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Cerebellar network organization 
across the human menstrual cycle
Morgan Fitzgerald1,4, Laura Pritschet1,4, Tyler Santander1, Scott T. Grafton1,2,3 & 
Emily G. Jacobs1,3*

The cerebellum contains the vast majority of neurons in the brain and houses distinct functional 
networks that constitute at least two homotopic maps of cerebral networks. It is also a major site 
of sex steroid hormone action. While the functional organization of the human cerebellum has been 
characterized, the influence of sex steroid hormones on intrinsic cerebellar network dynamics has 
yet to be established. Here we investigated the extent to which endogenous fluctuations in estradiol 
and progesterone alter functional cerebellar networks at rest in a woman densely sampled over 
a complete menstrual cycle (30 consecutive days). Edgewise regression analysis revealed robust 
negative associations between progesterone and cerebellar coherence. Graph theory metrics probed 
sex hormones’ influence on topological brain states, revealing relationships between sex hormones 
and within-network integration in Ventral Attention, Dorsal Attention, and SomatoMotor Networks. 
Together these results suggest that the intrinsic dynamics of the cerebellum are intimately tied to 
day-by-day changes in sex hormones.

Although its Latin name means “little brain”, the human cerebellum contains nearly four times as many neu-
rons as the cerebral cortex, with the posterior and lateral regions greatly expanded in humans relative to  apes1. 
Engagement of the cerebellum during cognitive control tasks challenges the classic notion that the cerebellum 
is solely involved in motor coordination,rather, it appears to coordinate a broad range of higher-order cognitive 
 functions2–5. Multiple closed-loop circuits between the cerebellum and cortex, including non-motor regions 
of the prefrontal cortex  (PFC6,7, provide an anatomical basis for cerebellar involvement in cognition including 
learning, memory, and decision  making8–10. Thus, the tradition of branding the cerebellum as a purely motor-
associated region is becoming increasingly obsolete.

Allen et al.11 demonstrated the utility of using functional magnetic resonance imaging (fMRI) to assess func-
tional synchrony between the cerebellum and the cerebral cortex, finding that low-frequency signal fluctuations 
in the cerebellum correlate with signal fluctuations in subcortical, parietal, and frontal regions. Topographically 
distinct fronto-cerebellar circuits involving the dorsolateral PFC, medial PFC, and anterior PFC have since 
been  identified12. A seminal fMRI study by Buckner et al.13 revealed that the cerebellum houses at least two 
complete homotopic maps of cortical networks. Specifically, the cerebellum contains hubs of major functional 
brain networks including the Default Mode Network (DMN), Frontal Control Network (FCN), SomatoMotor 
Network (SMN), Dorsal Attention Network (DAN), Ventral Attention Network (VAN), and Limbic  Network13.

Accumulating evidence implicates the cerebellum as a major site of sex steroid hormone action. The develop-
ing cerebellum exhibits de novo synthesis of estrogen and  progesterone14–16, and estrogen influences the forma-
tion of dendritic spines and synapses through regulation of  microglia17. The adult cerebellum demonstrates a rich 
expression of estrogen receptors (ER and progesterone receptors  (PR18–21) Evidence suggests that sex hormones 
not only influence the formation of cerebellar neuronal circuitry during neonatal development, but also modulate 
cerebellar functioning later in life. The vast majority of Purkinje cells, the major output units of the cerebellum, 
densely express ERβ20,21, and estradiol has been shown to improve cerebellar memory formation by enhanc-
ing long-term potentiation and augmenting cerebellar synapse  formation22. Granule cells, the most prevalent 
neuronal population in the cerebellum, are in direct connection with gamma-Aminobutyric acid(GABA)ergic 
Golgi  cells23 and progesterone enhances GABA  signaling24,25. Although much attention has been paid to sex 
hormones’ ability to regulate spinogenesis, synaptic plasticity, and neural activity in  cortex26–28, sex hormones’ 
role in the cerebellum is now gaining increased recognition.

