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ABSTRACT OF THE DISSERTATION

Close the Loop of Neural Perception, Grammar Parsing, and Symbolic Reasoning

by

Qing Li

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2022

Professor Song-Chun Zhu, Chair

Despite the recent remarkable advances in deep learning, we are still far from building ma-

chines with human-like general intelligence, for instance, understanding the world in a fast,

structured, and generalizable way. The dominant stream in contemporary AI hopes to achieve

human-level performance via purely data-driven methods, i.e., fitting deep neural networks

on a massive amount of training data. However, these methods are often trapped in a dilemma

of “big data, small tasks”, and are hard to interpret and generalize.

In this dissertation, we seek a unified framework for general intelligence by integrating

connectionism and symbolism in a neuro-symbolic system. We argue that (i) Neural Net-

work is excellent at imitating human perception from raw signals, (ii) Grammar provides

a universal approach to construct a holistic structured representation of the world, and (iii)

Symbolic Reasoning forms a principled basis to incorporate commonsense knowledge and

perform complex reasoning. Therefore, we propose a neural-symbolic framework by using

grammar as the bridge to connect neural networks and symbolic reasoning. The learning of

such a neural-symbolic framework mimics human’s ability to learn from failures via abductive

reasoning and requires very little supervision. We have developed benchmarks, algorithms,

ii



and practices, across vision and language, from synthetic environments to real-world scenar-

ios, to realize such a unified framework. We hope such a unified framework can contribute

to the long-term goal of building general artificial intelligence like humans.
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CHAPTER 1

Introduction

Humans demonstrate superior capabilities at learning and reasoning over the physical world.

Specifically, humans can (i) quickly learn to recognize unseen objects and events from a lim-

ited amount of data, (2) infer the relationships between individual observations and construct

a holistic understanding of the world, (3) perform complex reasoning over the perceived envi-

ronments to solve a variety of cognitive tasks, and (4) generalize the learned concepts to novel

domains and environments. How can we build a machine that possesses similar capabilities

of learning, understanding, and reasoning like humans?

Recent advances in deep learning have achieved remarkable results on perceptual tasks

such as image classification, speech recognition, and machine translation. However, it is

widely recognized that there still exists a huge gap between perception and cognition to

be bridged, in order to develop truly intelligent systems. Highly cognitive tasks such as

reasoning, planning, and explaining are typically associated with symbolic systems which do

not scale to the high-dimensional signals from the physical world.

To tackle this challenge and build human-like general intelligence, we seek a unified

framework by integrating neural network, grammar, and logic in a neuro-symbolic system,

as exemplified by Fig. 1.1. This unified framework combines the strengths of deep learning

with symbolic approaches, by using the former to learn low-dimensional representations

which significantly reduces the search space for symbolic approaches. Another justification

for such a neuro-symbolic framework is related to human learning. While far from fully

understood, there is an increasing body of evidence that similar mechanisms combining low-
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Figure 1.1: Human-like understanding and reasoning via a neuro-symbolic framework.
This framework consists of three layers: (i) Neural Network (NN) is used as a perception module
to recognize objects, attributes, and actions from the video; (ii) Grammar (AOG) is adopted to
organize the outputs of the neural network in a hierarchical structure; (iii) Logic is a formal method
to perform reasoning and answer a specific question.

level perception with high-level cognition are at play in the human brain.

Specifically, we describe the background, problems, challenges, and our proposed bench-

marks and algorithms to study this direction in the following sections.

1.1 A Tale of Recognition and Cognition

Both pattern recognition and cognitive reasoning have a long history in the field of artificial

intelligence. Next, we briefly discuss each of them, respectively.

A modern definition of pattern recognition [BN06] is: “The field of pattern recognition is

concerned with the automatic discovery of regularities in data through the use of computer

algorithms and with the use of these regularities to take actions such as classifying the

data into different categories.” For example, how to classify an image is a popular task of

pattern recognition in the context of computer vision. Pattern recognition originated from

2



statistics and has undergone substantial development over the past few decades. Modern

approaches to pattern recognition are mainly the use of machine learning, particularly deep

learning [LBH15], due to the increased availability of big data and a new abundance of

processing power.

Reasoning is the capability of drawing logical conclusions from existing information, with

the aim of seeking the truth of an unknown statement. In the field of psychology and phi-

losophy, reasoning is normally considered to be a distinguishing ability possessed by humans

and highly related to humans’ mind and cognition [MS17]. In the past decades, tremen-

dous efforts have been made by the community of artificial intelligence to realize human-like

automated reasoning in an artificial system, such as automated theorem proving [Fit12]

and expert systems [Jac86]. An expert system is a computer system designed to emulate

the decision-making ability of a human expert by reasoning through bodies of knowledge,

represented mainly as if-then rules rather than through conventional procedural code.

Although both pattern recognition and automated reasoning have been well studied sep-

arately and are able to solve plenty of tasks on their own, either of them alone is insufficient

to truly achieve human-like general intelligence. Therefore, researchers have devoted a lot

of efforts to integrating pattern recognition and automated reasoning, which is also known

as neural-symbolic integration [GBD15, BGB17b]. Neural-symbolic integration seeks to inte-

grate principles from neural-networks learning and logical reasoning. It is an interdisciplinary

field involving components of knowledge representation, neuroscience, machine learning, and

cognitive science [GBD15]. Neural-symbolic integration provides an AI system capable of

bridging lower-level information processing (for perception and pattern recognition) and

higher-level abstract knowledge (for reasoning and explanation). Such neural-symbolic sys-

tems have shown promise in various applications, such as fault diagnosis, computational

biology, training and assessment in simulators, and software verification [BGB17b].

However, it is very challenging to seamlessly integrate pattern recognition and automated

reasoning in a desirable way [BGB17b]. When building neural-symbolic models, we have to

3



conciliate the methodologies of distinct areas – namely neural networks and logical reason-

ing – in order to combine the respective advantages and circumvent the shortcomings and

limitations. In particular, it involves how principles of symbolic computation can be imple-

mented by connectionist mechanisms and how sub-symbolic computation can be described

and analyzed in logical terms.

1.2 Closing the Loop of Recognition and Reasoning

In this dissertation, we discuss the integration of pattern recognition and automated rea-

soning from a unique viewpoint and close the loop of recognition and cognition from a

statistical learning perspective. We first introduce a novel benchmark to study this prob-

lem, then discuss the representations, modeling, and learning, and conclude with several

real-world applications.

1.2.1 Benchmark: A HINT from Arithmetic

Humans possess a versatile mechanism for learning concepts [FS16]. Take the arithmetic

examples in Fig. 3.1: When we master concepts like digits and operators, we not only know

how to recognize, write, and pronounce them—what these concepts mean at the perceptual

level, but also know how to compose them into valid expressions—at the syntactic level,

and how to calculate the results by reasoning over these concepts—at the semantic level.

Learning concepts heavily rely on these three-level interweaving meanings. Such observation

also conforms with the classic view of human cognition, which postulates at least three

distinct levels of organizations in computation systems [Pyl84, FP88].

Crucially, a unique property of human concept learning is its systematic generalization.

Once we master the syntax of arithmetic using short expressions, we can parse novel, long

expressions. Similarly, once we master operators’ semantics using small numbers, we can

apply them to large numbers. This property corresponds to the classic idea of the system-

4



aticity (interpolation) and productivity (extrapolation) in cognition: An infinite number of

representations can be constructed from a finite set of primitives, just as the mind can think

an infinite number of thoughts, understand an infinite number of sentences, or learn new

concepts from a seemingly infinite space of possibilities [LUT17, Mar18, Fod75].

To examine the versatile human-like capabilities of concept learning with a focus on sys-

tematic generalization, we take inspiration from arithmetic and introduce a new benchmark

Hint, Handwritten arithmetic with INTegers [LHH21]. The task of Hint is intuitive and

straightforward: Machines take as input images of handwritten expressions and predict the fi-

nal results of expressions, restricted in the integer space. The task of Hint is also challenging:

Concepts in Hint, including digits and operators, are learned in a weakly-supervised man-

ner. Using final results as the only supervision, machines are tasked to learn the three-level

meanings simultaneously—perception, syntax, and semantics of these concepts—to correctly

predict the results. Since there is no supervision on any intermediate values or representa-

tions, the three-level meanings are presumably intertwined during learning. To provide a

holistic and rigorous test on whether learning machines can generalize the learned concepts,

we introduce a carefully designed evaluation scheme instead of using a typical i.i.d. test

split. This new scheme includes five subsets, focusing on generalization capabilities (i.e.,

interpolation and extrapolation) at different levels of meanings (i.e., perception, syntax, and

semantics).

1.2.2 Representation, Modeling, and Learning

To build a system that is able to integrate recognition and reasoning, we need to consider

various aspects including representation, modeling, and learning.

5



1.2.2.1 Representation: Connectionism v.s. Symbolism

First, what representation should we adopt to bridge recognition and reasoning? Basically, we

can choose the representation from two paradigms: connectionism or symbolism. Central to

connectionism is distributed representations [Hin84]. In a connectionist network, a distributed

representation indicates that some concept or meaning is represented by a pattern of activity

across a number of processing units, a.k.a. neurons. We usually adopt fixed-dimensional con-

tinuous vectors as distributed representations and thus can implement the whole system as

an end-to-end neural network. Such an end-to-end neural network is a homogeneous model

and can be optimized very fast via GPUs in practice. It is easy to transfer neural models

and algorithms to other domains because they usually require little domain knowledge. Dis-

tributed representations also make the learning of neural networks robust to noisy inputs and

robustness is a highly desirable property in pattern recognition, because real-world signals,

like images and speeches, usually include a lot of noise. However, distributed representations

have been shown to be insufficient for cognitive reasoning tasks that require systematic gen-

eralization [LB18]. Another disadvantage of distributed representations is that they make the

internal structure of a trained network very difficult to interpret, because the meaning is as-

sociated with a group activity of neurons, instead of single ones. The uninterpretable nature

of distributed representations makes it nearly impossible to inject prior domain knowledge

into the neural network as well as hard to diagnose wrong predictions from the model.

The other choice of representation is a physical symbol system [NS07] (also called a formal

system) adopted by symbolism. A physical symbol system takes physical patterns (symbols),

combines them into structures (expressions), and manipulates them (using processes) to

produce new expressions. In contrast to distributed representations, each symbol alone in

a symbol system represents an atomic concept or meaning and more complicated concepts

are formed by combining multiple symbols in a certain syntax. Besides, symbol systems

are more interpretable and support stronger abstraction and generalization than distributed

representations. However, building a symbol system for a domain requires strong domain-
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specific knowledge and the built system is usually fragile and inflexible.

The physical symbol system hypothesis [NS07] claims that “a physical symbol system has

the necessary and sufficient means for general intelligent action.” This claim implies both

that human thinking is a kind of symbol manipulation (because a symbol system is necessary

for intelligence) and that machines can be intelligent (because a symbol system is sufficient

for intelligence). This hypothesis is a core part of AI research in the last century, but it has

been criticized strongly by various parties. A common critical view is that the hypothesis

seems appropriate for higher-level intelligence such as playing chess, but less appropriate for

commonplace intelligence such as vision.

In this dissertation, we adopt a symbol system as the internal representation. Particularly,

the atomic symbols are grounded in the input raw signals, and the syntax and the semantics

of the symbol system are learned from the provided examples.

1.2.2.2 Neural-Grammar-Symbolic Model

In this dissertation, we propose a novel Neural-Grammar-Symbolic (NGS) model [LHH20a]

for the integration of pattern recognition and automated reasoning. Particularly, we introduce

a grammar parsing model to bridge neural perception and logical reasoning. Next, we will

briefly discuss the proposed NGS model in the context of Hint.

Neural Perception A neural network is used as a perception module that maps a high-

dimensional input to a normalized probability distribution of the hidden symbolic sequence.

The distributed representation learned by the neural network makes the model robust to

noise in the raw inputs.

Grammar Parsing While neural networks are powerful at modeling the mapping from

raw inputs to atomic symbols. Grammar is a natural choice to model the compositional and

recursive properties in sequence data. A grammar model is supposed to parse a sequence of
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symbols into a structured representation like a parse tree.

Symbolic Reasoning Given the structured representation, a symbolic reasoning module

performs deterministic inference using the background knowledge to infer the final predic-

tions. The inference rules generate a reasoning path that leads to the predicted output from

the structured representation and the used background knowledge.

1.2.2.3 Learning by Deduction-Abduction

Tasks like Hint usually provide weak supervision for learning, which means that we only

observe the raw inputs and the final outputs, with the intermediate symbolic representa-

tions being hidden. In the proposed NGS model, the model spaces for different modules are

heterogeneous, e.g ., the perception module is a continuous neural network using distributed

representations while the reasoning module might use discrete logic or programs. Therefore,

it is infeasible to perform an end-to-end optimization for such a heterogeneous model.

To address this optimization issue, we derive a general learning framework from a prob-

abilistic perspective and it turns out that the key to learning a heterogeneous model with

weak supervision is to perform statistical sampling from the posterior distribution of the

intermediate symbolic representations given the raw inputs and the final supervision in the

maximum likelihood estimation.

Sampling from three heterogeneous spaces is not easy. The first natural choice is to use

rejection sampling. The rejection sampling method first generates a sample from a candidate

distribution formed by the model output and then decides whether or not to keep the sample

based on the posterior probability of this sample. This method is conceptually simple but

very inefficient in practice. The latent space of the intermediate symbolic representations

is very large and most of it has zero probability in the posterior distribution. Thus the

optimization is very time-consuming since it requires generating a huge number of samples

over the latent space, in the hope that some samples may be lucky enough to hit the non-
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(a) Visual Reasoning

The two cars A and B are 20 kilometers apart. Car B is in front and 
Car A is behind. The two cars depart at the same time. Car A catches 
up with Car B after 2 hours. Car B is traveling 50 kilometers per hour 
and Car A is traveling at what speed every hour?
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Figure 1.2: A wide range of applications of closing the loop of recognition and reasoning, across
vision and language.

zero regions in the posterior distribution. In practice, the learning based on the rejection

sampling converges slowly or even fails to converge without pre-training the neural perception

module. We also find out that when only considering the learning of the neural perception,

the rejection sampling method coincides with the REINFORCE algorithm, which is one of

the popular policy gradient methods of reinforcement learning and widely used in previous

neural-symbolic models.

Inspired by the human ability to learn from failures via abductive reasoning [Mag09,

Zho19a], we propose a novel deduction-abduction [LHH20a, LHH21] strategy to coordinate

the learning of three heterogeneous modules in the proposed model. Specifically, during

learning, the system first performs greedy deduction over these modules to propose an ini-

tial, rough solution, which is likely to produce a wrong result. Abduction over the three

heterogeneous spaces is then applied in a top-down manner to search the initial solution’s

neighborhood, which updates the solution to explain the ground-truth result better. This

revised solution provides pseudo supervision on the intermediate values and representations,

which are then used to train each module individually. The deduction-abduction strategy

makes the learning much more efficient than the rejection sampling method. We prove that

the multi-step abduction process behaves as a Metropolis-Hastings sampler for the posterior

distribution of the intermediate symbolic representations.
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1.2.3 Various Applications

To demonstrate the practical values of the proposed framework for closing the loop of recog-

nition and reasoning, we apply it for several applications in different domains across vision

and language, including visual reasoning [LHH20c, LFY18], math word problems [HLC21,

HLG21], embodied reference understanding [CLK21], and grounded grammar induction [HLZ21],

as exemplified in Fig. 1.2.

1.3 Contributions

This dissertation aims to close the loop of recognition and reasoning from a statistical learning

perspective and it is mainly addressed from the aforementioned three perspectives: bench-

marks, models, and applications.

The contributions of our work can be summarized as follows:

‚ A new benchmark: Handwritten arithmetic with INTegers (Hint). This benchmark

is simple and effective to study various aspects of the integration of recognition and

reasoning. It provides us a test-bed to lay the theoretical foundation for closing the

loop of recognition and reasoning from a statistical learning perspective.

‚ A new model: Neural-Grammar-Symbolic (NGS). We propose a grammar parsing

module to bridge neural perception and symbolic reasoning. The proposed NGS model

is an implementation of a symbol system with combinatorial syntactic and semantic

structures, which is arguably a necessary and sufficient means of general intelligence.

‚ A new learning strategy: Deduction-Abduction. Inspired by the human ability to

learn from failures, we derive a novel deduction-abduction strategy to conciliate the

joint optimization of three heterogeneous modules, which makes the learning much

faster and more data-efficient.
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‚ Applications: visual reasoning, math word problems, embodied reference understand-

ing, and grounded grammar induction. We apply the proposed model and learning

method for these applications and obtain promising results compared with the prior

methods.

In the following chapters, we introduce more details about these contributions. In the

last chapter, we conclude this dissertation by summarizing our work and discussing potential

directions for future research in this exciting area.
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CHAPTER 2

Bridging Neural Perception and Symbolic Reasoning

via Grammar Parsing

The goal of neural-symbolic computation is to integrate the connectionist and symbolist

paradigms. Prior methods learn the neural-symbolic models using reinforcement learning

(RL) approaches, which ignore the error propagation in the symbolic reasoning module

and thus converge slowly with sparse rewards. In this chapter, we address these issues and

close the loop of neural-symbolic learning by (1) introducing the grammar model as a

symbolic prior to bridge neural perception and symbolic reasoning, and (2) proposing a

novel back-search algorithm which mimics the top-down human-like learning procedure to

propagate the error through the symbolic reasoning module efficiently. We further interpret

the proposed learning framework as maximum likelihood estimation using Markov chain

Monte Carlo sampling and the back-search algorithm as a Metropolis-Hastings sampler. The

experiments are conducted on two weakly-supervised neural-symbolic tasks: (1) handwritten

formula recognition on the newly introduced HWF dataset; (2) visual question answering on

the CLEVR dataset. The results show that our approach significantly outperforms the RL

methods in terms of performance, converging speed, and data efficiency.

