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ABSTRACT OF THE THESIS

A Grasp Analyzer for Stable Manipulation of Object in Tabletop Environments

by

Zhao Tang

Master of Science in Computer Science

University of California San Diego, 2023

Professor Henrik I. Christensen, Chair

Human-like manipulation for robots has been an ongoing research effort for decades.

Among such efforts, stable pick-and-place is one of the simplest yet impactful tasks. The ability

to perform stable pick-and-place tasks, especially with unseen object in cluttered environments,

would enable robots to handle common household object and eventually perform more complex

tasks in kitchens, labs and offices. This thesis presents a novel grasp analyzer to identify stable

sliding and lifting grasp poses for parallel grippers. This grasp analyzer combines learning-based

models with physics-based models to ensure performance and robustness. Combined with a

multi-modal planner, the grasp analyzer was proved with experiments to work both in simulation

and real world.

ix



Chapter 1

Introduction

1.1 Motivation

Robotic manipulation is a fundamental field in robotics. Over the last two decades,

robotics arms have become core tools in many industries such as car manufacturing, minimally

invasive surgical operations and precision assembly of electronics. However, open-world manip-

ulation tasks still remain a largely unsolved problem[14]. An example of such a task is shown in

1.1. One of the main reasons current systems’ performance are unsatisfactory at such tasks is

that we expect robots to achieve human level performance in manipulation tasks while current

robots are ill-equipped to succeed. Robotic manipulators don’t have the suitable mechanical

and sensing hardware to succeed in manipulation tasks [17] [19]. In pick-and-place tasks, this

issue is apparent. For instance, thanks to our dexterous hands, humans can easily pick up unseen

objects in complex environments in a stable manner. We are able to dance around obstacles

with a mug of coffee without spilling it. However, most robots use parallel gripper instead of

hand-like grippers for their low cost and ease of control. As a result, such grippers provide much

less points of contact compared to the human hand, thus limiting the amount of stable grasp

poses. This makes stable manipulation challenging. This deficit in hardware calls for creative

algorithms tailored for current robotic hardware that both ensures performance and robustness in

open-world environments.
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Figure 1.1. An example of a robotic manipulation task in a home environment. The green dots
signify the planned path for the end effecter to take. [2]

1.2 Contributions

The main contribution of this thesis is a learning and physically based grasp analyzer that

can differentiate between stable lifting and stable sliding poses. The grasp analyzer consists of

three parts: a learning-based 6-DoF grasp proposer (pre-trained model, not novel), a learning-

based center of mass estimator, and a physics based grasp classifier that determines the quality

of each proposed grasp. This grasp analyzer is intended to use with a multi-modal planner [7].

Together, the system enables stable pick-and-place in table-top environments even in cluttered

environments containing unseen objects with complicated shapes.
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Chapter 2

Background

This section provides background for each of the individual components of the grasp

analyzer.

2.1 Center of Mass Estimation

Humans have an inert ability to estimate the center of mass of common objects through

vision alone. This ability enables us to manipulate objects stably as we will minimize the torque

generated by a grasp. Conversely, center of mass estimation has also been an important part in

the classical (non-learning) approach to grasping [8], [20]. [20] proposed a method that uses

the gravity equi-effect plane of an object under external force to determine the center of mass

of a polyhedron. However, this method requires the robot to tip the object repeatedly, which

may not be feasible in cluttered environments. Moreover, since a lot of common objects are

not polyhedrons, the application and accuracy of the method may be limited. [8] formulated

the process of grasping and finding the center of mass of the object as a reinforcement learning

problem. An initial estimate of the CoM (center of mass) is found by finding the centroid of

a segmented object’s point cloud. Using this CoM, the grasp with the lowest expected torque

is executed by the robot and the actual grasp torque is measured by force sensors. This data is

then used to re-evaluate the CoM, repeating the procedure until a satisfactory low-torque grasp

has been found. This method could lead to irrecoverable failures as a grasp must be executed

3



to calibrate the center of mass found. More importantly, the centroid of a point cloud is not a

reliable estimator for center of mass as the full point cloud of an object is usually not attainable

in open-world environments. The centroid of partial point cloud may be misleading, causing

slippage during grasp.

