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ABSTRACT 

 

Spatial Ecology of Parasites: Integrating Models and Frameworks 

 

by 

Johanna Lee Fornberg 

 

Parasites are increasingly recognized as essential components in ecological 

communities. Hosts and parasites experience intimate, long-lasting associations that impact 

where they are found in space and how they interact in the larger ecological community. The 

spatial ecology of parasites is therefore an interesting and complex area of research that 

requires careful study. In this dissertation I explore three areas of parasite spatial ecology 

building on some of the latest statistical and mathematical tools in ecology. Specifically, I 

concentrate on a guild of trematodes in estuaries along the Pacific west coast. I begin by 

quantifying how parasite distributions vary across space, with special consideration of how to 

do so when parasite data is limited or affected by error. In the second chapter, I explore how 

to statistically predict trematode abundance across several estuaries and what these findings 

suggest about the mechanisms driving parasite abundance. Finally, I define a mathematical 

model describing host-parasite transmission dynamics in systems that demonstrate an 

encounter dilution effect as a result of infective stage depletion in the environment. These 

three works not only improve what is known about the focal trematode guild, but they also 

improve understanding of how statistical and mathematical models can be used to gain 

valuable, accurate insight about parasites more generally. 
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Overview 

 

When asking fundamental questions about species communities, ecologists are almost 

always thinking about spatial relationships of ecological phenomena. Even research 

questions without explicit consideration for space are concerned with ecological processes 

that are both a cause and effect of spatial patterns. This emphasizes one of ecology’s major 

questions: where do we find species, and why?  

Communities are associations of species that are defined by geographic space and 

ecological interactions and may also be bounded by ecological time (Vellend 2016). The 

importance of parasites and other infectious organisms has been accepted as an important 

facet of the definition of a community (Dobson and Hudson 1986, Dobson et al. 2008). 

Parasites and their hosts form durable communities, with complex interactions that may 

differ from free-living counterparts alone(Holmes and Price 1986, Combes 2001). Central to 

both community and disease ecology theory are paradigms and models of species occurrence 

and abundance across space, as well as mechanisms that drive patterns of species 

distributions and interactions. Data collection on host-parasite communities can be 

challenging since parasite data often requires destruction of the host for sampling and can be 

cryptic, making parasites more susceptible to sampling error (Poulin 2004). From a practical 

perspective, this lack of clarity about spatial relationships makes valuable insight difficult to 

achieve. The application of most parasite ecology work is to provide insight about species 
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distributions and interactions in order to make predictions about future change scenarios, 

such as climate change and habitat modification, and to make decisions about how to 

mitigate, adapt, or restore ecological systems in light of changing conditions. Creating better 

tools and models to describe and predict how hosts and parasites vary across space and how 

they interact is essential to understand biodiversity and ecological complexity.  

Parasites and their hosts alike may exhibit predictive variation or patterns across 

space, and often these patterns give insight to the underlying mechanisms that drive spatial 

and ecological relationships between hosts and parasites (MacArthur 1972, Levin 1992). 

Work on this has generated significant momentum toward understanding the complexity of 

how species occur and interact in space (MacArthur and Pianka 1966, Paine 1966, Chave 

2013). However, there are still unanswered questions about how to accurately describe and 

predict parasites in space, especially when data may be limited or imperfect (Poulin 2004, 

Lafferty et al. 2008). In applied ecology, exploring mechanisms that drive spatial 

relationships has been essential for informing predictions about how species distributions and 

interactions may affect other aspects of ecological communities, ecosystems, and how to 

anticipate and prepare for responses to changing conditions (MacArthur 1972, Levin 1992, 

Lafferty et al. 2008, May et al. 2008). Improving tools for predictions and inference on 

parasites can enhance how ecologists forecast changing parasite transmission or host-parasite 

dynamics in future change scenarios (Dunn et al. 2009, Carlson et al. 2017, Mellado and 

Zamora 2020). Finding the most accurate and flexible tools for description and prediction is 

thus an essential area of research. 

Parasite ecology has demonstrated that parasites can be essential to driving dynamics 

in a community (Loreau et al. 2007, Lafferty et al. 2008, Michalska-Smith et al. 2018). Host-
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parasite assemblages offer a tractable community that can be more easily bounded than 

assemblages of free-living species, in part because parasites are inherently dependent on 

hosts for survival and thus create a biologically meaningful definition of what species are in 

the community. The intimacy of host-parasite interactions also tends to make parasite 

distributions highly nested within the range of hosts (Poulin 2003, Guégan et al. 2005, Moss 

et al. 2020). Parasites may exist as free-living stages in the environment during periods of 

dispersal between hosts, and directly experience the external environmental conditions, but 

most often parasites are subjected to conditions within hosts and only indirectly to the 

external environment. 

Identifying the community level of interest is the initial decision for studying the 

spatial ecology of parasites. Parasite infracommunities (parasites within a single host 

individual) and component communities (parasites within a host population or species) are 

two common definitions of a parasite community (Holmes and Price 1986). 

Infracommunities and component communities can each display different spatial patterns that 

also differ from those of hosts alone (Kuris et al. 1980, Stella et al. 2017, White et al. 2018). 

Moreover, parasites with complex life cycles may have spatial distributions that are driven by 

multiple host species at different life stages, as well as environmental or spatial conditions 

(Huspeni and Lafferty 2004, Hechinger and Lafferty 2005, Lafferty and Dunham 2005). 

Research on these complex drivers of parasite spatial ecology is vital for understanding 

dynamics of hosts and parasites but may also provide novel insight for other organisms that 

engage in intimate, durable relationships, such as mutualists and symbionts.  

In this dissertation, I will investigate the spatial ecology of host-parasite community 

structure in estuaries in California (USA) and Baja California (México). Specifically, I will 
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work with the component community of a guild (sensu Root 1967) of digenean trematode 

species in the first intermediate host snail (Cerithideopsis californica) of their life cycle. This 

trematode guild is the most notable parasite infecting C. californica by prevalence and 

biomass, and the guild also maintains a strikingly high biomass compared to other parasitic 

and free-living groups in the estuaries explored in this dissertation (Kuris 1990, Kuris et al. 

2008, Torchin et al. 2015). In my first chapter, I propose analyzing data from a series of 

estuaries to explore the spatial distribution of trematode species as a metacommunity. Here, I 

focus on both describing species distributions as well as quantifying and correcting sampling 

error and exploring how that error may affect patterns in observational data. In the second 

chapter, I assess the relative significance of environmental, species trait, and spatial 

covariates for predicting the abundance of trematodes in estuary sites with special 

consideration of the role of spatial autocorrelation. In the third chapter, I develop a 

transmission model that examines the relationship between host density and parasitism and 

test the model using field and experimental data. This model especially focused on encounter 

dilution in host-parasite interactions and the contribution of infectious stage depletion to this 

process. Throughout this dissertation, I use and reference extensive work and data collected 

by many researchers on this parasite guild from several decades of dedicated research. 
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Spatial Patterns of Salt Marsh Trematodes: Detection Error and 

the Classification of Parasite Distributions 

 

2.0 Abstract 

The intricate life cycles of parasites, especially those that use multiple hosts, create 

spatial distributions that may be difficult to understand. Metacommunity theory has provided 

the elements of metacommunity structure (EMS) as a framework to untangle the complexity 

of species distributions by classifying communities with several common metrics from 

community ecology. Although this framework is a simple way to characterize ecological 

communities, it is not able to account for possible errors in species-occurrence data. Species-

occupancy models, which account for detection error probability in species communities, can 

be used to improve the performance of this framework. We apply detection error-corrected 

EMS to trematode parasite data from Carpinteria Salt Marsh, where a diverse trematode guild 

exhibits hierarchical structures and competitive interactions within hosts, forming 

metacommunities. By combining EMS and occupancy models, the research provides deeper 

insights into how parasites are distributed which can guide inference about the ecological 

factors shaping these patterns. The results highlight the significance of detection errors in 

understanding spatial patterns in ecological systems and contribute to the broader 

understanding of species distribution and metacommunity dynamics in parasites. 
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2.1 Introduction  

Despite being some of the most widespread and diverse organisms on the planet 

(Windsor 1998, Dobson et al. 2008, Lafferty et al. 2008), parasites are understudied. 

Complex life cycles, in which parasites are dependent on multiple hosts throughout their life 

cycle, are not uncommon and can lead to complex distributions of parasites in space 

(Anderson 1993, Combes 2001). Successfully finding and infecting several suitable hosts, in 

sequence, in the course of different life stages is an essential challenge for parasites with 

complex life cycles. Parasites experience environmental and biological processes that 

establish whether or not a host is accessible and can be infected (Combes 2001). Free-living 

hosts, in turn, experience their own environmental and biological pressures that create 

“structure”, or discernable patterns in their own distributions. Unlike their free-living 

counterparts, parasites exist in a nest of filtering processes that lead to complex, 

heterogenous spatial distributions. Parasites that are able to use a wider diversity of hosts at 

one or multiple life stages may be distributed in ways that could alternatively reflect host 

dynamics or may reflect multiple drivers of occurrence at different scales. The complexity of 

where and how parasites are distributed can be immense but may lead to deeper 

understanding of host-parasite interactions (Guégan et al. 2005, Pullan et al. 2012).  

Metacommunity theory is a sub-discipline of ecology that has attempted to 

breakdown complexity of large, disconnected systems that are linked by dispersal and other 

interactions over space and time (Leibold and Chase 2017). Metacommunity ecology 

conceptually echoes much of the progress in spatial parasitology to integrate biogeography, 

ecology, and evolution into the study of parasites and parasitism (Guégan et al. 2005, 

Mihaljevic 2012). Recent work in both fields has sought general principles to characterize 
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how organisms distribute in space, and what processes lead to observed patterns (Guégan et 

al. 2005, Leibold and Chase 2017). One approach for detecting and describing spatial 

patterns of species has been elements of metacommunity structure (EMS), which uses 

pattern-based classification of species spatial distributions which can be used to infer 

processes that may generate those patterns. The EMS workflow assesses occurrence data on 

species in a metacommunity based on the value of three metrics commonly used in 

community ecology and biogeography (Leibold and Mikkelson 2002, Presley et al. 2010), 

see Box 1 for details. The resulting pattern is a categorization of these metrics and is 

interpreted to suggest possible processes or gradients that may inform a distribution pattern. 

Patterns detected with EMS also provide a way of describing species distributions with more 

consistent terminology than when communities are simply compared to null models of 

“randomness”. 

While EMS provides a procedure for detecting patterns in species data, on its own it 

is limited by the quality of data. Work on detection error in ecology and biogeography has 

demonstrated that correcting for imperfect detection of species greatly improves the accuracy 

of metacommunity analyses, including EMS classification and species distribution models 

(Lahoz-Monfort et al. 2013, Iknayan et al. 2014, Mihaljevic et al. 2015, Mihaljevic et al. 

2018). EMS classification, for example, is subject to misclassification in the form of type II 

errors due to incomplete or inaccurate occurrence data (Mihaljevic et al. 2015, 2018). 

Species occupancy models are meant to test the probability of a species occurring at a site, 

while considering that the likelihood of detecting that species is imperfect (MacKenzie et al. 

2002, Royle and Dorazio 2009). By incorporating detection probabilities into occupancy (or 

co-occupancy) forecasting, species occupancy modelling has been an important tool for  
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Box 1: Classification framework of Elements of Metacommunity Structure 

 EMS classifies spatial distributions of species into described patterns by assessing species 

occurrence data (Figure 1). Occurrence (presence-absence) data is ordinated by reciprocal averaging (i.e., 

correspondence analysis, Gauch 1982) to generate scores that represent a gradient of similarity of species 

composition. The ordinated matrix is then used to calculate three metrics: coherence, species turnover, and 

boundary clumping (Leibold and Mikkelson 2002, Presley et al. 2009, 2010). Calculations of community 

metrics are done successively beginning with coherence.  

 Coherence is measured by the number of embedded absences in the ordinated site-by-species matrix 

in a range of sites that make up the metacommunity. Embedded absences are species absences at sites they 

are expected to occur based on the ordination of the empirical matrix (Leibold and Mikkelson 2002, Presley 

et al. 2010). Conceptually, many embedded absences in an ordinated matrix suggests that species are not 

responding to the same structuring conditions in the metacommunity. Positive coherence is defined by the 

presence of significantly fewer embedded absences in the empirical matrix, negative coherence is defined as 

significantly more embedded absences in the empirical matrix when compared to simulated null matrices. 