2.1 Introduction

Integrating robust connectionist learning and sound symbolic reasoning is a key challenge

in modern Artificial Intelligence. Deep neural networks [LBH15, LB95, HS97] provide us
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Figure 2.1: Comparison between the original neural-symbolic model learned by REINFORCE (NS-
RL) and the proposed neural-grammar-symbolic model learned by back-search (NGS-BS). In NS-
RL, the neural network predicts an invalid formula, causing a failure in the symbolic reasoning
module. There is no backward pass in this example since it generates zero reward. In contrast,
NGS-BS predicts a valid formula and searches a correction for its prediction. The neural network
is updated using this correction as the pseudo label.

powerful and flexible representation learning that has achieved state-of-the-art performances

across a variety of AI tasks such as image classification [KSH12, SLJ15, HZR16], machine

translation [SVL14], and speech recognition [GMH13]. However, it turns out that many

aspects of human cognition, such as systematic compositionality and generalization [FP88,

Mar98, FL02, CS14, Mar18, LB18], cannot be captured by neural networks. On the other

hand, symbolic reasoning supports strong abstraction and generalization but is fragile and

inflexible. Consequently, many methods have focused on building neural-symbolic models to

combine the best of deep representation learning and symbolic reasoning [Sun94, GLG08,

BGH09, BGB17b, YWG18].
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Recently, this neural-symbolic paradigm has been extensively explored in the tasks of

the visual question answering (VQA) [YWG18, VDL19, MGK19], vision-language naviga-

tion [AWT18, FHC18], embodied question answering [DDG18, DGL18], and semantic parsing

[LBL16a, YZH18], often with weak supervision. Concretely, for these tasks, neural networks

are used to map raw signals (images/questions/instructions) to symbolic representations

(scenes/programs/actions), which are then used to perform symbolic reasoning/execution to

generate final outputs. Weak supervision in these tasks usually provides pairs of raw inputs

and final outputs, with intermediate symbolic representations unobserved. Since symbolic

reasoning is non-differentiable, previous methods usually learn the neural-symbolic models

by policy gradient methods like REINFORCE. The policy gradient methods generate samples

and update the policy based on the generated samples that happen to hit high cumulative

rewards. No efforts are made to improve each generated sample to increase its cumulative

reward. Thus the learning has been proved to be time-consuming because it requires gener-

ating a large number of samples over a large latent space of symbolic representations with

sparse rewards, in the hope that some samples may be lucky enough to hit high rewards so

that such lucky samples can be utilized for updating the policy. As a result, policy gradients

methods converge slowly or even fail to converge without pre-training the neural networks

on fully-supervised data.

To model the recursive compositionality in a sequence of symbols, we introduce the gram-

mar model to bridge neural perception and symbolic reasoning. The structured symbolic

representation often exhibits compositional and recursive properties over individual symbols

in it. Correspondingly, the grammar models encode symbolic prior about composition rules,

thus can dramatically reduce the solution space by parsing the sequence of symbols into

valid sentences. For example, in the handwritten formula recognition problem, the grammar

model ensures that the predicted formula is always valid, as shown in Figure 2.1.

To make the neural-symbolic learning more efficient, we propose a novel back-search

strategy which mimics human’s ability to learn from failures via abductive reasoning [Mag09,
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Zho19a]. Specifically, the back-search algorithm propagates the error from the root node to

the leaf nodes in the reasoning tree and finds the most probable correction that can generate

the desired output. The correction is further used as a pseudo label for training the neural

network. Figure 2.1 shows an exemplar backward pass of the back-search algorithm. We

argue that the back-search algorithm makes a first step towards closing the learning loop

by propagating the error through the non-differentiable grammar parsing and symbolic rea-

soning modules. We also show that the proposed multi-step back-search algorithm can serve

as a Metropolis-Hastings sampler which samples the posterior distribution of the symbolic

representations in the maximum likelihood estimation in subsubsection 2.3.2.3.

We conduct experiments on two weakly-supervised neural-symbolic tasks: (1) handwrit-

ten formula recognition on the newly introduced HWF dataset (Hand-Written Formula),

where the input image and the formula result are given during training, while the formula

is hidden; (2) visual question answering on the CLEVR dataset. The question, image, and

answer are given, while the functional program generated by the question is hidden. The

evaluation results show that the proposed Neural-Grammar-Symbolic (NGS) model with

back-search significantly outperforms the baselines in terms of performance, convergence

speed, and data efficiency. The ablative experiments also demonstrate the efficacy of the

multi-step back-search algorithm and the incorporation of grammar in the neural-symbolic

model.

2.2 Related Work

Neural-symbolic Integration. Researchers have proposed to combine statistical learn-

ing and symbolic reasoning in the AI community, with pioneer works devoted to different

aspects including representation learning and reasoning [Sun94, GLG08, MDK18], abduc-

tive learning [DZ17, DXY19, Zho19a], knowledge abstraction [HOT06, BGH09], knowledge

transfer [FFG89, YCX09], etc. Recent research shifts the focus to the application of neural-
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symbolic integration, where a large amount of heterogeneous data and knowledge descrip-

tions are needed, such as neural-symbolic VQA [YWG18, VDL19, MGK19, LFY18, LTJ18,

LHH20c], semantic parsing in Natural Language Processing (NLP) [LBL16a, YZH18], math

word problem [LC19, LSR19] and program synthesis [EG18, KMP18, MDK18]. Different

from previous methods, the proposed NGS model considers the compositionality and re-

cursivity in natural sequences of symbols and brings together the neural perception and

symbolic reasoning module with a grammar model.

Grammar Model. Grammar model has been adopted in various tasks for its advantage in

modeling compositional and recursive structures, like image parsing [TCY05, HZ05, ZM07,

ZZ11, FD18], video parsing [GSS09, QJZ18, QJH20], scene understanding [HQZ18, HQX18,

QZH18, JQZ18, CHY19], and task planning [XLE18]. By integrating the grammar into the

neural-symbolic task as a symbolic prior for the first time, the grammar model ensures the

desired dependencies and structures for the symbol sequence and generates valid sentences for

symbolic reasoning. Furthermore, it improves the learning efficiency significantly by shrinking

the search space with the back-search algorithm.

Policy Gradient. Policy gradient methods like REINFORCE [Wil92] are the most com-

monly used algorithm for the neural-symbolic tasks to connect the learning gap between neu-

ral networks and symbolic reasoning [MTS18, MGK19, AKL17, DGL18, BHD18, GPL17a].

However, original REINFORCE algorithm suffers from large sample estimate variance, sparse

rewards from cold start and exploitation-exploration dilemma, which lead to unstable learn-

ing dynamics and poor data efficiency. Many papers propose to tackle this problem [LBL16a,

GPL17a, LNB18b, WZG18, ALS19a]. Specifically, [LBL16a] uses iterative maximum likeli-

hood to find pseudo-gold symbolic representations, and then add these representations to

the REINFORCE training set. [GPL17a] combines the systematic beam search employed

in maximum marginal likelihood with the greedy randomized exploration of REINFORCE.

[LNB18b] proposes Memory Augmented Policy Optimization (MAPO) to express the ex-

pected return objective as a weighted sum of an expectation over the high-reward history
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trajectories, and a separate expectation over new trajectories. Although utilizing positive

representations from either beam search or past training process, these methods still cannot

learn from negative samples and thus fail to explore the solution space efficiently. On the

contrary, we propose to diagnose and correct the negative samples through the back-search

algorithm under the constraint of grammar and symbolic reasoning rules. Intuitively speak-

ing, the proposed back-search algorithm traverses around the negative sample and find a

nearby positive sample to help the training.

2.3 Neural-Grammar-Symbolic Model (NGS)

In this section, we will first describe the inference and learning algorithms of the proposed

neural-grammar-symbolic (NGS) model. Then we provide an interpretation of our model

based on maximum likelihood estimation (MLE) and draw the connection between the pro-

posed back-search algorithm and Metropolis-Hastings sampler. We further introduce the

task-specific designs in section 2.4.

2.3.1 Inference

In a neural-symbolic system, let x be the input (e.g . an image or question), z be the hidden

symbolic representation, and y be the desired output inferred by z. The proposed NGS model

combines neural perception, grammar parsing, and symbolic reasoning modules efficiently to

perform the inference.

Neural Perception. The neural network is used as a perception module which maps the

high-dimensional input x to a normalized probability distribution of the hidden symbolic
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representation z:

pθpz|xq “ softmaxpϕθpz, xqq (2.1)

“
exppϕθpz, xqq

ř

z1 exppϕθpz1, xqq
, (2.2)

where ϕθpz, xq is a scoring function or a negative energy function represented by a neural

network with parameters θ.

Grammar Parsing. Take z as a sequence of individual symbols: z “ pz1, z2, ..., zlq, zi P Σ,

where Σ denotes the vocabulary of possible symbols. The neural network is powerful at

modeling the mapping between x and z, but the recursive compositionality among the indi-

vidual symbols zi is not well captured. Grammar is a natural choice to tackle this problem

by modeling the compositional properties in sequence data.

Take the context-free grammar (CFG) as an example. In formal language theory, a CFG

is a type of formal grammar containing a set of production rules that describe all possible

sentences in a given formal language. Specifically, a context-free grammar G in Chomsky

Normal Form is defined by a 4-tuple G“ pV,Σ, R, Sq, where

‚ V is a finite set of non-terminal symbols that can be replaced by/expanded to a se-

quence of symbols.

‚ Σ is a finite set of terminal symbols that represent actual words in a language, which

cannot be further expanded. Here Σ is the vocabulary of possible symbols.

‚ R is a finite set of production rules describing the replacement of symbols, typically of

the form AÑBC or AÑα, where A,B,C PV and α P Σ. A production rule replaces

the left-hand side non-terminal symbols by the right-hand side expression. For example,

AÑBC|α means that A can be replaced by either BC or α.

‚ S PV is the start symbol.

Given a formal grammar, parsing is the process of determining whether a string of symbolic
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nodes can be accepted according to the production rules in the grammar. If the string is

accepted by the grammar, the parsing process generates a parse tree. A parse tree represents

the syntactic structure of a string according to certain CFG. The root node of the tree is the

grammar root. Other non-leaf nodes correspond to non-terminals in the grammar, expanded

according to grammar production rules. The leaf nodes are terminal nodes. All the leaf nodes

together form a sentence.

In neural-symbolic tasks, the objective of parsing is to find the most probable z that can

be accepted by the grammar:

ẑ “ arg max
zPLpGq

pθpz|xq (2.3)

where LpGq denotes the language of G, i.e., the set of all valid z that accepted by G.

Traditional grammar parsers can only work on symbolic sentences. [QJZ18] proposes a

generalized version of Earley Parser, which takes a probability sequence as input and outputs

the most probable parse. We use this method to compute the best parse ẑ in Equation 2.3.

Symbolic Reasoning. Given the parsed symbolic representation ẑ, the symbolic reason-

ing module performs deterministic inference with ẑ and the domain-specific knowledge ∆.

Formally, we want to find the entailed sentence ŷ given ẑ and ∆:

ŷ : ẑ ^ ∆ |ù ŷ (2.4)

Since the inference process is deterministic, we re-write the above equation as:

ŷ “ fpẑ; ∆q, (2.5)

where f denotes complete inference rules under the domain ∆. The inference rules generate

a reasoning path τ̂ that leads to the predicted output ŷ from ẑ and ∆. The reasoning path

τ̂ has a tree structure with the root node ŷ and the leaf nodes from ẑ or ∆.
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2.3.2 Learning

It is challenging to obtain the ground truth of the symbolic representation z, and the rules

(i.e. grammar rules and the symbolic inference rules) are usually designed explicitly by

human knowledge. We formulate the learning process as a weakly-supervised learning of the

neural network model θ where the symbolic representation z is missing, and the grammar

model G, domain-specific language ∆, the symbolic inference rules f are given.

2.3.2.1 1-step back-search (1-BS)

As shown in Figure 2.1, previous methods using policy gradient to learn the model discard

all the samples with zero reward and learn nothing from them. It makes the learning process

inefficient and unstable. However, humans can learn from the wrong predictions by diag-

nosing and correcting the wrong answers according to the desired outputs with top-down

reasoning. Based on such observation, we propose a 1-step back-search (1-BS) algorithm

which can correct wrong samples and use the corrections as pseudo labels for training. The

1-BS algorithm closes the learning loop since the error can also be propagated through the

non-differentiable grammar parsing and symbolic reasoning modules. Specifically, we find the

most probable correction for the wrong prediction by back-tracking the symbolic reasoning

tree and propagating the error from the root node into the leaf nodes in a top-down manner.

The 1-BS algorithm is implemented with a priority queue as shown in Algorithm 1. The

1-BS gradually searches down the reasoning tree τ̂ starting from the root node S to the leaf

nodes. Specifically, each element in the priority queue represents a valid change, defined as

a 3-tuple pA,αA, pq:

‚ A PV YΣ is the current visiting node.

‚ αA is the expected value on this node, which means if the value of A is changed to αA,

ẑ will execute to the ground-truth answer y, i.e. y “ fpẑpAÑαAq; ∆qq.

‚ p is the visiting priority, which reflects the potential of changing the value of A.
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Formally, the priority for this change is defined as the probability ratio:

ppAÑαAq “

$

&

%

1´ppAq

ppAq
, if A R Σ

ppαAq

ppAq
, if A P Σ & αA P Σ.

(2.6)

where ppAq is calculated as Equation 2.1,if A P Σ; otherwise, it is defined as the product of

the probabilities of all leaf nodes in A. If A P Σ and αA R Σ, it means we need to correct the

terminal node to a value that is not in the vocabulary. Therefore, this change is not possible

and thus should be discarded.

The error propagation through the reasoning tree is achieved by a solvepB,A, αA|∆, Gq

function, which aims at computing the expected value αB of the child node B from the ex-

pected value αA of its parent node A, i.e., finding αB satisfying fpẑpB ÑαBq; ∆qq “ fpẑpAÑ

αAq; ∆qq “ y. Please refer to the supplementary material for some illustrative examples of

the 1-BS process.

In the 1-BS, we make a greedy assumption that only one symbol can be replaced at a

time. This assumption implies only searching the neighborhood of ẑ at one-step distance. In

subsubsection 2.3.2.3, the 1-BS is extended to the multi-step back-search algorithm, which

allows searching beyond one-step distance.

2.3.2.2 Maximum Likelihood Estimation

Since z is conditioned on x and y is conditioned on z, the likelihood for the observation px, yq

marginalized over z is:

ppy|xq “
ÿ

z

ppy, z|xq “
ÿ

z

ppy|zqpθpz|xq. (2.7)

The learning goal is to maximize the observed-data log likelihood Lpx, yq “ log ppy|xq.
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Algorithm 1 1-step back-search (1-BS)

1: Input: ẑ, S, y
2: q “PriorityQueuepq

3: q.pushpS, y, 1q

4: while A,αA, p“ q.poppq do
5: if A P Σ then
6: z˚ “ ẑpAÑαAq

7: return z˚

8: end if
9: for B P childpAq do
10: αB “ solvepB,A, αA|∆, Gq

11: q.pushpB,αB, ppB ÑαBqq

12: end for
13: end while
14: return ∅

By taking derivative, the gradient for the parameter θ is given by

∇θLpx, yq “∇θ log ppy|xq

“
1

ppy|xq
∇θppy|xq

“
ÿ

z

ppy|zqpθpz|xq
ř

z1 ppy|z1qpθpz1|xq
∇θ log pθpz|xq

“Ez„ppz|x,yqr∇θ log pθpz|xqs, (2.8)

where ppz|x, yq is the posterior distribution of z given x, y. Since ppy|zq is computed by the

symbolic reasoning module and can only be 0 or 1, ppz|x, yq can be written as:

ppz|x, yq “
ppy|zqpθpz|xq

ř

z1 ppy|z1qpθpz1|xq

“

$

&

%

0, for z RQ

pθpz|xq
ř

z1PQ pθpz1|xq
, for z PQ

(2.9)

where Q“ tz : ppy|zq “ 1u “ tz : fpz; ∆q “ yu is the set of z that generates y. Usually Q is a

very small subset of the whole space of z.
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Equation 2.9 indicates that z is sampled from the posterior distribution ppz|x, yq, which

only has non-zero probabilities on Q, instead of the whole space of z. Unfortunately, com-

puting the posterior distribution is not efficient as evaluating the normalizing constant for

this distribution requires summing over all possible z, and the computational complexity of

the summation grows exponentially.

Nonetheless, it is feasible to design algorithms that sample from this distribution us-

ing Markov chain Monte Carlo (MCMC). Since z is always trapped in the modes where

ppz|x, yq “ 0, the remaining question is how we can sample the posterior distribution ppz|x, yq

efficiently to avoid redundant random walk at states with zero probabilities.

2.3.2.3 m-BS as Metropolis-Hastings Sampler

Algorithm 2 m-step back-search (m-BS)

1: Hyperparameters: T , λ
2: Input: ẑ, y
3: zp0q “ ẑ
4: for tÐ 0 to T ´1 do
5: z˚ “ 1-BSpzt, yq

6: draw u„Up0, 1q

7: if uďλ and z˚ ‰∅ then
8: zt`1 “ z˚

9: else
10: zt`1 “RandomWalkpztq
11: end if
12: end for
13: return zT

14:

15: function RandomWalk(zt)
16: sample z˚ „ gp¨|ztq

17: compute acceptance ratio a“minp1, pθpz˚|xq

pθpzt|xq
q

18: draw u„Up0, 1q

19: zt`1 “

"

z˚, if uď a
zt, otherwise.

20: end function

In order to perform efficient sampling, we extend the 1-step back search to a multi-step
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back search (m-BS), which serves as a Metropolis-Hastings sampler.

A Metropolis-Hastings sampler for a probability distribution πpsq is a MCMC algorithm

that makes use of a proposal distribution Qps1|sq from which it draws samples and uses an

acceptance/rejection scheme to define a transition kernel with the desired distribution πpsq.

Specifically, given the current state s, a sample s1 ‰ s drawn from Qps1|sq is accepted as the

next state with probability

Aps, s1
q “min

"

1,
πps1qQps|s1q

πpsqQps1|sq

*

. (2.10)

Since it is impossible to jump between the states with zero probability, we define p1pz|x, yq

as a smoothing of ppz|x, yq by adding a small constant ϵ to ppy|zq:

p1
pz|x, yq “

rppy|zq`ϵspθpz|xq
ř

z1rppy|z1q`ϵspθpz1|xq
(2.11)

As shown in Algorithm 2, in each step, the m-BS proposes 1-BS search with probability

of λ (λă 1) and random walk with probability of 1´λ. The combination of 1-BS and random

walk helps the sampler to traverse all the states with non-zero probabilities and ensures the

Markov chain to be ergodic.