2.2 Grasp Pose Proposer

Due to the limited contact points provided by a parallel gripper, finding a suitable grasp

pose becomes a challenging problem. In recent years, machine learning has become popular

approach for grasp proposers [15], [9], [13]. These learning-based methods are able to generate

a set of 6-DoF grasp poses for parallel grippers from raw point cloud data. [15] proposed a CNN

that is trained using artificial data. The data consists of sampled grasp poses that are labeled

as good and bad grasp poses. [9] proposed a two-part framework where a VAE is trained to

sample poses with a point cloud input and an evaluation module is trained to detect and refine

the proposed grasps. Contact-GraspNet[13] simplified the representation of grasp poses from

6-DoF to 4-DoF to improve model training. It also used the ACRONYM [4] dataset, a large

simulation-based dataset with a vast amount of different object types. Contact-GraspNet was

able to achieve state-of-the-art performance on many benchmarks while being lightweight. It

consisted of only one network with a Pointnet++ [10] encoder backbone and returned directly

usable grasp poses. However, since ACRONYM’s grasp poses are classified under a zero-gravity

environment, the grasp poses generated by Contact-GraspNet do not consider instabilities such

as rotation and slippage when the objects’ pose change relative to gravity. This leads to the

model proposing grasp poses that can be maintained but are unstable. This is shown in 2.1.

2.3 Grasp Stability Analysis

The notion of stability has not agreed-upon definition [5]. In certain contexts, stability

may refer to the existence of an equilibrium in which the contact point of the object and the

4



Figure 2.1. Some grasp poses generated by Contact-GraspNet. The red grasp poses are not
stable if the object is being lifted, while the green ones are stable lifting grasp poses. The poses
are classified by the grasp analyzer proposed.

gripper obey certain friction laws. With hand-like grippers that provide a high number of contact

points, there exists a state of stability where the normal forces of contact completely limit the

movement of the object. This is referred to as “form closure“ [3] and is a very strong stability

condition. An object under form closure is completely kinematically constrained by the contacts

of the gripper. Thus unless the motors on the gripper fail, no force in any direction would

destabilize the object. However, such analysis would require prior knowledge of the object’s

shape, which is often unobtainable in open-world settings.

Moreover, in the context of parallel grippers with two pins, it is nearly impossible to

achieve form closure. Therefore, it is important for parallel grippers to consider the destabilizing

forces and how they affect the grasp under different poses. In an isolated environment where

the robot is the only actor,gravity is the only destabilizing force. Thus, given the center of mass

of the object and the mass of the object, one can perform simple force and torque analysis to

determine the stability of a grasp.
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Chapter 3

Methodology

The grasp analyzer consists of a grasp proposer, a center of gravity (CoM) estimator,

and a grasp classifier 3.1. The first two components are learning-based; the grasp classifier

is a physics-based torque analyzer. For the grasp proposer, a pre-trained version of Contact-

GraspNet [13] is used. Contact-GraspNet is chosen for its simplicity as well as its state-of-the-art

performance in tabletop scenarios. The CoM estimator and the grasp classifier will be discussed

in more details in the following sections.

3.1 Center of Mass Estimator

3.1.1 Architecture

The architecture of the center of mass estimator is shown in 3.2. Similar to Contact-

GraspNet, the first part of the architecture utilizes a Pointnet++ feature extractor to create

per-point features from segmented point cloud. This feature is then passed into three fully

connected layers. Note that the fully connected layers do not perform reduction to directly

generate a CoM estimate. Instead, they produce a “dense“ (per point) estimate of the CoM as

proposed by [16]. This has been shown in the pose estimation community to drastically improve

the stability and accuracy of estimation from point clouds. In [16], mean shift with consensus is

used to aggregate the per-point estimations. However, in the setting of center of mass estimation,

using mean shift or RANSAC did not show any improvement in accuracy. Therefore, a simple