Despite preclinical evidence that sex hormones regulate cerebellar function, human studies are lacking. 
Across a typical human menstrual cycle, spanning 25–30 days, women experience an eightfold increase in 
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estrogen and an 80-fold increase in progesterone. These in vivo changes in sex hormones have been shown to 
modulate brain structure, task-evoked cortical activity, and performance on cognitive  tasks29–31. However, most 
menstrual cycle studies sparsely sample women at discrete timepoints (e.g. 2–4 times), obscuring the rhythmic 
changes in hormone production across a complete  cycle32,33. The field of network neuroscience has begun to use 
dense-sampling methods to probe the properties of the human brain over unprecedented timescales to study the 
dynamic time-varying properties of the human brain over days, weeks, months, and  years34–38. In a recent dense-
sampling study from our group, a woman underwent 30 consecutive days of brain imaging and venipuncture 
across a complete menstrual cycle, revealing estradiol and progesterone’s ability to modulate widespread patterns 
of connectivity across the  cortex37,39. Given the sensitivity of the cerebral cortex to endogenous fluctuations in 
sex steroid  hormones33,37,39–41 and accumulating evidence for sex hormone action in the  cerebellum42,43, here we 
tested the hypothesis that sex hormones impact the intrinsic day-to-day dynamics of cerebellar circuits.

In this dense-sampling, deep-phenotyping study, we examined whether day-by-day variation in sex hormones 
across a complete menstrual cycle modulates cerebellar functional connectivity and cerebellar network topolo-
gies. Results reveal that estradiol and progesterone are associated with daily variation in coherence across the 
cerebellum and both intra- and inter-network integration, providing insight into how sex hormones shape the 
intrinsic properties of the human cerebellum.

Results
A healthy, naturally-cycling female (author L.P.; age 23) underwent venipuncture and MRI scanning for 30 con-
secutive days. The full dataset consists of daily mood, diet, and behavioral assessments; task-based and resting-
state fMRI; structural MRI; and serum assessments of pituitary gonadotropins and ovarian sex  hormones37. Neu-
roimaging data, daily behavioral assessments, and analysis code is publicly available (see “Data/code availability”).

Endocrine assessments. Analysis of daily sex hormone (by liquid-chromatography mass-spectrometry) 
and gonadotropin (by chemiluminescent immunoassay) concentrations confirmed the expected rhythmic 
changes of a typical menstrual cycle. All hormones fell within normal ranges (Table S1), with a total cycle length 
of 27 days. Serum levels of estradiol and progesterone were lowest during menses (day 1–4) and peaked in the 
late follicular (estradiol) and late luteal (progesterone) phases (Fig. 1). Progesterone concentrations surpassed 
5 ng/mL in the luteal phase, signaling an ovulatory  cycle44.

Temporal dependencies between sex hormones and edgewise connectivity. To begin, we tested 
the hypothesis that cerebellar functional connectivity at rest is associated with intrinsic fluctuations in estra-
diol and progesterone in a day-by-day fashion. Given the pronounced expression of PR within the cerebellum 
and the ability of progesterone to augment inhibitory responses within cerebellar  neurons19,24,42, we predicted 

Figure 1.  Participant’s hormone concentrations plotted by day of cycle. 17β-estradiol, progesterone, luteinizing 
hormone (LH), and follicle stimulating hormone (FSH) concentrations fell within standard ranges. (Adapted 
 from37).
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decreases in cerebellar functional connectivity as progesterone concentrations increase across the cycle, in keep-
ing with results previously found in the  cerebrum37. Further, we predicted estradiol would augment cerebellar 
coherence. For each session, the cerebellum was parcellated into 99 nodes and then were spatially mapped to a 
seven-network  atlas13,45. A summary time-course was extracted from each node, data were temporally filtered, 
and 99 × 99 functional association matrices were derived via magnitude-squared coherence (FDR-thresholded at 
q < 0.05; see “Methods and materials” for full description of preprocessing and connectivity estimation). Next, we 
specified edgewise regression models, regressing coherence against estradiol and progesterone over the 30-day 
study. Data were Z-scored prior to analysis and models were thresholded against empirical null distributions 
generated through 10,000 iterations of nonparametric permutation testing. Results reported below survived a 
conservative threshold of p < 0.001. For a visualization of day-by-day variation in network topologies across the 
30-day experiment and further depiction of network-specific relationships between hormones and edgewise 
connectivity, see Supplementary Materials (Figures S1, S2).

In keeping with our predictions, progesterone yielded a widespread pattern of robust inverse associations 
across the cerebellum, such that whole-cerebellar coherence decreased as progesterone concentrations rose 
(Fig. 2A). Next, the average magnitude of brain-hormone association was summarized by network (using the 
Buckner seven-network parcellation; Fig. 2C). Although all networks demonstrate some degree of positive 
associations over time, the strength of negative associations was larger in magnitude and significantly nonzero 
across nearly all networks, as depicted by mean nodal association strengths (Fig. 2D). The DMN was unique in 
that the degree of negative and positive associations were nearly equal while the Limbic Network was the only 
network for which positive associations were greater than negative associations. Together, these results align 
with previous findings in the cerebrum indicating strong decreases in whole-brain functional connectivity as 
progesterone concentrations increase across the  cycle37.

