a “derivation” based 
on generalizing a pattern:

2  3 = 6
2  2 = 4
2  1 = 2
2  0 = 0

Continuing this pattern, one should conclude that

4 Sfard suggests that Roi is generalizing from a definition of addition of a 
positive and a negative number: subtract the unsigned numbers, and attach 
the sign of the bigger number.
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2  (1) = 2
2  (2) = 4

and so forth. Having substantiated Sophie’s rule for positive times negative, 
the teacher began anew with a similar pattern:

3  (3) = 9
2  (3) = 6
1  (3) = 3
0  (3) = 0

and “therefore”

(1)  (3) = +3
(2)  (3) = +6

and so forth: negative times negative is positive.

The response of the students to this attempted justification is interesting: 
they rejected it. One said:

Shai: I don’t understand why we need all this mess. Is there no simpler 
rule? 

Sophie herself was dismissive:

Sophie: And if they ask you, for example, how much is (25)  (3), will 
you start from zero, do 0  (3), and then keep going till you reach 
(25)  (3)? 

That is, rather than interpreting the pattern as an attempt at justification, 
she viewed it as a needlessly cumbersome computational algorithm [to find 
(25)  (3), one has to list all products from (1)  (3) to (25)  (3), 
increasing the result by 3 each time]. Indeed, the teacher used the word 
“compute” to describe what she was doing at one point (ibid, p. 591).  In the 
end, students remained confused about how to operate on negative 
numbers.

Theoretical Framework

Sfard’s (2007) analysis of the preceding episodes is based on her 
commognitive (“communication” + “cognition”) approach to the study of 
learning. Basic tenets of this approach include the following. Thinking is the 
individualized form of communication, that is, communication with oneself, 
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and it originates in interpersonal communication. Mathematics is a form of 
discourse, and thus “Learning mathematics may now be defined as 
individualizing mathematical discourse, that is, as the process of becoming 
able to have mathematical communication not only with others, but also with
oneself” (ibid, p. 573). Two types of such learning may be distinguished, 
namely object-level learning, which is the expansion of the existing 
discourse, and meta-level learning, which involves changes in the meta-rules
of the discourse. This dichotomy recalls Kuhn’s distinction between normal 
science and revolutionary science (Kuhn, 1970). Normal science applies 
established methods to solve well-defined problems, and provides criteria for
recognizing acceptable solutions. In revolutionary science, fundamental 
definitions, procedures, and theories may change, and the resulting new 
science has been held to be incommensurable with the old. When student 
and teacher employ different discourses, the student encounters a 
commognitive conflict, which may eventually result in the student adopting 
the teacher’s new discourse. Sfard endorses the view that such discourses 
are incommensurable, so that in a sense the student cannot have good 
intellectual reasons to adopt the new discourse as long as she remains within
the conceptual framework of the old. Commognitive conflicts are not factual 
disagreements that could be resolved by appeal to objective features of the 
world or by mathematical proof, but rather disagreements about the 
adoption of conventions governing discourse. Thus, students must gradually 
accept the new discourse based on the teacher being an “expert 
interlocutor” and can only later figure out the “inner logic” of the new 
discourse.

Sfard observes that the topic of negative numbers is particularly likely 
to precipitate a commognitive conflict, one of the first such genuine conflicts 
that learners have experienced in mathematics. In their experience with 
natural numbers, mathematical claims were ultimately grounded in the 
properties of an obvious physical model, for example by counting discrete 
objects. Negative number operations lack such an obvious model5, and 
discourse about them is governed (implicitly, for students at this level) by 
the choice of certain axioms (notably the distributive property) that this 
extension of the concept of number is required to preserve. This change in 
the meta-rules of discourse and justification creates a commognitive conflict.

5 Models for negative number operations are readily available in the modern 
world – elevators, temperatures, credits/debits, and so forth – and these are 
used in many textbooks, but such models are initially incompatible with 
those that students have previously relied upon for natural numbers. 
Reconciling the new and old models requires reflective abstraction, to use 
Piaget’s terminology. This is an epistemological obstacle.
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Our analysis of a similar episode involving the adoption of rules for 
operations on negative numbers is based on the DNR theoretical framework 
(Harel, 2008a, 2008b). The premises and principles of this system are wide-
ranging, and we summarize only those most relevant to our analysis. The 
most important for us is

The Necessity Principle: For students to learn what we intend to teach 
them, they must have a need for it, where “need” means intellectual 
need, not social or economic need.

