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Abstract 

Since the 1970s, researchers in psycholinguistics and the 
cognitive sciences have been aware of the language-as-fixed-
effect fallacy, or the importance in statistical analyses to not 
only average across participants (F1) but also across items 
(F2). Originally, the language-as-fixed-effect fallacy was 
countered by proposing a combined measure (minF’) 
calculated by participant (F1) and item (F2) analyses. The 
scientific community, however, reported separate participant 
and item (F1 and F2) regression analyses instead. More 
recently, researchers have started using linear mixed models, 
a more robust statistical methodology that considers both 
random participant and item factors together in the same 
analysis. There are various benefits to using mixed models, 
including being more robust to missing values and unequal 
cell sizes than other linear models, such as ANOVAs. Yet it is 
unclear how conservative or liberal mixed methods are in 
comparison to the traditional methods. Moreover, reanalyzing 
previously completed work with linear mixed models seems 
cumbersome. It is therefore desirable to understand the 
benefits of linear mixed models and to know under what 
conditions results that are significant for one model might 
beget significant results for other models, in order to estimate 
the outcome of a mixed effect model based on traditional F1, 
F2, and minF’ analyses. The current paper demonstrates that it 
is possible, at least for the most simplistic model, for an F or 
p value from a linear mixed model to be estimated from the 
same values from more traditional analyses. 
Keywords: statistics; parametric statistics; linear mixed 
models; Analysis of Variance, language-as-a-fixed-effect 
fallacy. 

Introduction 
Researchers in cognitive science, and in psycholinguistics 
specifically, have often incorrectly analyzed their 
experimental data simply by failing to use the proper 
statistical methods (Raaijmakers, Schrijnemakers, & 
Gremmen, 1999). This paper aims to answer the question 
whether the results of a proper statistical analysis can be 
estimated on the basis of the traditional, but improper, 
statistical analysis. 

Many experimental studies in psycholinguistics consist of 
a generic simple reading time (RT) experiment whereby 
participants are asked to make semantic judgments about a 
word (or sentence, or paragraph). The time it takes for each 
participant to respond to an item (RT) is typically used as 
the dependent variable. Most of the time, participants are 
drawn from a convenience sample of university 
undergraduate students. However, to generalize findings to 
a larger population, participants are treated as a random 
factor in a regression analysis. Consequently, if the 
experiment were to be repeated with a different group of 
participants, the same effects are assumed to hold. In other 
words, any variation in RT specific to an individual 
participant (e.g., if one participant overall tends to respond 
faster than another) should be disregarded as random error. 
This allows for the generalization to a greater population 
than those participants included in the experiment. For the 
most part, researchers correctly identify when it is necessary 
to do this, and they accurately treat participants as random 
factors, keeping the Type I (and Type II) error rate low.   

However, this method is not always used for the item 
stimuli in an experiment. Coleman (1964) and Clark (1973) 
recognized that although researchers in psycholinguistics 
correctly specified participants as random factors, variance 
in items (words, sentences, and paragraphs) was all but 
ignored. Like generalizing over participants, Clark (1973) 
argued that in most cases, researchers would like to be able 
to run their experiment with a different set of stimuli and 
find the same effects. He therefore argued that not only 
participants should be treated as random factors, but items 
as well. Just as participants in an experiment do not 
represent an entire population, items in an experiment are 
by no means representative of all the possibilities of 
language (Baayen, Davison, & Bates, 2008; Barr, Levy, 
Scheepers, & Tily, 2013).  

The failure to also indicate items as being a random 
factor, and thereby also failing to generalize past the 
specific items included in a particular experiment, is known 
as the language-as-a-fixed-effect fallacy (Clark, 1973). 
Thankfully, in addition to pointing out this fallacy, Clark 
(1973) also proposed a simple solution to this problem. He 
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recommended calculating an estimation of a combined F 
value representing a combined model, one with a random 
participant factor (F1) and the other with a random item 
factor (F2). This estimate of a combined F value is referred 
to as minF’.  

minF' 
MinF’ is calculated from the familiar F1 and F2 values and 
is computed as (F1 x F2) / (F1 + F2),  where F1 is the F value 
of the by-participant ANOVA analysis and F2 is the F value 
of the by-item ANOVA analysis. However, the minF’ value 
suggested by Clark (1973) is only an approximation of 
another value, namely F’. F’ is derived from the formula 
(MST + MSSxIxT) + (MSTxS + MSIxT), whereby MST is the 
mean square of the treatment effect, MSS is the error term of 
the participants, and MSI is the error term of the items. F’ is 
often too difficult to calculate due to a variety of reasons, 
such as when dealing with a large dataset or missing data 
(Raaijmakers, Schrijnemakers, & Gremmen, 1999).  