Negative coherence is classified as a checkerboard pattern and is expected to arise when strong competition 

for resources lead to mutual exclusion of species pairs within their range (sensu Diamond 1975). When a 

community does not demonstrate positive or negative coherence, it is classified as “random”. Non-interactive 

generalist communities may generate this random pattern, with structure based on processes such as dispersal 

limitation. A random pattern in EMS is an indication that species distributions are independent and not 

determined by the same gradient(s) identified in reciprocal averaging (i.e., it is not synonymous with true 

randomness). 

 Turnover and boundary clumping are assessed after the community matrix is ordinated and 

coherence is calculated, using the same ordinated matrix. Community structure might also be structured by 

niche differences, with species responding to a shared latent gradient. Niche differences can differ in breadth 

(i.e., generalists and specialists along the same resource), which can create nestedness along resource or 

environmental gradients when species turnover is low. Species turnover is calculated after coherence, once 

the number of embedded absences in species distributions has been minimized. Species turnover is calculated 

as the number of replacements of a species by another between sites, where positive turnover indicates more 

species replacements are observed compared to a null model. When turnover is negative, communities are 

considered nested. Nested species distributions occur when some species ranges are subsets of ranges of 

other species; often this leads to rare species occurring only at high diversity sites, and common species at 

low and high diversity sites. The ecological processes creating nestedness can be wide-ranging, such as 

geographical isolation leading to nested subsets of species in islands metacommunities (Patterson and Atmar 

1986) or mutualist networks that display coexistence of more species by reducing the negative effect of 

interspecific competition among pollinators and seed dispersers (Bastolla et al., 2009). When the species 

turnover is positive, and species are replaced along their coherent range, the trend of replacement of each 

species can determine the distribution pattern (Presley et al. 2010).  

 Finally, boundary clumping is used to measure dispersion of species and is calculated using 

Morisita’s index (I) (Morisita 1971). When turnover is positive, species may differ due to differences in 

niche centroids (i.e., specialists on different resources). Boundary clumping is used to distinguish between 

these distributions that have high turnover but are not nested. Species are considered hyperdispersed if I is 

significantly less than one and clumped when I is significantly greater than one. Hyperdispersion is 

suggested to occur when species exhibit strong interspecific competition that lead to trade-offs in competitive 

ability (sensu Tilman 1982) creating an evenly-spaced EMS pattern. Clumped distributions are suggested to 

occur when species inhabit a patchy environment leading to aggregated species loss (i.e., species loss occurs 

in groups of species, Clements 1916) and this pattern is called Clementsian. Species may instead experience 

different, individual responses along an environmental gradient leading to I being non-significantly different 

from one (Gleason 1926) which is classified as a Gleasonian pattern (Figure 1). 

 

studies that are sensitive to false negatives (absence) or false positives (presence) in data 

(MacKenzie et al. 2002, Guillera-Arroita 2017, Devarajan et al. 2020). By incorporating 
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species occupancy models to correct for false negatives in species data, Mihaljevic et al. 

(2015) demonstrated that misclassification can be reduced by upwards of 20% in some 

datasets, even when detection errors are low (e.g., ~ 10%). Combining these two analyses 

(termed detection error-corrected EMS, or DECEMS) can be a more robust way to describe 

how species are distributed and make inferences about the factors that may drive these 

patterns (Mihaljevic et al. 2015, 2018). Occupancy models rely on replicated data collection 

of species presence (or abundance) in order to jointly find the detection and occupancy 

probability for one or multiple species (Dorazio and Royle 2005, Dorazio et al. 2006) and 

can incorporate additional covariates that describe, for example, biotic interactions or 

environmental conditions (Kéry and Royle 2016, Rota et al. 2016). 

Species classification using the EMS framework has been conducted on a wide range 

of organisms in a variety of different ecosystems to help describe and understand free-living 

metacommunities (Cottenie 2005, Presley and Willig 2010, Dallas and Drake 2014, Heino et 

al. 2015, Gascón et al. 2016). Parasites and other symbiotic organisms have been studied 

using the same framework to understand how such organisms are organized in space (Dallas 

and Presley 2014, Mihaljevic et al. 2018, Costa-Neto et al. 2019, Cardoso et al. 2020, 

Álvarez-Mendizábal et al. 2021). One study on flatworms in freshwater snails suggested 

parasites exhibit nestedness and suggested this distribution was predictable under a mass 

effects or species sorting process (Leibold et al. 2004, Richgels et al. 2013). Other parasite 

taxa have been linked to other EMS patterns, including nestedness (Mihaljevic et al. 2018, 

Álvarez-Mendizábal et al. 2021), checkerboard (Costa-Neto 2019), “Clementsian” (Dallas 

and Presley 2014, Álvarez-Mendizábal et al. 2021), and “random” (Dallas and Presley 2014, 

Cardoso et al. 2018). Many studies, however, do not explicitly account for detection error in 
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EMS assessments. Aside from correcting for detection errors, occupancy models have the 

additional benefit of considering the effect of covariates (Mihaljevic et al. 2015, Doser et al. 

2022) which can provide added species-level responses to the environmental or other factors 

may be related to the standalone EMS pattern that describes empirical data.  

Estuaries comprise distinct communities linked by dispersal across large distances. 

Past work in the tidal estuary Carpinteria Salt Marsh (CSM) along the west coast of 

California (USA) has identified a community of digenean trematodes parasites 

(Platyhelminthes) that are infective to a diverse range of hosts that occupy CSM and use the 

marine snail Cerithideopsis californica as the first intermediate host. In CSM, 19 identified 

species across 8 families maintain complex life cycles that involve two or more hosts 

(Hechinger 2019). Parasites form infracommunities within host individuals through shared 

dispersal mediated by biotic interactions (Holmes and Price 1986, Lafferty et al. 2008). 

Parasite communities have additional hierarchical structures among host individuals within a 

species, and among host species within a host community (the parasite component 

community) (Bush et al. 1997). As such, parasites form metacommunities within host 

populations and host metacommunities (Guégan et al. 2005, Moss et al. 2020). This guild of 

trematodes forms spatial patterns that can be described by metacommunity theory. 

Community structure could change depending on the scale at which parasites are 

observed. For instance, interactions between parasites are typically stronger at fine spatial 

scales (e.g., within a snail), whereas evolutionary and biographic associations are typically 

stronger at large spatial scales (across estuaries). We focus on the component community 

(i.e., the community of parasite species within the population of a single host at a single site) 

of this system for two reasons. Component communities are considered to be long-lived 
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associations, making them appropriate indicators of long-term processes that may affect the 

host and parasites over time (Poulin 2004, 2007). Therefore, we expect inference from 

patterns of distribution within the component community will provide valuable inference 

about what processes shape that group of organisms. An important caveat is that statistical 

inference from component community data is also more sensitive to rare species and, 

consequently, detection errors, as rare species are less likely to be observed in community 

sampling (Poulin 2004). The component community also represents a diverse group of 

parasites that occur very commonly in the C. californica host and have well-documented 

ecological roles and competitive interactions. Parasite-parasite competition, where parasite 

species directly compete with other parasite species, occurs implicitly as parasites seek 

access to susceptible hosts and directly within hosts for dominant access to host tissue (Kuris 

1990, Sousa 1993, Kuris and Lafferty 1994). The latter form of parasite-parasite competition 

has an established dominance hierarchy within which parasites predictably compete when 

species encounter each other within an individual first intermediate host (Kuris 1990, Kuris 

and Lafferty 1994, Garcia-Vedrenne et al. 2016). Notably, trematodes also experience 

competition-colonization tradeoffs, as less competitive species are stronger colonizers 

(Mordecai et al. 2016). Processes at the infracommunity structure the component community, 

but to a limited extent (Lafferty et al. 1994). 

Trematode species may not occur together due to uniformly low prevalence and 

limited host dispersal, in which case communities would be neutrally coherent. For instance, 

if infection is a relatively rare event, and prevalence varies little among trematode species, 

and host movement does not homogenize the trematode community, then communities would 

be sparse and scattered, with no clear patterns. Such a pattern is called a random community. 
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Alternatively, trematodes may not occur together primarily due to interspecific 

competition for shared resources, i.e., competition for hosts (sensu Diamond 1975). 

Competitive exclusion could lead to negative coherence (a “checkerboard” pattern) in the 

EMS framework (Box 1). At the infracommunity level, many fewer double infections occur 

than expected by random chance (Kuris 1990). This competition effect can scale up to the 

component community so that subordinate species are less prevalent in the component 

community than they would be if competition did not occur (Lafferty et al. 1994). This could 

lead to spatial patterns if infection rates were patchy in space, or if infection rates were high 

and snail populations differed strongly in mean age, so that some populations were 

comprised of young snails with only subordinate trematode species and other populations 

comprised of old snails infected mostly with dominant trematode species. Such a pattern is 

called a checkerboard community (Tilman 1982). 

If communities are neither random, nor a checkerboard, then some positive 

associations among species will arise (positive coherence). There are four types of such 

coherent communities, depending on turnover and boundary clumping. An exposure gradient 

could lead to some sites having a full complement of species, whereas other sites only have a 

few numerically dominant species. Assuming trematode species respond to local conditions, 

variation in species occurrence may be primarily due to different niche breadths or 

abundances. This may result in communities that are positively coherent and have less 

turnover than expected. For instance, trematode infections are more likely in large snails. 

Because snails do not lose infections, larger (older) snails are more likely to have become 

infected over time (Lafferty 1993), including with relatively rare trematode species. 

Populations comprised of younger snails seem more likely to have a subset of the trematode 
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community. Another shared gradient may be an abiotic gradient such as the amount of 

organic material in sediment, which may be a proxy for host conditions or resources such as 

bird feces or diatoms. Such mechanisms lead to communities defined as nested subsets (all 

sites have the same common species, and some sites have rare species). Nested patterns may 

have negative clumping (hyperdispersed species loss), neutral clumping (random species 

loss), or positive clumping (clumped species loss), respectively.  

Alternatively, trematodes may not occur together primarily due to their having 

different niche centroids, in which case communities may have positive coherence, and have 

more turnover than expected rather than less, which results in few widely distributed species, 

but where associations form due to environmental gradients (Gleason 1926), or a patchy 

environment (Clements 1916). Although the signature of different niche centroids is similar 

for measures of boundary clumping (negative, neutral, or positive clumping, respectively), 

they would result in different EMS pattern classification (evenly-spaced, Gleasonian, and 

Clementsian, respectively) (Figure 1). If the environment has a strong, continuous gradient, 

and species have different responses to that gradient, then the community will transition 

gradually in space. For instance, estuaries often create a salinity gradient from marine to 

freshwater. If trematodes (or their hosts) were to have narrow salinity tolerances, one could 

imagine a gradient in the trematode community from the mouth to upstream. Such a 

community would be called evenly spaced. On the other hand, a gradient may be related to 

shared intermediate or final hosts. For instance, some trematode species use crabs as second 

intermediate hosts whereas others use fish and others use molluscs. Thus, snail populations 

visited by crab-eating hosts (such as raccoons or night herons) might have different 

trematode communities than those visited by piscivores (such as herons and egrets) than  
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Figure 1: Decision tree for EMS patterns based on the outcome of coherence, turnover, and boundary clumping 

metrics. The classification of EMS pattern begins with interpretation of coherence and follows a decision tree 

based on the significance and sign of calculated community metrics when compared to a null model (Leibold 

and Mikkelson 2002). Quasi-structures may exist when turnover is non-significant but are conceptually 

interpreted in the same way as the traditional EMS patterns (Presley et al. 2010). 

 

those visited by molluscivores (some shorebirds). If the host distributions fell along a 

gradient, the community would be called Gleasonian (Gleason 1926). If the host patches 

were non-overlapping, the community would be called Clementsian (Clements 1916). 

However, turnover might not be due to gradients or niches, but due to sampling error. 