6



Figure 3.1. The overall pipeline of the grasp analyzer is shown here. The grasp proposer and the
CoM estimator take segmented point cloud are input and output a list of proposed grasps and an
estimated CoM. The two are then analyzed the grasp classifier to determine which grasps are
stable lifting grasps, stable sliding grasps or neither. Note that a grasp can be both a stable lifting
grasp and a stable sliding grasp.
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Figure 3.2. The architecture of the center of mass estimator is shown here. The first part of
the network is a point cloud feature extractor with three Pointnet++ Set Abstraction layers and
three Pointnet++ Feature Propagation layers. The per-point features are then fed into three
fully connected layers. As the layers do not reduce in dimensions, they can also be viewed as
convolution layers. The fully connected layers produce estimates of the object’s center of mass
for each point in the point cloud.

averaging is used to aggregate the dense estimates to form the final center of mass estimation.

3.1.2 Point Cloud Augmentation

The aforementioned architecture achieves a satisfactory performance in terms of overall

accuracy. However, there are some egregious failure cases such as predicting CoMs that are

below the table as shown in 3.3. To remedy these errors, an “imagined“ table point cloud is

added similar to [11]. In [11], an imaginary hand point cloud is added to improve the model’s

cognition of the spatial relationship between the hand and the manipulation target. In the case

of CoM estimation, the imaginary table surface point cloud serves a similar purpose. It allows

the model to get a better sense of the size of the object even under occlusion. It also allows the

model to better assess the the placement of the object on the table. Given that the object must be

in a stable placement, additional assumptions about the object’s distribution of mass can be made

to help with center of mass prediction. With the imaginary table surface point cloud added to

augment the segmented partial point cloud of the objects, egregious errors with CoM estimations

decreases significantly.

8



Figure 3.3. An example of estimation failure. The ground truth center of mass if shown in blue
while the predicted center of mass is shown in red. The object’s observed point cloud is shown
in red and the table is shown in green. Because only the partial object point cloud is passed to
the model, the model is unsure of the exact dimensions of the object and makes a prediction that
overestimates the size of the object.

3.1.3 Data Set and Training

The model is trained using a data set derived from the ACRONYM database [4].

ACRONYM contains center of mass information of ShapeNet [1] objects. ACRONYM’s

toolkit also contains methods that allows the user to generate tabletop scenes. A total of 1000

scenes are generated by placing a random object in a random stable placement on a table. For

each scene, five different camera angles that resemble a robot’s view of the tabletop are created

randomly. Each camera angle would generate a distinct partial point cloud of the object. Each

partial point cloud is augmented with a labeled imagined tabletop point cloud; center of mass

and a camera matrix annotations are also included. An example of the five point clouds from a

different scenes are shown in 3.4. Of the 5000 samples, 4000 are used to train the model and

1000 are reserved for evaluation.

The model is trained with a learning rate of 0.001 using the ADAM optimizer. The loss

function is the average L2 loss of the dense predicted CoM and the ground truth CoM. The

final model achieves an average CoM estimation error of 2cm on the evaluation data set. Some

example predictions are shown in 3.5.

9



Figure 3.4. Examples of generated data with partial object point cloud in red, augmented table
point cloud in green, ground truth center of mass as a blue dot. The axis shown on the ground
truth center of mass is aligned with the camera reference frame.

Figure 3.5. Examples of prediction results. The ground true center of mass is shown as a blue
dot while the predicted center of mass is shown as a red dot.

3.2 Grasp Classifier

3.2.1 Assumptions

This work assumes that the parallel gripper has only two pins with powerful motors. This

work also assumes that the manipulation task is in isolation, meaning that the robot is the only

actor in the task. In such context, the forces acting on the object are gravity and the contact

forces exerted by the two pins as well as the resulting friction.

A stable grasp for lifting is defined as when the object is lifted by the grasp, the relative

pose between the gripper and the object does not change; vice versa, a stable grasp for sliding

is defined as when the object is slid by the grasp, the relative pose between the gripper and the

object does not change.