The situation becomes more complicated too, as F’ itself 
is an approximation of a combined F value, and like F’, the 
combined F it approximates is also difficult to compute 
when data are missing. Furthermore, because minF’ is an 
approximation of an approximate value (F’), it is important 
to note that minF’ is a conservative (minimum lower bound) 
approximation of F’. F’, in turn, is also a conservative 
approximation of the combined F it approximates. 
Therefore, the significance for minF’ must be calculated 
independently from F1 and F2 because minF’ does not 
automatically inherit significance simply because F1 and F2 
are significant. 

F1 and F2 
Most studies report the less conservative (and therefore 
more often significant) F1 and F2 values instead of minF’ 
values, despite the fact that they thereby might be making a 
Type I error. Raaijmakers (2003) and Raaijmakers, 
Schrijnemakers, and Gremmen (1999) suggest that 
researchers simply may have misunderstood that they are 
supposed to report minF’ and not the components used to 
calculate minF’. There are two reasons for the incorrect 
practice of reporting F1 and F2. First, as suggested by 
Raaijmakers, Schrijnemakers, and Gremmen (1999), there 
might be a lack of understanding on the part of the 
researcher. Second, and equally problematic, is the fact that 
researchers regard minF’ as too conservative and rather than 
reporting an insignificant minF’ value, they would rather 
report significant F1 and F2 values, or worse, a single 
significant F1 or F2 value,.  

F1 and F2 were intended as intermediate steps used to 
calculate minF’and not as a replacement for minF’. Yet the 
components of the formula to compute minF’ (F1 and F2) 
have now become standard values to report in and of 
themselves. The correct minF’ all but disappeared from the 
literature, only to be replaced with the F1 (by-participant) 
and F2 (by-item) analyses, incorrect when considered 
separate. Raaijmakers, Schrijnemakers, & Gremmen (1999) 
reported that the use of minF’, since introduced, has steadily 
declined in use till it is virtually unseen in published 

articles. In fact, Raaijmakers, Schrijnemakers, & Gremmen 
(1999) report that out of 220 that mention F1 and F2, 
published in the Journal of Memory and Language between 
1993 - 1997, a total of 120 papers only report F1 and F2 
values, ignoring minF’ altogether.  

The reporting of the correct statistics further degraded 
when it not only became more or less acceptable to report 
F1 and F2 values, but also to report F1 and F2 values, of 
which only one value was significant, while still concluding 
significant results. Locker, Hoffman, and Bovaird (2007) 
reported that it is not uncommon to find studies only 
reporting F1 values, ignoring insignificant F2 values. 
Reporting F1 and F2 is better than only reporting the by-
participants analysis (F1) and committing the language-as-
fixed fallacy but there is still a glaring problem. The 
problem with either of these approaches is that Clark’s 
(1973) advice is ignored altogether and minF’ is not 
calculated at all. 

Linear mixed models 
A solution to the F1 and F2 problem that lies as the heart of 
the language-as-fixed fallacy is the use of linear mixed 
models. Linear mixed models, first seen in biomedical 
research, are also known as multilevel models, hierarchical 
linear models, mixed effects models, or variance component 
models (Baayen, Davidson, & Bates, 2008; Brysbaert, 
2007; Locker, Hoffman, & Bovaird, 2007; Pinherio & 
Bates, 2000; Richter, 2006).   

Linear mixed models are more powerful than linear 
regressions because they allow for considering both 
participant and item error simultaneously in the one model 
and thereby increase model fit by driving down random 
error. In essence, linear mixed models do not treat language 
as a fixed effect, thereby offering an alternative to the 
infrequently used minF’. In addition to solving the 
language-as-a-fixed-effect fallacy, these models also have 
several additional advantages compared to traditional 
models, such as ANOVAs and minF’ analyses. First, they 
can accommodate more complicated nested and crossed 
designs (Quené & van den Bergh, 2008). In addition, linear 
mixed models allow for missing data at random and do not  
need to perform listwise deletion. Mixed models can be 
further extended to allow for time-varying covariates and 
they accurately present the relationships between variables 
over time. They easily allow for clustering, longitudinal, or 
repeated measures as well as specific covariate structures. 
Finally, linear mixed models generalize non-normal data 
and do not assume independent observations, thereby being 
more applicable to a wide range of datasets. 