What makes this principle effective in the analysis and design of teaching 
and learning situations is an explicit list of types of intellectual need that 
have historically led to the creation of new mathematics (both content and 
methods) and that can be pedagogically fostered in the classroom (Fuller, 
Harel, & Rabin, 2011; Harel, 2008b; Harel, in press). This list comprises:

The Need for Certainty: the need for proof; to remove doubts or 
determine whether a claim is true or false.

The Need for Causality: the need to explain; to understand what makes
a phenomenon occur, or what makes a claim true. Note that there are 
proofs, for example by contradiction, or by exhaustively verifying a 
large number of cases, which arguably do not explain.

The Need for Computation: the need to quantify, to calculate exact or 
approximate values, as well as to improve the efficiency of algorithms.

The Need for Communication: the need to persuade others, to adopt 
unambiguous definitions and notations, to agree on standard forms of 
expressions, arguments, or algorithms, [in Sfard’s terms] to agree on 
the meta-rules of discourse.

The Need for Connection and Structure: the need to organize 
knowledge into a structure, to generalize or subsume, to determine 
unifying principles or axioms.

Learning in DNR is defined as “a continuum of disequilibrium-
equilibrium phases manifested by (a) intellectual and psychological needs 
that instigate or result from these phases and (b) ways of thinking and ways 
of understanding that are utilized and newly constructed during these 
phases” (Harel, 2008b; Harel & Koichu, 2010). Thus, learning is not 
principally about communication, but about the construction of new 
knowledge in response to intellectual needs. To necessitate a piece of  
mathematical knowledge in DNR is to embed the knowledge in a problematic
learning situation that appeals to or stimulates one or more of the listed 
intellectual needs. [GUERSHON, SAY MORE]
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DNR also contains a typology of proof schemes, ways of thinking that 
individuals may use to satisfy their own need for certainty, even if the 
mathematical community does not regard them as conclusive or correct 
(Harel & Sowder, 1998). These include accepting claims on another’s 
authority (authoritative proof scheme), appealing to observation, 
measurement, or a limited number of examples (empirical proof schemes), 
and various forms of logical reasoning (deductive proof schemes). As more 
specific examples, we mention Result Pattern Generalization (RPG), an 
empirical proof scheme in which, for example, the universal validity of a 
numerical pattern is accepted based on the verification of a limited number 
of examples (results), and Process Pattern Generalization (PPG), a deductive 
proof scheme in which the validity is established by reasoning on the basis of
the process that generates the pattern.

The Negative Exponents Episode

The new episode we will analyze comes from a larger study that we 
have discussed elsewhere (Harel, Fuller, & Rabin, 2008; Harel & Rabin, 
2010). Classroom observations were made of several teachers who had 
participated in a DNR-based summer professional development program. 
This episode occurred in a high school Algebra 1 classroom in the 
southwestern United States, so the students were somewhat older and more 
advanced than those in Sfard’s study. The teacher’s goal was to introduce 
negative (integer) exponents and the rules for working with them. Our data 
consist of transcribed videotapes of the class, and notes from a debriefing 
conversation with the teacher following the lesson. The episode unfolds over 
about 25 minutes, half the class period.

Students had previously worked problems involving exponential 
growth, particularly repeated doubling, and the teacher wanted to lead them
to the definition of negative integer exponents. Referring to a problem in the 
textbook, he said:

T: What I’d like you to do is work with a neighbor...and finish the 
rest of that table. Let’s see if you can figure out the rest of the 
numbers that go into it. Real quick...figure out the table.

The table in question is the following:
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y = 2x y = 5x y = 10x

22 = 4 52 = 25 102 = 100
21 = 2 51 = 5 101 = 10
20 = □ 50 = □ 100 = □
2-1 = □ 5-1 = □ 10-1 = □
2-2 = □ 5-2 = □ 10-2 = □

Based on his instructions, his behavior throughout this episode, and the 
debriefing conversation, it was clear that the teacher expected this activity 
to be easy, unambiguous, and convincing for the students (“Real quick”), 
perhaps because of their experience recognizing patterns and applying 
Result Pattern Generalization. More importantly, he seemed to view this as 
an instance of determining unique correct answers (“figure out the rest of 
the numbers”) rather than agreeing on a mathematical convention. Students
worked for about ten minutes as the teacher circulated to help them. Some 
were confused, but many completed the table according to the nonstandard 

(but visually appealing) pattern that 
x xa a  . Various students took 

0a  to be 
0, 1, or a. No worksheet visible in our videotape contained fractional entries 
as required by the “correct” pattern.