Random Walk: Defining a Poisson distribution for the random walk as

gpz1|z2q “Poissonpdpz1, z2q; βq, (2.12)

where dpz1, z2q denotes the edit distance between z1, z2, and β is equal to the expected value of

d and also to its variance. β is set as 1 in most cases due to the preference for a short-distance

random walk. The acceptance ratio for sampling a z˚ from gp¨|ztq is a“minp1, rpzt, z˚qq,
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where

rpzt, z˚
q “

qpz˚qp1´λqgpzt|z˚q

qpztqp1´λqgpz˚|ztq

“
pθpz

˚|xq

pθpzt|xq
. (2.13)

1-BS: While proposing the z˚ with 1-BS, we search a z˚ that satisfies ppy|z˚q “ 1. If z˚

is proposed, the acceptance ratio for is a“minp1, rpzt, z˚qq, where

rpzptq, z˚
q “

qpz˚qr0`p1´λqgpzt|z˚qs

qpztq ¨ rλ`p1´λqgpz˚|zptqqs
(2.14)

“
1`ϵ

ϵ
¨
pθpz

˚|xq

pθpzt|xq
¨

p1´λqgpzt|z˚q

λ`p1´λqgpz˚|ztq
.

qpzq “ rppy|zq`ϵspθpz|xq is denoted as the numerator of p1pz|x, yq. With an enough small ϵ,

1`ϵ
ϵ

" 1, rpzt, z˚q ą 1, we will always accept z˚.

Notably, the 1-BS algorithm tries to transit the current state into a state where z˚ “ 1-

BSpzt, yq, making movements in directions of increasing the posterior probability. Similar to

the gradient-based MCMCs like Langevin dynamics [DK86, WT11], this is the main reason

that the proposed method can sample the posterior efficiently.

2.3.2.4 Comparison with Policy Gradient

Since grammar parsing and symbolic reasoning are non-differentiable, most of the previous

approaches for neural-symbolic learning use policy gradient like REINFORCE to learn the

neural network. Treat pθpz|xq as the policy function and the reward given z, y can be written

as:

rpz, yq “

$

&

%

0, if fpz; ∆q ‰ y.

1, if fpz; ∆q “ y.
(2.15)
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The learning objective is to maximize the expected reward under current policy pθ:

Rpx, yq “Ez„pθpz|xqq rpz, yq “
ÿ

z

pθpz|xqrpz, yq. (2.16)

Then the gradient for θ is:

∇θRpx, yq “
ÿ

z

rpz, yqpθpz|xq∇θ log pθpz|xq

“Ez„pθpz|xqqrrpz, yq∇θ log pθpz|xqs. (2.17)

We can approximate the expectation using one sample at each time, and then we get the

REINFORCE algorithm:

∇θ “ rpz, yq∇θ log pθpz|xq, z „ pθpz|xq

“

$

&

%

0, if fpz; ∆q ‰ y.

∇θ log pθpz|xq, if fpz; ∆q “ y.
(2.18)

Equation 2.18 reveals the gradient is non-zero only when the sampled z satisfies fpz; ∆q “

y. However, among the whole space of z, only a very small portion can generate the desired

y, which implies that the REINFORCE will get zero gradients from most of the samples. This

is why the REINFORCE method converges slowly or even fail to converge, as also shown

from the experiments in section 2.4.

2.4 Experiments and Results

2.4.1 Handwritten Formula Recognition

2.4.1.1 Experimental Setup

Task definition. The handwritten formula recognition task tries to recognize each math-

ematical symbol given a raw image of the handwritten formula. We learn this task in a
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weakly-supervised manner, where raw image of the handwritten formula is given as input

data x, and the computed results of the formulas is treated as outputs y. The symbolic

representation z that represent the ground-truth formula composed by individual symbols is

hidden. Our task is to predict the formula, which could further be executed to calculate the

final result.

HWF Dataset. We generate the HWF dataset based on the CROHME 2019 Offline

Handwritten Formula Recognition Task1. First, we extract all symbols from CROHME and

only keep ten digits (0„9) and four basic operators (`,´,ˆ, ˜). Then we generate formulas

by sampling from a pre-defined grammar that only considers arithmetic operations over

single-digit numbers. For each formula, we randomly select symbol images from CROHME.

Overall, our dataset contains 10K training formulas and 2K test formulas.

Evaluation Metrics. We report both the calculation accuracy (i.e. whether the calcu-

lation of predicted formula yields to the correct result) and the symbol recognition accuracy

(i.e. whether each symbol is recognized correctly from the image) on the synthetic dataset.

Models. In this task, we use LeNet [LeC15] as the neural perception module to process

the handwritten formula. Before feeding into LeNet, the original image of an formula is

pre-segmented into a sequence of sub-images, and each sub-image contains only one symbol.

The symbolic reasoning module works like a calculator, and each inference step computes

the parent value given the values of two child nodes (left/right) and the operator. The

solvepB,A, αAq function in 1-step back-search algorithm works in the following way for

mathematical formulas:

‚ If B is A’s left or right child, we directly solve the equation αB

À

childRpAq “αA or

childLpAq
À

αB “αA to get αB, where
À

denotes the operator.

‚ If B is an operator node, we try all other operators and check whether the new formula

can generate the correct result.

1https://www.cs.rit.edu/~crohme2019/task.html
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We conduct experiments by comparing the following variants of the proposed model:

‚ NGS-RL: learning the NGS model with REINFORCE.

‚ NGS-MAPO: learning the NGS model by Memory Augmented Policy Optimization

(MAPO) [LNB18b], which leverages a memory buffer of rewarding samples to reduce

the variance of policy gradient estimates.

‚ NGS-RL-Pretrain: NGS-RL with LeNet pre-trained on a small set of fully-supervised

data.

‚ NGS-MAPO-Pretrain: NGS-MAPO with pre-trained LeNet.

‚ NGS-m-BS: learning the NGS model with the proposed m-step back-search algorithm.

2.4.1.2 Results and Analyses

Learning Curve. Figure 2.2 shows the learning curves of different models. The proposed

NGS-m-BS converges much faster and achieves higher accuracy compared with other models.

NGS-RL fails without pre-training and rarely improves during the entire training process.

NGS-MAPO can learn the model without pre-training, but it takes a long time to start

efficient learning, which indicates that MAPO suffers from the cold-start problem and needs

time to accumulate rewarding samples. Pre-training the LeNet solves the cold start problem

for NGS-RL and NGS-MAPO. However, the training curves for these two models are quite

noisy and are hard to converge even after 100k iterations. Our NGS-m-BS model learns from

scratch and avoids the cold-start problem. It converges quickly with nearly perfect accuracy,

with a much smoother training curve than the RL baselines.

Back-Search Step. Figure 2.3 illustrates the comparison of the various number of steps

in the multi-step back-search algorithm. Generally, increasing the number of steps will in-

crease the chances of correcting wrong samples, thus making the model converge faster.

However, increasing the number of steps will also increase the time consumption of each

iteration.
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Figure 2.2: The learning curves of the calculation accuracy and the symbol recognition accuracy
for different models.

Data Efficiency. Table 2.1 and Table 2.2 show the accuracies on the test set while using

various percentage of training data. All models are trained with 15K iterations. It turns out

the NGS-m-BS is much more data-efficient than the RL methods. Specifically, when only

using 25% of the training data, NGS-m-BS can get a calculation accuracy of 93.3%, while

NGS-MAPO only gets 5.1%.

Table 2.1: The calculation accuracy on the test set using various percentage of training data.

Model 25% 50 % 75 % 100%

NGS-RL 0.035 0.036 0.034 0.034

NGS-MAPO 0.051 0.095 0.305 0.717

NGS-RL-Pretrain 0.534 0.621 0.663 0.685

NGS-MAPO-Pretrain 0.687 0.773 0.893 0.956

NGS-m-BS 0.933 0.957 0.975 0.985
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Figure 2.3: The training curves of NGS-m-BS with different steps.

Table 2.2: The symbol recognition accuracy on the test set using various percentage of training
data.

Model 25% 50 % 75 % 100%

NGS-RL 0.170 0.170 0.170 0.170

NGS-MAPO 0.316 0.481 0.785 0.967

NGS-RL-Pretrain 0.916 0.945 0.959 0.964

NGS-MAPO-Pretrain 0.962 0.983 0.985 0.991

NGS-m-BS 0.988 0.992 0.995 0.997

Figure 2.4: Examples of correcting wrong predictions using the one-step back-search algorithm.

Qualitative Results. Figure 2.4 illustrates four examples of correcting the wrong pre-

dictions with 1-BS. In the first two examples, the back-search algorithm successfully corrects

the wrong predictions by changing a digit and an operator, respectively. In the third exam-
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ple, the back-search fails to correct the wrong sample. However, if we increase the number of

search steps, the model could find a correction for the example. In the fourth example, the

back-search finds a spurious correction, which is not the same as the ground-truth formula

but generates the same result. Such spurious correction brings a noisy gradient to the neural

network update. It remains an open problem for how to avoid similar spurious corrections.

2.4.2 Neural-Symbolic Visual Question Answering

2.4.2.1 Experimental Setup

Task. Following [YWG18], the neural-symbolic visual question answering task tries to parse

the question into functional program and then use a program executor that runs the pro-

gram on the structural scene representation to obtain the answer. The functional program

is hidden.

Dataset. We evaluate the proposed method on the CLEVR dataset [JHM17a]. The CLEVR

dataset is a popular benchmark for testing compositional reasoning capability of VQA models

in previous works [JHV17, VDL19]. CLEVR consists of a training set of 70K images and

„700K questions, and a validation set of 15K images and „150K questions. We use the VQA

accuracy as the evaluation metric.

Models. We adopt the NS-VQA model in [YWG18] and replace the attention-based seq2seq

question parser with a Pointer Network [VFJ15]. We store a dictionary to map the keywords

in each question to the corresponding functional modules. For example, “red”Ñ“filter color

[red]”, “how many”Ñ “count”, and “what size” Ñ “query size” etc. Therefore, the Pointer

Network can point to the functional modules that are related to the input question. The

grammar model ensures that the generated sequence of function modules can form a valid

program, which indicates the inputs and outputs of these modules can be strictly matched

with their forms. We conduct experiments by comparing following models: NS-RL, NGS-

RL, NGS-1-BS, NGS-m-BS.
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2.4.2.2 Results and Analyses

Learning Curve. Figure 2.5 shows the learning curves of different model variants. NGS-BS

converges much faster and achieves higher VQA accuracy on the test set compared with the

RL baselines. Though taking a long time, NGS-RL does converge, while NS-RL fails. This

fact indicates that the grammar model plays a critical role in this task. Conceivably, the

latent functional program space is combinatory, but the grammar model rules out all invalid

programs that cannot be executed by the symbolic reasoning module. It largely reduces the

solution space in this task.

Figure 2.5: The learning curves of different model variants on training and validation set of the
CLEVR dataset.

Back-Search Step. As shown in Figure 2.5, NGS-10-BS performs slightly better than the

NGS-1-BS, which indicates that searching multiple steps does not help greatly in this task.

One possible reason is that there are more ambiguities and more spurious examples compared

with the handwritten formula recognition task, making it less efficient to do the m-BS. For

example, for the answer “yes”, there might be many possible programs for this question that

can generate the same answer given the image.

Data Efficiency Table 2.3 shows the accuracies on the CLEVR validation set when different
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portions of training data are used. With less training data, the performances decrease for

both NGS-RL and NGS-m-BS, but NGS-m-BS still consistently obtains higher accuracies.

Table 2.3: The VQA accuracy on the CLEVR validation set using different percentage of training
data. All models are trained 30k iterations.

Model 25% 50 % 75 % 100%
NS-RL 0.090 0.091 0.099 0.125
NGS-RL 0.678 0.839 0.905 0.969
NGS-m-BS 0.873 0.936 1.000 1.000

2.5 Conclusions

In this work, we propose a neural-grammar-symbolic model and a back-search algorithm

to close the loop of neural-symbolic learning. We demonstrate that the grammar model

can dramatically reduce the solution space by eliminating invalid possibilities in the latent

representation space. The back-search algorithm endows the NGS model with the capability

of learning from wrong samples, making the learning more stable and efficient. One future

direction is to learn the symbolic prior (i.e. the grammar rules and symbolic inference rules)

automatically from the data.
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CHAPTER 3

A HINT from Arithmetic: On the Integration and

Generalization of Perception, Syntax, and Semantics

In this chapter, we introduce a synthetic benchmark that is specially designed to study the

problem of closing the loop of recognition and reasoning. Inspired by humans’ remarkable

ability to master arithmetic and generalize to unseen problems, we present a new dataset,

Hint, to study machines’ capability of learning generalizable concepts at three different

levels: perception, syntax, and semantics. In particular, concepts in Hint, including both

digits and operators, are required to learn in a weakly-supervised fashion: Only the final re-

sults of handwriting expressions are provided as supervision. Learning agents need to reckon

how concepts are perceived from raw signals such as images (i.e., perception), how multi-

ple concepts are structurally combined to form a valid expression (i.e., syntax), and how

concepts are realized to afford various reasoning tasks (i.e., semantics). With a focus on

systematic generalization, we carefully design a five-fold test set to evaluate both the in-

terpolation and the extrapolation of learned concepts. To tackle this challenging problem,

we propose a neural-symbolic system by integrating neural networks with grammar parsing

and program synthesis, learned by a novel deduction–abduction strategy. In experiments,

the proposed neural-symbolic system demonstrates strong generalization capability and sig-

nificantly outperforms end-to-end neural methods like RNN and Transformer. The results

also indicate the significance of recursive priors for extrapolation on syntax and semantics.

An additional preliminary few-shot study also indicates that the proposed neural-symbolic

system can learn new concepts with limited examples.
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Figure 3.1: Concept learning and generalization at three different levels. A learning agent
needs to simultaneously master (i) perception, how concepts are perceived from raw signals such
as images, (ii) syntax, how multiple concepts are structurally combined to form a valid expression,
and (iii) semantics, how concepts are realized to afford various reasoning tasks.

3.1 Introduction

Humans possess a versatile mechanism for learning concepts [FS16]. Take the arithmetic

examples in Fig. 3.1: When we master concepts like digits and operators, we not only know

how to recognize, write, and pronounce them—what these concepts mean at the perceptual

level, but also know how to compose them into valid expressions—at the syntactic level,

and how to calculate the results by reasoning over these concepts—at the semantic level.

Learning concepts heavily rely on these three-level interweaving meanings. Such observation

also conforms with the classic view of human cognition, which postulates at least three

distinct levels of organizations in computation systems [Pyl84, FP88].

Crucially, a unique property of human concept learning is its systematic generalization.

Once we master the syntax of arithmetic using short expressions, we can parse novel, long

expressions. Similarly, once we master operators’ semantics using small numbers, we can

apply them over novel, large numbers. This property corresponds to the classic idea of
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the systematicity (interpolation) and productivity (extrapolation) in cognition: An infinite

number of representations can be constructed from a finite set of primitives, just as the

mind can think an infinite number of thoughts, understand an infinite number of sentences,

or learn new concepts from a seemingly infinite space of possibilities [LUT17, Mar18, Fod75].

To examine the versatile human-like capabilities of concept learning with a focus on sys-

tematic generalization, we take inspiration from arithmetic and introduce a new benchmark

Hint, Handwritten arithmetic with INTegers. The task of Hint is intuitive and straightfor-

ward: Machines take as input images of handwritten expressions and predict the final results

of expressions, restricted in the integer space. The task of Hint is also challenging: Concepts

in Hint, including digits and operators, are learned in a weakly-supervised manner. Using

final results as the only supervision, machines are tasked to learn the three-level meanings

simultaneously—perception, syntax, and semantics of these concepts—to correctly predict

the results. Since there is no supervision on any intermediate values or representations, the

three-level meanings are presumably intertwined during learning. To provide a holistic and

rigorous test on whether learning machines can generalize the learned concepts, we introduce

a carefully designed evaluation scheme instead of using a typical i.i.d. test split. This new

scheme includes five subsets, focusing on generalization capabilities (i.e., interpolation and

extrapolation) at different levels of meanings (i.e., perception, syntax, and semantics).

We evaluate popular state-of-the-art deep learning methods, such as GRU [CGC14] and

Transformer [VSP17], on Hint. Our experiment shows that such end-to-end neural networks’

performance drops significantly on examples requiring interpolation and extrapolation, even

though these models can very well fit the training set. This finding echoes the long-standing

arguments against connectionist models, which are believed to lack systematic generalization

prevailing in human cognition [LB18, FP88].

Inspired by the superb generalization capability demonstrated in symbolic systems with

combinatorial structure [FP88] and recent advances in neural-symbolic integration [LHH20a,

MGK19, YWG18, MDK18], we propose an ANS system to approach the Hint challenge.
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The proposed ANS system integrates the learning of perception, syntax, and semantics in

a principled framework; see an illustration in Fig. 3.3. Specifically, we first utilize ResNet-

18 [HZR16] as a perception module to translate a handwritten expression into a symbolic

sequence. This symbolic sequence is then parsed by a transition-based neural dependency

parser [CM14], which encodes the syntax of concepts. Finally, we adopt functional programs

to realize the semantic meaning of concepts, thus view learning semantics as program induc-

tion [EWN20].

It is infeasible to perform an end-to-end optimization for our model since syntactic parsing

and semantic reasoning are non-differentiable. Inspired by prior arts on abductive learning

[LHH20a, Zho19a, DXY19], we derive a novel deduction-abduction strategy to coordinate

the learning of different modules. Specifically, during learning, the system first performs

greedy deduction over these modules to propose an initial, rough solution, which is likely to

produce a wrong result. A one-step abduction over perception, syntax, and semantics is then

applied in a top-down manner to search the initial solution’s neighborhood, which updates

the solution to explain the ground-truth result better. This revised solution provides pseudo

supervision on the intermediate values and representations, which are then used to train

each module individually.

Evaluated on Hint, ANS exhibits strong systematic generalization with an overall accu-

racy of 72%, outperforming end-to-end neural methods by nearly 33 percents. Experiments

also show the strong generalization of ANS relies on its underlying symbol system [FP88]

encoded with recursive priors, which facilitate the extrapolation on syntax and semantics. A

preliminary study of few-shot learning further demonstrates that ANS can quickly learn new

concepts with limited examples, obtaining an average accuracy of 62% on four new concepts

with a hundred training examples.
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3.2 Related Work

3.2.1 Three Levels of Concept Learning

The surge of deep neural networks [LBH15] in the last decade has significantly advanced

the accuracy of perception learning from raw signals across multiple modalities, such as

image classification from image pixels [HZR16, KSH12] and automatic speech recognition

from audio waveforms [PCZ19, HDY12, GMH13].