In contrast to our predictions, we observed sparse and predominantly negative associations between estra-
diol and cerebellar coherence (Fig. 2B). All cerebellar networks exhibited some degree of significantly negative 
associations with estradiol (95% CIs not intersecting zero), particularly the DMN and DAN (Fig. 2D). The 
Limbic Network was unique again in that it demonstrated a heterogenous response with positive and negative 
association strengths (Fig. 2D). These findings suggest that, within the cerebellum, increases in estradiol are 
associated with sparse decreases in connectivity, a pattern that differs from the positive associations observed 
across the  cerebrum37.

Temporal dependencies between sex hormones and network topology. Given the widespread 
associations between whole-cerebellar coherence and sex hormones, we examined topological states of cerebel-
lar networks to capture the extent of brain-hormone interactions at the network level. Topological states were 
quantified using common graph theory metrics, including estimates of between-network integration (participa-
tion) and within-network integration (global efficiency). See Supplementary Materials (Tables S2 and S3) for a 
complete summary of all results.

To investigate day-by-day relationships between topological states of each network and hormone fluc-
tuations across the menstrual cycle, a series of linear regression analyses were conducted. After initially fit-
ting linear models to the dataset, an inspection of residual densities revealed experiment day one as a fre-
quently poor fit (median absolute deviation > 3); it was therefore removed from the analyses reported here. 
Remaining data were Z-scored, and network metrics were residualized on motion (mean FWD) prior 
to model estimation (p-values reported are FDR-corrected at the level of q < 0.05). Regression models 
revealed that progesterone was associated with DAN ( β = −.48, SE = .15, t = −3.29, p = .008; Fig. 3A) 
and VAN efficiency ( β = −.39, SE = .17, t = −2.32, p = .028 ; Fig.  3B), and both model fits were sig-
nificant (DAN: F(1, 28) = 10.82, p = .008, R2

Adjusted = .25; VAN: F(1, 28) = 5.38, p = .028, R2
Adjusted = .13) . 

Between-network integration (as measured by participation) for FCN was also associated with progesterone 
( β = −.43, SE = .16, t = −2.70, p = .026 ; Figure S3B), and the model fit was significant (F(1, 28) = 7.28, 
p = .026, R2

Adjusted = .18) . In sum, dynamic changes in progesterone across the menstrual cycle were associ-
ated with intra- and inter-network integration of functional brain networks.

Estradiol was associated with global efficiency within DAN ( β = −.37, SE = .16, t = −2.36, p = .028; 
F i g .   3 A ) ,  V A N ( β = −.54, SE = .16, t = −3.51, p = .008;  F i g .   3 B ) 
and SMN (β = −.39, SE = .17, t = −2.33, p = .028; Figure S3A). This suggests that the within-network inte-
gration (as measured by global efficiency) of major functional brain networks is negatively associated with 
estradiol across the cycle. Overall model fits were significant for the DAN (F(1, 28) = 5.55, p = .028 , 
R2
Adjusted = .14),  V A N  (F(1, 28) = 12.33, p =  . 0 0 8 ,  R2

Adjusted = .28)  a n d  S M N 
(

F(1, 28) = 5.43, p = .028, R2
Adjusted = .13

)

. Model fits for the remaining networks were poor and did not dem-
onstrate significant associations with estradiol (Tables S2, S3). These data are in agreement with our edgewise 
regression analysis depicting decreased whole-cerebellar coherence with increasing estradiol.

Discussion
In this dense-sampling, deep-phenotyping project, a naturally-cycling female underwent resting-state fMRI and 
venipuncture for 30 consecutive days, capturing the dynamic endocrine changes that unfold over the course of a 
complete menstrual cycle. Edgewise regression analyses illustrate robust negative associations between progester-
one and cerebellar coherence, and to a lesser degree, sparse negative associations between estradiol and cerebel-
lar coherence. Graph theory metrics were used to examine cerebellar network topologies, indicating negative 
associations between estradiol and global efficiency within the DAN, VAN, and SMN, between progesterone and 
global efficiency within the DAN and VAN, and between progesterone and participation of the FCN. Together, 
these results reveal that estradiol and progesterone are associated with cerebellar functional connectivity and 
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network topology, providing insight into the relationship between sex hormones and the intrinsic dynamics of 
the human cerebellum.