In such cases, all sites would have prevalent species, but some rare species would be less 

likely to be observed, especially where sampling effort was low. This would inflate beta 

diversity so that nested communities might appear to be Clementsian, Gleasonian or evenly 

spaced. It is also possible that sampling error would inflate boundary clumping, especially to 

the extent that sampling effort varies among sites. 
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By incorporating multi-species occupancy models to assessment of metacommunity 

distribution patterns with EMS, we were able to account for detection error in observational 

data. Using the posterior samples (i.e., inferred community occurrence matrices) from a 

multi-species occupancy model led to different EMS pattern classification. Although 

observational data was dominantly classified as Gleasonian, inferred communities were 

dominantly nested (see Box 1 for details on these patterns). We also used simulated 

communities to determine if the random removal of species from nested communities 

inherently generated a reclassification to a Gleasonian community. The majority of simulated 

communities did not yield pattern reclassification to a particular EMS pattern with random 

species removal, suggesting using a species occupancy model reduces turnover due to error, 

providing more accurate insight about species occurrence in observed communities. 

2.2 Methods  

Our work is based on a combination of EMS pattern classification, as developed in 

metacommunity literature (see Leibold and Mikkelson 2002, and Presley et al. 2009, 2010), 

with species occupancy models that will correct error detection and allow for closer 

exploration of species-specific covariates and how they relate to identified patterns. This 

workflow was developed in Mihaljevic et al. (2015) as detection error-corrected EMS 

(DECEMS) and we apply this technique to a novel system on trematodes in the component 

community of the first intermediate host, C. californica. 

2.2.1 Study System 

CSM is a coastal estuary consisting of sub-tidal channels, mudflats, and upland 

habitats. Digenean trematodes (Platyhelminthes) are prevalent in CSM and infective to a 

wide variety of hosts at several life stages. Here, we use observational data on trematodes 
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that use the marine gastropod C. californica (Haldeman) as the first intermediate host. Viable 

second intermediate hosts include fish, gastropods, bivalves, and other invertebrates, though 

some species do not use a second intermediate host (Huspeni and Lafferty 2004 and 

references therein). Transmission typically occurs in the environment as infective stages are 

released and encounter a susceptible host (Box 2). The final host is often birds, including 

migratory waterfowl, or mammals, and transmission may occur in the environment or 

trophically. In this study we focus specifically on trematodes that were identified in C. 

californica infections (Hechinger et al. 2017). 19 species of trematodes were identified 

across 8 families of Digenea in 5882 infected snail hosts out of the 11643 snails that were 

collected in the field (Appendix Table 1). In total, there were 5882 single infections, 386 

double infections, and 13 triple infections. We counted each identified trematode species in 

an infected C. californica host as a single infection (i.e., double infections were considered 

two singles and triple infections were considered three singles) per Lafferty et al. (1994), for 

a total of 6281 infections. Data on the occurrence of trematodes in C. californica hosts were 

completed between 2012-2014 on 27 sample dates across each season (wet and dry) of each 

year. We considered the wet season to be from November to April, and the dry season from 

May to October. During this period, 5 sample communities were created from the wet season 

of 2012 to the wet season of 2014 by pooling sampling records from sampling events in the 

wet or dry season of a particular year. 58 snails of representative sizes were collected at each 

of 10 sites in two habitat types of the salt marsh (tidal channels and mudflats), and sites were 

not consistently sampled on every sample date (Appendix Table 2), with infected snails 

ranging from 5 to 40 mm and the average infected snail measuring 28 mm. Snails were 

collected and dissected, and trematodes were identified to species level (see Hechinger et al. 
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Box 2: Parasitology of Digenean Trematodes in Focal Estuaries 
 The focal host of this study, C. californica, is found in coastal estuaries from North America 

(California, USA) to as far south as Piura (Peru) in South America (Keen 1971, Miura et al. 2010). Of the 

parasites infective to this organism, the most notable (by prevalence and size) is the guild of digenean 

trematode species (Kuris 1990, Kuris et al. 2008, Torchin et al. 2015). In the focal estuary, Carpinteria Salt 

Marsh (CSM), this guild of trematode parasites includes at least 19 identified species that all use a complex 

life cycle (Appendix Figure 1). The complex life cycle includes several life stages (eggs, miracidia, cercaria, 

redia/sporocysts, metacercaria, adults) and is transmitted by one or several processes to each host, generally 

environmental or trophic pathways. Parasites infect multiple invertebrate and vertebrate hosts throughout 

their life cycle, the first being an invertebrate, typically the California horn snail, which comes in contact 

with larval, free swimming parasite miracidia in water and substrate. Upon infection, castrate both sexes of 

host by altering hormones in the host reproductive system or displacing or consuming host reproductive 

tissue (Adema and Loker 1997). Within the snail host, redia or sporocyst stages may experience interference 

competition as species compete for access to the host. Parasite life stages reproduce and cercaria are shed 

from the host (who remains infected for life) into the environment. Some species use a second intermediate 

host, often a fish, and others do not, and are infective to final hosts, which include many bird species and 

some mammals (Huspeni and Lafferty 2004, Hechinger 2019). Cercaria may proceed directly to penetrate 

the final host. In some species, cercaria seek out and encyst on a second intermediate host, where they 

become metacercaria. Cercaria may also encyst as metacercaria in the environment. Metacercaria (in the 

second intermediate host or the environment) infect the final host when they are ingested. Adult trematodes 

develop and sexually reproduce in the final host, and eggs are shed into the environment in hosts’ feces 

(Appendix Figure 1). 

 

2017 for details on collection and dissection, and Hechinger 2019 for identification details).  

Occupancy models were fit with covariates that described environmental conditions 

(i.e., abiotic conditions and host conditions) as well as spatial context. Occupancy was fit to 

six environmental covariates predicted to relate to the true occupancy of trematode species: 

the percent of organic matter in soil, the percent of pickleweed (Sarcocornia virginica) 

coverage, density of birds, diversity (Shannon index) of birds, the average body size of C. 

californica hosts, and the habitat type, and each of these covariates were collected at and 

represent each site (Appendix Table 3). The season and year of trematode sampling and the 

average body size of snail hosts were used to model detection of trematodes in the occupancy 

model. Environmental covariates were collected at the same sites used for sampling hosts and 

parasites, as described in Kuris et al. (2008). Spatial coordinates were used to create spatially 

explicit models and describe the location of each sampling site within the salt marsh (Kuris et 

al. 2008). 
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2.2.2 Elements of Metacommunity Structure 

Metacommunity data was assessed using the EMS pattern classification framework 

(Leibold and Mikkelson 2002) in the package metacom (Dallas 2014) in R (version 4.1.3) (R 

Core Team 2022). Patterns of species distributions are defined by metrics calculated from 

replicated presence-absence data of species occurrence across sites in a metacommunity: 

coherence, species turnover, and boundary clumping (Leibold and Mikkelson 2002). These 

metrics are calculated using a site-by-species dataset that is ordinated by reciprocal 

averaging, which orders interactions based on similarity of species ranges and species 

composition in sites, regardless of abundance (Gauch 1982, Dallas 2014).  

Both the observational data and posterior samples from occupancy models (described 

below) were used as input for EMS classification. For both observed and inferred 

communities (i.e., error-corrected data) we conducted EMS on the entire community of 

trematodes for each season (wet, dry) over a three-year period. Pattern identification in EMS 

uses the sign (positive/negative) and the significance of three community-level metrics to 

assign a pattern type (or “structure”) to a community matrix (Leibold and Mikkelson 2002). 

Calculations of community metrics are done successively beginning with coherence. 

Coherence is measured by the number of embedded absences in the ordinated site-by-species 

matrix in a range of sites that make up the metacommunity. Embedded absences are species 

absences at sites they are expected to occur based on the ordination of the observational 

matrix (Mihaljevic et al. 2015). Significance is assessed by comparing the observed to 

simulated number of embedded absences in 1000 ordinated null matrices using a z-test. Null 

matrices were simulated in the metacom package using the “r1” (fixed row-proportional 

column) method (Wright et al. 1997). This null method maintains site (row) frequencies, 



19 

 

making the null randomization robust against Type 1 errors (false positives) (Gotelli 2000) 

and treats species (columns) as probabilities determined by columns’ marginal frequencies. 

This null randomization method assumes that sites differ in suitability (Gotelli 2000). 

Species turnover is calculated once the number of embedded absences in species 

distributions has been minimized (i.e., when they have been made completely coherent). 

Species turnover is calculated as the number of replacements of a species by another between 

sites, following the generalization of beta diversity in Eq. 25 of Jost (2007, Harrison et al. 

1992). Significance of turnover is determined with a z-test by comparing observed turnover 

to the distribution of turnover values in 1000 ordinated null simulations.  

Boundary clumping is calculated as Morisita’s index (I) measures dispersion of 

species among sites (Morisita 1971) and uses a chi-square test for significance to determine if 

the index is significantly different from 1. Based on the outcome of three community metrics, 

the metacommunity of species is interpreted as one of several patterns of distribution (Figure 

1, Box 1). Once EMS identifies a pattern, the user can make interpretations about species 

distributions based on how the data was ordinated and what environmental/other gradient 

was considered to be impacting the community. 

2.2.3 Occupancy Modeling 

Multi-species occupancy modeling was used to correct for potential detection error in 

the observational data used in EMS analyses, as well as to estimate species-specific covariate 

effects. We used the spOccupancy package (Doser et al. 2022) in R (version 4.1.3) for 

occupancy models, which uses Bayesian inference and parameter estimation and Markov 

chain Monte Carlo (MCMC) sampling. Using observational data, we conducted multi-species 

spatial and non-spatial occupancy models. While our observational data has uneven sampling 
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across dates, species occupancy models are accepted to be robust to this variation (Doser et 

al. 2022). Both spatial and non-spatial models used the same species and covariate data 

(Appendix Table 3). 

The observational dataset of trematodes, yi,j,k describes the detection or non-detection 

of species i at site j for each replicate sampling event k for i = 1,…,N. yi,j,k was used to 

estimate the true presence or absence of species, zi,j, by a Bernoulli process (per Dorazio and 

Royle 2005) such that 

𝑧𝑖,𝑗~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(ψ𝑖,𝑗) 

where ψi,j is the probability of occurrence of species i at site j (MacKenzie et al. 2002, Tyre 

et al. 2003), and is defined by a logit link as 

 𝑙𝑜𝑔𝑖𝑡(ψ𝑖,𝑗)  =  𝑥𝑖,𝑗
𝛵  𝛽𝑖 

where βi represents species-specific regression coefficients for the effect of covariates xi,j. 

The superscript T indicates transposition of column vector xi,j.  

ψi,j is estimated by obtaining k = 1,…,Kij samples (sampling replicates) for each 

species i at each site j. The observed observational detection or non-detection was described 

by a Bernoulli process and dependent on the true occupancy, zi,j, and the probability, pi,j,k, of 

species i being detected at site j in replicate k, such that 

 𝑦𝑖,𝑗,𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑝𝑖,𝑗,𝑘𝑧𝑖,𝑗) 

where the probability pi,j,k is modeled with a logit link function as 

 𝑙𝑜𝑔𝑖𝑡(𝑝𝑖,𝑗,𝑘)  =  𝑣𝑖,𝑗,𝑘
𝑇  𝛼𝑖  

where αi represents species-specific detection regression coefficients from the site and 

detection covariates vi,j,k (Appendix Table 3). Both βi and αi coefficients are treated as 
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random effects which increases precision for each species (Zipkin et al. 2009, Doser et al. 

2022). 

In spatial models, geographical coordinates are described by sj for each site j in 

j=1,…,J are included in the estimation of ψi,j such that ψi(sj) becomes 

 𝑙𝑜𝑔𝑖𝑡(ψ𝑖(s𝑗)) =  𝑥𝑖(𝑠𝑗)𝑇  𝛽𝑖  +  𝑤𝑖(𝑠𝑗) 

with wi(sj) being a realization from a zero-mean spatial Gaussian process (Doser et al. 2022), 

which assumes that 

 𝑤𝑖(𝑠𝑗) ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝛴𝑖(𝑠, 𝑠′, 𝜃𝑖)) 

where Σ(s,s′,θi) is a covariance matrix and is a function of the distance between any pair of 

site coordinates, s and s′, and a set of parameters, θi, that determines the spatial process using 

a spatial correlation function (Doser et al. 2022). We used exponential spatial correlation 

function in these models based on preliminary comparisons with other correlation function 

(spherical, Gaussian, and Matérn) using widely applicable information criterion (WAIC, 

Watanabe 2010) on the full community dataset. Exponential correlation function is described 

as θi = {σ2, ϕ} with σ2 representing the spatial variance parameter and ϕ a spatial decay 

parameter. Exponential correlation is commonly assumed in ecology and suggests 

exponential decay of similarity or covariance of species with distance (Legendre and Fortin 

1989, Bjørnstad et al. 1999). 