Recent work by Baayen, Davidson, and Bates (2008) 
demonstrated the outcomes of different models applied to 
the same datasets, encouraging researchers to recognize the 
benefits of linear mixed models. Raaijmakers (2003) and 
Raaijmakers, Schrijnemakers, and Gremmen (1999) 
similarly encouraged cognitive scientists to avoid only 
reporting F1 and F2 values by addressing concerns about 
minF’ and proposing alternative solutions. Although 
software is readily and sometimes freely available in R, 
SPSS, SAS, MLwiN and other packages, and despite the 
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convincing demonstrations of the benefits of linear mixed 
models (Baayen, 2008a; Brysbaert, 2007; West, Welch, & 
Gałecki, 2006; Winter, 2013) the use of mixed models is 
still not widespread. Out of 56 published articles 
mentioning F1, F2, minF’, or mixed models, in the Journal 
of Memory and Language  between 2012 - Jan 2014, 30 still 
report F1 and F2 values, three of which also report minF’. At 
the same time, almost half of the papers (n = 26) do 
correctly report results from linear mixed models, 
suggesting that at least some researchers are starting to 
recognize that reporting F1 and F2 is not correct.  

The advice of the current paper for researchers still 
reporting F1 and F2 values is to correctly reanalyze data that 
was originally reported as F1, F2 and minF’. But such 
advice would likely not be received enthusiastically, 
particularly because it is unclear whether the conclusions 
drawn from the results would in fact still hold, despite the 
incorrect analysis. Ideally, it would be desirable to estimate, 
on the basis of F1 and F2 values, whether mixed effect 
models would generate significant results and vice versa. 
Such an estimate would not replace a reanalysis of the data 
with mixed models, but could serve as an estimate of the 
effect of a proper statistical method on the findings. 
Hopefully, this would subsequently motivate a mixed model 
analysis of the original data, or a replication of the 
experiment with new data using the proper statistical model. 
By manipulating the effect of treatment in a variety of 
datasets this paper sheds light on the conditions under 
which results that are obviously significant for one model 
might beget insignificant results for other models.  

 
Method 
Following the principle of parsimony, we started by 
selecting a simple design with only one independent 
variable, one dependent variable, and normally distributed 
errors. We reasoned that if significance can indeed be 
estimated, it is more than likely to first be estimated with a 
simple model. Potentially, more factors would add to a 
model’s complexity, making it more difficult to make 
accurate estimates. In addition, to stay close to designs 

reported in cognitive science literature, typically not so 
simple models, we also selected four variations of our 
design such that we included both within-participant and 
between-participant designs, and cases where there were 
different items in each treatment condition or cases where 
there were the same items in each treatment condition (see 
Table 1). The number of subjects for each condition ranged 
from 10 - 40 and there with 40 items in each experiment. 
Data for each of the four designs was simulated 100 times 
with different values, as calculated below. Next, these 400 
simulations were repeated between six to ten times each 
contingent upon how long it took to vary the effect of 
treatment (ET) from no effect (p > .99) to a strong effect (p 
< .01). In total there were 3400 different simulations of a 
dataset, as explained below. 

A linear model has the following structure: Y=Y0+ET+ES
+EI+E. The base value, or the expected mean response time 
with no treatment (Y0) for each response was set to 400ms. 
All normally distributed errors (by-participant error (ES), 
by-item error (EI), and by-observation error (E)) were set to 
be normally distributed randomly generated numbers 
centered at 0, where the SD of the error was a random 
number  ranging between 0 and 20. Again, the strength of 
the effect  (ET) was manipulated such that each design was 
simulated between six and ten times, ranging from no effect 
of the independent variable, to all 100 cases resulting in  
highly significant effects at p < .01. Linear mixed models 
were computed using the lme4 package (Bates & Sarkarin, 
2007). Significance was estimated from the two tailed 
MCMC probability as calculated from the pvals.fnc 
function found in the languageR package (Baayen, 2008b). 