From the viewpoint of RPG, the students’ pattern is as logical as the 
teacher’s intended answer. The limited set of examples in the table allows 
many plausible generalizations. While working with individual students, and 
then while addressing the entire class, the teacher repeatedly directed their 
attention to a table of positive powers of 2 [extended from the first column of
the textbook table; note the similarities with Sfard’s last episode], pointing 

out the pattern that 2
x
 is halved when x decreases by 1 and explicitly 

directing them to continue this pattern. However, they still resisted 
extending the pattern to fractional entries, and the teacher’s growing 
frustration became apparent. Eventually, he tried an independent visual 
source of justification, using a computer projector:

T: Okay, let me get your attention for a second. Maybe this will 
illustrate it in a different way. What I’ve done on the screen is 
I’ve graphed a function. It’s 

2xy .

The graph he displayed was the standard one that any calculator would 
produce for this function, with the entire real axis as domain: a continuous 
curve extending to negative as well as positive values of x, increasing and 
concave up. He pointed out that indeed the graph shows that decreasing x 
by 1 halves y, even when x is negative. This appeal to the empirical proof 
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scheme (visual evidence) still did not convince students, who argued, for 
example:

S1: I’m confused because I don’t understand how the 2 and the 1 
[presumably meaning the negative exponent 1] equal ½. I 
thought that would be a 2. Because I’m confused.

T: Okay, that’s logical reasoning.
S1: Even though that’s a pattern it doesn’t work.
T: What’s happening each time? This is getting halved each time, 

right?
S1: I don’t understand that. I don’t understand how 2 to 1 could 

equal ½?
S2: Yeah, it looks like it was going to be a negative.
T: Can you see what was happening on the curve over here? 

Regardless of where I looked at the curve.
S1: I know, but when we did two positive ones you got 2, so when 

you get two negative ones would be negative [some students 
still use this language for exponents, so e.g. “two positive ones” 

seems to mean 
12
].

S2: That’s what I thought, too.

T: You thought this [y coordinate for 1x ] would be a 2?
S2: Yes, because it’s 1.
T: [considering how the graph would look if the student were right] 

So it would go from, our line would come down here, and when it 
went to 1, all of a sudden it jumps down to 2, 4.

S1: [inaud]
T: Okay, let me see if I can think of a reason why it doesn’t do that. 

Let me go a little bit longer here and see if you can accept what 
I’m describing.

At the board, the teacher filled in the empty cells in the table, emphasizing 
the “correct” pattern of repeated division by 2, 5, or 10. Students saw the 
pattern but were still not convinced:

S: I get the pattern and why you’re doing it, it’s just dividing itself. But I
don’t understand, I don’t know. … But how does 2? Forget it. I just 
don’t get how it could go like that.

Another student seemed to be confusing 2
x
 with ( 2)x , because she 

expected the sign to alternate for even and odd values of x. Of course, that 
would be another plausible candidate definition.
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The disagreement continued, and eventually the teacher had to present the 

“correct” definition 1/x xa a   purely on his own authority, giving the social 
need:

T: This is what you need for your homework.

Various explanations can be suggested for the students’ difficulties in 
accepting the teacher’s desired answer. On the simplest level, they may be 

confusing 2
x
 with ( 2)x  or even 2( )x . They may assume that a sign change 

in a problem causes a sign change in the answer, or they may be avoiding 
fractions because of discomfort with them. On the other hand, some of their 
statements suggest a Need for Causality, or for Computation. Despite seeing 
the pattern, S1 does not understand “how the 2 and the 1 equal ½”: what 
formula or process with inputs 2 and 1 gives the output ½? (The fragment 
“But how does 2?” may express the same need.) That is, students believe 

there must be a rule for computing 2
x
 when x is negative, involving 2, x, and

multiplication, as there is when x is positive. Since division is not involved, 
such a rule should give a negative integer result, not a fraction. Merely fitting

into a pattern in a table does not sufficiently explain what causes 2
x
 to have 

a particular value; only a computational rule can do so for them. Although
1/x xa a   is a computational rule, it does not seem satisfying to students.  