The goal of syntax analysis is to understand the compositional and recursive structures

in various tasks, such as natural language parsing [CM14, KK18], image and video pars-

ing [TCY05, ZM07, ZZ11, GSS09, QJZ18, QJH20, JCH20], scene understanding [HQZ18,

HQX18, QZH18, JQZ18, CHY19, YLF20], task planning [XLE18, LZS18, EGL19, LZZ19,

ZZZ20c], and abstract reasoning [ZGJ19b, ZJG19, ZZZ20b, EMQ20, EQZ19, EKS18]. There

exist two major structural types: constituency structures [KK18] and dependency structures

[CM14]. Constituency structures use phrase structure grammar to organize input tokens into

nested constituents, whereas dependency structures show which tokens depend on which

other tokens.

Semantics of concepts essentially describe its causal effect. There are two primary se-

mantic representations in symbolic reasoning. The first is logic [Llo12, MDK18], which re-

gards the semantic learning as inductive logic programming [MD94, EG18]—a general frame-

work to induce first-order logic theory from examples. The other representation is program,

which treats the semantic learning as inductive program synthesis [KKT15, LST15, BGB17a,

DUB17, ERS18, EMS18]. Recently, [EWN20] release a neural-guided program induction sys-

tem, DreamCoder, which can efficiently discover interpretable, reusable, and generalizable

knowledge across a wide range of domains.

However, aforementioned literature tackles only one or two levels of concept learning and

usually requires direct supervision on model outputs. In contrast, we offer a more holistic

perspective that addresses all three levels of concept learning, i.e., perception, syntax, and
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semantics, taking one step closer to realize a versatile mechanism of concept learning under

weak supervision. The design of three-level concept learning echoes a newly proposed chal-

lenge, HALMA [XMY21], but with a simpler setting of no interaction with the environments.

3.2.2 Systematic Generalization

The central question in systematic generalization is: How well can a learning agent per-

form in unseen scenarios given limited exposure to the underlying configurations [Gre93]?

This question is also connected to the Language of Thought Hypothesis [Fod75]: The sys-

tematicity, productivity, and inferential coherence characterize compositional generalization

of concepts [LST15]. As a prevailing property of human cognition, systematicity poses a

central argument against connectionist models [FP88]. Recently, there have been several

works to explore the systematic generalization of deep neural networks in different tasks

[LB18, BMN18, KSS19, GLB19, XMY21]. By going beyond traditional i.i.d. train/test split,

the proposed Hint benchmark well-captures the characteristics of systematic generalization

across different aspects of concepts w.r.t. perception, syntax, and semantics.

3.2.3 Neural-Symbolic Integration

Researchers have proposed to combine statistical learning and symbolic reasoning, with pi-

oneer efforts devoted to different directions, including representation learning and reasoning

[Sun94, GLG08, MDK18], abductive learning [LHH20a, DXY19, Zho19a], knowledge ab-

straction [HOT06, BGH09], etc. There also have been recent works on the application of

neural-symbolic methods, such as neural-symbolic visual reasoning and program synthe-

sis [YWG18, MGK19, LHH20c, PMS16], semantic parsing [LBL16a, YZH18], and math

word problems [LC20, LSR20]. Current neural-symbolic approaches often require a perfect

domain-specific language, including both the syntax and semantics of the targeted domain.

In comparison, the proposed model relaxes such a strict requirement and enables the learning
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of syntax and semantics.

3.3 The HINT Benchmark

Task Definition The task of Hint is intuitive and straightforward: It is tasked to predict

the final results of handwritten arithmetic expressions in a weakly-supervised manner. Only

the final results are given as supervision; all intermediate values and representations are

latent, including symbolic expressions, parse trees, and execution traces.

Data Generation The data generation process follows three steps; see Fig. 3.2 for an

illustration. First, we extract handwritten images from CROHME1 to obtain primitive con-

cepts, including digits 0 „ 9, operators `,´,ˆ,˜, and parentheses p, q. Second, we randomly

sample prefix expressions and convert them to infix expressions with necessary parentheses

based on the operator precedence; we only allow single-digit numbers in expressions. These

symbolic expressions are fed into a solver to calculate the final results. Third, we randomly

sample handwritten images for symbols in an expression and concatenate them to construct

final handwritten expressions. We only keep the handwritten expressions as input and the

corresponding final results as supervision; all intermediate results are discarded.

Pre�x

In�x

HW

Results

×+328

(3+2)×8

40

−−53×52

5−3−5×2

0 1

2÷(5×4)

÷2×54 operator semantics
    +(a, b): a + b
    −(a, b): max(0, a - b)
    ×(a, b): a × b
    ÷(a, b): ceil(a ÷ b)

Figure 3.2: Illustrations of the data generation pipeline.

Train and Evaluation To rigorously evaluate how well the learned concepts are system-

atically generalized, we replace the typical i.i.d. train/test split with a carefully designed

1https://www.cs.rit.edu/~crohme2019/
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Figure 3.3: The Arithmetic Neural-Symbolic model (ANS). ANS consists of three modules
for perception, syntax, and semantics. During inference, the model performs greedy deduction over
three modules and directly proposes a solution. During learning, the proposed solution is further
revised by performing abduction based on the ground-truth supervision. The updated solution is
stored in a buffer, providing pseudo supervisions to train three modules individually. Each node in
the solution tree is an (image, symbol, value) triplet.

evaluation scheme: (i) all handwritten images in the test set are unseen in training, (ii) at

most 1,000 samples are generated for each number of operators in expressions, (iii) limit the

maximum number of operators to 10 and the maximum values to 100 in the training set:

Dtrain ĂDtrain “ tpx, yq : |x| ď 10,maxpvq ď 100u, (3.1)

where x is the handwritten expression, |x| its number of operators, y the final result, and v

all the intermediate values generated when calculating the final result.

We carefully devise the test set to evaluate different generalization capabilities (i.e.,

interpolation and extrapolation) on different levels of meanings (i.e., perception, syntax and

41



semantics). Specifically, the test set is composed of five subsets, formally defined as:

Dtest “D
p1q

test YD
p2q

test YD
p3q

test YD
p4q

test YD
p5q

test,where

D
p1q

test “Dtrain,

D
p2q

test ĂDtrainzDtrain,

D
p3q

test Ă tpx, yq : |x| ď 10,maxpvq ą 100u,

D
p4q

test Ă tpx, yq : |x| ą 10,maxpvq ď 100u,

D
p5q

test Ă tpx, yq : |x| ą 10,maxpvq ą 100u.

(3.2)

All above subsets requires generalization on perception of learned concepts. D
p1q

test requires

no generalization on either syntax or semantics, D
p2q

test requires interpolation on both syn-

tax and semantics, D
p3q

test requires interpolation on syntax and extrapolation on semantics,

D
p4q

test requires extrapolation on syntax and interpolation on semantics, and D
p5q

test requires

extrapolation on both syntax and semantics.

In total, the training and test set includes 11,170 and 48,910 samples, respectively. Subsets

in the test set are balanced to be 23%, 23%, 22%, 16%, and 16%.

3.4 A Neural-Symbolic Approach

Below we first describe a general framework from a probabilistic perspective for learning the

Hint task as a neural-symbolic approach. This general framework implies a symbol system

with combinatorial syntactic and semantic structures, initially introduced by [FP88], as a

feasible representation of the human mind. Such a symbol system provides a principled

integration of perception, syntax, and semantics. Guided by this general framework, we next

provide a concrete instantiation of such a neural-symbolic system and introduce a novel

deduction-abduction strategy to learn it with weak supervision; see Fig. 3.3 for overview.
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3.4.1 A General Framework

Given a neural-symbolic system, let x P Ωx denote the input (images of handwritten ex-

pression in the Hint dataset), s P Ωs the symbolic expression, pt P Ωt the parse tree of the

symbolic expression, v P Ωe the execution trace, and y P Ωy the output. During learning, px, yq

are observed but ps, pt, vq are latent. The likelihood of the observation px, yq marginalized

over ps, pt, vq can be decomposed as:

ppy|x; Θq “
ÿ

s,pt,v

pps, pt, v, y|x; Θq “
ÿ

s,pt,v

pps|x; θpqpppt|s; θsqppv|pt; θlqppy|vq, (3.3)

where (i) s|x denotes the process of perceiving symbols from raw signals, guided by the

perceptual model θp of learned concepts; (ii) pt|s denotes the process of parsing the symbolic

expression into a parse tree, guided by the syntactic model θs; (iii) v|pt denotes the process of

reasoning over the parse tree, guided by the semantic model θl; and (iv) y|v is a deterministic

process: If the final output of v equals to y, ppy|vq “ 1, otherwise 0.

From a maximum likelihood prospective, the learning objective is to maximize the observed-

data log likelihood Lpx, yq “ log ppy|xq. Take the derivative of L w.r.t. θp, θs, θl, we have: (see

supp for detailed derivation)

∇θpLpx, yq “Es,pt,v„pps,pt,v|x,yqr∇θp log pps|x; θpqs,

∇θsLpx, yq “Es,pt,v„pps,pt,v|x,yqr∇θs log pppt|s; θsqs,

∇θlLpx, yq “Es,pt,v„pps,pt,v|x,yqr∇θl log ppv|pt; θlqs,

(3.4)

where pps, pt, v|x, yq is the posterior distribution of ps, pt, vq given px, yq. Since ppy|vq can

only be 0 or 1, pps, pt, v|x, yq can be rewritten as:

pps, pt, v|x, yq “
pps, pt, v, y|x; Θq

ř

s1,pt1,v1 pps1, pt1, v1, y|x; Θq
“

$

&

%

0, for s, pt, v RQ

pps,pt,v|x;Θq
ř

s1,pt1,v1PQ pps1,pt1,v1|x;Θq
, for s, pt, v PQ

(3.5)

where Q“ tps, pt, vq : ppy|vq “ 1, s P Ωs, pt P Ωt, v P Ωvu is the set of ps, pt, vq that generates y.

Usually, Q is a very small subset of the entire space of ps, pt, vq, i.e., QĎ Ωs ˆΩt ˆΩv, where

ˆ denotes the Cartesian product.
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pps, pt, v|x, yq is a highly-sparse distribution in which most points has zero probability.

Since taking expectation w.r.t. this posterior distribution is intractable, we use Monte

Carlo sampling to approximate it. Therefore, the learning procedure for an example px, yq

can be depicted as following:

1. sample ŝ, p̂t, v̂ „ pps, pt, v|x, yq;

2. use px, ŝq to update the perception module (θp);

3. use pŝ, p̂tq to update the parsing module (θs);

4. use pp̂t, v̂q to update the reasoning module (θl).

3.4.2 Instantiation: Arithmetic Neural-Symbolic (ANS)

The general framework of the desired neural-symbolic system described above is agnostic

to the choice of functions and algorithms. Below we delineate a learnable implementation,

named ANS, capable of learning generalizable concepts in arithmetic on the proposed Hint

dataset.

3.4.2.1 Perception: Neural Network (NN)

The role of the perception module is to map a handwritten expression x into a symbolic

expression s. Since disentangling visual symbols from handwritten expressions is trivial in

this domain , we assume the input as a sequence of handwritten images, where each image

contains one symbol. We adopt a standard ResNet-18 [HZR16] as the perception module

to map each handwritten image into a probability distribution over the concept space Σ.

Formally,

pps|x; θpq “
ź

i

ppwi|xi; θpq “
ź

i

softmaxpϕpwi, xi; θpqq, (3.6)
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where ϕps, x; θpq is a scoring function parameterized by a NN with parameters θp. Since

learning such an NN from scratch is prohibitively challenging, the ResNet-18 is pre-trained

unsupervisedly [VVG20] on unlabeled handwritten images.

3.4.2.2 Syntax: Dependency Parsing

To parse the symbolic sequence into a parse tree, we adopt a greedy transition-based neu-

ral dependency parser [CM14], commonly used for parsing natural language sentences. The

transition-based dependency parser relies on a state machine that defines the possible tran-

sitions to parse the input sequence into a dependency tree; see panel (b) of Fig. 3.3. The

learning process induces a model to predict the next transition in the state machine based

on the transition history. The parsing process constructs the optimal sequence of transi-

tions for the input sequence. A dependency parser for arithmetic expressions is essentially

approximating the Shunting-yard algorithm.

In our parser, a state c“ pα, β,Aq consists of a stack α, a buffer β, and a set of dependency

arcs A. The initial state for a sequence s“w0w1...wn is α“ rRoots, β “ rw0w1...wns, A“ H.

A state is regarded as terminal if the buffer is empty and the stack only contains the node

Root. The parse tree can be derived from the dependency arcs A. Let αi denote the i-th top

element on the stack, and βi the i-th element on the buffer. The parser defines three types

of transitions between states:

‚ Left-Arc: add an arc α1 Ñα2 to A and remove α2 from the stack α. Precondition: |α| ě 2.

‚ Right-Arc: add an arc α2 Ñα1 to A and remove α1 from the stack α. Precondition:

|α| ě 2.

‚ Shift: move β1 from the buffer β to the stack α. Precondition: |β| ě 1.

The goal of the parser is to predict a transition sequence from an initial state to a

terminal state. As the parser is greedy, it attempts to predict one transition from T “

tLeft-Arc,Right-Arc,Shiftu at a time, based on the current state c“ pα, β,Aq. The
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features for a state c contains following three elements: (i) The top three words on the

stack and buffer: αi, βi, i“ 1, 2, 3; (ii) The first and second leftmost/rightmost children of the

top two words on the stack: lc1pαiq, rc1pαiq, lc2pαiq, rc2pαiq, i“ 1, 2; (iii) The leftmost of left-

most/rightmost of rightmost children of the top two words on the stack: lc1plc1pαiqq, rc1prc1pαiqq, i“

1, 2. We use a special Null token for non-existent elements. Each element in the state rep-

resentation is embedded to a d-dimensional vector e PRd, and the full embedding matrix is

denoted as E PR|Σ|ˆd, where Σ is the concept space. The embedding vectors for all elements

in the state are concatenated as its representation: c“ re1 e2...ens PRnd. Given the state

representation, we adopt a two-layer feed-forward NN to predict a transition.

3.4.2.3 Semantics: Program Synthesis

Algorithm 3 Learning by Deduction-Abduction

1: Input: Training set D “ tpxi, yiq : i“ 1, 2, ..., Nu

2: Initial Module: perception θ
p0q
p , syntax θ

p0q
s , semantics θ

p0q

l

3: for tÐ 0 to T do
4: Buffer B “∅
5: for px, yq PD do

6: ct“Deducepx, θ
ptq
p , θ

ptq
s , θ

ptq
l q

7: ct˚ “Abducepct, yq

8: B “BYtct˚u

9: end for
10: θ

pt`1q
p , θ

pt`1q
s , θ

pt`1q

l “ learnpB, θptq
p , θ

ptq
s , θ

ptq
l q

11: end for
12: return θ

pT q
p , θ

pT q
s , θ

pT q

l

1: function Deduce(x, θp, θs, θl)
2: sample ŝ„ pps|x; θpq, p̂t„ pppt|ŝ; θsq, êt“ fpp̂t; θlq
3: return ct“ px, ŝ, p̂t, êtq
4: end function

Inspired by recent advances in program synthesis [EWN20, BGB17a, DUB17], we adopt

functional programs to represent the semantics of concepts and view learning as program

induction. The semantics of a concept is treated as a function, mapping certain inputs to

an output. Learning semantics is equivalent to searching for a program that approximates

this unknown function. Compare to purely statistical approaches, symbolic programs exhibit
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better generalizability and interpretability, and the learning is also more sample-efficient.

(1) 0; (2) inc: aÑ a`1; (3) dec: aÑ a´1; (4) if: pa, b, cq Ñ pif a is 0q b (else) c.

`pa, bq : if b a p` incpaq decpbqq

To learn semantics as programs, we start from DreamCoder [EWN20], a machine learn-

ing system that can efficiently synthesize interpretable, reusable, and generalizable pro-

grams across a wide range of domains. DreamCoder embodies a wake-sleep Bayesian pro-

gram induction approach to progressively learn multiple tasks in a domain, given a set of

primitives and input-out pairs for each task. For arithmetic reasoning, the Peano axioms

[Pea89] define four primitives: (1) 0; (2) inc: aÑ a`1; (3) dec: aÑ maxp0, a´1q; (4) if:

pa, b, cq Ñ pif a is 0q b (else) c. Any arithmetic function can be provably composed of these

four primitives. This set of primitives is augmented with a recursion primitive, Y-combinator

(a.k.a., fixed-point combinator). The Y-combinator enables the derivation of recursive func-

tions and is the crux of extrapolating to large numbers.

The semantics of concepts in Hint, including digits, operators, and parentheses, are

all represented as programs composed from these primitives L“ t0, inc, dec, if, Yu. During

inference, these programs are used for reasoning to obtain the results. The learning for a

concept c is to find a program ρc to maximize the following objective:

ρc “ arg max
ρ

ppρ|Dc, Lq 9 ppDc|ρq ppρ|Lq, (3.7)

where Dc denotes the input-output pairs of the concept c for program induction, ppDc|ρq

the likelihood of the program ρ explaining Dc, and ppρ|Lq the prior of ρ under the library L,

which defines a generative model over programs. The maximization in Eq. (3.7) is achieved

by a stochastic search process guided by a neural network, which is trained to approximate

the posterior distribution ppρ|Dc, Lq.
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Figure 3.4: Abduction over perception, syntax, and semantics. Each node in the solution
tree is a triplet of (image, symbol, value). Parts revised during abduction are highlighted in red.
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3.4.2.4 Learning by Deduction-Abduction

In Section 3.4.1, we derive a general learning procedure for such a neural-symbolic system.

The key is to perform efficient sampling from the posterior distribution pps, pt, et|x, yq. Al-

gorithm 3 provides an overview of the proposed learning algorithm. In short, we generalize

the back-search algorithm in [LHH20a] to a deduction-abduction strategy to enable efficient

sampling from the posterior distribution of perception, syntax, and semantics.

Deduction For a given example px, yq, we first perform greedy deduction from x to obtain

a candidate solution of a compound tree ct“ px, ŝ, p̂t, êtq. This process is likely to produce

a wrong result, thus requiring a separate abduction process to further correct it, detailed

below.

Abduction To find a revised solution ct˚ that can reach the goal y, we search the neighbors

of ct in a top-down manner by performing abduction over perception (s), syntax (pt), and

semantics (et), as detailed in Algorithm 4 and illustrated in Fig. 3.4. Our abduction strategy

generalizes the perception-only, one-step back-search algorithm described in [LHH20a] to all

three levels. The Solve function and the priority used in the top-down search are similarly

to the ones in [LHH20a]. The abduction can also be extended to multiple steps, but we only

use one step for lower computation overhead. The above deduction-abduction strategy likely

behaves as a Metropolis-Hastings sampler for the posterior distribution [LHH20a].