Simulations 
Four models, a mixed effect model, an F1 model, an F2 
model, and a minF’ model were conducted on the data for 

Within 
Participants

Between 
Participants!

Repeated items in 
each condition  
or “Within word”

Ranging from no 
effect to 
completely 
significant (100 
simulations of 
each)

Ranging from no 
effect to 
completely 
significant (100 
simulations of 
each)

!
Different items in 
each condition 
or “Between 
word”

Ranging from no 
effect to 
completely 
significant (100 
simulations of 
each)

Ranging from no 
effect to 
completely 
significant (100 
simulations of 
each)

!! 38%

38% 3%

12%

.05% 9%

LMM significant 
52.5% of the time

minF’ significant 
29.3% of the time

F1 significant 
44.1% of the time 

Figure 1: Venn diagram representing overlap of number of p 
values meeting the p < .05 criteria for each type of analysis. 
The total percentage of significant p values for each model 

is also included.

Table 1: The four different designs used to simulate data
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each of the 3400 simulations. The number of significant 
cases out of 3400 for each model is represented in Figure 1. 
In the figure, to increase legibility we focused on comparing 
F1, minF’, and linear mixed models, as F2 is rarely reported 
alone, however F2 is certainly considered independently in 
all of the analyses. As is evident from Figure 1, linear mixed 
models were the least conservative, resulting in significant p 
values of p < .05 for 52.5% of the time with a large overlap 
with F1 models (which were significant 44.1% of the time). 
In other words, linear mixed models and F1 results were the 
most similar. MinF’ values were the most conservative, with 
significance at p < .05 in 29.3% of the data. These findings 
are in line with the fact that F1 and F2 analyses have less 
power than linear mixed models (Ghisletta & Renaud, 
2005), and that minF’ has reduced power compared to both 
other models (Wickens & Keppel, 1983). Keep in mind, 
however, that for all four sets of simulations, the effect of 
treatment (ET) varied from no effect to always significant. 
Although linear mixed models always detected more 
significant results than did other models, it is important to 
note that when ET was barely significant, linear mixed 
models detected more significant effects than did F1, F2, or  
minF’ (see Figure 2). These findings suggest that findings 
reported with significant F1 results, are likely significant 
when data is analyzed with  linear mixed models. Moreover, 
findings that have not been reported because results were 
not significant, should perhaps be reanalyzed and reported 
because significant results might be found with linear mixed 
models. 

We next aimed to determine if the results from linear 
mixed models could be estimated from the output of the 
other models. There are several possible factors that might 
impact whether significance can be estimated in one model 
based on the results from another. For example, the 
experimental design, the size of the effect, the number of 
factors, and the degrees of freedom must be taken into 
account when making such estimates. Nevertheless, we 
decided to try estimate the outcome of linear mixed models 
(in this simple model) from respectively very little 
information (i.e. p and F values).   

First, to see if F1, F2, and minF’ F values estimate F 
values in linear mixed models, we entered F1, F2, and minF’ 
F values in a regression. We found that F1, F(1, 3396) = 
5931.156, p < .001,  F2, F(1, 3396) = 198.73, p < .001, and 
minF’, F(1, 3396) = 267.49, p < .001, all estimated F values 
in linear mixed models. 

To see if the same factors were able to estimate 
significance, as degrees of freedom were calculated 
differently in linear mixed models than for standard 
regressions, we entered all p values into a regression model 
and found that both F1 p values, F(1, 3396) = 28537, p < .
001, and minF’ p values, F(1, 3396) = 42.47 , p < .001, 
significantly estimated p values in linear mixed models. At 
the same time F2 p values failed to estimate p values in 
linear mixed models, F (1,3396) = .0001, p = .10, possibly 
due to the fact that F1 accounts for the majority of the 
variance in  the model. 

However, when using these simulations to estimate F and 
p values, it is likely that researchers only have one type of F 
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value (either F1/F2 or minF’, not both). If only one F value 
is used to estimate the likely output of a linear mixed model 
we decided to run additional analyses where F1/F2 and 
minF' were entered into separate analyses. Again, we found 
significance for F1/F2 models estimating mixed effect F 
values for F1, F (1, 3397) = 40089, p < .001, and for F2, F 
(1, 3397) = 2339, p < .001. We found that for p values only 
F1 p values contributed to mixed effect p values, F (1, 3397) 
= 29338, p < .001, where F2 did not, F (1, 3397) = 1.84, p 
= .17. Again, F1 accounts for the majority of the variance in  
the model, perhaps explaining the insignificant effects of the 
p value from F2.  