Sex steroid hormones influence cortical functional connectivity and network topography, as demonstrated by 
parallel analysis across the  cerebrum37. While our predictions for the impact of gonadal hormones on cerebellar 
network dynamics were analogous to the effect of sex hormones on cerebral networks, our data suggests that 
day-by-day associations of hormones and cerebellar functional connectivity at rest diverge somewhat from that 
of the cerebrum. Progesterone’s effects demonstrated robust negative associations with coherence in both the 
cerebellum and  cortex37, but the association strengths were considerably higher in the cerebellum (tenfold mini-
mum), hinting that progesterone may have a greater influence on cerebellar coherence. In the cortex, estradiol 
concentrations were associated with increased connectivity across all major networks, particularly the DMN and 
 DAN37, but this effect was absent in the cerebellum where estradiol was associated with reductions in connectiv-
ity across networks. This implies that estradiol might enhance functional connectivity within the cortex while 
simultaneously decreasing connectivity within the cerebellum. Critically, the mechanisms driving the unique 
effects of these hormones in the cerebellum have yet to be characterized.

Figure 2.  Whole cerebellum functional connectivity at rest is associated with intrinsic fluctuations in estradiol 
and progesterone. (A) Day-by-day associations between progesterone and coherence. Hotter colors indicate 
increased coherence with higher concentrations of progesterone; cool colors indicate the reverse. Results 
are empirically-thresholded via 10,000 iterations of nonparametric permutation testing (p < .001). Nodes 
without significant edges are omitted for clarity. Values presented represent beta divided by the standard error, 
representing relative effect sizes for the standardized regression (B) Day-by-day associations between estradiol 
and coherence. (C) Cerebellar parcellations were defined by Buckner et al. seven-network  atlas13. Note that 
the Visual Network is not represented in the cerebellum. (D) Mean nodal association strengths by network 
and hormone, calculated by averaging edgewise connectivity for all nodes in a given network associated with 
progesterone or estradiol. Error bars give 95% confidence intervals. ‘Positive’ refers to the average magnitude of 
positive associations (e.g. stronger coherence with higher estradiol). Note progesterone had greater associations 
with edgewise connectivity as reflected in the y-axis range. Abbreviations: DMN, Default Mode Network; 
DAN, Dorsal Attention Network; FCN, Frontal Control Network; SMN, SomatoMotor Network; VAN, Ventral 
Attention Network. Statistical maps of edgewise coherence v. hormones were visualized using the Surf Ice 
software (https ://www.nitrc .org/proje cts/surfi ce/).

https://www.nitrc.org/projects/surfice/
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The human cerebellum shows rich expression of  PR19 and higher progesterone concentrations than the 
cingulate  cortex46. This could account for the amplified effects of progesterone on cerebellar network coher-
ence relative to cortex. On a molecular level, progesterone potentiates GABAergic  activity25 and enhances the 
response of Purkinje cells to GABA  transmission24,47, which could explain the robust decrease in cerebellar 
functional connectivity as progesterone concentrations increased across the cycle. In addition to Purkinje cells, 
the cerebellum houses GABAergic interneurons and GABAergic Golgi cells. Interneurons play a key role in cer-
ebellum functioning and govern Purkinje cell  output48–50, while Golgi cells synapse directly onto granule cells, 
the most numerous neurons in the  cerebellum23. Thus, progesterone-driven enhancement of GABA signaling 
could enhance cerebellar inhibition across the cycle by selectively enhancing the activity of either interneurons 
or Golgi cells. GABAergic activation by progesterone also counters estradiol-induced increases in neuronal 
 excitability51, providing an additional potential mechanism for the observed progesterone-associated decreases 
in functional coherence.