3.5 Experiments and Results

3.5.1 Experimental Setup

Training Both the ResNet-18 and the dependency parser in the proposed ANS model are

trained by an Adam optimizer [KB15a] with a learning rate of 10´4 and a batch size of 512.

The program synthesis module is adapted from DreamCoder [EWN20].
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Algorithm 4 Abduction

1: function Abduce(ct, y)
2: Q=PriorityQueue()

Q.push(rootpctq, y, 1.0)
3: while A, yA, p = Q.pop() do
4: A“ pi, w, v, arcsq Ź (image, symbol, value, arcs)
5: if A.v ““ yA then
6: return A
7: end if
8: Ź Abduce perception
9: for w1 PΣ do
10: A1 “Apw Ñw1q

11: if A1.v ““ yA then
12: Q.push(A1, yA, ppA1q)
13: end if
14: end for
15: Ź Abduce syntax
16: for arc P arcs do
17: A1 “ rotatepA, arcq
18: if A1.v ““ yA then
19: Q.push(A1, yA, ppA1q)
20: end if
21: end for
22: Ź Abduce semantics
23: A1 “Apv Ñ yAq

24: Q.push(A1, yA, ppA1q)
25: Ź Top-down search
26: for B P childrenpAq do
27: yB “SolvepB,A, yA|θlpA.wqq

28: Q.push(B, yB, ppBq)
29: end for
30: end while
31: end function

Evaluation Metric We evaluate the models with the accuracy of final results. Note that

a predicted result is considered correct when it exactly equals to the ground-truth.

Baselines For end-to-end NN baselines, the task of Hint is formulated as a sequence-

to-sequence problem: The input is an expression sequence, and the output is a sequence of

digits, which is then converted to an integer as the predicted result. We test two popular

seq2seq models: (1) BiGRU: the encoder is a bi-directional GRU [CGC14] with three layers,
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and the decoder is a one-layer GRU; (2) TRAN: a Transformer model [VSP17] with three

encoder-layers, three decoder-layers, and four attention heads for each layer. Before being

fed into these models, the handwritten expressions are processed by the same ResNet-18

used in ANS. We test models with varied numbers of layers and report ones with the best

results. To speed up the convergence, we train all models with a simple curriculum from

short expressions to long ones.2

3.5.2 Neural-Symbolic v.s. End-to-End Neural Networks

We compare the performance of the proposed neural-symbolic model ANS with end-to-end

neural baselines on Hint. As shown in Table 3.1, both BiGRU and TRAN obtain high

accuracy on the test subset 1, which indicates that they can generalize over perception very

well. However, their performances drop significantly on the test subsets 2„5, which require

systematic generalization over syntax and semantics. Notably, their accuracy is less than

10% on test subsets 3 and 5 that involve larger numbers compared to the training set. This

result indicates that the pure neural models do not learn the semantics of concepts in a

generalizable way and fail to extrapolate to large numbers. In contrast, the proposed ANS

model consistently outperforms BiGRU and TRAN by at least 30 absolute percent across all

test subsets 2„5. This superb performance demonstrates the strong systematic generalization

of ANS, including both interpolation and extrapolation w.r.t. syntax and semantics.

How do models extrapolate? Among the generalization capability, we are particularly

interested in extrapolation. Based on the experimental results, we firmly believe that the

key is recursion. In ANS, the extrapolation on syntax is achieved by the transition system of

the dependency parser, which recursively applies transition actions to parse arbitrarily long

expressions. The extrapolation on semantics is realized by the recursion primitive, i.e., Y-

combinator. It allows programs to represent recursive functions, which can decompose large

2Please refer to the supp for the code, experimental logs, and detailed settings.
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Table 3.1: The performance comparison of ANS and end-to-end neural networks, i.e., GRU (BiGRU)
and Transformer (TRAN).

Input Model
Test Accuracy (%)

Overall 1 2 3 4 5

Symbol
(Embedding)

BiGRU 49.71 97.05 63.67 11.58 52.41 12.57
TRAN 34.58 98.31 29.79 2.91 26.39 2.76
ANS 88.36 99.26 97.56 84.66 87.65 65.37

Image
(ResNet-18)

BiGRU 39.39 87.02 46.17 6.51 40.44 6.47
TRAN 32.95 87.31 30.74 2.67 31.17 2.55
ANS 71.97 89.10 84.29 66.77 68.19 40.73

# Training epochs1 2: master counting 3: master + and − 6: master × and ÷

Figure 3.5: The evolution of semantics in ANS from initial primitives {0,inc,dec,if,Y}.
The programs representing the semantics of concepts are denoted by lambda calculus (a.k.a.. λ-
calculus) with De Bruijn indexing. Note that there might be different yet functionally-equivalent
programs to represent the same semantics of concepts. Here, we only show one possibility for each
concept.

numbers into smaller ones by recursively invoking themselves. For BiGRU, although the

recurrent structure in its hidden cells serves as a recursive prior on syntax, no such prior in

its representation for semantics. This deficiency explains why BiGRU would achieve a decent

accuracy (40.44%) on the test subset 3 (extrapolation only on syntax) but a much lower

accuracy (6.51%) on the test subset 4 (extrapolation only on semantics). Taken together,

these observations strongly imply that the recursive prior on task-specific representations

is the crux of extrapolation, which is also in line with the recent analysis of Graph Neural

Network, where it successfully extrapolates algorithmic tasks due to the task-specific non-

linearities in the architecture or features [XLZ20a, XLZ20b].
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3.5.3 Ablation Study

Table 3.2 shows an ablation study on the proposed ANS model. In general, providing the

ground-truth meaning of concepts can ease the learning and lead to higher test accuracy.

Among the three levels of concepts, perception is the hardest to learn since the handwriting

images possess a large variance in terms of the visual appearance. The syntax and semantics

are relatively easier to learn, since the recursive prior of the transition-based dependency

parser and Y-combinator fits the task well.

Table 3.2: Ablation study on ANS. ✓indicates that the ground-truth labels are given during
training. For each setting (row), we perform three experiments with different random seeds and
report the results of the model with the highest training accuracy.

Training Setting Test Accuracy (%)
Per. Syn. Sem. Overall 1 2 3 4 5

71.97 89.10 84.29 66.77 68.19 40.73
✓ 86.44 94.53 91.62 89.58 78.22 71.18

✓ 80.14 92.51 90.16 71.32 84.27 56.27
✓ 88.36 99.26 97.56 84.66 87.65 65.37
✓ ✓ 97.81 100.00 100.00 96.66 100.00 90.97
✓ ✓ 95.84 99.60 98.23 98.09 91.50 88.20

✓ ✓ 88.93 94.30 92.19 90.06 82.99 80.88

Fig. 3.5 illustrates the typical pattern of the evolution of semantics in ANS. This pattern

is highly in accord with how children learn arithmetic in developmental psychology [CFF99]:

The model first masters the semantics of digits as counting, then learns ` and ´ as recursive

counting, and finally it figures out how to define ˆ and ˜ based on the learned programs for

` and ´. Crucially, ˆ and ˜ are impossible to be correctly learned before mastering ` and

´. The model is endowed with such an incremental learning capability since the program

induction module allows the semantics of concepts to be built compositionally from those

learned earlier [EWN20].
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3.5.4 Few-shot Concept Learning

We further conduct a preliminary study of few-shot learning to demonstrate the ANS’s

potential in learning new concepts with limited examples. As shown in Table 3.3, we define

four new concepts with common semantics. Their visual appearances are denoted by four

unseen handwritten symbols tα, β, γ, ϕu, and their syntax is decided by their precedence

(i.e., 1 is for t`,´u and 2 is for tˆ,˜u). We randomly sample a hundred examples from

short to long expressions for training each new concept and fine-tune the ANS model on the

new training data.

Table 3.3 shows the test accuracy for each new concept. The proposed ANS model ob-

tains a decent performance with an average overall accuracy of 61.92%. Concepts with more

complex semantics (tγ, ϕu) are generally harder to learn than those with simpler semantics

(tα, βu).

Table 3.3: Few-shot concept learning with ANS.

Per. Syn. Sem.
Test Accuracy (%)

Overall 1 2 3 4 5
α 1 maxpx, yq 64.08 70.91 81.98 70.79 50.56 40.66
β 1 minpx, yq 72.45 85.45 83.93 81.82 65.91 40.22
γ 2 px`yq{2 56.73 76.36 70.09 61.80 41.94 27.47
ϕ 2 xy´px`yq 54.40 76.36 68.81 41.35 56.04 22.09
avg. - - 61.92 77.27 76.20 63.94 53.61 32.61

3.6 Conclusions and Discussions

In this chapter, we take inspiration from how humans learn arithmetic and present a new

challenge for the machine learning community, Hint, which serves as a minimal yet complete

benchmark for studying systematic generalization of concepts w.r.t. perception, syntax, and

semantics. Additionally, we propose a neural-symbolic system, Arithmetic Neural-Symbolic

(ANS), to approach this challenge. ANS integrates recent efforts from the disciplines of neural

networks, grammar parsing, and program synthesis. One potential future work is to extend
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our model to other domains and applications.

Extending to other domains. To extend our model to other domains with varieties of

semantics, such as visual reasoning [JHM17a, HM19] and question answering [RZL16], we

may consider injecting contexts into the semantics of concepts and capture their inherent

stochastic nature with probabilistic programs [Gha15, CGH17, GXG18, BCJ19, HBM20].
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CHAPTER 4

Competence-aware Curriculum Learning

Humans can progressively learn visual concepts from easy to hard questions. To mimic

this efficient learning ability, we propose a competence-aware curriculum for visual concept

learning in a question-answering manner. Specifically, we design a neural-symbolic concept

learner for learning the visual concepts and a multi-dimensional Item Response Theory

(mIRT) model for guiding the learning process with an adaptive curriculum. The mIRT

effectively estimates the concept difficulty and the model competence at each learning step

from accumulated model responses. The estimated concept difficulty and model competence

are further utilized to select the most profitable training samples. Experimental results on

CLEVR show that with a competence-aware curriculum, the proposed method achieves state-

of-the-art performances with superior data efficiency and convergence speed. Specifically,

the proposed model only uses 40% of training data and converges three times faster

compared with other state-of-the-art methods.

4.1 Introduction

Humans excel at learning visual concepts and their compositions in a question-answering

manner [FAS10, CKA15, GLT18, ZCN17, ZRH20], which requires a joint understanding of

vision and language. The essence of such learning skill is the superior capability to con-

nect linguistic symbols (words/phrases) in question-answer pairs with visual cues (appear-

ance/geometry) in images. Imagine a person without prior knowledge of colors is presented

with two contrastive examples in Figure 4.1-I. The left images are the same except for color,
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I. Learn basic unary concepts by contrastive examples.
Q: What is the color of the object?
A: red
Q: What is the shape of the object?
A: cube

Q: What is the color of the object?
A: green
Q: What is the shape of the object?
A: cube

II. Learn new unary/binary concepts by referential expressions.
Q: What is the shape of the red object?
A: sphere
Q: How many objects are right of the red object?
A: 2

III. Learn complex composition of multiple learned concepts.
Q: What color is the rubber ball in front of the 
metal cube to the left of the matte cube left of 
the blue metallic sphere?
A: gray

Figure 4.1: The incremental learning of visual concepts in a question-answering manner. Three
difficulty levels can be categorized into I) unary concepts from simple questions, II) binary (re-
lational) concepts based on the learned concepts, and III) compositions of visual concepts from
comprehensive questions.

and the right question-answer pairs differ only in the descriptions about color. By assuming

that the differences in the question-answer pairs capture the differences in appearances, he

can learn the concept of color and the appearance of specific colors (i.e., red and green).

Besides learning the basic unary concepts from contrastive examples, compositional relations

from complex questions consisting of multiple concepts can be further learned, as shown in

Figure 4.1-II and -III.

Another crucial characteristic of the human learning process is to start small and learn

incrementally. More specifically, the human learning process is well-organized with a curricu-

lum that introduces concepts progressively and facilitates the learning of new abstract knowl-

edge by exploiting learned concepts. A good curriculum serves as an experienced teacher.

By ranking and selecting examples according to the learning state, it can guide the training

process of the learner (student) and significantly increase the learning speed. This idea is

originally examined in animal training as shaping [Ski58, Pet04, KD09] and then applied to

machine learning as curriculum learning [Elm93, BLC09, GBM17, GHZ18, PSL14].

Inspired by the efficient curriculum, Mao et al . [MGK19] proposes a neural-symbolic

approach to learn visual concepts with a fixed curriculum. Their approach learns from image-

question-answer triplets and does not require annotation on images or programs generated

from questions. The model is trained with a manually-designed curriculum that includes

four stages: (1) learning unary visual concepts; (2) learning relational concepts; (3) learning
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more complex questions with visual perception fixed; (4) joint fine-tuning all modules. They

select questions for each stage by the depths of the latent programs. Their curriculum heavily

relies on the manually-designed heuristic that measures the question difficulty and discretizes

the curriculum. Such heuristic suffers from three limitations. First, it ignores the variance

of difficulties for questions with the same program depths, where different concepts might

have various difficulties. Second, the manually-designed curriculum relies on strong human

prior knowledge for the difficulties, while such prior may conflict with the inherent difficulty

distribution of the training examples. Last but most importantly, it neglects the progress

of the learner that evolves along with the training process. More specifically, the order of

training samples in the curriculum is nonadjustable based on the model state. This scheme

is in stark contrast to the way that humans learn – by actively selecting learning samples

based on our current learning state, instead of passively accepting specific training samples.

A desirable learning system should be capable of automatically adjusting the curriculum

during the learning process without requiring any prior knowledge, which makes the learning

procedure more efficient with less data redundancy and faster convergence speed.

To address these issues and mimic human ability in adaptive learning, we propose a

competence-aware curriculum for visual concept learning via question answering, where

competence represents the capability of the model to recognize each concept. The proposed

approach utilizes multi-dimensional Item Response Theory (mIRT) to estimate the con-

cept difficulty and model competence at each learning step from accumulated model

responses. Item Response Theory (IRT) [Bak01, BK04] is a widely adopted method in psy-

chometrics that estimates the human ability and the item difficulty from human responses

on various items. We extend the IRT to a mIRT that matches the compositional nature of

visual reasoning, and apply variational inference to get a Bayesian estimation for the pa-

rameters in mIRT. Based on the estimations of concept difficulty and model competence,

we further define a continuous adaptive curriculum (instead of a discretized fixed regime)

that selects the most profitable training samples according to the current learning state.
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More specifically, the learner can filter out samples with either too naive or too challenging

questions. These questions bring either negligible or sharp gradients to the learner, which

makes it slower and harder to converge.

With the proposed competence-aware curriculum, the learner can address the aforemen-

tioned limitations brought by a fixed curriculum with the following advantages:

1. The concept difficulty and the model competence at each learning step can be inferred

effectively from accumulated model responses. It enables the model to distinguish diffi-

culties among various concepts and be aware of its own capability for recognizing these

concepts.

2. The question difficulty can be calculated with the estimated concept difficulty and model

competence without requiring any heuristics.

3. The adaptive curriculum significantly contributes to the improvement of learning effi-

ciency by relieving the data redundancy and accelerating the convergence, as well as the

improvement of the final performance.

We explore the proposed method on the CLEVR dataset [JHM17a], an artificial universe

where visual concepts are clearly defined and less correlated. We opt for this synthetic en-

vironment because there is little prior work on curriculum learning for visual concepts and

there lacks a clear definition of visual concepts in real-world setting. CLEVR allows us to

perform controllable diagnoses of the proposed mIRT model in building an adaptive curricu-

lum. section 4.5 further discusses the potentials and challenges of generalizing our method

to other domains such as real-world images and natural language processing.

Experimental results show that the visual concept learner with the proposed competence-

aware curriculum converges three times faster and consumes only 40% of the training data

while achieving similar or even higher accuracy compared with other state-of-the-art models.

We also evaluate individual modules in the proposed method and demonstrate their efficacy

in section 4.4.
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4.2 Related Work

4.2.1 Neural-symbolic Visual Question Answering

Visual question answering (VQA) [MF14, TML14b, QWL15b, JHM17a, GLL17] is a popu-

lar task for gauging the capability of visual reasoning systems. Some recent studies [ARD15,

ARD16, HAR17, JHM17b, YGL20] focus on learning the neural module networks (NMNs)

on the CLEVR dataset. NMNs translate questions into programs, which are further exe-

cuted over image features to predict answers. The program generator is typically trained on

human annotations. Several recent works target on reducing the supervision or increasing

the generalization ability to new tasks in NMNs. For example, Johnson et al . [JHM17b] re-

places the hand-designed syntactic parsers by a learned program generator. Neural-Symbolic

VQA [YWG18] explores an object-based visual representation and uses a symbolic executor

for inferring the answer. Neural-symbolic concept learner [MGK19] uses a symbolic reasoning

process and manually-defined curriculum to bridge the learning of visual concepts, words,

and the parsing of questions without explicit annotations. In this work, we build our model

on the neural-symbolic concept learner [MGK19] and learn an adaptive curriculum to select

the most profitable training samples.

Learning-by-asking (LBA) [MGF17] proposes an interactive learning framework that al-

lows the model to actively query an oracle and discover an easy-to-hard curriculum. LBA

uses the expected accuracy improvement over candidate answers as an informativeness mea-

sure to pick questions. However, it is costly to compute the expected accuracy improvement

for sampled questions since it requires to process all the questions and images through a

VQA model. Moreover, the expected accuracy improvement cannot help to learn which spe-

cific component of the question contributes to the performance, especially while learning

from the answers with little information such as “yes/no”. In contrast, we select questions

by explicitly modeling the difficulty of visual concepts, combined with model competence to

infer the difficulty of each question.
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4.2.2 Curriculum Learning and Machine Teaching

The competence-aware curriculum in our work is related to curriculum learning [BLC09,

SAJ10, TFL16, GBM17, Sac16, PSL14, GHZ18, PSN19] and machine teaching [Zhu15,

ZSZ18, LDH17, DHP19, MCV19, Fan18, Wu18]. Curriculum learning is firstly proposed

by Bengio et al . [BLC09] and demonstrates that a dataset order from easy instances to hard

ones benefits learning process. The measures of hardness in curriculum learning approaches

are usually determined by hand-designed heuristics [SAJ10, TFL16, Sac16, MGK19]. Graves

et al . [GBM17] explore learning signals based on the increase rates in prediction accuracy

and network complexity to adjust data distributions along with training. Self-paced learn-

ing [Kum10, Jia14, Jia15, Sac16] quantifies the sample hardness by the training loss and

formulates curriculum learning as an optimization problem by jointly modeling the sample

selection and the learning objective. These hand-designed heuristics are usually task-specific

without any generalization ability to other domains.