Occupancy models were implemented with Pólya-Gamma latent variables (Polson et 

al. 2013, Doser et al. 2022) for both the occurrence and detection model components in both 

spatial and non-spatial models. The model used weakly informative priors, with occurrence 

and detection means described by multivariate normal distributions, and occurrence and 

detection variance described by independent inverse-Gamma distributions (Doser et al. 2022 
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Appendices). For the spatial component of the model, we used default priors which were an 

inverse-Gamma prior for spatial variance (σ2) and uniform priors for spatial decay (ϕ) which 

follow standard recommendations for point data (Banerjee et al. 2015). 

Models ran with twelve MCMC chains with 10,000 samples per chain, with an initial 

burn-in of 1,000 and a thinning rate of 1, for a total of 108,000 posterior samples. We 

assessed convergence by confirming the potential scale reduction factor (Rhat) was < 1.1 

(Gelman 1996) and that effective sample size was > 1000 (Bürkner 2017) before using 

posterior samples for EMS classification. We also evaluated importance of each covariate 

using the density intervals of the posterior and considered covariates to be “significant” to the 

distribution of trematodes when the 95% highest density interval does not overlap with zero 

(Mihaljevic et al. 2018). Finally, we ran a posterior predictive check to assess how well the 

occupancy model represented patterns in the observed trematode data (Rubin 1984). 

2.2.4 Simulation of Species Communities 

We simulated 1000 site-by-species matrices from a binomial distribution that met the 

same conditions of the inferred communities created with occupancy modelling, i.e., a nested 

EMS pattern, in order to evaluate if using an occupancy model led to different insight than 

randomly adjusting species presence-absence. Simulations included 10 sites and 20 species, 

similar to what we analyzed with observed trematode data (10 sites and 19 trematode 

species). By incorporating a species occupancy model (described above) we corrected for 

detection error and thus added species occurrences that were potentially missed in the 

observed community data. Doing so adds richness to each site. We were worried that some 

community measures might be affected by variation in richness rather than by species 

associations. So, to compare our approach with a random adjustment of species occurrence, 



23 

 

we randomly removed species without replacement and then reintroduced EMS analyses on 

the resulting simulated matrices. In each trial, we randomly removed between 10 and 80% of 

species and tracked if the resulting frequency of EMS patterns was changed in each trial. 

2.3 Results  

2.3.1 EMS Observed Communities 

EMS classification of observational data showed that the full trematode community 

primarily followed a Gleasonian pattern in 3 of 5 replicate surveys, or a quasi-Gleasonian for 

2 of 5 replicate surveys (Figure 2). Turnover, the number of times one species replaced 

another between sites, ranged from 40 to 183 (Table 1). One survey followed a quasi-

Clementsian pattern. A (quasi-) Gleasonian pattern is defined by positive coherence, positive 

turnover, and positive boundary clumping (Figure 1, Table 1) and suggests a gradual spatial 

gradient of trematode niches. 

2.3.2 Occupancy Model 

Of the six covariates used to predict the true occupancy of trematodes, only 

pickleweed was a strong predictor in the occupancy model based on the 95% credible 

interval in the posterior (Figure 3). Snail densities tend to be lower at sites where pickleweed 

is present because snails avoid shade. Trematode detection was best predicted by the size of 

snail hosts (older hosts are more likely to be infected), and the spatial covariance of sampling 

was also a strong predictor of occupancy (Figure 3). Variance of covariates (for occupancy 

and detection parts of the model) were high compared to means, suggesting species may be 

responding differently to most occupancy and detection covariates. No covariates were 

important predictors of occupancy or detection for individual species that were not also  
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Figure 2: Frequency plot of EMS patterns between observed and inferred communities. Each square in the plot 

represents a single community matrix and the color of each square represents its EMS pattern. Panel A shows 

samples from the observed trematode data (N=5) and panel B shows inferred samples (N=2000). We include 

quasi-structures with traditional structures because we interpret them as ecologically synonymous (for example, 

all quasi-Gleasonian samples are labelled Gleasonian).  

 

 
Table 1: Results of EMS classification of metacommunity structure using observed community matrices and 

2000 randomly sampled inferred community matrices following multi-species spatial occupancy models. Each 

metric represents the median value of calculations for each community (Mihaljevic et al. 2018). Significance 

compared to null models is indicated with * for p < 0.05.  

 

important at the community level. The posterior predictive check suggests that the fit 

occupancy model adequately represented variation in species across space as most Bayesian 

p-values were close to 0.5 (Gelman 2013; see Appendix Table 4 for details).  

We also assessed sampling error based on the change in species richness (the number 

of species) at each site between observational data and inferred communities from the 

occupancy model. Sampling error tended to underestimate the species present at a site. The  

Community Type Embedded Absences Turnover Morisita’s I index 

Observed 19* 95 1.4 

Inferred 2* 6* 5.33* 
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Figure 3: Density plots of the posterior distributions of occupancy and detection model covariates, showing the 

median (dark line) with the 90% uncertainty interval (outer interval, dark line) and the 50% interval in the inner 

shaded region. Panel A shows the posterior distribution for samples describing true occupancy state of the 

trematode community, and the intercept represents channel habitat type. Panel B shows the posterior 

distribution for samples describing detection probability of trematodes, and the intercept represents the dry 

season in the year 2012.  

 

mean richness at a site in the observed community data was 17.8 (range: 16 to 19 species) 

whereas the mean estimated richness from the occupancy model output was 19 species. 

Species varied in the extent to which they were likely to be missed by sampling, with less 

prevalent species being less likely to be sampled despite being present.  

2.3.3 EMS Inferred Communities 

The occupancy model generated 108,000 posterior samples (site-by-species matrices) 

of trematode occupancy, and 2,000 of these were randomly chosen for EMS classification. 

Turnover ranged from 0 to 55 (Table 1). We found that EMS classification generated 

different patterns to that in observational data. Inferred community data were identified 

primarily with nested patterns (~69%) followed by quasi-nested patterns (~26%) in the 

trematode community (Figure 2). A (quasi-) nested pattern is defined by positive coherence, 

negative turnover, and positive boundary clumping (Figure 1, Table 1). 
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2.3.4 Simulation of Species Communities 

When species were randomly removed, there was no change in the classification of 

EMS patterns compared to the original, simulated nested communities. With progressively 

more species removal, EMS patterns began to deviate from nested, but not in a particular 

direction. Overall, reclassification assigned either a Gleasonian or Clementsian pattern, but 

occasionally also a random or evenly-spaced pattern (Figure 4). 

2.4 Discussion  

EMS has been a useful tool for exploring and describing species distribution. The 

identified patterns in the EMS framework are meant to guide inference about what processes 

or conditions may be important for species occurrence or abundance patterns, but its 

susceptibility to imperfections in observational data can lead to misinterpretation (Mihaljevic 

et al. 2018). By incorporating species occupancy models as a means for detection error 

estimation and correction, we’ve been able to correct for possible detection error in the 

observational data on trematodes in C. californica hosts. This technique led to significant 

reclassification of the trematode community and the detection error-corrected data showed 

nested patterns in inferred community matrices, which were not found in observed 

communities.  

Our initial assessment of EMS patterns in observational data suggested that 

trematodes were best described with a Gleasonian or quasi-Gleasonian pattern. The 

Gleasonian pattern is defined by positive, significant coherence, positive, significant 

turnover, and nonsignificant boundary clumping (Table 1). Quasi-structures, as proposed in  
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Figure 4: Frequency plot of EMS patterns in simulated communities. Community matrices were purposefully 

created to represent a nested pattern, and species were removed at 10-80% from the original simulated matrices. 

 

Presley et al. (2010) are extensions of the original patterns described by Leibold and 

Mikkelson (2002). These patterns differ in that they are used to classify communities that 

exhibit non-significant species turnover. Quasi-structures are meant to improve insight from 

communities that may exhibit weaker “structuring” processes (such as environmental 

gradients, competition, etc.) than communities with significant turnover between sites 

(Presley et al. 2010). The flexibility of quasi-structures is valuable for the sake of better 

understanding a metacommunity and have been widely adopted in EMS literature. In our 

observational data we found very frequent support for quasi-Gleasonian in cases with non-

significant, positive turnover, and agree that these can be interpreted ecologically in a similar 

way. In short, the observed communities showed patterns consistent with a gradual but 

inconsistent gradient in niches where sites closer in attributes had more similar communities. 

Applying a multi-species occupancy model to the observational data allowed us to 

detect and correct for potential detection errors. Errors led to an underestimate of richness by 

6%. Correcting these false negatives led to a noticeable change in the distribution patterns in 

trematodes based on classification with EMS. To eliminate the possibility that the 

reclassification of the detection error-corrected community was due only to underestimating 
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richness, we evaluated trials of species removals in simulated communities. The original 

simulations had a nested EMS pattern, and removing between 10 and 80% of species and 

reclassifying them in the EMS analysis did not shift the majority of communities to a 

Gleasonian pattern. Although simulated communities were progressively more likely to be 

reclassified as more species were removed, reclassification at any level of species removal 

favored two of the most similar EMS patterns, Gleasonian and Clementsian (Figure 1), but 

did not strongly favor one of the two. At and above 50% removal, we do see an inclusion of 

more EMS patterns (Figure 4), however because the number of species occurrences becomes 

very small, we argue that any statistical interpretation is not advisable. For the sampling error 

in our data (6% missing species), the apparent reclassification of species patterns with 

inferred communities supports that classification changes were not likely related to removing 

species at random, but they are related to undersampling rare species, which inflates 

turnover.  

Using inferred communities, we found that detection error-corrected data 

predominantly corresponded to nested patterns. Unlike observational samples, almost no 

inferred communities registered as having a Gleasonian pattern when reclassifying detection 

error-corrected data. Nested patterns in this framework are quite similar to the Gleasonian 

pattern we found in observational data, with the main difference being that turnover in nested 

patterns is negative rather than positive (Figure 1). This specifically indicates a change in the 

calculation of turnover from positive to negative, suggesting that species exhibit fewer 

replacements than expected in null models from season-to-season when detection error is 

accounted for. In nested metacommunities, species are distributed within larger ranges of 

another (or several) species, rather than being replaced intermittently over space. While EMS 
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or DECEMS has not been used widely for trematode communities, one other study on 

freshwater snails found that trematodes also demonstrated nested distributions among pond 

sites (Richgels et al. 2013).  

Coherence in the trematode community suggests that trematodes respond to a similar, 

latent environmental gradient. Occupancy models supported that the pickleweed cover at 

sites where hosts were sampled was correlated with parasite distributions (Figure 3). It is 

well-documented that C. californica densities (infected and uninfected) are negatively 

correlated with pickleweed (Lorda and Lafferty 2012). In empirical studies in the same 

system, it’s been shown that trematodes of this guild vary in density and abundance over 

space, and areas with fewer snails may also have more infective stages and transmission per 

snail (see however Buck et al. 2017).  

EMS classification assumes that there are no errors in species detection, which for 

more inconspicuous organisms like parasites, can be more difficult to ensure. Error in species 

detection can lead to over- or underestimation of occupancy probability (Dorazio et al. 2011, 

Devarajan et al. 2020). Digenean trematodes in this system may be especially sensitive to 

detection error in instances where infection dynamics are in-progress, for example during 

interference competition among competing trematodes (Sousa 1983, Kuris 1990). Given the 

ubiquity of sampling error in community studies, the reclassification of EMS patterns using 

inferred communities suggests that other community classifications are likely sensitive to 

detection error and over-estimated turnover.  

Past work has focused on how competition and environmental heterogeneity affect 

trematode interactions within snails. Trematode recruitment tends to be positively correlated 

in space (Lafferty et al. 1994), perhaps due to bird aggregations in the estuary (Hechinger 
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and Lafferty 2005). Despite this positive correlation among trematodes within a sample of 

snails, few double infections are observed (which may create a checkerboard pattern within 

snails). Although competition reduces the observed prevalence of subordinate species below 

that expected if competition did not occur, it is not enough to create a checkerboard pattern 

for the trematode community at the snail population level. 

Other critiques of the EMS framework have detailed similar methodological 

limitations of null models and ordering of species matrices for, e.g., user-defined 

environmental gradients and the impact of these decisions on calculations of EMS metrics, 

particularly coherence (Ulrich and Gotelli 2013, Schmera et al. 2018, Presley et al. 2019). 