Our results suggest that estradiol has opposing effects across cerebellar and cortical networks. Although 
this result is in contrast to our predictions, we present two possible explanations. First, the disparity in estra-
diol-coherence associations may be attributable to striking differences in ER subtype distributions between the 
cerebrum and cerebellum. Cerebellar Purkinje cells only express ERβ20,21,52 in contrast to the cerebrum which 
exhibits robust expression of ERα and ERβ20,21. ERα and ERβ have similar binding affinities for  estradiol53,54, 
but the two receptor subtypes diverge in their physiological roles and  interactions54–59. Though speculative the 
divergent effects of estradiol seen across the cortex and cerebellum could in part be attributable to the cerebel-
lum’s unique receptor profile. Second, estradiol’s divergent effects could also be mediated through the hormone’s 
action on non-neuronal cell populations, as the cortex and cerebellum house divergent populations of microglia 
and astrocytes. Microglia demonstrate organizational and morphological differences across brain localities, 
with cerebellar microglia being sparsely distributed and having less branched morphology relative to cortical 
 populations60. Astrocyte populations also show regional differences, with cerebellar astrocytes being outnum-
bered by neurons, while cortical astrocytes greatly outnumber  neurons61. Estrogen modulates the formation of 
dendritic spines and synapses through regulation of  microglia17, and stimulates calcium release and progesterone 
synthesis in  astrocytes62, presenting additional mechanisms to explain the observed discrepancy in estradiol-
coherence associations. Additional research is needed to definitively link differences in receptor expression or 
cellular populations to variability observed at the mesoscopic level of functional networks.

Figure 3.  Graph theory metrics reveal relationships between sex hormones and intra-network integration. (A) 
Illustration (left) depicts nodes belonging to the Dorsal Attention Network (DAN). Global efficiency, a measure 
of within-network integration, was calculated to reflect the ostensible ease of information transfer across 
clusters inside a given network and was regressed against sex hormone concentrations. Here, scatter plots depict 
significant associations (p < .05) between progesterone (middle) or estradiol (right) with DAN efficiency. (B) 
Illustration (left) depicts nodes belonging to the Ventral Attention Network (VAN). Here, scatter plots depict 
significant associations (p < .05) between progesterone (middle) or estradiol (right) with VAN efficiency. Note 
that data are z-scored before models are fit. For a complete description of results, see Figure S3 and Tables S2, 
S3. Cerebellar parcellations depicted in A and B were defined from the Buckner et al. seven-network atlas (2011) 
and scatter plots were generated in R (version 3.4.4).
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Sex hormone’s modulation of cerebellar functional connectivity has implications for understanding human 
brain organization across the lifespan. The cerebellum is involved in a broad spectrum of cognitive functions 
including learning, memory, and decision  making8–10. Further, some age-related declines in cognitive func-
tion may be attributable to neuronal changes in the cerebellum. Cerebellar volume declines progressively with 
advanced  age63–67 and these age-associated volumetric changes may precede those found in subcortical structures 
such as the  hippocampus68. Sex differences in age-related declines of cerebellar volume have been observed, 
where midlife women approaching menopause show reductions in cerebellar lobe and vermis volumes relative 
to age-matched  men69,70, hinting at a potential role of sex steroid hormones in cerebellar aging. While our results 
establish a relationship between sex hormones and cerebellar functional brain network organization, future 
studies should investigate how hormone-mediated changes influence cognition and whether morphological 
changes in the human cerebellum occur across the menstrual cycle or other major hormone transition states 
(e.g. menopause).

Sex hormone action in the cerebellum is also implicated in neurodegenerative diseases. Alzheimer’s Disease 
(AD) is a progressive neurodegenerative disease that exhibits profound sex-differences, with two thirds of suf-
ferers being  women71. Wegiel et al.72 identified significant reductions in cerebellar volume as a feature of AD 
pathology. In the progression to AD, the cerebellum undergoes significant morphological alterations, including 
extensive loss of Purkinje cells, reductions in dendritic spines, and altered dendritic  arborization73,74. Notably, 
sex hormone receptor expression (ER and PR) within the cerebellum is highly localized to Purkinje  cells20,75. 
Future studies should investigate whether sex hormones play a role AD-related cerebellar atrophy. Given sex 
hormones’ ability to shape cerebellar dynamics in a healthy brain, they might also play a role in age- and disease-
related cerebellar degeneration.

Limitations of the current study should be considered when interpreting these findings and outlining future 
investigations. First, the cerebellum is a challenging structure to probe due to its low signal-to-noise ratio and 
the fact that it contains the vast majority of neurons in only one-ninth of the volume of the  cortex76,77. These 
challenges result in the cerebellum requiring twice as much resting-state data to achieve the same level of reli-
ability as the  cerebrum76. Here, a daily 10-min resting-state scan was collected from a single individual for 30 
consecutive days, providing a longitudinal dataset to examine cerebellar functional connectivity. As the amount 
of data collection needed to achieve intra/inter-reliability is debated within the  field78, future work should explore 
how robust these results are to varying scanning durations.