We conjecture that this is because students’ understanding of exponents 
involves multiplication rather than division, so any computational formula for
exponents should involve multiplication but not division. We note that Sfard’s
students also seemed uncomfortable with the pattern-based justification 
(which, in that case, they interpreted as an unnecessarily cumbersome 
algorithm), preferring Roi’s computational rule. Sfard (p. 593) cites Roi’s 
comment that “there must be a law, one rule or another” as evidence that 
her students’ discourse assumes that “whenever one dealt with entities 
called numbers, there had to be formulas that would tell one what to do”. We
interpret this as the same sort of Need for Computation that we identify in 
our episode.

The teacher in our study did an admirable job involving students as 
arbiters of correctness, but he was hampered by his belief that what he had 
to justify is a fact when it is actually a convention. This convention is adopted

so that the law of exponents 
x y x ya a a   will hold in greater generality, but this

law played no explicit6 role in the class discussion. Consequently, the teacher
had no deductive argument for preferring his desired pattern to those 

6 This law is implicit in the teacher’s insistence that 
12x
 should always be half

of 2
x
.
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advocated by students. The teacher appealed to the graph of 2xy , which 
he displayed for the class. During the debriefing conversation, he said, “I 
didn’t think it was going to be that difficult. I had a graph on the sketch pad 
so I could show them that y is halving all the way down through. And to me, 
walking into the classroom, this is the evidence, how can they argue with 
that?” This justification is purely empirical and authoritative. So far, in this 

classroom, the function 2
x
is defined for natural numbers x only. What is at 

issue is precisely how to define it for negative (let alone rational or real) x. A 
full graph cannot be drawn until after this issue is resolved. When a student 
questions why the graph couldn’t look different, the teacher takes this 
objection seriously and acknowledges that he has no convincing reason. 
However, the logical relationship between graphs and functions is never 
clarified: a function must be defined before it can be graphed (unless one 
takes the graph itself as the definition). 

We note that reflection on the meaning of exponents and how this 
changes to admit negative exponents could be another means by which to 
persuade students to adopt the correct rule. One could alter the 

interpretation of exponents so that while ( )na n  means aaa (n times) ,
na

 would mean “undoing this:” i.e. the number that, when multiplied by 

aaa (n times)  gives 1.  Of course, this effectively makes 
na

 the 

multiplicative inverse of 
na  and thus is similar reasoning to using the law of 

exponents, and it would require further alteration to extend to rational 
exponents.  Reflection on the meaning of exponents, even for natural 
numbers, played almost no role in the classroom discussion.  The slight 
exception (not quoted above) was the teacher rejecting a student suggestion

that 
42 2( 2)( 2)( 2)     [sic] because it is not multiplying 2 by itself.

One might ask, in Sfard’s episodes as well as our own, whether the 
teachers’ reliance on patterns is an instance of RPG or of PPG? As in PPG, the
teachers’ arguments do emphasize the process generating the pattern and 
not merely the empirical results of a few examples, but we hesitate to call 
their presentations deductive. In fact, the question is based on a false 
premise. Recall that RPG and PPG are both classified as proof schemes: they 
are intended to address the Need for Certainty. That is, there should be a 
well-defined mathematical question to answer, and a conjecture about that 
answer to validate. The question itself specifies the process intended to 
generate all the examples that should fit the conjectured pattern. For 
example, asking for the sum of the first n consecutive odd natural numbers 
specifies the process that generates every specific instance of this question. 

The conjectural answer, 
2n , could be justified by PPG reasoning amounting to

mathematical induction (perhaps informal). However, in Sfard’s episodes and
ours, the issue (from our perspective) is not one of achieving certainty 
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regarding a conjecture, but rather justifying the adoption of a mathematical 
convention7. This is not the intended context for RPG or PPG reasoning. What
is lacking in particular is a good reason, grounded in a well-defined question 
being asked, for continuing the pattern. 

Comparison of Episodes

The two episodes share many characteristics regarding the 
mathematical content, the pedagogical strategies, and the behavior of the 
teachers and the students. First, the mathematical content of each episode 
is the development of rules for extending mathematical operations from 
natural numbers to integers. Such rules are mathematical conventions, not 
(derivable) facts. For Sfard this is a meta-level task, not object level. In DNR, 
such knowledge would not arise from the Need for Certainty but rather from 
the needs for Communication, for Connection and Structure, and possibly for 
Causality or Computation. Neither teacher seems to be aware that this 
content is a convention and not a fact. Sfard’s teacher says, as previously 
quoted, 

T: I want to explain what Sophie said. What she said is true … and this 
is the right answer. [Italics added.]