Machine teaching [Zhu15, ZSZ18, LDH17] introduces a teacher model that receives feed-

back from the student model and guides the learning of the student model accordingly. Zhu et

al . [Zhu15, ZSZ18] assume that the teacher knows the ground-truth model (i.e., the Oracle)

beforehand and constructs a minimal training set for the student model. The recent works

learning to teach [Fan18, Wu18] break this strong assumption of the existence of the oracle

model and endow the teacher with the capability of learning to teach via a reinforcement

learning framework.

Our work explores curriculum learning in visual reasoning, which is highly compositional

and more complex than tasks studied before. Different from previous works, our method

requires neither hand-designed heuristics nor an extra teacher model. We combine the idea

of competence with curriculum learning and propose a novel mIRT model that estimates the

concept difficulty and model competence from accumulated model responses.
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Figure 4.2: The overview of the proposed approach. We use neural symbolic reasoning as a bridge
to jointly learn concept embeddings and question parsing. The model responses in the training
process are accumulated to estimate concept difficulty and model competence at each learning step
with mIRT. The estimations help to select appropriate training samples for the current model. In
the response matrix,‘✓’ or ‘✕’ denotes that the snapshot predicts a correct or wrong answer, and
‘?’ means the snapshot has no response to this question.

4.3 Methodology

In this section, we will discuss the proposed competence-aware curriculum for visual concept

learning, as also shown in Figure 4.2. We first describe a neural-symbolic approach to learn

visual concepts from image-question-answer triplets. Next, we introduce the background of

IRT model and discuss how we derive a mIRT model for estimating concept difficulty and

model competence. Finally, we present how to select training samples based on the estimated

concept difficulty and model competence to make the training process more efficient.

4.3.1 Neural-Symbolic Concept Learner

We briefly describe the neural-symbolic concept learner. It uses a symbolic reasoning process

to bridge the learning of visual concepts and the semantic parsing of textual questions without

any intermediate annotations except for the final answers. We refer readers to [MGK19,
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YWG18] for more details on this model.

Scene Parsing. A scene parsing module develops an object-based representation for each

image. Concretely, we adopt a pre-trained Mask R-CNN [HGD17] to generate object pro-

posals from the image. The detected bounding boxes with the original image are sent to a

ResNet-34 [HZR16] to extract the object-based features.

Concept Embeddings. By assuming each visual attribute (e.g ., shape) contains a set of

visual concepts (e.g ., cylinder), the extracted visual features are embedded into concept

spaces by learnable neural operators of the attributes.

Question Parsing. The question parsing module translates a question in natural language

into an executable program in a domain-specific language designed for VQA. The question

parser generates the latent program from a question in a sequence-to-sequence manner. A

bi-directional LSTM is used to encode the input question into a fixed-length representation.

The decoder is an attention-based LSTM, which produces the operations in the program

step-by-step. Some operations take concepts as their parameters, such as Filter[Cube] and

Relate[Left]. These concepts are selected from the concepts appearing in the question by the

attention mechanism.

Symbolic Reasoning. Given the latent program, the symbolic executor runs the operations

in the program with the object-based image representation to derive an answer for the

input question. The execution is fully differentiable with respect to the concept embeddings

since the intermediate results are represented in a probabilistic manner. Specifically, we keep

an attention mask on all object proposals, with each element in the mask denoting the

probability that the corresponding object contains certain concepts. The attention mask is

fed into the next operation, and the execution continues. The final operation predicts an

answer to the question. We refer the readers to the supplementary materials for more details

and examples of the symbolic execution process.

Joint Optimizing. We formulate the problem of jointly learning the question parser and

63



the concept embeddings without the annotated programs. Suppose we have a training sample

consisting of image I, question Q, and answer A, and we do not observe the latent program

l. The goal of training the whole system is to maximize the following conditional probability:

ppA|I,Qq “El„ppl|Qq rppA|l, Iqs, (4.1)

where ppl|Qq is parametrized by the question parser with the parameters θl and ppA|l, Iq

is parametrized by the concept embeddings θe (there are no learnable parameters in the

symbolic reasoning module). Considering the expectation over the program space in Eq. 4.1

is intractable, we approximate the expectation with Monte Carlo sampling. Specifically, we

first sample a program l̂ from the question parser ppl|Q; θlq and then apply l̂ to obtain a

probability distribution over possible answers ppA|l̂, I; θeq.

Recalling the program execution is fully differentiable w.r.t. the concept embeddings, we

learn the concept embeddings by directly maximizing log ppA|l̂, I; θeq using gradient descent

and the gradient ∇θe log ppA|l̂, I; θeq can be calculated through back-propagation. Since the

hard selection of l̂ through Monte Carlo sampling is non-differentiable, the gradients of the

question parser cannot be computed by back-propagation. Instead we optimize the question

parser using the REINFORCE algorithm [Wil92]. The gradient of the reward function J over

the parameters of the policy is:

∇Jpθlq “El„ppl|Q;θlq r∇ log p pl|Q; θlq ¨rs , (4.2)

where r denotes the reward. Defining the reward as the log-probability of the correct answer

and again, we rewrite the intractable expectation with one Monte Carlo sample l̂:

∇Jpθlq “∇ log p
´

l̂|Q; θl

¯

¨ rlog ppA|l̂, I; θeq´bs, (4.3)

where b is the exponential moving average of log ppA|l̂, I; θeq, serving as a simple baseline to
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reduce the variance of gradients. Therefore, the update to the question parser at each learning

step is simply the gradient of the log-probability of choosing the program, multiplied by the

probability of the correct answer using that program.

4.3.2 Background of Item Response Theory (IRT)

Item response theory (IRT) [Bak01, BK04] was initially created in the fields of educational

measurement and psychometrics. It has been widely used to measure the latent abilities of

subjects (e.g ., human beings, robots or AI models) based on their responses to items (e.g .,

test questions) with different levels of difficulty. The core idea of IRT is that the probability of

a correct response to an item can be modeled by a mathematical function of both individual

ability and item characteristics. More formally, if we let i be an individual and j be an item,

then the probability that the individual i answers the item j correctly can be modeled by a

logistic model as:

pij “ cj `
1´cj

1`e´ajpθi´bjq
, (4.4)

where θi is the latent ability of the individual i and aj, bj, cj are the characteristics of the item

j. The item parameters can be interpreted as changing the shape of the standard logistic

function: aj (the discrimination parameter) controls the slope of the curve; bj (the difficulty

parameter) is the ability level, it is the point on θi where the probability of a correct response

is the average of cj (min) and 1 (max), also where the slope is maximized; cj (the guessing

parameter) is the asymptotic minimum of this function, which accounts for the effects of

guessing on the probability of a correct response for a multi-choice item. Equation 4.4 is

often referred to as the three-parameter logistic (3PL) model since it has three parameters

describing the characteristics of items. We refer the readers to [Bak01, BK04, ER13] for more

background and details on IRT.
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4.3.3 Multi-dimensional IRT using Model Responses

Traditional IRT is proposed to model the human responses to several hundred items. How-

ever, datasets used in machine learning, especially deep neural networks, often consist of

hundreds of thousands of samples or even more. It is costly to collect human responses

for large datasets, and more importantly, human responses are not distinguishable enough

to estimate the sample difficulties since samples in machine learning datasets are usually

straightforward for humans. Lalor et al . [LWY16, LWY19] empirically shows on two NLP

tasks that IRT models can be fit using machine responses by comparing item parameters

learned from the human responses and the responses from an artificial crowd of thousands

of machine learning models.

Similarly, we propose to fit IRT models with accumulated model responses (i.e., the

predictions of model snapshots) from the training process. Considering the compositional

nature of visual reasoning, we propose a multi-dimensional IRT (mIRT) model to estimate

the concept difficulty and model competence (corresponding to the subject ability in original

IRT), from which the question difficulty can be further calculated.

Formally, we have C concepts, M model snapshots saved from all time steps, and N

questions. Let Θ “ tθicu
c“1...C
i“1..M , where θic is the i-th snapshot’s competence on the c-th concept,

and B “ tbcu
c“1...C , where bc is the difficulty of the c-th concept, Q“ tqjcu

c“1...C
j“1...N , where qjc

is the number of the c-th concept in the j-th question and gj is the probability of guessing

the correct answer to the j-th question, Z “ tziju
j“1...N
i“1...M , where zij P t0, 1u be the response of

the i-th snapshot to the j-th question (1 if the model answers the question correctly and

0 otherwise). The probability that the snapshot i can correctly recognize the concept c is

formulated by a logistic function:

picpθic, bcq “
1

1`e´pθic´bcq
. (4.5)
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Then the probability that the snapshot i answers the question j correctly is calculated as:

ppzij “ 1|θi, Bq “ gj `p1´gjq
C

ź

c“1

p
qjc
ic . (4.6)

The probability that the snapshot i answers the question j incorrectly is:

ppzij “ 0|θi, Bq “ 1´ppzij “ 1|θi, Bq. (4.7)

The total data likelihood is:

ppZ|Θ, Bq “

M
ź

i“1

N
ź

j“1

ppzij|θi, Bq. (4.8)

This formulation is also referred to as conjunctive multi-dimensional IRT [Rec85, Rec09].

4.3.4 Variational Bayesian Inference for mIRT

The goal of fitting an IRT model on observed responses is to estimate the latent subject

abilities and item parameters. In traditional IRT, the item parameters are usually estimated

by Marginal Maximum Likelihood (MML) via an Expectation-Maximization (EM) algo-

rithm [BA81], where the subject ability parameters are randomly sampled from a normal

distribution and marginalized out. Once the item parameters are estimated, the subject abil-

ities are scored by maximum a posterior (MAP) estimation based on their responses to items.

However, the EM algorithm is not computational efficient on large datasets. One feasible way

for scaling up is to perform variational Bayesian inference on IRT [NNM16, LWY19]. The

posterior probability of the parameters in mIRT can be written as:

ppΘ, B|Zq “
ppZ|Θ, BqppΘqppBq

ş

Θ,B
ppΘ, B,Zq

, (4.9)
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where ppΘq, ppBq are the priors distribution of Θ and B. The integral over the parame-

ter space in Eq 4.9 is intractable. Therefore, we approximate it by a factorized variational

distribution on top of an independence assumption of Θ and B:

qpΘ, Bq “

M,C
ź

i“1,c“1

πθ
ic pθicq

C
ź

c“1

πb
c pbcq , (4.10)

where πθ
ic and πb

c denote Gaussian distributions for model competences and concept difficul-

ties, respectively. We adopt the Kullback-Leibler divergence (KL-divergence) to measure the

distance of p from q, which is defined as:

DKLpq}pq :“EqpΘ,Bq log
qpΘ, Bq

ppΘ, B|Zq
, (4.11)

where ppΘ, B|Zq is still intractable. We can further decompose the KL-divergence as:

DKLpq}pq “EqpΘ,Bq

„

log
qpΘ, Bq

ppΘ, B,Zq
` log ppZq

ȷ

. (4.12)

In other words, we also have:

log ppZq “DKLpq}pq´EqpΘ,Bq log
qpΘ, Bq

ppΘ, B,Zq
(4.13)

“DKLpq}pq`Lpqq. (4.14)

As the log evidence log ppZq is fixed with respect to q, maximizing the final term Lpqq

minimizes the KL divergence of q from p. And since qpΘ, Bq is a parametric distribution

we can sample from, we can use Monte Carlo sampling to estimate this quantity. Since the

KL-divergence is non-negative, Lpqq is an evidence lower bound (ELBO) of log ppZq. By

maximizing the ELBO with an Adam optimizer [KB15b] in Pyro [BCJ18], we can estimate

the parameters in mIRT.
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4.3.5 Training Samples Selection Strategy

The proposed model can estimate the question difficulty for the current model competence

without looking at the ground-truth images and answers. It facilitates the active selection

for future training samples. More specifically, we can easily calculate the probability that

the model answers a given question correctly from Eq. 4.5 and Eq. 4.6 (without guessing)

using estimated Θ and b. This probability serves as an indicator of the question difficulty

for the learner in each stage. The higher the probability, the easier the question. To select

appropriate training samples, we rank the questions and filter out the hardest questions by

setting a probability lower bound (LB) and the easiest questions by a probability upper bound

(UB). Algorithm 5 summarizes the overall training process. We will discuss the influence of

LB and UB on the learning process in Section 4.4.5.

Algorithm 5 Competence-aware Curriculum Learning

Initialization: the training set D “ tpIj, Qj, AjquNj“1, concept difficulty Bp0q, model com-

petence Θp0q, concept learner ϕp0q, accumulated responses Z “ tu

for t“ 1 to T do

Θptq, Bptq “ arg maxΘ,B Lpq; Θpt´1q, Bpt´1q,Zq

Dptq “ tpI,Q,Aq : LB ď ppQ; Θptq, Bptqq ď UBu

ϕptq,Zptq “ Trainpϕpt´1q,Dptq)

Z “Z YZptq

end for

4.4 Experiments

4.4.1 Experimental Setup

Dataset. We evaluate the proposed method on the CLEVR dataset [JHM17a], which consists

of a training set of 70k images and „700k questions, and a validation set of 15k images and
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Figure 4.3: The learning curves of different model variants on the CLEVR dataset.

„150k questions. The proposed model selects questions from the training set during learning,

and we evaluate our model on the entire validation set.

Models. To analyze the performance of the proposed approach, We conduct experiments

by comparing with several model variants:

‚ FiLM-LBA: the best model from [MGF17].

‚ NSCL: the neural-symbolic concept learner [MGK19] without using any curriculum. Ques-

tions are randomly sampled from the training set.

‚ NSCL-Fixed: NSCL following a manually-designed discretized curriculum.

‚ NSCL-mIRT: NSCL following a continuous curriculum built by the proposed mIRT

estimator.

Please refer to the supplementary materials for detailed model settings and learning

techniques during training.

4.4.2 Training Process & Model Performance

Figure 4.3 shows the accuracies of the model variants at different timesteps on the training

set (left) and validation set (right). Notably, the proposed NSCL-mIRT converges almost

2 times faster than NSCL-Fixed and 3 times faster than NSCL (i.e., 400k v.s. 800k v.s.

1200k). Although NSCL-mIRT spends extra time to estimate the parameters of the mIRT

model, such time cost is negligible compared to other time spent in training (less than 1%).
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Figure 4.4: The estimated concept difficulty and model competence at the final iteration.

From Table 4.1, we can see that NSCL-mIRT consistently outperforms FilM-LBA at various

iterations, which demonstrates the preeminence of mIRT in building an adaptive curriculum.

Besides, NSCL-mIRT consumes less than 300k unique questions for training when it

converges. It indicates that NSCL-mIRT saves about 60% of the training data, which largely

eases the data redundancy problems. It provides a promising direction for designing a data-

efficient curriculum and helping current data-hungry deep learning models save time and

money cost during data annotation and model training.

Moreover, NSCL-mIRT obtains even higher accuracy than NSCL and NSCL-Fixed. This

indicates that the adaptive curriculum built by the multi-dimensional IRT model not only

remarkably increases the speed of convergence and reduces the data consumption during

the training process, but also leads to better performance, which also verifies the hypothesis

made by Bengio et al . [BLC09].

4.4.3 Multi-dimensional IRT

The estimated concept difficulty and model competence after converging is shown in Fig-

ure 4.4 for studying the performance of the mIRT model. Several critical observations are: (1)

The spatial relations (i.e., left/right/front/behind) are the easiest concepts. It satisfies our

intuition since the model only needs to exploit the object positions to determine their spatial

relations without dealing with appearance. The spatial relations are learned during the late
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Figure 4.5: (a) The estimated model competence at various iterations for different attributes. The
value for each attribute type is averaged from the visual concept it contains. (b) The estimated
concept difficulty at various iterations. The shaded area represents the variance of the estimations.

stages since they appear more frequently in complex questions to connect multiple concepts.

(2) Colors are the most difficult concepts. The model needs to capture the subtle differences

in the appearance of objects to distinguish eight different colors. (3) The model competence

scores surpass the concept difficulty scores for all the concepts. This result corresponds to

the nearly perfect accuracy (ą 99%) on all questions and concepts.

Figure 4.5a shows the estimation of the model competence for each attribute type at

various iterations. We can observe that model competence consistently increases throughout

the training. Figure 4.5b shows the estimations of the concept difficulty at different learning

steps. As the training progresses, the estimations become more stable with smaller variance

since more model responses are accumulated.

4.4.4 Concept Learner

We apply the count-based concept evaluation metric proposed in [MGK19] to measure the

performance of the concept learner, which evaluates the visual concepts on synthetic ques-

tions with a single concept such as “How many red objects are there?” Table 4.2 presents the

results by comparing with several state-of-the-art methods, which includes methods based

on neural module network with programs (IEP [JHM17a]) and neural attentions without

72



Table 4.1: The VQA accuracy of different mod-
els on the CLEVR validation set at various iter-
ations. NSCL and NSCL-Fixed continue to im-
prove with longer training steps, which is not
shown for space limit.

Models 70k 140k 280k 420k 630k 700k
FiLM-LBA [MGF17] 51.2 76.2 92.9 94.8 95.2 97.3
NSCL 43.3 43.4 43.3 43.4 44.5 44.7
NSCL-Fixed 44.1 43.9 44.0 57.2 92.4 95.9
NSCL-mIRT 53.9 73.4 97.1 98.5 98.9 99.3

Table 4.2: The accuracy of the visual attributes
of different models. Please refer to the supple-
mentary materials for detailed performance on
each visual concept (i.e., “gray” and “red” in
color attribute).

Model Overall Color Material Shape Size
IEP [JHM17a] 90.6 91.0 90.0 89.9 90.6
MAC [HM18] 95.9 98.0 91.4 94.4 94.2
NSCL-Fixed [MGK19] 98.7 99.0 98.7 98.1 99.1
NSCL-mIRT 99.5 99.5 99.7 99.4 99.6

Table 4.3: Comparisons of the VQA accuracy on
the CLEVR validation set with other models.

Model Overall Count
Cmp
Num.

Exist
Query
Attr.

Cmp
Attr.

Human 92.6 86.7 86.4 96.6 95.0 96.0
IEP [JHM17a] 96.9 92.7 98.7 97.1 98.1 98.9
FiLM [PSV17] 97.6 94.5 93.8 99.2 99.2 99.0
MAC [HM18] 98.9 97.2 99.4 99.5 99.3 99.5
NSCL [MGK19] 98.9 98.2 99.0 98.8 99.3 99.1
NS-VQA [YWG18] 99.8 99.7 99.9 99.9 99.8 99.8
NSCL-mIRT 99.5 98.9 99.0 99.7 99.7 99.6

Table 4.4: The VQA accuracy on CLEVR valida-
tion set with different LBs and UBs in the ques-
tion selection strategy. Both LB and UB are in
log scale.