Although occupancy models don’t explicitly correct these limitations, they do add an 

additional perspective to the potential influence of covariates on the distribution of species 

aside from their value at correcting detection error. We used a multi-species occupancy 

model structure in this study that incorporates environmental, spatial, and other covariates 

that may be important for species occurrence and distribution. Our simulated communities 

illustrate that using a multi-species occupancy model does not simply add species at random 

to account for sampling error, but it does so based on statistical distributions of species in the 

conditions described by covariates. While DECEMS provides a useful improvement of EMS 

on raw data, it does not shift the framework from a pattern-based technique for understanding 

species communities. Classifying species distributions does not provide a mechanistic 

understanding of how species create or maintain detected patterns. But DECEMS does 

provide an avenue for guiding further study and eliminating mechanisms that are unlikely to 

be occurring. 
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Our results indicate that trematode species are best described by a nested distribution 

pattern, and that empirical parasite data is sensitive to detection error. We speculate that 

nested distribution patterns observed in some inferred communities are a signature of the 

trematode community having core and satellite species. Little work has been done describing 

trematode distributions in a metacommunity framework, and classification provides a 

comparable pattern that could be emulated in other studies on parasites. This work also 

provides evidence for DECEMS as a way to account for detection error in data in order to 

avoid misclassification that may occur when using EMS alone, while considering that 

satellite species may be more sensitive to detection error, thereby inflating turnover. While 

the EMS framework alone as a pattern detection scheme may be limited in its inference 

capacities for some organisms, it is a simple mechanistic addition to other statistical models 

like occupancy models that can generate at least a comparative framework between systems 

and observation scales (Ulrich and Gotelli 2013, Dallas and Drake 2014). Additionally, EMS 

uses three well-supported metrics for assigning patterns, which may be useful for additional 

understanding outside of the EMS framework (Presley 2020). Moreover, EMS often presents 

these structures as discrete, but actual communities often lie along a continuum and pattern 

classification should be treated as one of a series of tools ecologists use to understand 

community assembly or structure (Thompson et al. 2020). Future studies may incorporate 

multiple hosts or additional covariates for a richer description of the metacommunity 

experienced by trematodes throughout their life cycle. 

 

 

 



32 

 

 

 

 

Spatial Autocorrelation in Species Distribution Models of 

Trematode Parasites 

 

3.0 Abstract 

Species distribution models are a powerful tool for making inferences about species 

presence and abundance in metacommunities. Using a metacommunity of trematode 

parasites infecting gastropod hosts, we explore what factors best predict trematodes at local 

sites. Prior work has demonstrated the significance of parasite traits, host conditions, and the 

physical environment in trematode spatial distributions. We highlight the role of spatial 

autocorrelation in predicting trematodes relative to other ecological factors. In doing so we 

shed light on the often-understated role of spatial autocorrelation in parasite communities and 

the value of considering explicit spatial effects in ecological analyses. In this system, spatial 

autocorrelation seems to be driven by differences in the trematode community among the 

three estuaries sampled. 

3.1 Introduction  

Early theoretical research on metacommunities has suggested that complex 

metacommunities often have measurable dynamical similarities (Leibold et al. 2004, 

Shoemaker and Melbourne 2016). While parasite metacommunities are increasingly 

appreciated in empirical and theoretical studies, there is a lot of room for insight from 

parasites, and particularly parasites in less-charismatic hosts. Parasites of invertebrates, while 
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easier to sample and host to more macroparasites than many vertebrates, are neglected in 

many community studies (Wilson et al. 2015). Parasites exist in complex communities that 

reflect intimate interactions with hosts, the environment, and each other. From free-living 

species, we know that community assembly is an outcome of many spatiotemporal processes 

(HilleRisLambers et al. 2012). The assembly and distribution of local ecological 

communities can be described by processes that “filter” the establishment or persistence of 

species at different spatiotemporal scales (Cornell and Lawton 1992, Zobel 1997) meaning a 

subset of species are found in realized local communities (Combes 2001, Sattler et al, 2011). 

These filtering processes can be environmental, corresponding to abiotic conditions, or biotic 

interactions, or their interactions (Wisz et al. 2013, Kraft et al. 2015). Parasites experience 

these processes in a hierarchal way, because they are influenced by both their own responses 

to environmental conditions, as well as the responses of their hosts to (sometimes different) 

processes.  

There is undeniable evidence of the importance of ecological processes in 

determining where parasites may be found and at what abundance. Consequentially, we 

expect that these processes will also serve as the best statistical predictors when we make 

predictions about parasite occurrence, or abundance, in a host community. But there is a rich 

discourse in geography and spatial ecology that indicates the spatial autocorrelation is also 

important for understanding what species we find locally (Fortin and Dale 2005). Spatial 

autocorrelation (SAC) is the phenomenon of observations (e.g., environmental conditions or 

species occurrence patterns) closer together being more similar than observations that are 

farther apart (Legendre and Fortin 1989, Legendre 1993).  



34 

 

SAC has been a source of insight for many ecological analyses to help understand the 

spatial structures found in nature (Fortin and Dale 2005). But SAC also adds a complex, even 

problematic, component to any analysis because it challenges the independence of samples in 

ecological data (Legendre 1993). If samples of species or environmental characteristics are 

autocorrelated, there can be statistical bias in how we understand the impact of different 

covariates in predicting species occurrence or abundance (Fortin and Dale 2005). For 

example, Dormann showed that regression models had higher type I error due to SAC and 

can affect the distribution of residuals in model results (2007), but other work has shown that 

SAC doesn’t necessarily create bias (Diniz-Filho et al. 2003). An empirical analysis on plant 

communities along an altitudinal gradient found that incorporating SAC even reversed some 

of the relationships in model results (Kühn 2007). 

A guild of digenean trematodes in coastal estuaries of the west coast of North 

America have been richly studied over several decades. Not only does this guild exceed the 

biomass of other parasite functional groups in the estuaries they inhabit, but they also exceed 

the biomass of top predators (Kuris et al. 2008), suggesting an immense potential for 

affecting community and ecosystem dynamics. These trematodes are infective to a wide 

range of hosts at different life stages (Huspeni and Lafferty 2004, Hechinger 2019) and, at 

some stages, have direct, negative fitness impacts on hosts. First intermediate hosts of both 

sexes are castrated by infection by trematodes in this guild, and some second intermediate 

fish hosts are subject to observable behavioral modification that makes them more 

susceptible prey to birds that serve as final host (Lafferty and Morris 1996). Interference 

competition among trematodes in hosts can be fierce and may lead to fine-scale distribution 

patterns that reflect dominance among competing species (Kuris 1990, Sousa 1993, Kuris 
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and Lafferty 1994) and the competition-colonization trade-off seen among trematode species 

(Mordecai et al. 2016). There is evidence for competitive exclusion by competitively 

dominant species, particularly in larger snails that have been exposed to parasite stages for 

longer. However, in snails that are younger, there may be higher species richness of 

trematodes (Kuris 1990, Kuris and Lafferty 1994, Mordecai et al. 2016). Parasites may also 

vary based on the transmission strategy to the first intermediate host, which in this system 

may occur by an egg (which is consumed by the host) or by a miracidium larva (which 

actively seeks out a host). Field experiments have shown that egg transmission often leads to 

higher per capita risk of infection to hosts and higher prevalence (Buck et al. 2017), and 

these species-specific strategies may also help predict trematode abundance. Adding to these 

parasite-parasite interactions are additional impacts from interactions with host species in the 

trematode life cycle, the physical environment, and the effect of spatial autocorrelation (see, 

for instance, Hechinger and Lafferty 2005, Hechinger et al. 2008, Mordecai et al. 2016). 

However, we still lack a consensus about the best way to predict trematode occurrence and 

abundance within and across host metacommunities. 

The diverse metacommunity of digenean trematodes (Platyhelminthes) in their 

invertebrate, first intermediate host Cerithideopsis californica (Haldeman) exists in a series 

of estuaries in the North American west coast that are along the Pacific bird migration 

corridor. Trematodes often occur at high prevalence and density in the estuaries in which they 

are found, and eggs and larval stages can be transported within and between estuaries by 

birds, which are the most frequent final host (Kuris and Lafferty 1994, Kuris et al. 2008). 

There are currently 19 identified species of trematodes in this system (Hechinger 2019). This 

guild of trematodes has a complex life cycle, and while the first intermediate host is the 
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marine gastropod C. californica, the second intermediate and final host can vary widely 

including fish and invertebrates, and birds and mammals, respectively (Huspeni and Lafferty 

2004, Hechinger 2019). 

 Adding SAC to statistical analyses, including SDMs, is increasingly common in 

ecology (Diniz-Filho et al. 2003, 2012, Fortin and Dale 2005). In the well-studied estuarine 

metacommunity we focus on in this study, SAC has not been incorporated into predictions 

about trematode presence or abundance. We hypothesize that the occurrence and abundance 

of the guild of trematodes infecting C. californica hosts is determined by a combination of 

environmental, spatial, and species traits. We attempt to determine which factors are most 

influential on trematode occurrence and abundance with explicit consideration of the 

component community in the system as described at local sites across three estuaries. Using 

SDMs fitted with Bayesian inference we identified which parameter(s) best explained 

variation in species occurrence and abundance. We consider covariates that described 

environmental conditions and species traits in SDMs that either did or did not include SAC. 

Broadly, we found that while environmental characteristics were strong predictors of 

trematodes in sample sites, the importance of those predictors was diluted where SAC was 

explicitly added to the SDM.  

3.2 Methods 

We explored the variation in trematode occurrence and abundance using species 

distribution models. Multi-species SDMs extend the framework of single-species distribution 

modelling to consider the responses of multiple species in a community to their environment 

and to biological interactions to improve inference about species that are interacting or 

coexisting in a community (Zimmermann et al. 2010, Guisan and Rahbek 2011). All analyses 
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were performed in R (version 4.1.3) (R Core Team 2022). This study uses the brms R 

package to build and fit SDMs, using Bayesian inference which offers flexibility for handling 

non-independence of hierarchal and nested relationships in ecological community data 

(Bürkner 2017).  

3.2.1 Study Sites and Observational Data 

We used published observational data on trematodes identified in the first 

intermediate host, C. californica, collected from three tidal estuaries on the Pacific west coast 

of North America (Figure 5). Carpinteria Salt Marsh (CSM—Carpinteria, California, USA) is 

a coastal estuary and natural reserve with 0.93 km2 of upland, wetland, and sub-tidal habitat. 

Estero de Punta Banda (EPB—Ensenada, Baja California, México) is a 16.4 km2 coastal 

estuary and Ramsar site. Bahía Falsa (BSQ—San Quintín, Baja California, México) is a 

coastal estuary situated in San Quintín Bay. All three estuaries are situated along the pacific 

migration corridor and are used by migratory birds. Within these three estuaries, trematodes 

were sampled once in January 2012 at a series of 54 sites that were each roughly 25 m2 

among the three estuaries (Figure 5). At each site, C. californica were collected and brought 

to a lab for dissection and trematode identification (if individual hosts were infected) 

(Appendix Table 5; see Kuris et al. 2008 for details on sample collection and processing). All 

identified infections were not distinguished with respect to whether they came from the same 

or different individual snails, meaning rare cases of double or triple infections in a snail were 

treated as two or three single infections (per Lafferty et al. 1994).  

Several studies produced field data that served as either trait or environmental 

covariates in analyses (Appendix Table 6). Trait covariates included the transmission strategy 

of each trematode species (i.e., whether the egg or miracidia larval stage was infective to the  
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Figure 5: Map of estuaries and sites described in this study. Panel A shows the three focal estuaries in 

California and Baja California. Panel B, C, and D show site locations in Carpinteria Salt Marsh, Estero de Punta 

Banda, and Bahía Falsa, respectively. Site names in Panel B-D indicate habitat type of each site, where “C” 

(e.g., C1) represents subtidal channels, “P” represents pans, “M” represents marshes, and “F” represents 

mudflats. Latitude and longitude axes are shown in decimal degrees. 

 

first intermediate host) and the rank of each species in the dominance hierarchy observed in 

this guild of trematodes (Appendix Figure 2). Transmission strategy data was collected from 

Buck et al. (2017) and dominance rank was collected from Hechinger (2019). We considered 

environmental covariates that described both the abiotic and biotic (host) conditions for 

trematodes. These were collected at sample sites and included the average biomass of C. 
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californica at each site, the average size of infected C. californica individuals, the diversity 

of birds at each site (based on the Shannon index, H), the density of birds at each site, the 

percent cover of pickleweed (Sarcocornia virginica), the percent organic matter in sediment, 

and the habitat type. Details of how these field measurements were collected are available in 

Kuris et al. (2008). 