For minF’, F values were also significant, F (1, 3398) = 
73089, p < .001, as were p values, F (1, 3398) = 545.22, p < 
.001. Despite the fact that many factors might contribute to 
whether or not F and p values can be estimated from other F 
and p values, we find here that with a simple model, this 
seems quite possible. 

Estimates 
We next aimed to see if we would be able to estimate the 
significance of linear mixed models on a different dataset 
using the formulas derived from our simple design 
simulations above. We tested our formulas from these 
simulations on the dataset splitplot in the languageR 

package  (Baayen, 2008b). We selected this dataset because 
this dataset is freely available, ensuring replicability, and 
also because Baayen, Davidson, and Bates (2008) 
previously analyzed the same dataset using a variety of 
methodologies. The experimental design for this dataset 
involved two counterbalanced lists of words, each with 40 
words. Each list consisted of related prime words and 
unrelated prime words. Twenty participants were tested on 
one list, or the other.  

One thousand simulations of linear mixed models 
predicting RT with the priming condition as a fixed factor 
and participant and item as random factors were conducted 
on the splitplot dataset. Regressions were also conducted 
for F1 and F2 values and for minF’ values (Clark, 1973). 
This resulted in a total of 4000 outcomes. To ensure 1000 
different datasets, RT values for the splitplot dataset were 
calculated using the parameters of the original data such 
that all simulated data were generated from the distribution 
of the original mean and SD for each parameter. The effect 
of the IV (ET) was set randomly so that models would vary 
from a weak effect of treatment at p > .999 to a strong effect 
of treatment at p < .001. 

We then estimated values of significance for each dataset  
from our previous formulas and compared these values to 
the actual output from 1000 simulations of the dataset 
provided in splitplot (see figure 3). As can be seen from 
Figure 3, predicting F and p values for linear mixed models 
from the F1/F2 analyses is almost perfect for simple designs 
with one independent variable, one dependent variable, and 
normally distributed errors. 

Discussion and Conclusion 
This paper demonstrates that it is possible, at least for the 
most simplistic models, for an F or p value from a linear 
mixed model to be estimated from the same values from 
more traditional analyses. It is important to recognize that 
this paper only demonstrates this for the most simple of 
designs, and that with more complexity, it is likely that it 
becomes more difficult to so accurately estimate F and p 
values for linear mixed models. Nevertheless, the strength 
of the relationship between F1/F2 or minF’ and the F value 
from a linear mixed model is not unexpected, as all of these 
F values are calculated from the same dataset in a similar 
way. The same logic stands for the p values. This at least 
suggests that it might be possible to estimate F and p values 
of linear mixed models from more complex designs. In 
future work, we intend to explore such factors. In addition, 
it would be interesting to include varying random effect 
structures, as the generalizability and the performance of 
linear mixed models are influenced by the assumptions of 
the random structures of the models (Barr, Levy, Scheepers, 
& Tily, 2013). Furthermore, including random slopes by 
treatment would increase applicability for real datasets and 
such factors might further impact the resulting values. 

This paper has also elaborated upon some of the benefits 
of linear mixed models, and suggested its’ use over 
alternative traditional methodologies such as F1 and F2 
analyses. Although, sometimes F1 is the proper analysis to 
use, this can be the case when items are nested in 
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participants, and participants are nested in treatments 
(Clark, 2008, p. 348), or when items are properly 
counterbalanced or matched. It is nevertheless important for 
researchers to understand when particular analyses are 
appropriate to use and when they are not. Even more 
practically, linear mixed models provide some benefits to 
researchers with regards to the flexibility and robust nature 
of the analysis. 

In this paper, we suggest that researchers analyze current 
data and reanalyze past data that was originally reported as 
F1, F2 or minF’ using linear mixed models. We realized 
such a suggestion might not be eagerly considered, 
therefore we demonstrated that it is possible to estimate, on 
the basis of F1 and F2 values and minF’ values, whether 
linear mixed effect models would generate significant 
results. Indeed we not only estimated F values, but also p 
values. These estimates are not intended to replace a 
reanalysis of the data, but rather they are intended to 
motivate researchers to analyze and properly reanalyze data 
using linear mixed models. !
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