In her notes following the lesson she wrote, “I can see that even my 
repeated emphasis on the correct proposal did not help.” And Sfard writes 
(p. 588), “The teacher hoped, however, that the explicit confrontation 
between the two alternatives would soon lead the class to the unequivocal 
decision about the preferability of Sophie’s proposal.” Our teacher, like 
Sfard’s, uses the language of correctness or truth rather than agreement on 
a convention: “figure out the rest of the numbers”, “this is the evidence, how
can they argue with that?”. The strategies of presentation and justification 
adopted by both teachers are surely influenced by their beliefs that they are 
teaching facts. 

It is essential that teachers be able to epistemologically distinguish 
mathematical conventions from matters of fact. Such a distinction is 
necessary to be able to focus on changes in the meta-rules of discourse and 
justification. The curriculum contains many other examples of content that is
conventional in nature, for example, the “PEMDAS” rules for the order of 
operations, or the rules for writing radical expressions in simplest or reduced 
form. Levenson (2012) studied teachers’ awareness of the distinction 

7 12x 2x
 Some treatments take the relevant properties as formal axioms and 

prove the rules for products or exponents with negative numbers (see below 
for an example), but neither of these teachers did so. 

( ) 1
1 2 (2 )(2 ), so 2 .

2
b b b b b

b
     
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between definitions (conventional) and theorems (provable) in the context of
zero exponents. She interviewed three experienced junior high school 
teachers in Israel (none of whom majored in mathematics). All three stated 

that 
0 1a   is a theorem, and only one immediately saw an=aaa (n times) 

as a definition.  Moreover, only one was sure that definitions could not be 
proved (and another insisted that some definitions could be proved).  
Although Levenson’s sample size is also small, this suggests that 
distinguishing definitions from theorems is problematic for many teachers.  

Second, both teachers assumed that their students could easily 
determine and agree upon the “correct” rule. Sfard’s teacher seemed 
confident that the “evidence” provided to the students was so compelling as 
to allow only one outcome, while our teacher took the halving pattern and 
the graphical evidence to be incontrovertible. 

Third, both teachers used patterns as the primary justification they 
presented. This may reflect the familiarity of Result Pattern Generalization in 
students’ prior classroom experience. Elementary mathematics curricula 
often include a large number of pattern recognition or discovery exercises. 
Despite contributing to students’ number sense, awareness of patterns, and 
ability to make conjectures, they can foster the undesirable belief that 
merely observing a pattern in a limited number of examples entails that the 
pattern is correct and unique. Both textbooks and teachers may implicitly 
endorse the empirical proof scheme by relying on patterns for justification. 
As illustrated above, in both cases the students suggested several other 
ways of generalizing the results, demonstrating the limits of RPG reasoning.

It is instructive to expand on how the patterns used by the teachers 
embody the relevant mathematical properties, namely the distributive 
property in Sfard’s case and the laws of exponents in our own. In Sfard’s 

case, the distributive property ( )a b c ab ac    is the fundamental axiomatic 

link between addition and multiplication. The special cases ( 1)a b ab a    
contain the essential information when the variables are integers. Suppose 
that addition of signed numbers has been defined already, but multiplication 
has not. Then for consistency with the distributive property the product ab 
should be defined in such a way that increasing (respectively, decreasing) b 
by one unit increases (respectively, decreases) the product by a. Starting 
from a base case such as a0=0, this determines the “correct” values of all 
products. In the case of positive integers, the definition of multiplication as 
repeated addition embodies this requirement, but a more general viewpoint 
is needed for negative integers. This is precisely what the patterns used by 
Sfard’s teacher accomplish. However, they are not explained in these terms, 
and the teacher may not be aware of the connection. In response to a query 
like Sophie’s about needing to extend the pattern to find a large product, a 
more direct explanation could be emphasized. Suppose a and b are positive 
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integers.  To find a  (b) using the distributive property, one can notice that 
0 = a  (b + (b)) = a  b + a  (b), so that a  (b) =  (a  b).  With this 
established, a similar argument finds (a)  (b).

In our case of negative exponents, the key property is2 2 2a b a b   , or 

the special case 
12 2 2a a   . For positive exponents this property is ensured 

by the definition that exponentiation is repeated multiplication8. More 

generally, for integers, it requires that 2
a
 be defined in such a way that 

increasing (respectively, decreasing) a by one unit multiplies (respectively, 
divides) the result by 2. This was exactly the pattern that our teacher 
directed the students to employ. The two contexts are thus precisely 
analogous9.