(LB,UB) 70k 140k 210k 280k 560k 770k
(-10, 0) 44.39 52.01 63.04 73.5 97.93 99.01
(-5, 0) 53.75 69.55 82.44 95.31 98.92 99.27
(-3, 0) 51.38 55.97 58.33 65.11 69.57 70.01
(-5, -0.5) 42.06 52.67 80.46 95.54 98.41 99.06
(-5, -0.75) 53.91 73.42 93.6 97.07 99.04 99.50
(-5, -1) 44.57 63.65 82.95 94.38 99.15 99.48

programs (MAC [HAR17]). Our model achieves nearly perfect performance across visual

concepts and outperforms all other approaches. This means the model can learn visual con-

cepts better with an adaptive curriculum. Our model can also be applied to the VQA.

Table 4.3 summarizes the VQA accuracy on the CLEVR validation split. Our approach

achieves comparable performance with state-of-the-art methods.

4.4.5 Question Selection strategy

The question selection strategy is controlled by two hyper-parameters: the lower bound (LB)

and upper bound (UB). We conduct experiments by learning with different LBs and UBs,

and Table 4.4 shows the VQA accuracy at various iterations. It reveals that the proper lower

bound can effectively filter out too hard questions and accelerate the learning at the early

stage of the training, as shown in the first three rows. Similarly, a proper upper bound helps

to filter out too easy questions at the late stage of the training when the model has learned

most concepts. Please refer to the supplementary material for the visualization of selected

questions at various iterations.
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4.5 Conclusions and Discussions

We propose a competence-aware curriculum for visual concepts learning via question an-

swering. We design a multi-dimensional IRT model to estimate concept difficulty and model

competence at each training step from the accumulated model responses generated by dif-

ferent model snapshots. The estimated concept difficulty and model competence are further

used to build an adaptive curriculum for the visual concept learner. Experiments on the

CLEVR dataset show that the concept learner with the proposed competence-aware cur-

riculum converges three times faster and consumes only 40% of the training data while

achieving similar or even higher accuracy compared with other state-of-the-art models.

In the future, our work can be potentially applied to real-world images like GQA [HM19]

and VQA-v2 [GKS17] datasets, by explicitly modeling the relationship among visual con-

cepts. However, there are still unsolved challenges for real-world images. Specifically, com-

pared with synthetic images in CLEVR, real-world images have a much larger vocabulary

of visual concepts. For example, as shown in [AHB18], there are over 2,000 visual concepts

in MSCOCO images. Usually, these concepts are automatically mined from image captions

and scene graphs. Thus some of them are highly correlated like “huge” and “large”, and

some of them are very subjective like “busy” and “calm”. Such a large and noisy vocabulary

of visual concepts is challenging for the mIRT model since current visual concepts are as-

sumed to be independent. It also requires a much longer time to converge when maximizing

the ELBO to fit the mIRT model with more concepts. A potential solution is to consider

the hierarchical structure of visual concept space and correlations among the concepts and

incorporate commonsense knowledge to handle subjective concepts.

More importantly, the competence-aware curriculum can be adapted to other domains

that possess compositional structures such as natural language processing. Specifically, in

neural machine translation task [SVL14, BCB15], mIRT can be used to model the difficulty

and competence of translating different words/phrases and build a curriculum to increase
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learning speed and data efficiency. mIRT can also be used in the task of semantic pars-

ing [DL16, LBL16b, LNB18a] that transforms natural language sentences (e.g ., instructions

or queries) into logic forms (e.g ., lambda-calculus or SQL). The difficulty and competence

of different logic predicates can also be estimated by the mIRT model.
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CHAPTER 5

Case Study: Solving Math Word Problems with Weak

Supervision

Previous neural solvers of math word problems (MWPs) are learned with full supervision

and fail to generate diverse solutions. In this work, we address this issue by introducing

a weakly-supervised paradigm for learning MWPs. Our method only requires the annota-

tions of the final answers and can generate various solutions for a single problem. To boost

weakly-supervised learning, we propose a novel learning-by-fixing (LBF) framework, which

corrects the misperceptions of the neural network via symbolic reasoning. Specifically, for an

incorrect solution tree generated by the neural network, the fixing mechanism propagates

the error from the root node to the leaf nodes and infers the most probable fix that can be

executed to get the desired answer. To generate more diverse solutions, tree regularization is

applied to guide the efficient shrinkage and exploration of the solution space, and a memory

buffer is designed to track and save the discovered various fixes for each problem. Exper-

imental results on the Math23K dataset show the proposed LBF framework significantly

outperforms reinforcement learning baselines in weakly-supervised learning. Furthermore, it

achieves comparable top-1 and much better top-3/5 answer accuracies than fully-supervised

methods, demonstrating its strength in producing diverse solutions.
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Problem: A truck travels 100 kilometers in 2 hours. At this
speed, if it travels for another 3.5 hours, how many kilometers
will it complete for the entire journey? Answer: 275

Solution1: 100/2 ×(2 + 3.5)

Solution2: 100 + 100/2×3.5

Total Distance

Velocity Total Time

Distance 1 Time 1

100 2

Time 1 Time 2

2 3.5

/ +

×

Total Distance

Distance 1 Distance 2

Velocity Time 2

Distance 1 Time 1

100

+

100

/

2

3.5

×

Figure 5.1: Exemplar MWP with multiple solutions.

5.1 Introduction

Solving math word problems (MWPs) poses unique challenges for understanding natural-

language problems and performing arithmetic reasoning over quantities with commonsense

knowledge. As shown in Figure 5.1, a typical MWP consists of a short narrative describing a

situation in the world and asking a question about an unknown quantity. To solve the MWP

in Figure 5.1, a machine needs to extract key quantities from the text, such as ”100 kilome-

ters” and ”2 hours”, and understand the relationships between them. General mathematical

knowledge like ”distance = velocity ˆ time” is then used to calculate the solution.
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Researchers have recently focused on solving MWPs using neural-symbolic models [LYD17,

WLS17, HLL18, WWC18, XS19]. These models usually consist of a neural perception mod-

ule (i.e., Seq2Seq or Seq2Tree) that maps the problem text into a solution expression or

tree, and a symbolic module which executes the expression and generates the final answer.

Training these models requires the full supervision of the solution expressions.

However, these fully-supervised approaches have three drawbacks. First, current MWP

datasets only provide one solution for each problem, while there naturally exist multiple

solutions that give different paths of solving the same problem. For instance, the problem

in Figure 5.1 can be solved by “p100{2qˆp2`3.5q” if we first calculate the speed and then

multiply it by the total time; alternatively, we can solve it using “100`100{2ˆ3.5” by

summing the distances of the first and second parts of the journey. The models trained

with full supervision on current datasets are forced to fit the given solution and cannot

generate diverse solutions. Second, annotating the expressions for MWPs is time-consuming.

However, a large amount of MWPs with their final answers can be mined effortlessly from the

internet (e.g ., online forums). How to efficiently utilize these partially-labeled data without

the supervision of expressions remains an open problem. Third, current supervised learning

approaches suffer from the train-test discrepancy. The fully-supervised learning methods

optimize expression accuracy rather than answer accuracy. However, the model is evaluated

by the answer accuracy on the test set, causing a natural performance gap.

To address these issues, we propose to solve the MWPs with weak supervision, where

only the problem texts and the final answers are required. By directly optimizing the an-

swer accuracy rather than the expression accuracy, learning with weak supervision naturally

addresses the train-test discrepancy. Our model consists of a tree-structured neural model

similar to [XS19] to generate the solution tree and a symbolic execution module to cal-

culate the answer. However, the symbolic execution module for arithmetic expressions is

non-differentiable with respect to the answer accuracy, making it infeasible to use back-

propagation to compute gradients. A straightforward approach is to employ policy gradient
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methods like REINFORCE [Wil92] to train the neural model. The policy gradient methods

explore the solution space and update the policy based on generated solutions that hap-

pen to hit the correct answer. Since the solution space is large and incorrect solutions are

abandoned with zero reward, these methods usually converge slowly or fail to converge.

To improve the efficiency of weakly-supervised learning, we propose a novel fixing mech-

anism to learn from incorrect predictions, which is inspired by the human ability to learn

from failures via abductive reasoning [Mag09, Zho19b]. The fixing mechanism propagates the

error from the root node to the leaf nodes in the solution tree and finds the most probable

fix that can generate the desired answer. The fixed solution tree is further used as a pseudo

label to train the neural model. Figure 5.2 shows how the fixing mechanism corrects the

wrong solution tree by tracing the error in a top-down manner.

Furthermore, we design two practical techniques to traverse the solution space and dis-

cover possible solutions efficiently. First, we observe a positive correlation between the num-

ber of quantities in the text and the size of the solution tree (the number of leaf nodes

in the tree), and propose a tree regularization technique based on this observation to limit

the range of possible tree sizes and shrink the solution space. Second, we adopt a memory

buffer to track and save the discovered fixes for each problem with the fixing mechanism.

All memory buffer solutions are used as pseudo labels to train the model, encouraging the

model to generate more diverse solutions for a single problem.

In summary, by combining the fixing mechanism and the above two techniques, the

proposed learning-by-fixing (LBF) method contains an exploring stage and a learning

stage in each iteration, as shown in Figure 5.2. We utilize the fixing mechanism and tree

regularization to correct wrong answers in the exploring stage and generate fixed expressions

as pseudo labels. In the learning stage, we train the neural model using these pseudo labels.

We conduct comprehensive experiments on the Math23K dataset [WLS17]. The pro-

posed LBF method significantly outperforms the reinforcement learning baselines in weakly-

supervised learning and achieves comparable performance with several fully-supervised meth-
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ods. Furthermore, our proposed method achieves significantly better answer accuracies of all

the top-3/5 answers than fully-supervised methods, illustrating its advantage in generating

diverse solutions. The ablative experiments also demonstrate the efficacy of the designed

algorithms, including the fixing mechanism, tree regularization, and memory buffer.

5.2 Related Work

5.2.1 Math Word Problems

Recently, there emerges various question-answering tasks that require human-like reasoning

abilities [QWL15a, TML14a, ZGJ19a, DWD19, HWJ19, ZGF20, ZZZ20a, LHH20c, YJD20].

Among them, solving mathematical word problems (MWPs) is a fundamental and challeng-

ing task.

Previous studies of MWPs range from traditional rule-based methods [Fle85, Bak07,

YYG10], statistical learning methods [KZB14, ZDC15, MB16, RR17, HSL16], semantic-

parsing methods [SWL15, KHS15, HSL17] to recent deep learning methods [LYD17, WLS17,

HLL18, RKH18, WWC18, WZZ19, CC19, XS19, ZWL20].

In particular, Deep Neural Solver (DNS) [WLS17] is a pioneering work that designs

a Seq2seq model to solve MWPs and achieves promising results. [XS19] propose a tree-

structured neural solver to generate the solution tree in a goal-driven manner. All these neural

solvers learn the model with full supervision, where the ground-truth intermediate represen-

tations (e.g., expressions, programs) are given during training. To learn the solver with less

supervision, [KHS15] use a discriminative model to solve MWPs in a weakly-supervised way.

They utilize separate modules to extract features, construct expression trees, and score the

likelihood, which is different from the current end-to-end neural solvers. [UCC16], [ZDC15],

and [KZB14] use mixed supervision, where one dataset has only annotated equations, and the

other has only final answers. However, for the set with final answers, they also depend on pre-

defined equation templates. [CLY20] apply a neural-symbolic reader on MathQA[AGL19],
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which is a large-scale dataset with fully-specified operational programs. They have access to

the ground truth programs for a small fraction of training samples at the first iterations of

training.

Unlike these methods, the proposed LBF method requires only the supervision of the final

answer and generates diverse solutions by keeping a memory buffer. Notably, it addresses the

sparse reward problem in policy gradient methods using a fixing mechanism that propagates

error down a solution tree and finds the most probable fix.

5.2.2 Neural-Symbolic Learning for NLP

Neural-symbolic learning has been applied to solve NLP tasks with weak supervision, such

as semantic parsing and program synthesis [LBL16a, GPL17b, LNB18b, ALS19b, LHH20c].

Similar to MWP, they generate intermediate symbolic representations with a neural network

and execute the intermediate representation with a symbolic reasoning module to get the

final result. Typical approaches for such neural-symbolic models use policy gradient methods

like REINFORCE since the symbolic execution module is non-differentiable. For example,

Neural Symbolic Machines [LBL16c] combines REINFORCE with a maximum-likelihood

training process to find good programs. [GPL17b] augment reinforcement learning with the

maximum marginal likelihood so that probability is distributed evenly across consistent pro-

grams. Memory Augmented Policy Optimization (MAPO) [LNB18b] formulates its learning

objective as an expectation over a memory buffer of high-reward samples and a separate

expectation outside the buffer, which helps accelerate and stabilize policy gradient training.

Meta Reward Learning [ALS19b] uses an auxiliary reward function to provide feedback be-

yond a binary success or failure. Since these methods can only learn from sparse successful

samples, they suffer from cold start and inefficient exploration of large search spaces. Re-

cently, [DZ17], [DXY19], and [Zho19a] introduce abductive learning, which states that human

misperceptions can be corrected via abductive reasoning. In this work, we follow the abduc-

tive learning method [LHH20b] and propose a novel fixing mechanism to learn from negative
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samples, significantly accelerating and stabilizing the weakly-supervised learning process. We

further design the tree regularization and memory buffer techniques to efficiently shrink and

explore the solution space.

5.3 Weakly-Supervised MWPs

Goal-Driven Tree Model Fixing Memory Buffer

G: Distance 1
C: travels 100 kilometers

G: Distance 2
C: At this speed, travels 
for another 3.5 hours

G: Velocity
C: travels 100 
kilometers in 2 hours

G: Time 2
C: 3.5 hours

G: Distance 1
C: travels 100 kilometers 

G: Time 2
C: 3.5 hours

100

+

100

/

3.5

3.5

×

G: Total Distance
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travels for another 3.5 hours
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Bottom-up
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C: Context

Figure 5.2: Overview of our proposed learning-by-fixing (LBF) method. It shows the process for
learning the example in Figure 5.1. LBF works by iteratively exploring the solution space and
learning the MWP solver. Exploring: the problem first goes through the GTS module and produces
a tentative solution using tree regularization. Then the fixing mechanism diagnoses this solution
by propagating the correct answer in a top-down manner. The fixed solution is then added to the
memory buffer. Learning: all solutions in the memory buffer are used as pseudo labels to train the
GTS module using a cross-entropy loss function.

In this section, we define the weakly-supervised math word problems and describe the

goal-driven tree model originated from [XS19]. Then we introduce the proposed learning-by-

fixing method, as also shown in Figure 5.2.

5.3.1 Problem Definition

A math word problem is represented by an input problem text P . The machine learning

model with parameters θ requires to translate P into an intermediate expression T , which

is executed to compute the final answer y. In fully-supervised learning, we learn from the

ground truth expression T and the final answer y. The learning objective is to maximize the
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data likelihood ppT, y|P ; θq “ pθpT |P qppy|T q, where computing y given T is a deterministic

process. In contrast, in the weakly-supervised setting, only P and y are observed, while T is

hidden. In other words, the model is required to generate an unknown expression from the

problem text. The expression is then executed to get the final answer.

5.3.2 Goal-driven Tree-Structured Model

A problem text P consists of words and numeric values. The model takes in problem text

P and generates a solution tree T . Let V num denote the ordered list of numeric values in

P according to their order in the problem text. Generally, T may contain constants V con “

t1, 2, πu, mathematical operators V op “ t`,´,ˆ,˜,^u, and numeric values V num from the

problem text P . Therefore, the target vocabulary of P is denoted as Σ “V op YV con YV num

and it varies between problems due to different V num.

To generate the solution tree, we adopt the goal-driven tree-structured neural model

(GTS) [XS19], which first encodes the problem text into its goal and then recursively de-

composes it into sub-goals in a top-down manner.

Problem Encoding. Each word of the problem text is encoded into a contextual rep-

resentation. Specifically, for a problem P “w1w2...wn, each word wi is first converted to

a word embedding wi. Then the sequence of embeddings is inputted to a bi-directional

GRU [CVG14] to produce a contextual word representation: hi “
ÝÑ
hi `

ÐÝ
hi, where

ÝÑ
hi,

ÐÝ
hi are

the hidden states of the forward and backward GRUs at position i, respectively.

Solution Tree Generation. The tree generation process is designed as a preorder tree

traversal (root-left-right). The root node of the solution tree is initialized with a goal vector

q0 “
ÝÑ
hn `

ÐÝ
h0.

For a node with goal q, we first derive a context vector c by an attention mechanism to
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summarize relevant information from the problem:

ai “ softmaxpvJ
a tanhpWarq,hisqq (5.1)

c“
ÿ

i

aihi (5.2)

where va and Wa are trainable parameters. Then the goal q and the context c are used to

predict the token of this node from the target vocabulary Σ. The probability of token t is

defined as:

spt|q, cq “wJ
n tanhpWsrq, c, eptqsq (5.3)

ppt|q, cq “ softmaxpspt|q, cqq (5.4)

where eptq is the embedding of token t:

eptq “

$

’

’

’

’

’

&

’

’

’

’

’

%

Mopptq if t PV op

Mconptq if t PV con

hlocpt,P q if t PV num

(5.5)

where Mop and Mcon are two trainable embeddings for operators and constants, respectively.

For a number token, its embedding is the corresponding hidden state hlocpt,P q from the

encoder, where locpt, P q is the index of t in the problem P . The predicted token t̂ is:

t̂“ arg max
tPΣ

ppt|q, cq (5.6)

If the predicted token is a number token or constant, the node is terminated and its goal is

realized by the predicted token; otherwise, the predicted token is an operator and the current

goal is decomposed into left and right sub-goals combined by the operator. Please refer to

the supplementary material for more details about the goal decomposition process.
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Answer Calculation. The generated solution tree is transformed into a reasoning tree T̂ by

creating auxiliary non-terminal nodes in place of the operator nodes to store the intermediate

results, and the original operator nodes are attached as child nodes to the corresponding

auxiliary nodes. Then the final answer ŷ is calculated by executing T̂ to the value of the root

node in a bottom-up manner.