Under this setting, it is possible to classify grasp destabilization as two types: slippage

destabilization and rotational destabilization. Slippage destabilization refers to the scenario when

the contact friction between the gripper and the object is not sufficient to support the object’s

10



(a) Slippage (b) Rotational

Figure 3.6. (a) shows the forces in play for a lifting grasp concerning slippage destabilization.
fgripper1 and fgripper2 are the static friction exerted by each of the two gripper pins; G is the
gravitational force experience by the object. (b) shows the torques in play for a lifting grasp
concerning rotational slippage. By choosing the center of grasp as pivot, τgripper is the static
torque created by the contact surface between the gripper and the object; τG is the gravitational
torque experienced by the object.

weight. Rotational destabilization refers to the the scenario when the static torque between the

gripper and the object is not sufficient to balance out the object’s gravitational torque. The two

types of destabilization are illustrated for the lifting case in 3.6 and for sliding case in 3.7.

It is assumed that slippage destabilization does not happen for any of the grasps proposed.

This assumption is based on three reasons. First, grasps generated by Contact-GraspNet are

usually immune to slippage as the network is trained to prevent such destabilization. Second,

the motors on the gripper are usually very powerful. Thus, in practice, the maximum friction

and normal forces generated by the gripper usually far exceed the gravitational forces and the

friction between the object and the table. Finally, if slippage destabilization is possible, it usually

means that the object is too heavy or has a very high friction coefficient for the gripper to handle.

If that is the case, grasp analysis become a moot point as the robot simply lacks enough power to

manipulate the object.

Given the above assumptions, the focus of the grasp classifier is therefore to analyze the

torques in play to prevent rotational destabilization during manipulation.

11



(a) Slippage (b) Rotational

Figure 3.7. (a) shows the forces in play for a sliding grasp concerning slippage destabilization.
The object is being slid to the left. fgripper1 and fgripper2 are the static friction exerted by each of
the two gripper pins; fG is the friction caused by gravitational force experience by the object. (b)
shows the torques in play for a sliding grasp concerning rotational slippage. The object is being
slid upwards. By choosing the center of grasp as pivot, τgripper is the static torque created by the
contact surface between the gripper and the object; τ fG is the torque experienced by the object
due to the friction between it and the table.

3.2.2 Model and Notions

An accurate model for torque analysis would be intractable. For instance, pivot point

selection in non-equilibrium systems become complicated. Therefore, most approaches such as

[8] simply consider grasps with smaller distances to the center of mass as stable grasps. However,

such models neglect two-pinned parallel grippers generate vastly different static torques in

different axis. For instance, the maximum static torque generated by the gripper in 3.6b would

be much smaller than the in 3.7b, and this would lead to a rotation in 3.6b while the grasp in

3.7b would remain stable.

To model this property while keeping calculations tractable, maximum static torque is

defined as three separate values on each of the three axis for a Fetch [18] gripper 3.8. The pivot

point is selected as the center of grasp, denoted as the origin in 3.8. As slippage destabilization is

unlikely to happen, this pivot point is a good approximation to the actual pivot point of the object

when motion is relatively low-velocity. The maximum static torque on each axis is denoted

12



as τx
max, τ

y
max and τz

max respectively. The torque generated by either the gravitational force or

friction between object and table is denoted as τrotation. This torque can be found with a simple

cross product:

τrotation = Lrotation ×Frotation

= (Protation −PGraspCenter)×Frotation

Where the Lrotation is the lever arm and Frotation is the rotational force (gravitation force

or friction). Lrotation is found by the displacement between the object’s grasp center and the

rotational force’s point of exertion.

The rotational torque is then decomposed into the gripper’s reference frame via a vector-

matrix multiplication


τx

rotation

τ
y
rotation

τ
z
rotation

=


x

y

z

 · τrotation

where


x

y

z

 represents the orthogonal normal matrix of the gripper’s reference frame.

The rotation torque in each axis is then compared to the maximum static torque in each axis to

determine the grasp pose’s stability. If none of the rotational torques in any direction exceeds

the maximum static torque, the pose is deemed stable. Otherwise, it is deemed unstable. An

example is shown in 3.9.