Fourth, neither teacher made explicit the underlying axiom that guided
the change in discourse: the desire to preserve the distributive property in 
the multiplication episodes, or the laws of exponents in the other episode. 
These axioms provide a reason—separate from the teacher’s authority—for 
extending definitions in particular ways. Such axioms often appear in 
elementary curricula simply as names for obvious facts about numbers, 
which students must know but that play no particular role in justification or 
problem solving. The teachers presumably know these axioms by name but 
may not be explicitly aware of how they underlie the patterns used or the 
conventions adopted. However, classroom discussions like those presented 
here can provide valuable opportunities for using these axioms in a nontrivial
way and making their roles an explicit object of mathematical discussion.

Fifth, neither teacher could convince the class that the pattern (s)he 
preferred was more correct than, or preferable to, the alternative proposed 
by students. The teachers were surprised by the fact that students remained 
unconvinced and struggled to find an explanation that students would 
accept.  It is possible that the teachers had trouble accepting that more than
one pattern can fit a finite set of data or can be persuasive. As for the 
behavior of the students, in both episodes they proposed an alternative to 
the teacher’s rule and clung to it tenaciously; the teacher’s authority rather 
than his/her arguments ultimately settled the debate. The students’ 
alternatives took the form of computational rules, and, the students 
interpreted the teacher’s attempt at justification as being a computational 

8 12x 2x
 In fact, it is a theorem for natural number exponents.

( ) 1
1 2 (2 )(2 ), so 2 .

2
b b b b b

b
     

9 12x 2x
 Once again the general case could be found at once by seeing that

( ) 1
1 2 (2 )(2 ), so 2 .

2
b b b b b

b
     
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algorithm that did not make sense (instead of a pattern-based justification), 
and rejected it as such.

We conjecture that the students’ objections were based on their Need 
for Causality or for Computation. That is, they needed to know why the 
outcome of a process of exponentiation or multiplication was a fraction, or 
had the claimed sign, and this need was not addressed by the existence of a 
pattern that the result fit into. They expected a computational recipe that 
incorporated appropriate operations to address this need.  

Pedagogical Implementation of the Necessity Principle

The major didactical obstacle common to both episodes is that the 
teacher presented a situation requiring the adoption of a convention, but 
framed the task for students differently: as one of determining a factually 
correct answer. This resulted in confusion and resistance on the students’ 
part. The DNR framework suggests alternative pedagogical treatments that 
might avoid this obstacle. A possible way to avoid student objections, as in 
these episodes, is to help them feel intellectual need for the desired content 
(or some framework that would help settle the debate). The Necessity 
Principle requires that instruction address an intellectual need in order for 
students to learn. Intellectual need is not “one size fits all”: what constitutes 
intellectual need for a student depends on that student’s prior knowledge, 
beliefs, mathematical sophistication, and so forth. We have already observed
that the definitions of arithmetic operations on negative numbers are 
conventions rather than matters of fact. However, there are rational reasons 
to adopt conventions in general and these conventions in particular. In this 
section we suggest some alternate instructional treatments that have the 
potential to address the intellectual need of the students in Sfard’s episode 
and our own. In general, these may be of two types: those that rely on a 
physical model for the operations, and those that deal with intrinsically 
mathematical criteria. We expect that reliance on models will gradually 
decrease as students progress: for younger students anything called 
“multiplication” should prove its usefulness in typical multiplicative 
situations, while for advanced students the desire to preserve certain axioms
may be sufficient.