5.3.3 Learning-by-Fixing

5.3.3.1 Fixing Mechanism

Drawing inspiration from humans’ ability to correct and learn from failures, we propose

a fixing mechanism to correct the wrong solution trees via abductive reasoning following

[LHH20b] and use the fixed solution trees as pseudo labels for training. Specifically, we

find the most probable fix for the wrong prediction by back-tracking the reasoning tree and

propagating the error from the root node into the leaf nodes in a top-down manner.

The key ingredient in the fixing mechanism is the 1-step fix (1-FIX) algorithm which

assumes that only one symbol in the reasoning tree can be substituted. As shown by the

1-Fix function in Algorithm 6, the 1-step fix starts from the root node of the reasoning

tree and gradually searches down to find a fix that makes the final output equal to the

ground-truth. The search process is implemented with a priority queue, where each element

is defined as a fix-tuple pA,αA, pq:

‚ A is the current visiting node.

‚ αA is the expected value on this node, which means if the value of A is changed to αA, T̂

will execute to the ground-truth answer y.

‚ p is the visiting priority, which reflects the probability of changing the value of A.

In 1-FIX, error propagation through the solution tree is achieved by a solve function,

which aims at computing the expected value of a child node from its parent’s expected value.

85



Supposing B is A’s child node and αA is the expected value of A, the solvepB,A, αAq function

works as following:

‚ If B is A’s left or right child, we directly solve the equation αB

À

childRpAq “αA or

childLpAq
À

αB “αA to get B’s expected value αB, where
À

denotes the operator.

‚ If B is an operator node, we try to replace B with all other operators and check whether

the new expression can generate the correct answer. That is, childLpAq αB childRpAq “αA

where αB is now an operator. If there is no αB satisfying this equation, the solve function

returns none.

Please refer to the supplementary material for the definition of the visiting priority as well

as the illustrative example of the 1-FIX process.

To search the neighbors of T̂ within multi-step distance, we extend the 1-step fix to multi-

step by incorporating a RandomWalk function. As shown in Algorithm 6, if we find a fix

by 1-FIX, we return this fix; otherwise, we randomly change one leaf node in the reasoning

tree to another symbol within the same set (e.g ., operators V op) based on the probability in

Equation 5.4. This process will be repeated for certain iterations until it finds a fix for the

solution.

5.3.3.2 Solution Space Exploration

Tree Regularization While [LHH20b] assumes the length of the intermediate represen-

tation is given, the expression length is unknown in weakly-supervised learning. Thus, the

original solution space is infinite since the predicted token decides whether to continue the

generation or stop. Therefore, it is critical to shrink the solution space, i.e., control the size

of the generated solution trees. If the size of the generated solution tree varies a lot from

the target size, it would be challenging for the solution or its fix to hit the correct answer.

Although the target size is unknown, we observe a positive correlation between the target

86



Algorithm 6 Fixing Mechanism

1: Input: reasoning tree T̂ , ground-truth answer y
2: T p0q “ T̂
3: for iÐ 0 to m do
4: T ˚ “ 1-FixpT piq, yq

5: if T ˚ ‰∅ then
6: return T ˚

7: else
8: T pi`1q “RandomWalkpT piqq

9: end if
10: end for
11: return ∅
12:

13: function 1-FixpT, yq

14: q = PriorityQueue(), S = the root node of T
15: q.pushpS, y, 1q

16: while pA,αA, pq “ q.poppq do
17: if A PΣ then
18: T ˚ “ T̂ pAÑαAq

19: return T ˚

20: end if
21: for B P childpAq do
22: αB “ solvepB,A, αAq

23: if not (B PΣ and αB RΣ) then
24: q.pushpB,αB, ppB ÑαBqq

25: end if
26: end for
27: end while
28: return ∅

size and the number of quantities in text. Regarding this observation as a tree size prior, we

design a tree regularization algorithm to generate a solution tree with a target size and regu-

larize the size in an empirical range. Denote the size of a solution tree SizepT q as the number

of leaf nodes including quantities, constants, and operators. The prior range of SizepT q given

the length of the numeric value list lenpV numq is defined as:

SizepT q P rminSizepT q,maxSizepT qs

minSizepT q “ aminlenpV num
q`bmin

maxSizepT q “ amaxlenpV num
q`bmax

(5.7)
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where amin, bmin, amax, bmax are the hyperparameters. The effect of these hyperparameters

will be discussed in Table 5.2.

We further propose a tree regularization algorithm to decode a solution tree with a given

size. To generate a tree of a given size l, we design two rules to produce a prefix-order

expression during the preorder tree decoding:

1. The number of operators cannot be greater than tl{2u.

2. Except the l-th position, the number of numeric values (quantities and constants) cannot

be greater than the number of operators.

These two rules are inspired by the syntax of prefix notation (a.k.a, normal Polish notation)

for mathematical expressions. The rules shrink the target vocabulary Σ in Equation 5.6 so

that the tree generation can be stopped when it reaches the target size. Figure 5.3 shows

illustrative examples of the tree regularization algorithm.

With tree regularization, we can search the possible fixes within a given range of tree size

rminSizepT q,maxSizepT qs for each problem.

Memory Buffer. We adopt a memory buffer to track and save the discovered fixes for each

problem. The memory buffer enables us to seek multiple solutions for a single problem and

use all of them as pseudo labels for training, which encourages diverse solutions. Formally,

given a problem P and its buffer β, the learning objective is to minimize the negative log-

likelihood of all fixed expressions in the buffer:

JpP, βq “ ´
ÿ

T˚Pβ

log ppT ˚
|P q (5.8)

5.3.4 Learning-by-Fixing Framework

The complete learning-by-fixing method is described in Algorithm 7. In the exploring state,

we use the fixing mechanism and tree regularization to discover possible fixes for the wrong
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Figure 5.3: Tree regularization for the problem in Figure 5.1 given different target sizes. The three
columns are the generated tokens, the effective rules, and the target vocabularies shrunk by the
rules, respectively.

trees generated by the neural network, and put them into a buffer. In the learning stage, we

train the model with all the solutions in the memory buffer by minimizing the loss function

in Equation 5.8.

Algorithm 7 Learning-by-Fixing

1: Input: training set D “ tpPi, yiquNi“1

2: memory buffer B “ tβiu
N
i“1, the GTS model θ

3: for Pi, yi, βi P pD,Bq do
4: ŹExploring
5: T̂i = GTS (P ; θ)
6: T ˚

i “m-FIXpT̂i, yi)
7: if T ˚

i ‰∅ and T ˚
i Rβi then

8: βi Ðβi YtT ˚
i u

9: end if
10: ŹLearning
11: θ “ θ´∇θJpPi, βiq
12: end for
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5.4 Experimental Results

5.4.1 Experimental Setup

Dataset. We evaluate our proposed method on the Math23K dataset [WLS17]. It contains

23,161 math word problems annotated with solution expressions and answers. For the weakly-

supervised setting, we only use the problems and final answers and discard the expressions.

We do cross-validation following the setting of [XS19].

Evaluation Metric. We evaluate the model performance by answer accuracy, where the

generated solution is considered correct if it executes to the ground-truth answer. Specifically,

we report answer accuracies of all the top-1{3{5 predictions using beam search. It evaluates

the model’s ability to generate multiple possible solutions.

Models. We conduct experiments by comparing our methods with variants of weakly-

supervised learning methods. Specifically, we experiment with two inference models: Seq2Seq

with bidirectional Long Short Memory network (BiLSTM) [WSC16] and GTS [XS19], and

train with four learning strategies: REINFORCE, MAPO [LNB18b], LBF, LBF-w/o-M

(without memory buffer). MAPO is a state-of-the-art method in semantic parsing task that

extends the REINFORCE with augmented memory. Both models are also trained with the

tree regularization algorithm. We also compare with the fully-supervised learning methods

to demonstrate our superiority in generating diverse solutions. In the ablative studies, we

analyze the effect of the proposed tree regularization and the length of search steps in fixing

mechanism.

5.4.2 Comparisons with State-of-the-art

Table 5.1 summarizes the answer accuracy of different weakly-supervised learning methods

and the state-of-the-art fully-supervised approaches. The proposed learning-by-fixing frame-

work significantly outperforms the policy gradient baselines like REINFORCE and MAPO,
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on both the Seq2seq and the GTS models. It demonstrates the strength of our proposed LBF

method in weakly-supervised learning. The GTS-LBF-fully model is trained by initializing

the memory buffer with all the ground-truth expressions. It demonstrates that by extending

to the fully-supervised setting, our model maintains the top-1 accuracy while significantly

improving solutions’ diversity. We believe that learning MWPs with weak supervision is a

promising direction. It requires fewer annotations and allows us to build larger datasets with

less cost.
Model Accuracy(%)

Fully-Supervised

Retrieval 47.2
Classification 57.9

LSTM 51.9
CNN 42.3
DNS 58.1

Seq2seqET 66.7
Stack-Decoder 65.8

T-RNN 66.9
GTS 74.3

Graph2Tree 74.8
GTS-LBF-fully 74.1

Weakly-Supervised

Seq2seq

REINFORCE 1.2
MAPO 10.7

LBF-w/o-M 44.7
LBF 43.6

GTS

REINFORCE 15.8
MAPO 20.8

LBF-w/o-M 58.3
LBF 59.4

Table 5.1: Answer accuracy on the Math23K dataset. We compare variants of models with our LBF
method.

5.4.3 Convergence Speed

Figure 5.4 shows the learning curves of different weakly-supervised learning methods for the

GTS model. The proposed LBF method converges significantly faster and achieves higher

accuracy compared with other methods. Both the REINFORCE and MAPO take a long time
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to start improving, which indicates the policy gradient methods suffer from the cold-start

and need time to accumulate rewarding samples.
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Figure 5.4: The learning curves of the GTS model using different weakly-supervised learning meth-
ods.

5.4.4 Diverse Solutions with Memory Buffer

To evaluate the ability to generate diverse solutions, we report the answer accuracies of all

the top-1/3/5 solutions on the test set using beam search, denoted as Acc@1/3/5, as shown

in Table 5.2. In the weakly-supervised scenario, GTS-LBF achieves slightly better Acc@1

accuracy and much better Acc@3/5 accuracy than GTS-LBF-w/o-M. In the fully supervised

scenario, GTS-LBF-fully achieves comparable Acc@1 accuracy and much better Acc@3/5

accuracy than the original GTS model. Particularly, GTS-LBF-fully outperforms GTS by

21% and 26% in terms of Acc@3/5 accuracy. It reveals the efficacy of the memory buffer

in encouraging diverse solutions in both weakly-supervised learning and fully-supervised

learning.
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Model Tree Size Acc@1 Acc@3 Acc@5

Fully Supervised

GTS 74.3 42.2 30.0

GTS-LBF-fully 74.1 63.4 56.3

Weakly Supervised

GTS-LBF-
w/o-M

[1,`8) „0 „0 „0
[2n-1,2n+1] 55.3 26.2 19.3
[2n-1,2n+3] 58.3 27.7 20.3
[2n-3,2n+5] 56.7 27.7 20.6

GTS-LBF

[1,`8) „0 „0 „0
[2n-1,2n+1] 56.7 45.3 39.1
[2n-1,2n+3] 59.4 49.6 45.2
[2n-3,2n+5] 57.6 49.3 45.2

Table 5.2: Answer accuracies of all the top-1/3/5 solutions decoded using beam search, denoted as
Acc@1/3/5.

☒✔✔ ✘✘

✔ ✘ ✘☒ ✘

✘✔✔ ✔✔

✔✔✔✔✔
Problem Ground-Truth Top-5 Solutions
The school purchased 85 sets of 
tables and chairs for 67 dollars 
per table and 23 dollars per chair. 
How much did the school spend 
buying these tables and chairs?

There are 1200 students in a 
school, and 65% are girls. 
How many boys are there?

The fruit store shipped 240 
kilograms of raw pears. The 
apples shipped were 60 kilograms 
less than twice the weight of raw 
pears. How many kilograms of 
apples are shipped?

Expression Right,
Answer Right

 ✘ Expression Wrong,
Answer Wrong  ☒ Expression Wrong,

Answer Right (Spurious)

The cafeteria has 260kg of 
flour and 6 bags of rice, 25kg 
per bag. How many more 
kilograms of flour are there 
than rice?
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Figure 5.5: Qualitative results on the Math23K dataset. We visualize the solution trees generated
by our method.
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5.4.5 Qualitative Analysis

We visualize several examples of the top-5 predictions of GTS-LBF in Figure 5.5. In the first

example, the first solution generated by our model is to sum up the prices of a table and a

chair first, and then multiply it by the number of pairs of tables and chairs. Our model can

also produce another reasonable solution (the fifth column) by deriving the prices of tables

and chairs separately and then summing them up.

One caveat for the multiple solutions is that some solutions have different solution trees

but are equivalent by switching the order of numeric values or subtrees, as shown in the first

four solutions of the first problem in Figure 5.5. In particular, multiplication and addition

are commutative, and our model learns and exploits this property to generate equivalent

solutions with different tree structures.
Right Wrong Spurious

Acc@1 58.6 40.6 0.56
Acc@3 49.3 50.4 0.27
Acc@5 44.9 54.8 0.32

Table 5.3: Human evaluation on the generated solutions (%).

The first solution to the fourth problem in Figure 5.5 is a typical error case of our

model due to the wrong prediction of the problem goal. Another failure type is the spurious

solutions, which are correct but not meaningful answers, such as the second solution of

the third problem in Figure 5.5. To test how frequent the spurious solutions appear, we

randomly select 500 examples from the test set, and ask three human annotators to determine

whether each generated expression is right, wrong, or spurious. Table 5.3 provides the human

evaluation results, and it shows that spurious solutions are rare in our model.

5.4.6 Ablative Analyses

Tree Regularization. We test different choices of the hyperparameters defined by Equa-

tion 5.7 in tree regularization. As shown in Table 5.2, the model without tree regularization,
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i.e., tree size P r1,`8q, fails to converge and gets nearly 0 accuracy. The best range for the

solution tree size is r2n´1, 2n`3s, where n“ lenpV numq. We provide an intuitive interpreta-

tion of this range: for a problem with n quantities, (1) n´1 operators are needed to connect

n quantities, which leads to the lower bound of tree size to 2n´1; (2) in certain cases, the

constants or quantities are used more than once, leading to a rough upper bound of 2n`3.

Therefore, we use r2n´1, 2n`3s as the default range in our implementations. Empirically,

this range covers 88% of the lengths of the given ground-truth expressions in the Math23K

dataset, providing an efficient prior for tree size.

Number of Search Steps Table 5.4 shows the comparison of various step lengths in the

m-FIX algorithm. In most cases, increasing the step length improves the chances of correcting

wrong solutions, thus improving the performance.

Models

Steps
1 10 50 (default) 100

Seq2seq-LBF-w/o-M 41.9 43.4 44.7 47.8

Seq2seq-LBF 43.9 45.7 43.6 44.6

GTS-LBF-w/o-M 51.2 54.6 58.3 57.8

GTS-LBF 52.5 55.8 59.4 59.6

Table 5.4: Accuracy (%) using various search steps.

5.5 Conclusions and Discussions

In this work, we propose a weakly-supervised paradigm for learning MWPs and a novel

learning-by-fixing framework to boost the learning. Our method endows the MWP learner

with the capability of learning from wrong solutions, thus significantly improving the answer

accuracy and learning efficiency. The fixing mechanism endows the MWP learner with the

capability of learning from wrong solutions, thus significantly improving the answer accuracy

and learning efficiency. The tree regularization efficiently shrinks and explores the solution
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space by limiting the tree size within an empirical range. The memory buffer encourages

the model to learn diverse solutions for each problem. One future direction of the proposed

model is to prevent generating equivalent or spurious solutions during training, possibly by

making the generated solution trees more interpretable with semantic constraints.
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CHAPTER 6

Conclusion

This dissertation introduces our contributions to closing the loop of recognition and reasoning

to seek a unified framework for artificial general intelligence. To study this area, we take

inspiration from how humans learn arithmetic and present a new benchmark, Hint, which

serves as a minimal yet complete benchmark for studying the systematic generalization of

concepts w.r.t. perception, syntax, and semantics.

To solve tasks like Hint, we propose a new Neural-Grammar-Symbolic model, which uses

grammar parsing to bridge neural perception and symbolic reasoning. The proposed NGS

model is a realization of a symbol system with combinatorial syntactic and semantic struc-

tures, which is arguably a necessary and sufficient means of general intelligence. However, it

is very challenging to optimize such a heterogeneous model using weak supervision.

To address this optimization issue, we derive a general learning framework from a proba-

bilistic perspective and the key to successful learning is to perform efficient sampling from the

posterior distribution of the intermediate symbolic representations given the raw inputs and

the final supervision in the maximum likelihood estimation. Inspired by the human ability to

learn from failures via abductive reasoning, we propose a novel deduction-abduction strat-

egy to coordinate the learning of three heterogeneous modules in the proposed model. The

deduction-abduction strategy makes the learning much more efficient than previous meth-

ods. We also prove that the multi-step abduction process behaves as a Metropolis-Hastings

sampler for the posterior distribution of the intermediate symbolic representations.

The proposed framework for the integration of recognition and reasoning is potentially
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useful for a wide range of applications, such as visual reasoning, math word problems, and

grounded grammar induction. In this dissertation, we present a case study of solving math

word problems with weak supervision. Experimental results demonstrate that the proposed

framework outperforms the baselines by a large margin.

In the end, we summarize several fundamental and practical research directions inspired

by this dissertation:

More Efficient Optimization Although the proposed learning strategy significantly out-

performs the existing baselines, there still exists a large room for improvement to obtain

human-level performance w.r.t. data efficiency and learning speed. A potential solution might

be to perform the optimization in a continuous space using a homogeneous model and then

project the learned model into a symbol system that has stronger generalization capability.

More Generalizable Representation To achieve general artificial intelligence, a funda-

mental obstacle to be addressed is how to help the machine learn from fewer examples and

achieve strong generalizations to novel scenarios. Machine learning researchers have proposed

various algorithms such as meta-learning and zero-shot learning to address this problem.

However, most of them can only be generalized to in-distribution data. A promising future

direction is to explore more generalizable representation from raw signals, through learning

a generative model to establish the relationships between raw observations and underlying

hidden representations.

More Real Applications Most of this dissertation focuses on laying the theoretical foun-

dations for closing the loop of recognition and reasoning and we envision that the proposed

framework can be transferred to a wide range of domains. For example, this framework might

enable a cognitive robot to process visual signals efficiently, communicate with humans us-

ing gestures and dialogues, and collaborate with humans by inferring the human minds and

actions in the future.
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