Second, while the majority of previous cerebellum work has relied on anatomical parcellations, we chose 
a function-based parcellation to capture the cerebellum’s functional subdivisions. The parcellation we applied 
outperformed the standard voxel-based approach and other existing cerebellar atlases across measures of node 
homogeneity, accuracy of functional connectivity representation, and individual identification. However, the 
parcellation was more accurate when identifying cerebro-cerebellar functional connectivity relative to cerebel-
lar  connectivity45, suggesting room for improvement when assessing cerebellar coherence. Additionally, a recent 
publication by Seitzman et al.79 proposes that applying a novel ‘winner-takes-all’ partitioning method within the 
cerebellum produces functionally constrained nodes at an unmatched degree of validity across multiple data sets 
and anatomical atlases. Our results are reported with respect to one  parcellation45, therefore, future work should 
consider applying multiple parcellations to individual datasets to determine whether robust validity of cerebellar 
connectivity can be obtained. Additionally, group-based fixed atlases may lead to loss in individual-level speci-
ficity, unable to capture potentially meaningful changes in the parcellations  themselves80. Future experiments 
would benefit from deriving cerebellar functional networks in an individualized manner.

Third, our preprocessing pipeline used a spatial smoothing filter (4 mm Gaussian kernel) in effort to achieve a 
higher signal-to-noise ratio, but application of the smoothing kernel could partially obscure spatial  specificity81–83. 
Note that we repeated our edgewise regression analyses without a smoothing kernel and results largely paralleled 
findings reported here (see Supplementary Materials Figure S4).

Fourth, resting-state scans are highly sensitive to motion. However, motion was limited to fewer than 130 
microns per-day on average and robust nuisance signal regression procedures were implemented to reduce 
motion bias. We also took steps to remove day-by-day motion tendencies from our measures of network topology 
prior to analysis with hormones. However, replication studies using additional motion correction strategies, such 
as removal of physiological noise contaminants, would further strengthen these  results84. Note that day-by-day 
motion was quantified using a recent filtering approach aimed at reducing high-frequency contamination from 
motion  estimates84,this approach confirmed consistently low motion throughout the experiment (Figure S5).

Fifth, analyses reported here model the relationship of two major ovarian hormones (i.e. estradiol and pro-
gesterone) independently, and thus are unable to address how changes in the ratio of the two steroids impact 
cerebellar network dynamics. Future work should consider the association between network dynamics and 
hormone ratios.

Finally, this study densely sampled a single individual over one menstrual cycle, which hinders the generaliz-
ability of these findings to a larger population. Follow-up studies that use sparse-sampling methods to investigate 
cerebellar dynamics in larger samples of women and men across different hormone states (e.g. menstrual cycle, 
oral contraceptive use, menopause, andropause) will strengthen our understanding of sex steroid hormone 
action in cerebellar function.

Conclusion
Over the past 30 years, cognitive neuroscience has established the cerebellum’s integral role in  cognition85,86, 
dissolving the notion that it is a purely motor-associated region. A parallel literature suggests that the cerebel-
lum is a prominent target of sex  hormones42,43. Here, we demonstrate that endogenous fluctuations in estrogen 
and progesterone over the menstrual cycle impact the intrinsic network properties of the cerebellum. Thus, it 
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is critical to consider the endogenous hormone milieu when investigating functional network properties of the 
human brain.

Methods and materials
Participant. A right-handed Caucasian female, aged 23 years, underwent venipuncture and magnetic reso-
nance imaging (MRI) scans for 30 consecutive days. The participant had no history of neuropsychiatric diagno-
sis, endocrine disorders, or prior head trauma. She had a history of regular menstrual cycles (no missed periods, 
cycle occurring every 26–28 days) and had not taken hormone-based medication in the 12 months prior to the 
study. The participant gave written informed consent and the study was approved by the University of California, 
Santa Barbara Human Subjects Committee and all experiments were performed in accordance with relevant 
guidelines and regulations.

Study design. The participant underwent daily testing for 30 consecutive days, with the first test session 
determined independently of cycle stage for maximal blindness to hormone status. The participant began each 
test session with a behavioral assessment questionnaire followed by an immersive reality spatial navigation task 
(neither reported here,  see37. Time-locked collection of blood draws and MRI experiments were followed each 
day  (see37 for experimental timeline). Serum and whole blood started each day at 10:00 a.m. (± 30 min) when the 
participant gave a blood sample. Endocrine samples were collected, at minimum, after two hours of no food or 
drink consumption (excluding water). The participant refrained from consuming caffeinated beverages before 
each test session. MRI sessions followed venipuncture (± 30 min) and lasted one hour, consisting of structural 
and functional MRI sequences.