3.2.3 Additional Details

For lifting grasp poses, since gravitational force only has one direction, torque analysis

only needs to be performed once. For sliding grasp poses, since the frictional force’s direction

depends on the direction the object is being slid, a single torque analysis is not sufficient. For

each sliding pose, a number of directions are sampled uniformly from 2π and each direction

13



Figure 3.8. The reference frame of a Fetch gripper is shown here. The RGB axis illustrates the
maximum static torque on the XYZ axis. A fetch gripper would offer the most static torque on
the Z axis and the least static torque on the Y axis.

is analyzed. A sliding pose is stable only if all directions have stable torques. The sampling

density is a parameter that can be tuned. For sliding poses analysis, the exact point on which

of the friction is exerted is also unknown. Ideally, it can be found by integrating over the mass

distribution and the friction coefficient of the object. In practice, this point can be estimated

as the projection of the center of mass of the object onto the table. This is true if the object’s

friction coefficient is even across the contact surface.

In practice, the mass of the object, the friction coefficient and the maximum static torques

of the gripper are unknown. Therefore, it is impossible to give exact classification. Instead, in

practice, the grasp poses are first clustered to reduce their number. Then, each pose is ranked

based on their torque analysis results. The top ranked poses are classified as stable poses. The

clustering process allows for a diverse set of grasps to be recommended. Both clustering and

ranking parameters can be tuned.
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(a) Torques (b) Classifications

Figure 3.9. This example shows the torque analysis and subsequent classification of grasp poses
for a hammer object. Each grasp pose is shown as a transparent gripper. (a) shows the torques
in gripper XYZ frame. The three torques are visualized as RGB values in each grasp pose. (b)
shows the subsequent classification made based on the torques in each axis. The green grasp
poses are stable lifting poses while blue ones are not. Notice that two grasp poses at the end of
the handle are still classified as stable even though they generate a large torque.
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Chapter 4

Experiments and Results

No individual experiments were performed to assess the performance of the stand-alone

grasp analyzer. Rather, the grasp analyzer was integrated with a multi-modal planner [7] to

perform pick-and-place tasks both in-simulation and in-real-world experiments. Since both the

grasp analyzer and the multi-modal planner has to perform to succeed in a task, the experiments

would reflect the performance of the grasp analyzer.

The robot is asked to pick up an object from a cluttered table in a stable manner. To

ensure stability during pickup and placement, the multi-modal planner uses stable sliding grasp

poses to relocate the object to a position where a stable lifting pose is feasible; then, the planner

uses the stable lifting pose to pick up and place the object. For each scene and object, a set of

trials are performed using the grasp analyzer enabled multi-modal planner and another set of

trials are performed using only Contact-GraspNet and an RRT-based planner. The stability of

each solution is then compared.

4.1 Simulation experiments

4.1.1 Setup

The simulation experiments are performed in Coppeliasim [12] on a simulated Fetch

platform. A total of 12 different objects in 12 distinct scenes are performed with the Bullet

physics engine. The scene consists of multiple object place on a table, creating a cluttered
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environment. A Fetch platform, having a parallel gripper with 100 N of grasping force, is

positioned at some distance in front of the table. In the first 6 scenes, the target objects are

deliberately place in locations where stable lifting poses are initially infeasible. In the remaining

6 scenes, objects are placed randomly.

4.1.2 Experiment Trials and Stability Metric

A trial in the simulation experiment involves the robot grasping the object and then

removing the supporting table from the simulation. After the table has been removed fro 5

seconds, a stability core is measured. Grasping Stability is measured by the inverse of the object’s

rotational change relative to the gripper after the table has been removed: stability = 1
∆R . A

stable grasp would result in a low object pose change relative to the gripper after grasp, and thus

a higher stability score. We also measure the final height of the object after the table has been

removed. If the height of the object is less than the height of the removed table, then the object is

considered to be dropped. In this case, the stability score is set to 0, indicating a failure. For each

object, 10 total trials were run: 5 trials on the Contact-GraspNet and RRT based baseline system

and 5 trials on the grasp analyzer and multi-modal task planner based system. The performances

of the systems are judged based on the average stability score in a scene.