3.2.2 Species Distribution Modeling 

We fit Bayesian species distribution models using the brms R package (Bürkner 

2017) to evaluate the influence of environmental conditions on species occurrence, as well as 

the contribution of parasite traits on occurrence, using abundance data on trematodes in C. 

californica hosts collected in the three focal estuaries. All models were stacked SDMs, which 

consider the spatial distribution of each trematode species in the community without 

explicitly considering species co-occurrence (Guisan and Thuiller 2005, Zurell et al. 2020). 

Trematode occurrence was described as the number (abundance) of infections in sampled 

hosts at each sample site by trematode species. Models used a combination of environmental, 

trait, and spatial covariates hypothesized to correlate with the presence and abundance of 

trematodes, as well as a random effect representing the trematode species. In total, two 

models were created with or without a spatial autocorrelation term. In each model iteration, 

environmental and trait covariates were modeled as fixed effects. All continuous covariates 

were scaled before use in SDMs, and we confirmed covariates were not correlated with 

Spearman’s rank correlation coefficient (Spearman 1904). The model that contained explicit 

spatial information used a spatial conditional autoregressive (CAR) term to model spatial 

autocorrelation between sites by calculating the Euclidean distance between the latitude and 

longitude of sites. This term accounts for SAC in the trematode abundance data while 
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controlling for all other covariates, including any of their inherent SAC. Each model was fit 

with a zero-inflated Poisson distribution, which accounted for both presence and abundance 

of the observational data. We also tried models with lognormal-Poisson, Poisson, and normal 

distributions but excluded these options due to poor convergence and fit. 

We used weakly informative priors for environmental and trait covariates on a normal 

distribution (μ = 0, σ = 1) and represented species abundance on a zero-inflated Poisson 

distribution for all models. Models sampled the posterior from 4 Markov Chain Monte Carlo 

(MCMC) chains and each chain ran for 5000 iterations with 400 samples as burn-in. This 

resulted in 5000 posterior samples per chain, or 20400 posterior samples per model. 

We confirmed convergence of each model if the potential scale reduction factor 

(Rhat) was < 1.1 (Gelman 1996) and effective sample size was > 1000 (Bürkner 2017). We 

used posterior predictive checks to assess the distribution of the observed and posterior 

samples, and Bayesian R2 (Gelman et al. 2019) to explore model performance. Model 

comparison was performed using model WAIC (Watanabe 2010, Devine et al. 2023). We 

interpreted the importance of model covariates from the best performing models using 

posterior distributions by identifying cases that had a 95% credible interval that did not 

include zero.  

3.2.3 Non-Metric Multidimensional Scaling 

To further explore the relationship between spatial autocorrelation and differences 

between estuaries, we used non-metric multidimensional scaling (NMDS) to see if there was 

clustering of sites in their respective estuaries, and if clustering reflected the geographic 

location of each estuary. CSM is the northern-most estuary and NMDS is a nonparametric, 

rank-order ordination technique to visualize patterns of trematode abundance at each site in 
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low dimensional space. We imposed two dimensions using the metaMDS function in the 

vegan package in R (Oksanen et al. 2022). Because sampling sites were clustered within 

three broadly separated estuaries, an estuary effect will necessarily result in spatial 

autocorrelation. Thus, with three estuaries, it may be difficult to separate the effects of 

differences among estuaries and the effect of distance per se. If communities are primarily 

affected by spatial distance, then we would expect the northernmost site (CSM) to be most 

different from the southernmost site (BSQ), with the middle site (EPB) intermediary. 

3.2.4 Autocorrelation of Environmental Data 

While we included a term to test for SAC as a predictor of trematodes, we also 

wanted to determine if environmental data themselves were spatially autocorrelated. We used 

Moran’s I (Moran 1950) to test for SAC in the environmental covariates (Appendix Table 6) 

using the inverse Euclidean distance matrix of sample sites to consider distance between all 

sites, as well as a binary matrix that indicated whether sites were in the same estuary or not. 

We used the R package ape (Paradis and Schliep 2019) to calculate Moran’s I using the 

method described in Gittleman and Kot (1990). 

3.3 Results  

We predicted the abundance of 18 species of trematodes in the 54 sampled sites at three focal 

estuaries (CSM, EPB, and BSQ). In the SDM defined by environmental and trait data only, 

we found that most environmental covariates were important predictors of trematode 

occurrence and abundance. Trematodes were positively associated with the mean snail 

biomass within a sample site, the density of birds in a site, the amount of pickleweed cover, 

and were observed more in the mudflat and tidal channel habitat types. Trematodes were 

observed less in the marsh habitats, and were negatively correlated with the mean host size, 
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bird diversity in a site, and the amount of organic material in sediment. The dominance rank 

and the transmission type were not significant predictors (Figure 6). 

When we accounted for spatial autocorrelation in the SDM using the Euclidean 

distance between sampling sites, we found that the credible interval for the environmental 

and trait covariates were not significant in predicting trematodes. Instead, spatial 

autocorrelation between sites was significantly, positively associated with trematodes (Figure 

6, Appendix Table 7). The WAIC for the SDM without spatial information was 10904 and 

was 9929.8 for the SDM with spatial autocorrelation. The Bayesian R2 for the non-spatial 

SDM was 0.136 and was 0.247 for the spatial SDM. Both models also had appropriate 

posterior predictive check distributions, as indicated by the similar distribution of the 

observed data and the posterior samples (Appendix Figure 3). 

The NMDS had noticeable clustering of sites in their respective estuaries (Figure 7). 

However, contrary to the expectation of a spatial effect, there was no clustering that reflected 

the geographic location of estuaries along the Pacific west coast, for example with clusters 

ordered by latitude (Figure 5). Each cluster of estuaries was approximately equidistant to 

each other (Figure 7). 

Some of the environmental covariates we tested did have significant SAC based on 

our calculations of Moran’s I (Appendix Table 8). We found that the amount of organic 

matter in sediment, the pickleweed cover, and the mean snail size at a site were positively 

spatially autocorrelated (p<0.05) when we considered the Euclidean distance between all 54 

sites. When we considered whether sites were in the same estuary or not, we found that 

organic matter, pickleweed cover, and mean snail size were negatively autocorrelated 

(p<0.05).  
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Figure 6: Density plots of posterior distributions of model covariates, with the median (dark line) with the 90% 

uncertainty interval (outer interval, dark line) and the 50% interval in the inner shaded region. Panel A and B 

show the posterior distribution for the non-spatial model, and Panel C and D show the posterior distribution for 

the spatial model. Panel A and C show distributions for the intercept (which is the trematode with dominance 

rank 1, egg transmission, and the tidal channel habitat type) and for trait covariates. Panel B and D show the 

environmental covariates, and Panel D also shows the spatial autocorrelation term.  

 

3.4 Discussion  

Species distribution models fit with Bayesian inference are an increasingly popular 

method in ecology for exploring the impact of different parameters and conditions on species 

presence and abundance. In fact, SDMs are now one of the most common and flexible tools 

for investigating the processes that drive species community assembly and patterns (Guisan 

and Thuiller 2005, Elith and Leathwick 2009). We present two SDMs that describe trematode 

communities across local sites that highlight the impact of environmental, trait, and spatial 
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Figure 7: NMDS plot of trematode abundance at each of 54 sites. Species abbreviations (in grey) reflect those 

in Appendix Table 1. Each site is named by the abbreviated estuary name (BSQ, CSM, and EPB) and the site 

name as in Figure 5. The horizontal axis indicates the primary ordination axis of the NMDS. Site names are 

colored according to the estuary in which they are located.  

 

information on presence and abundance from field data. While the environmental and trait 

covariates explained some variation in trematode species, spatial autocorrelation among sites 

was the driving predictor of trematodes. Since we used a Bayesian approach, we were able to 

make inference about this system from probability distributions of the posterior which 

allowed us to better assess the relative importance of SAC in our models.  

The first model we described did not explicitly account for SAC and used only 

environmental and trait data to make inference about the trematode metacommunity. 

Environmental characteristics ended up being strong predictors of trematodes across sites in 

the metacommunity (Figure 6). All host characteristics for both snails and birds (the final 

host) were significant for trematodes when SAC was not considered in the model. We found 

that the mean snail biomass within a site (analogous to snail density) and bird density within 

a site were both positively associated with trematodes. This is not a surprising finding, as we 
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generally expect that more snails should mean more trematodes, and similarly that more final 

hosts, which shed trematode eggs and larvae that are infectious to snails, would also mean 

more trematodes (Huspeni and Lafferty 2004, Hechinger and Lafferty 2005, Buck et al. 

2017). These patterns have been observed in other trematode communities as well. For 

example, Smith found that trematodes were more prevalent in first intermediate gastropods in 

areas with higher bird density in mangroves (2001). 

Contrary to our expectations, trematodes were negatively associated with the mean 

size of snail hosts as well as the diversity of birds (based on Shannon index) (Figure 6). 

Observational data has widely supported that snail body size is a close analog to snail age, 

and that older snails should harbor trematodes more often being that they’ve had more time 

to be exposed and infected (Kuris 1990, Sousa 1990, Lafferty et al. 1994). This is a trend 

often seen within sites, however in our model we compare mean snail body size between 

sites. While these results may seem counterintuitive, we expect that this is a finding conflated 

by factors like snail density or snail growth rates. For example, snails may grow larger and 

live longer in sites with less overall trematode abundance, leading to a negative correlation 

between mean snail size and trematode counts (Sousa 1983, Lafferty 1993). 

A higher prevalence of trematodes in the mudflat and tidal channel habitats than in 

the marsh habitat is typical in field observations for these trematodes and corresponds with 

where bird final hosts are more common (Kuris and Lafferty 1994). The positive association 

between trematodes with pickleweed cover and negative association with the amount of 

organic material in sediment (Figure 6) is less obvious. C. californica density tends to be 

negatively associated with pickleweed cover because they avoid shade, and positively 

associated with organic material that reflects resource availability (Lorda and Lafferty 2012). 
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This might arise because per-capita infection rates can decline with snail density due to the 

encounter dilution effect (Buck et al. 2017). 

Trematodes were spatially autocorrelated indicating that trematodes (presence or 

abundance) at a given site are similar between (i.e., conditional on) the trematodes at 

neighboring sites (Besag 1974). Indeed, we found that some environmental characteristics 

were positively autocorrelated as a function of Euclidean distance between sites and that sites 

between estuaries were negatively autocorrelated (Appendix Table 8). This suggests that 

drivers of trematode communities also have spatial autocorrelation and that sites within an 

estuary are more similar to one another than sites across estuaries and that sites within an 

estuary are more similar if they are closer together. Our SDM, however, indicates that spatial 

autocorrelation exists in the trematode community regardless of other predictors we 

considered, including their inherent SAC (or lack thereof). This suggests that spatial distance 

is a strong predictor of trematode abundance among sites. Additionally, SAC of trematode 

abundance may also indicate that trematodes differ between estuaries more than within 

estuaries. Because data were collected between three estuaries that are many kilometers 

apart, and therefore clustered, differences between estuaries may be a strong driver of this 

outcome (Figure 6).  

An NMDS of trematode abundance across the 54 sites suggested that SAC may be 

driven by differences between estuaries (a large observation scale effect) (Figure 7). 

However, we expected that a strong signature of an estuary effect would reflect the 

geographic locations of each estuary, meaning BSQ and EPB would be clustered more 

closely together than each would be to CSM, and that the clusters would be ordered by 

latitude (Figure 7). Instead, clusters of each estuary were approximately equidistant to each 
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other. We interpret this to mean that the SAC in trematode abundance is likely explainable by 

an estuary effect rather than solely by physical distance between sites. Future work is needed 

to more closely explore this in more detail and quantify between- versus within-estuary 

effects as it relates to SAC of this trematode guild. 

These findings tell us about the spatial structure of trematode presence and 

abundance, but also inform what we can understand about the observation scale of the data. 