Endocrine procedures. A licensed phlebotomist inserted a saline-lock intravenous line into either the 
dominant or non-dominant hand or forearm daily to evaluate hypothalamic-pituitary–gonadal axis hormones, 
including serum levels of gonadal hormones (17β-estradiol, progesterone and testosterone) and pituitary gon-
adotropins (luteinizing hormone (LH) and follicle stimulating hormone (FSH)). One 10 cc mL blood sample was 
collected in a vacutainer SST (BD Diagnostic Systems) each session. The sample clotted at room temperature for 
45 min until centrifugation (2000×g for 10 min) and were then aliquoted into three 1 mL microtubes. Serum 
samples were stored at − 20 °C until assayed. Serum concentrations were determined via liquid chromatography-
mass spectrometry (for all steroid hormones) and immunoassay (for all gonadotropins) at the Brigham and 
Women’s Hospital Research Assay Core. Assay sensitivities, dynamic range, and intra-assay coefficients of vari-
ation (respectively) were as follows: estradiol. 1 pg/mL, 1–500 pg/mL, < 5% relative standard deviation (RSD); 
progesterone, 0.05 ng/mL, 0.05–10 ng/mL, 9.33% RSD; testosterone, 1.0 ng/dL, < 4% RSD. FSH and LH levels 
were determined via chemiluminescent assay (Beckman Coulter). The assay sensitivity, dynamic range, and the 
intra-assay coefficient of variation were as follows: FSH, 0.2 mIU/mL, 0.2–200 mIU/mL, 3.1–4.3%; LH, 0.2 mIU/
mL, 0.2–250 mIU/mL, 4.3–6.4%.

MRI acquisition. The participant underwent a daily magnetic resonance imaging scan on a Siemens 3 T 
Prisma scanner equipped with a 64-channel phased-array head coil. High-resolution anatomical scans were 
collected using a T1-weighted magnetization prepared rapid gradient echo (MPRAGE) sequence (TR = 2500 ms, 
TE = 2.31 ms, TI = 934 ms, flip angle = 7°, 0.8 mm thickness) followed by a gradient echo fieldmap (TR = 758 ms, 
 TE1 = 4.92 ms,  TE2 = 7.38 ms, flip angle = 60°). Next, the participant completed a 10-min resting-state fMRI scan 
using a T∗

2-weighted multiband echo-planar imaging (EPI) sequence sensitive to the blood oxygenation level-
dependent (BOLD) contrast (TR = 720 ms, TE = 37 ms, flip angle = 56°, multiband factor = 8; 72 oblique slices, 
voxel size = 2  mm3). To minimize motion, the head was secured with a custom fitted foam head case (days 8–30; 
https ://casef orge.co/). Overall motion (mean framewise displacement; FWD) was negligible, with fewer than 
130 microns of motion on average each day. Motion was not correlated with estradiol concentrations (Spear-
man’s r = −.06, p = .758 ) but was correlated with progesterone concentrations (Spearman’s r = .42, p = .020). 
However, extensive preprocessing steps were taken to minimize motion bias (see “fMRI preprocessing”).

fMRI preprocessing. Preprocessing was performed using the Statistical Parametric Mapping 12 software 
(SPM12, WeLcome Trust Centre for Neuroimaging, London) in MATLAB. Functional data were realigned and 
unwarped to correct for head motion and geometric deformations, and the mean motion-corrected image was 
coregistered to the daily high-resolution anatomical image. All scans were then registered to a subject-specific 
anatomical template created using Advanced Normalization Tools’ (ANTs) multivariate template construc-
tion. A 4 mm full-width half-maximum (FWHM) isotropic Gaussian kernel was applied. Global signal scaling 
(median = 1000) was applied to account for transient fluctuations in signal intensity across space and time, and 
voxelwise time series were linearly detrended. Residual BOLD signal from each voxel was extracted after remov-
ing the effects of head motion and five physiological noise components (CSF + white matter signal). Additionally, 
mean signal from bilateral cerebral cortex within 7 mm of the cerebellum was included as a nuisance regressor 
to further isolate cerebellar  signal13. Motion was modeled based on the Friston-24 approach, using a Volterra 
expansion of translational/rotational motion parameters, accounting for autoregressive and nonlinear effects 
of head motion on the BOLD  signal87. All nuisance regressors were detrended to match the BOLD time series.