4.1.3 Results

Results are shown in Table 4.1. In all of the scenes, our method achieved on-par or higher

stability scores compared to the baseline method. For certain scenes and objects, the baseline

was unable to complete the grasping task entirely, resulting in a stability score of 0. In contrast,

our grasp analyzer and multi-modal planner were able to identify and execute stable grasps in all

of the scenes. This proves that the grasp analyzer’s judgments of stable sliding and lifting grasps

are sound.
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Table 4.1. Simulation Experiment Result

object name object mass(kg)
avg. stability (higher is better)
baseline our method

hammer 0.10 1.04 9.06
pan 0.16 1.71 5.91

candy bar 0.16 0.00 32.6
microphone 0.10 23.5 41.6

level 0.51 0.00 6.23
wrench 0.12 0.00 13.5

tissue box 0.80 3.92 4.36
cereal 0.12 5.94 25.3
can 0.10 19.3 68.6

caliper 0.18 5.06 8.29
dispenser 0.25 0.71 35.9
remote 0.23 0.35 5.11

4.2 Real World Experiments

4.2.1 Setup

We conducted real-world experiments on three objects - a hammer, a pan, and an espresso

machine handle - placed on a cluttered table, as shown in Fig. 4.1. Initially, the hammer and

pan were positioned in a pose where achieving high-quality grasps was not feasible, while the

espresso machine handle was placed near an obstacle that made high-quality grasps unattainable

due to collision. During running the experiment, we tasked the robot with moving those objects

into a pre-placed bin using both the baseline method and grasp analyzer and multi-modal planner

based method.

4.2.2 Results

Our multi-modal planner was successful in placing objects into the bin after a few trials.

The baseline planner, on the other hand, was unable to successfully place the objects entirely. In

the case of the hammer, once the gripper grasped the handle and lifted it up, the gravitational
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Figure 4.1. Left: the setup of the real-world experiment with Fetch. Right: Objects (hammer,
pan, and espresso machine handle) used in the real-world experiment.

torque caused the hammer to rotate about the contact point and remain in contact with the table

4.2. This caused the hammer to drag across the table during placement and ultimately grasp on

the hammer failed. With our method, as shown in the lower four figures, our planner determined

that the low-quality grasps on the handle were insufficient to lift the hammer, prompting the

planner to rearrange the hammer to bring it closer. This adjustment enabled the robot to grasp the

hammer in the middle where the predicted center of mass (COM) caused minimal gravitational

torque and lift it up successfully.

Chapter 4, in part, is being submitted for publish of the material as it may appear in

International Conference on Intelligent Robots and Systems(IROS). The thesis author wrote

those paragraphs, and is a major contributor and author to the work described in those paragraphs.
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Figure 4.2. Upper: Without rearrangement, the hammer rotates around the grasping point during
lifting. Lower: With rearrangement, before lifting, the robot identifies stable sliding and lifting
grasp and slides the hammer into a better position for reliable lifting.
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Chapter 5

Conclusions and Discussion

5.1 Conclusions

In this thesis we considered the problem of recommending grasps that enable stable

manipulation of objects by a parallel gripper. We created a grasp analyzer that combines learning-

based method with physics based methods that can identify stable sliding grasps and stable lifting

grasps. The grasp analyzer works on unseen object with arbitrary geometric shapes. This grasp

analyzer, combined with a multi-modal planner, was able to complete pick-and-place tasks in a

stable manner both in-simulation and in the real world.

5.2 Discussion

One major weakness of the CoM predictor is objects with highly unevenly-distributed

mass. This uneven distribution of mass usually originates from the use of different materials in

different parts of the object. Therefore, a viable path for future work would be to add color as

a feature onto the partial point cloud of the object. This new feature would allow the model to

identify materials and thus predict uneven distribution in mass. This would require careful data

generation or input processing as incorrect representation of material colors could lead to poor

sim-to-real results.

Another potential direction for future work would be an end-to-end learning-based model

that directly identifies stable sliding and lifting grasp poses. This could be achieved with a
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distillation-like framework [6]. In such a setup, the output of the current learning-physics hybrid

grasp analyzer would be used to generate learning targets for an end-to-end neural network. This

could lead to improved efficiency and performance given that the network would directly predict

stable sliding and lifting grasp poses.
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