All of the data in this study reflects 25 m2 sample sites (N=54) that are randomly located 

across three estuaries (Figure 7). These estuaries are largely connected by dispersal of bird 

final hosts which also shed trematode eggs and larvae. At the spatial scale of the site, we find 

that there is a strong, positive autocorrelation of trematode occurrence and abundance. Other 

systems that have quantitatively compared SAC at different observation scales have found 

that broader scales (such as an entire ecosystem or region) often demonstrate low or negative 

SAC relationships within ecological communities (Collingham et al. 2000, Chevalier et al. 

2021, König et al. 2021). Indeed, a review of parasite spatial patterns indicates that parasites 

readily exhibit small spatial autocorrelation in field data scale, even when entire the study 

area is <0.01 km2 (Albery et al. 2022). Studies on free-living communities have found that 

deterministic processes, such as the physical environment, better predict species associations 

and distribution at broader observation scales (Chase and Myers 2011, Chase 2014, König et 

al. 2021). One explanation for this scale effect on SAC is that endogenous processes, that is 

processes that occur in the interaction between (or within) organisms such as competition or 

dispersal, are more apparent on communities at smaller spatial resolutions (Dormann 2007, 

Dormann et al. 2007) where the factors that drive communities are also spatially correlated. 
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We found that trematode traits were not strong predictors of trematode abundance. 

Experimental field work has shown that trematodes in this guild exhibit different infection 

risks in C. californica hosts depending on whether transmission occurs by egg or larva 

(miracidium) stages, a species-specific trait (Buck et al. 2017). While trematode infection 

risk may vary by transmission type, this may not describe trematode occurrence and 

abundance across the metacommunity at the scale we’ve used here. Similarly, there is clear 

support for variation in spatial distribution of dominant and submissive species based on the 

competitive dominance hierarchy in this system (Appendix Figure 2; Mordecai et al. 2016). 

This hierarchy creates a competition-colonization tradeoff, where more dominant species 

generally disperse less widely than more submissive trematode species. Mordecai et al. 

showed that while this tradeoff contributes to trematode coexist, additional mechanisms 

likely explain trematode abundance in this metacommunity, which may include SAC or other 

sources of spatial heterogeneity (2016). 

In parasites, the range at which SAC is evident and the strength of SAC can also be 

affected by host characteristics. For example, Albery et al. found that the signature of SAC in 

statistical models varied by parasite taxonomic group and can be informed by both abiotic 

and host characteristics (2019). Work on human helminths in Brazil found that while all 

parasites had strong SAC, Schistosome mansoni was spatially correlated with water sources 

used by human hosts while human hookworm was less influenced by environmental 

characteristics and exhibited SAC at much finer resolution (Brooker et al. 2006). We did not 

explore the SAC of snail or bird hosts in this system, however this could also be a 

mechanism that contributes to SAC in trematodes. For instance, Koenig found that in 

California (USA) migratory birds exhibited stronger SAC than resident bird species, but that 
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the strength of SAC was mediated by season, demographic processes, and the physical 

environment, and varied by observation scale (1998). Therefore, further exploration of SAC 

in parasite systems at different spatial scales in tandem with other ecological processes will 

be essential to deepening our understanding of the causes of SAC in parasites. 

We present an example of how SAC can affect the model predictions of parasite 

metacommunities using two Bayesian SDMs. Clearly SAC has a strong role for 

understanding trematodes and probably reflects the smaller scales at which biological and 

environmental drivers occur. This work also shows that the scale of sample sites in these data 

show a positive SAC pattern among trematodes. At broader observation scales, SAC may be 

weaker or even negative, and other covariates such as the physical environment or traits may 

be more important predictors. SAC is often considered a nuisance in ecological analyses, but 

SAC does not necessarily create bias in statistical analyses (Diniz-Filho et al. 2003). 

Research that doesn’t explicitly account for SAC are violates an important statistical 

assumption about the number of independent samples available in data, which can lead to 

statistical significance (as we found in our SDM without SAC) when there is actually not 

enough statistical power to detect an effect. While we don’t a suggest that past work on this 

build of trematodes is invalidated, our work does emphasize that SAC is an essential and 

interesting phenomenon that can improve what we understand about a metacommunity and 

add detail to aspects like what information we can gain at different spatial scales (Diniz-Filho 

et al. 2003, Chevalier et al. 2021). This work adds additional detail and context to the long 

research history of this system and how SAC can improve predictions about parasite 

metacommunities more generally. 
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A Theoretical Model and Case Study Analysis on Encounter 

Dilution and Infectious Stage Depletion in Host-Parasite 

Transmission 

 

4.0 Abstract  

We investigate a theoretical model that describes the occurrence and conditions of the 

encounter dilution effect in disease ecology. Encounter dilution in host-parasite systems is 

defined by a negative density dependence between host density and per capita parasite 

transmission, and here we especially focus on how this effect arises due to infectious stage 

depletion in environmentally transmitted parasites. We develop a theoretical model that can 

be adapted to a variety of host-parasite communities, and we produce a case study with a 

well-studied digenean trematode community to test this model. Our model results produced 

evidence for encounter dilution that matches past field and experimental findings, 

demonstrating that higher host densities result in lower per capita infection risk but higher 

parasite recruitment. This model provides a general mathematical framework for considering 

encounter dilution in host-parasite systems with limited, environmentally transmitted 

infective stages, offering insights into the dynamics of these systems. 
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4.1 Introduction 

A key challenge in disease ecology is to understand the transmission dynamics of 

parasites with complex, multi-host life cycles (Buhnerkempe et al. 2015). Parasites that use a 

single host species are coupled in that the density of parasite stages that are infective to the 

host are directly dependent on host density and parasitism prevalence. For example, parasites 

that are directly transmitted tend to be more prevalent and have higher infection intensities 

when there are more abundant hosts, but indirectly transmitted parasites may not demonstrate 

the same pattern depending on transmission mode, host and parasite mobility, and other 

factors (Mooring and Hart 1992, Côté and Poulin 1995). Environmental transmission by 

parasites occurs when hosts become infected when they come in contact with a parasite that 

is free-living in the environment, is driven by the opportunities for hosts and infective 

parasite stages (such as parasite eggs or larvae) to interact, and these interactions often do not 

occur homogenously in a landscape. The outcome of transmission (for instance, whether 

parasitism is positively or negatively related to host density) for parasites with complex life 

cycles is therefore more nuanced (Dobson 1990). 

Hosts may naturally occur at low or high densities, and basic theory generally 

predicts that per capita contact rate between hosts and infective stages increases with host 

density (Anderson and May 1979, May and Anderson 1979, Dobson 1990). Many diseases 

contradict this pattern, and instead show a negative relationship between host density and per 

capita contact rate as well as per capita infection risk (Mooring and Hart 1992, Côté and 

Poulin 1995, Rifkin et al. 2012). This is often observed in cases where parasites are limited 

in the environment, such as when parasite stages are not produced locally. For instance, 

parasites with complex life cycles may be dispersed long distances from one life stage to 
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another if hosts travel long distances. This limitation of parasites effectively divides the 

number of individual parasites among the available hosts, known as infective stage depletion 

(Turner and Pitcher 1986, Mooring and Hart 1992, Côté and Poulin 1995). Infection stage 

depletion decouples the production of parasites by one host from the density of parasites that 

are available to infect the subsequent host in a life cycle. Evidence for the negative 

relationship between parasite prevalence and host density has been called the encounter 

dilution effect, and infective stage depletion is one mechanism that may lead to this effect 

(Mooring and Hart 1992). The encounter dilution effect has been best described empirically, 

mostly in systems with social animals infected by mobile parasites, however the relationships 

between host density and parasitism in field tests vary idiosyncratically and have yet to be 

generalized in epidemiological theory (see Rifkin et al. 2012 for a review). Thus, there is 

opportunity for further exploration to understand not only the conditions where encounter 

dilution occurs, but how to describe such an effect theoretically. 

Spatial variation in host density makes the outcome of transmission more complex 

than in simple contact rate models (McCallum et al. 2001). In particular, spatial variation in 

host density can create transmission heterogeneity as encounter likelihood (i.e., contact rate) 

with limited parasite stages changes (Mooring and Hart 1992, Côté and Poulin 1995); the 

possible significance of this heterogeneity for host-parasite dynamics could be large but is 

not well-known, especially when infective parasite stages are mobile (May and Anderson 

1984, Dobson 2004, Rifkin et al. 2012, Roberts et al. 2013). For example, Buck et al. (2017) 

demonstrated in a system of intermediate hosts and environmentally transmitted trematode 

parasites that a non-linearity exists between host density and per capita infection risk when 

infectious parasite stages are limited in the environment. When host density is high, 
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individual host risk is decreased because parasite stages are depleted among hosts. Limited, 

mobile parasite stages create a “safety in numbers” effect where per capita risk of infection 

decreases with higher host density, at least at short time scales or fine spatial scales (Buck et 

al. 2017). When host density varies naturally across space, complex transmission patterns 

may not be accurately represented in generic host-parasite models that do not represent host 

density patterns in a landscape. If host density mediates the intensity of an encounter dilution 

effect, then accounting for variation in host density is essential to capturing transmission. The 

presence of an encounter dilution effect may be lost if certain mathematical assumptions 

(such as homogenous mixing) are used to described host-parasite dynamics.  

Considering host density in a theoretical model can also make it easier to assess 

transmission patterns at different observation scales, especially when density does not change 

linearly with observation scale. Most classic models use a mean-field approach, where 

transmission at a broad observation scale, such as an entire ecosystem, is based on averaged 

densities of both hosts and parasites. At finer observation scales, there may be observed 

variation in the density of hosts and/or parasites. There is a rich literature exploring the 

causes of parasite aggregation in host-parasite communities that challenges the idea that 

parasite infections appear the same in all hosts, however variation in host density can also 

create interesting infection patterns. Spatial heterogeneity in host density may lead to 

hotspots of transmission, even if parasite stages are not similarly heterogenous. If hosts occur 

at high densities, then both per capita host risk and parasite recruitment may increase (Paull 

et al. 2012, Streicker et al. 2013). Alternatively, if there is negative density dependence 

between hosts and infective stages, we may see the opposite occur (Mooring and Hart 1992, 

Côté and Poulin 1995, Rifkin et al. 2012, Buck et al. 2017). Especially when parasite stages 
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are actively seeking hosts, the effects of encountering dense or sparse host patches can lead 

to different transmission consequences at a community-level.  

To approach a general theoretical model for systems that exhibit an encounter dilution 

effect, we formulate a model that accounts for hosts and infective parasite stages. We then 

use the model to explore a host-parasite community of digenean trematodes and their 

intermediate host studied by Buck et al. (2017). This system was chosen as a case study for 

this model not only because it has been experimentally tested for encounter dilution in the 

parasitism of the host, the California horn snail, but also because the parasite guild and their 

hosts have been studied for several decades. Since this is a well-studied host-parasite 

relationship, we believe it is an appropriate system to speculate about how the observed 

ecology relates to theoretical considerations of the model produced herein. 

We produce a series of model results illustrating how encounter dilution can be 

observed in a system of environmentally transmitted macroparasites. This is the first 

published model that describes the encounter dilution effect in parasite transmission 

mathematically. The model is described by compartmental ordinary differential equations 

that describe the change in susceptible and infected host density (i.e., an SI model) with vital 

rates and transmission, and accounts for host density that may be adjusted to a range of 

densities. We make two important changes to other SI models, such as those used for 

microparasites: 1) explicitly accounting for the supply and depletion of infective parasite 

stages in the environment (May and Anderson 1979), and 2) incorporating host density as a 

determinant of how intense density dependence (that is, the shape of the transmission 

function) between hosts and parasitism is in the system. The proposed model suggests that 

encounter dilution can be mathematically described by the depletion of infective stages as a 
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function of host density by explicitly modeling the parasite stage in the ODE system. We 

explore transmission dynamics and parameterize the general model using experimental data 

and surveys on digenean trematodes and their intermediate host from Carpinteria Salt Marsh 

(CSM) as a case study. Our model gives similar results to those found in field and 

experimental studies in the same system, and we also explore sensitivity of the model results 

to a range of parameter values. 

4.2 Methods  

We used a series of model runs to explore the transmission dynamics of infectious 

parasite stages and a host in conditions with different host carrying capacities. These models 

reflect a parasite that is mobile in the environment and hosts the become infected by 

environmental transmission when they encounter parasite stages. Models accounted for 

dynamics of susceptible hosts and infected hosts, and explicitly considered parasite searching 

stages with infection and vital rates. Field and experimental data were used to inform model 

parameters. Models were evaluated with a sensitivity analysis to consider robustness of the 

results. 