Resting-state functional connectivity analysis. Functional network nodes were defined based on the 
Ren et al.45 100-node cerebellar parcellation. Nodes were assigned to Buckner et al.13 seven-network cerebellar 
atlas based on spatial overlap using a consensus, ‘winner-take-all’ approach: for each parcel, voxels were assigned 

https://caseforge.co/
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a network label based on the Buckner atlas; the whole parcel was then assigned to a network given the plural-
ity of network labels across its voxels. This connectivity-based parcellation was selected because it is superior 
among existing cerebellar atlases with respect to accuracy of functional connectivity detection, node homogene-
ity, and individual  identification45. Additionally, a 100-node atlas was preferred over other node atlas options 
(10 and 300 node) because it exhibited more moderate centering of each node and symmetry between the two 
 hemispheres45.

Each day, a summary time course was extracted per node by taking the first eigenvariate across functional 
 volumes88. The regional timeseries was then decomposed into frequency bands using a maximal overlap dis-
crete wavelet transform (Daubechies extremal phase filter, length = 8). Low-frequency fluctuations in wavelets 
3–6 (~ 0.01–0.17 Hz) were selected for subsequent connectivity  analysis89. Finally, we estimated the spectral 
association between regional time series using magnitude-squared coherence: this yielded a 99 × 99 functional 
association matrix for each day, whose elements indicated the strength of functional connectivity between all 
pairs of nodes (FDR-threshold at q < .05 ). Note that although the Ren “100-node” parcellation was applied, only 
99 nodes were available to be analyzed. The functional atlas deployed here was created using a normalized cut 
spectral clustering (N-cut) approach and one caveat of this approach is that the number of nodes may be less 
than the setting number (K;90).

Statistical analysis. In order to relate cerebellar-hormone relationships to those observed in cerebral net-
works, we applied the statistical analyses reported on in Pritschet et al.37 (see for more detailed methods expla-
nation). In short, day-by-day variation in functional connectivity associated with fluctuations in estradiol and 
progesterone was assessed through an edgewise regression analysis. Data were Z-transformed and edgewise 
coherence was regressed against the hormonal time series to capture day-by-day variation in connectivity rela-
tive to hormonal fluctuations. For each model, we computed robust empirical null distributions of test-statistics 
( β/SE ) via 10,000 iterations of nonparametric permutation testing and we report only those edges surviving a 
conservative threshold of p < .001 to avoid over-interpretation of effects.

To determine the general direction of hormone-related associations with edgewise coherence, we took the 
thresholded statistical parametric maps for each model and estimated nodal association strengths per graph 
theory’s treatment of signed, weighted networks. That is, positive and negative association strengths were com-
puted independently for each of the 99 nodes by summing the suprathreshold positive/negative edges linked to 
them. We then assessed mean association strengths (± 95% confidence intervals) in each direction across the 
various networks in our parcellation.

Here, the 99 nodes were grouped into networks based on their spatial association with large-scale cerebellar 
functional  networks13,45. Through this approach, a total of six cerebral networks are represented in the cerebel-
lum: FCN, DMN, VAN, DAN, SMN, and Limbic Network. The primary Visual Network is not represented in 
the cerebellum.

Next, we assessed associations between sex hormones and macroscale cerebellar network topologies. Briefly, 
we computed measures of between-network integration (the participation coefficient; i.e. the average extent to 
which network nodes are communicating with other networks over time) and within-network integration (global 
efficiency; quantifying the ostensible ease of information transfer across nodes inside a given network). To obtain 
these metrics for each day, the full (99 × 99) FDR-thresholded coherence matrices were subdivided into network 
matrices as defined by our parcellation. We then computed participation coefficients and global efficiencies for 
each network using the relevant functions for weighted graphs in the Brain Connectivity  Toolbox91. Subsequently, 
a linear regression analysis was conducted. Linear models were initially fit across the complete dataset: an exami-
nation of residuals across each network/metric/hormone combination commonly revealed experiment day one 
as a potential outlier, with a median absolute deviation > 3 relative to the overall residual densities. We therefore 
removed it and re-ran the analysis: data were Z-scored, residualized on motion (mean FWD), and models were 
re-fit (p-values reported are FDR-corrected at a level of q < .05).

Data availability
The dataset is openly available at https ://openn euro.org/datas ets/ds002 674.

Code availability
Code is available at https ://githu b.com/tsant ander /Prits chetS antan der20 20_NI_Hormo nes.
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