Since the students in both studies seem to have a Need for 
Causality/Computation, we suggest addressing this directly by repackaging 
the pattern-based evidence explicitly as a computational method. Example 
problem: Mary suggested computing 2  (3) as 2  (1 – 4) = 2 – 8 = 6. John
used the same idea but computed 2  (4 – 7) = 8 – 14 = 6. Is it coincidental 
that they obtained the same answer? Will all students using this idea obtain 
the same answer?
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Using the distributive property10 as a computational tool may be 
natural for students because of familiar decimal algorithms like 2  26 = 2 
(20 + 6) = 40 + 12 = 52. Using it in this way to “compute” signed products 
involves the same ideas Sfard’s teacher appealed to but has several 
advantages. It is explicitly computational, requiring only multiplication of 
positive numbers. It focuses attention on the distributive property rather 
than keeping it hidden, and it sets up a puzzle that requires reasoning from 
the students rather than mere pattern recognition. Once students show that 
such computations do yield a well-defined answer, one can change 
viewpoints and propose that 2  (3) be defined as the common result of all 
such computations. This approach shows clearly why 2  (1 – 4) must have 
the opposite sign from 2  (4 – 1). Students can extend their reasoning to 
explore whether the distributive property will continue to hold when applied 
to expressions explicitly containing negative numbers, e.g. (2)  (5  3). 
They can then use it similarly to define products of two negative factors, 
such as (3)  (2). Such formal computations, later verified to give well-
defined results, often lead to the creation of new mathematics, as in the 
historical cases of negative and complex numbers. For example, Cardano’s 
formula for solving a cubic equation produces expressions involving complex
numbers even when the roots are real. This provides an intellectual need to 
define those expressions in such a way as to agree with the known real 
roots.

We emphasize that this approach is not a deductive proof of the rules 
for multiplying signed numbers. It is an exploration of whether the use of the 
distributive property for computation is well-defined in this extended context
of signed numbers: will it produce unique results independent of the choices 
made by users? If so, then we have the option of adopting it as a convention 
for extending the meaning of “multiplication” to this context.

One can also explore in depth the properties of alternate proposals 
such as Roi’s to see how they behave. Roi’s rule of taking the sign of the 
number larger in magnitude leaves 3  (3) undefined, violates the 
distributive property in examples like 3  [ 2 + (2) ], and would assign very 
different values to 2.99(–3) and 3.01(–3), which would make estimation of
products very problematic [formally, it has the consequence that a product is
not a continuous function of its factors]. 

The Need for Communication is the most natural basis for adopting 
conventions, and it can provide reasons for adopting a new discourse. Here 
is a treatment of negative exponents from this point of view, based on a 

10 12x 2x
( ) 1

1 2 (2 )(2 ), so 2 .
2

b b b b b
b

     
 Technically, the hypothetical students 

are using the distributive property over subtraction rather than addition, 
which could lead to its own discussion.
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physical model. Two scientists, A and B, are studying the growth of bacteria 
in a Petri dish. The bacteria double in number every hour. Scientist A begins 
his observations at a time he designates as t=0 hours, with 1000 bacteria in 

his dish. His population after t hours will be ( ) 1000 2tA t    bacteria. Scientist B
enters the lab 5 hours later and begins observing the same dish at time t=5, 
which she calls T=0 using her own clock. She finds that the population fits 

the function ( ) 32000 2TB T   . Question: how should scientist B describe the 
observations made prior to her arrival, by scientist A? For example, how does
she express the fact that the population 3 hours before she arrived was 
4000? 

This question creates a need to make sense of the natural answer,
3( 3) 32000 2 4000B     , just as Cardano needed to make sense of “known” 

real values for expressions involving complex numbers. Of course, scientist B
may insist that negative exponents are undefined, and may invent a 
completely new notation for the function giving the population in her past. 

However, writing
5( ) 1000 2TB T    may increase her comfort with substituting 

T= 3. Since nothing about the bacteria themselves changes at time T=0, 
why change the function describing them? We have a natural notation which 
has not yet been assigned a meaning, so why not assign it the natural 
meaning in this context? Why not take advantage of the opportunity for 
communication by observing that the substitution 5t T   makes both 
functions agree? 

Of course, in the situation described, something about the bacteria did 
change at t=0 when Scientist A began the experiment. But nothing prevents 
us from imagining that Scientist A instead walked in on an experiment in 
progress, begun even earlier by someone else. In this way we create the 
abstraction of a process that continues in a uniform way into the indefinite 
past and future. The exponential function we are defining is intended to 
model such processes and therefore should be defined in a uniform way for 
all integer arguments. If the scientists consider that the bacteria grow at a 
uniform rate even for times shorter than an hour, so that during any time 
interval the population is multiplied by a factor depending only on the length 
of that time interval, they can continue their analysis to define rational 
powers of 2 as well. (This will make more sense if the absolute numbers are 

much larger and fractions of a bacterium are ignored.) For example, 
1/22  is 

the factor by which the population increases in half an hour, and must equal
2  so that the population doubles in two consecutive half hours.

The analogous experiments in Sfard’s situation of signed-number 
multiplication would involve the distance-rate-time formula d rt . The two 
scientists observe the positions of an object moving along a straight track at 
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a constant speed, but one begins her observations earlier than the other. For
example, Scientist A observes the object at position 2d t  at time t, while 

Scientist B, arriving five minutes later, observes it at 2 10d T   when her 
own watch reads T. They can also allow the rate r to have either sign in order
to distinguish the two directions of travel along the track. 

In terms of our earlier question of whether pattern-based arguments 
for mathematical conventions are examples of RPG or PPG, the function of 
the physical model in these context-based teaching strategies is to provide a
good reason (in terms of the model) for a specific pattern. The convention 
would then be to apply the general pattern uniformly, so that the same rules 
work outside the context of the physical model and for any numbers 
considered (within the new domain).

Conclusion: Contrasting the DNR Analysis with the Commognitive Analysis

Although a commognitive analysis leads to some of the same 
observations about these episodes as the DNR analysis, we think that 
considering the Necessity Principle as a lens for analysis yields additional 
benefits.  Specifically, it allows further analysis of the students’ reactions to 
their teachers’ presentations and suggests concrete pedagogical 
recommendations. We think there is additional nuance to the following 
statements of Sfard’s (2007).

“According to commognitive analysis, learning about negative numbers 
involves a transition to a new, incommensurable discourse” (p. 597).

“All the parties to the learning process need to agree to live with the fact 
that the new discourse will initially be seen by the participating students as 
somehow foreign, and that it will be practiced only because of its being a 
discourse that others use and appreciate” (p. 609).

“This process of thoughtful imitation seems to be the most natural way, 
indeed the only imaginable way, to enter into new discourses. It is driven by 
the need to communicate [In this context, DNR would consider this a social 
rather than intellectual need]… The learners accept a rule enacted by 
another interlocutor as a prelude to, rather than a result of, their attempts to
figure out the inner logic of this interlocutor’s discourse” (p.610). 

A simplistic reading of these statements might suggest that students 
cannot initially learn these kinds of ideas in a meaningful way; rather, they 
must go along with the teacher’s ideas despite not understanding the logic 
of these, and the logic will come later. We would disagree with this 
contention, and we believe that the more subtle issue in the episodes is how 
the nature of the justification or activities is appropriated by students.  For 
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this, we agree with Sfard that the students may need to go along with the 
teacher’s suggested activities or means of justification before fully 
understanding these. For instance, consider our example of whether 
computations like  2  (1 – 4) = 2 – 8 = 6 and 2  (4 – 7) = 8 – 14 = 6 must
always agree. Students may not be used to comparing different 
computations and considering why they will or will not yield the same result. 
However, we would say that these ideas are fairly natural in that students 
can be taught to appreciate them within a relatively short time (potentially 
during the same class period they are first introduced). 

We think that the Necessity Principle allows for concrete improvements
in the instructional approaches used in these episodes. It is true that a 
student confronted with a new type of discourse cannot be immediately 
aware of all the implications of adopting that new discourse. Mathematicians 
who introduce new concepts and methods also do not initially see all their 
ramifications. (Indeed, the ramifications of even simple mathematical ideas 
are likely inexhaustible and still being uncovered.) However, it does not 
follow that adopting a new discourse must always be a pure leap of faith. The
original creator of the new discourse had intellectual reasons for creating it, 
and obviously did not adopt it from another person. One can bring students 
to see the need being addressed and enough advantages of the new ideas to
make it rational to pursue them further. Teachers, as expert guides or 
translators, should be fluent in both the students’ “old” discourse and the 
“new” discourse of the mathematical community. They should introduce the 
new discourse only after students have an intellectual need for it. To do so 
effectively, they should know what has necessitated new mathematical 
discourses historically, and what necessitates them pedagogically.

The episodes examined illustrated both epistemological obstacles—
such as the unavoidable issue of not being able to naturally interpret a 
product of two negative numbers in terms of equal groups of objects—and 
didactical obstacles—such as both teachers’ insistence that there was a 
“right answer”. We have argued that (1) these kinds of situations can 
provide rich opportunities for student reasoning (taking advantage of the 
epistemological obstacles, while minimizing the didactical obstacles), and (2)
DNR-based instruction provides concrete suggestions for improving the 
teaching of these episodes, leading to a more optimistic outlook than 
commognitive analysis, in which the expectation is that students adopt a 
new discourse even though it is foreign to them and they will only later 
understand why it works.
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