4.2.1 Estuary Case Study 

We used a well-studied estuary community of hosts and parasites to test the general 

model described below. Carpinteria Salt Marsh (CSM) is an estuary in Southern California, 

USA and is habitat for a range of wetland species, including a digenean trematode 

community (Platyhelminthes) consisting of approximately 19 species. This trematode guild is 

present within a diverse assemblage of hosts at different life stages, but predominantly infects 

the California horn snail, Cerithideopsis californica, as the first intermediate host (Kuris and 

Lafferty 1994, Huspeni and Lafferty 2004). C. californica, can occur at high densities in 
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CSM and become infected by environmental transmission when they encounter an egg or 

larval miracidia of a trematode species (Sousa 1993, Kuris and Lafferty 1994). Buck et al. 

(2017) showed that miracidia, which are released by the final host and seek C. californica 

snails, may more easily find dense patches of snails since miracidia rely on snail mucus as a 

cue and are mobile. C. californica shed cercaria larvae once infected which are not infective 

to other snails. Most trematodes infective to C. californica use a second intermediate host, 

which may be a fish or an invertebrate (including gastropods, crustaceans, bivalves) 

including C. californica. Birds and mammals are the typical final host (see Huspeni and 

Lafferty 2004, Hechinger 2019, and references therein).  

From this estuary, we especially focus on the findings of Buck et al. which 

experimentally tested for encounter dilution in C. californica snails (2017). In a field 

experiment, uninfected snails were caged at sites in the estuary and exposed to natural 

(unmanipulated) infection processes over the course of four months. Cages on 30-cm 

diameter contained 1, 5, 25, or 100 snails, and after the period of exposure were collected and 

dissected. Aside from this field experiment, they also collected additional information on 

observed infections in field surveys as well as estimates of infectious stage supply by 

surveying final bird hosts. From these data, Buck et al. estimated prevalence, per capita 

infection risk, and parasite recruitment at different host densities (see Buck et al. 2017 for 

additional details). 

4.2.2 Model Descriptions 

We used a nonlinear, deterministic compartmental system of ordinary differential 

equations to describe the infection dynamics of a single host and an infectious parasite life 

stage that builds on earlier microparasite models (e.g., May and Anderson 1979, Anderson et 
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al. 1986, Dobson and Hudson 1992, McCallum et al. 2001). Namely, we explicitly model not 

only compartments for hosts, but also infective parasite stages. Explicitly including infective 

stages allows us to account for both supply and depletion of parasite stages. In other models, 

it is generally assumed that the amount of total parasite stages is directly proportional to the 

density of infected hosts and that the parasite does not have a complex (multi-host) life cycle. 

Here, we assume infectious stages are produced independently of density of hosts in part 

because the parasite uses a complex life cycle. The resulting system is such that: 

 𝑆′(𝑡) = 𝛼𝑆(1 −
𝑆 + 𝐼

𝐾
) − 𝛽𝑀𝑆𝛾 − 𝜇𝑆𝑆  

 𝐼′(𝑡) = 𝛽𝑀𝑆𝛾 − 𝜇𝐼 𝐼  

 𝑀′(𝑡) = 𝜁 − 𝛽𝑀(𝑆 + 𝐼) − 𝜇𝑀𝑀  

where the host may be either susceptible (S) or infected (I) by infective parasite stages (M). 

Because we parameterized this model using C. californica hosts and digenean trematodes, we 

assumed that recovery was not possible in the model, meaning infected individuals remain 

infected for life and there is no recovered class of hosts. In this system, infective stages are 

both parasite eggs and larvae (miracidia) which are shed in feces of the final host. Vital rates 

assume a different mortality rate (μ) for uninfected (μS) and infected (μI) individuals, and a 

birth rate (α) with a logistic growth function based on total host density (S + I). While there is 

evidence of higher mortality in infected hosts, there is no evidence that parasite load affects 

parasite-induced mortality, so we do not explicitly track parasite load in hosts in this model, 

making it more typical of microparasite models. The K parameter acts to determine how 

much density dependence is observed in the system between hosts and parasites and denotes 

the host carrying capacity. Consistent with the symptoms of trematode parasitism in C. 
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californica, only susceptible (uninfected) individuals reproduce as infected hosts in this 

community are parasitically castrated (Sousa 1983, Kuris 1990). Hosts transition from the 

susceptible class to the infected class with a functional infection term that assumes infective 

parasite stages are depleted based on the density of hosts in the perceived community. This 

term is defined by the effective contact rate (β) as well as the current densities of both hosts 

classes and of parasite stages. Infection is also affected by a parameter (γ) that is the inverse 

of the number of stages a host must encounter to be infected (Table 2). 

Free-living infective parasite stages have a constant rate of background mortality 

(μM), are assumed to be homogenous in the landscape, and are maintained by a constant input 

(ζ). This latter assumption indicates a small spatial scale model whereby parasites are widely 

distributed (in this case by infected birds that fly from estuary to estuary) and infections 

within the model do not thereafter lead to future infections within the observed host 

population (in this case, snails that move just a few meters). Thus, the model reflects the 

small-scale observations of the experimental system it attempts to explain. We do not 

manipulate parasite density to observe the effect of host density on transmission outcomes. 

When a host becomes infected, we also remove infective stages from the system using the 

same infection term to ensure parasites do not infect multiple hosts. This is notably different 

from familiar SI models where infected hosts can spread infections to multiple susceptible 

hosts. Infected hosts can continue to encounter parasite stages in the environment. This 

means there may be loss of a parasite from the environment, but not in the production of new 

infected hosts.  

 

 
 



59 

 

Parameter Definition Value Dimension Source 

α intrinsic birth rate of 

hosts 

0.05 % hosts per 

month 

Sousa 1983 

μS natural mortality of 

uninfected 

(susceptible) hosts 

0.012 % susceptible 

hosts per month 

Lafferty 1993 

μI natural mortality of 

infected hosts 

0.021 % infected hosts 

per month 

Lafferty 1993 

K carrying capacity of 

hosts 

varies  host density Buck et al. 2017 

and references 

therein 

β contact rate of hosts 

by parasite stages 

0.2 (month*host 

density)-1 

Buck et al. 2017 

γ likelihood of a parasite 

stage encountering a 

viable host 

0.0001 % hosts*month-1 NA 

ζ shedding input of 

parasite stages from 
final hosts 

1000 parasite density 

per month 

NA 

μM natural mortality of 

parasite stages 

0.8 % parasite stages 

per month 

NA 

 
Table 2: Model parameters used in the ODE system describing host-parasite dynamics. The chosen parameters 

values for the model were either drawn from field and experimental data on the CSM community of trematodes 

and C. californica or were inferred when data or estimates were unavailable.  

 

We analytically derived the stable equilibria for this ODE system such that: 

𝑆∗ = −
𝐾(𝛽𝑀𝛾 + 𝜇𝑆)

𝛼
− 𝐼 + 𝐾 

where α and K ≠ 0, and 

𝐼∗ =
𝛽𝑀𝑆𝛾

𝜇𝐼
 

where μI ≠ 0, and 

𝑀∗ =
𝜁

𝛽(𝑆 + 𝐼) + 𝜇𝑀
 

where β(S+I)+ μM ≠ 0. 
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4.2.3 Model Specifications  

Model parameters were chosen based on field and experimental data that was 

collected in several studies on C. californica hosts in Carpinteria Salt Marsh when available 

(Table 2). We assumed a logistic birth rate term for hosts, and we inferred a birth rate per unit 

time from the average lifespan of California horn snails (Sousa 1983) as it was not directly 

estimated in field studies. The mortality rate of hosts was collected from field work by 

Lafferty (1993) for both infected and uninfected hosts. The effective contact rate (β) was 

inferred from experimental data in Buck et al. (2017) on the proportion infected hosts at 

given host densities, as was the input (ζ) of parasite stages per month. We took an educated 

guess for values for remaining parameters that have not been previously estimated in this 

system (Table 2). 

We performed 20 time series iterations to reach a stable equilibrium at a range of host 

densities that included the naturally observed densities of the host C. californica. Initial 

densities were K susceptible hosts and zero infected hosts, which include the range of natural 

densities observed in CSM (Buck et al. 2017). The range of host densities (10 to 100 hosts at 

5 host increments) were chosen to explore the variance in transmission outcomes that 

occurred at densities that would be observed naturally and beyond, to consider how intensely 

density may affect an encounter dilution effect. Initial values for infective parasite stages 

were set to 1000 individual larval stages. All analyses were performed in R (version 4.1.3) (R 

Core Team 2022). We used the deSolve package with the lsoda ODE solver (Soetaert et al. 

2010) for solving the SI model which is appropriate for both stiff and non-stiff systems of 

first-order ordinary differential equations (see details in Petzold 1983, Soetaert et al. 2010). 
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At the end of each model run, we also calculated prevalence as the proportion of infected 

hosts in the final host population. 

4.2.4 Sensitivity Analysis 

We used Latin hypercube sampling (LHS) to assess the sensitivity of the model to our 

parameter choices (Blower and Dowlatabadi 1994, Helton and Davis 2003). We drew 50 

values without replacement from a uniform distribution using with the maximinLHS function 

in the lhs package (Carnell 2022) in R (version 4.1.3) which optimizes sampling by 

maximizing the minimum distance between points. The parameter values drawn for the 

sensitivity analyses were within 0.5 to 1.5 times the parameter values in Table 2 so we could 

comprehensively explore parameter sensitivity. Each set of parameter values was used in 

sensitivity trials using the same model equations and structure (Eq. 1). 

Following sensitivity trials, we used partial rank correlation coefficients to assess 

importance of each parameter on the model results (Iooss and Lemaître 2015). In line with 

experimental findings in Buck et al., we compared two factors between experimental and 

simulated trials: prevalence, which reflects the per capita infection risk to hosts, and the 

density of infected snails (I) at the end of each time series, which reflects the change in 

parasite recruitment (i.e., the number of successful infections by parasites). Partial rank 

correlation coefficients (PRCC) were used to measure the sensitivity of the response variable 

of interest to each model parameter when the effect of other parameters is removed. PRCC 

calculate pairwise correlation between two variables (here, a parameter and a model output 

variable) while controlling for the effect of others. We used the Spearman method in the R 

package ppcor to calculate PRCC describe the monotonic relationship between parameters 

and model results (Kim 2015). 
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4.3 Results  

Our model predicted that when transmission rate is dependent on parasite stage density by 

the process of infectious stage depletion, infection prevalence is negatively correlated with 

host density (Figure 8). Model outputs showed that final parasite prevalence ranged from 

approximately 6% to 33% of hosts infected by parasite stages in the time series at 

equilibrium. Field experiments that helped parameterize the model and tested for encounter 

dilution found infection prevalence ranged from 16.4 – 27.5% (Buck et al. 2017). Simulated 

infection risk did not fluctuate over time but was asymptotic within the time series and 

reached a stable equilibrium. In the same simulations, we also found that the density of 

infected hosts (I) increased with greater host carrying capacity (Figure 8). 

 

 

Figure 8: Time series of transmission of C. californica hosts by infective larval trematode stages using the 

model framework in Equation (1) as defined by the host carrying capacity, K. Panel A shows the change in 

infection prevalence over the course of each simulation, and Panel B shows the change in the density of infected 

hosts (I). Infection prevalence reflects per capita infection risk of hosts, and the density of infected hosts reflects 

parasite recruitment in the host-parasite community. 
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4.3.1 Sensitivity Analysis 

We focused sensitivity analyses on the impact of model parameters on prevalence and 

infected host density at the end of each model run following LHS. Overall, both infection 

terms and vital rates were important for influencing infection prevalence and density of 

infected host according to PRCC (Figure 9, Table 3). Specifically, prevalence was negatively 

correlated with infected host mortality (PRCC: -0.64, p<0.01) but was positively correlated 

with β (PRCC: +0.38, p<0.05), γ (PRCC: +0.66, p<0.01), and ζ (PRCC: +0.37, p<0.05). 

Susceptible host density was positively correlated with host birth rate (PRCC: +0.41, p<0.05) 

and host carrying capacity (PRCC: +0.6, p<0.01) and negatively correlated with susceptible 

host mortality (PRCC: -0.45, p<0.01). The density of infected hosts was negatively correlated 

with infected host mortality (PRCC: -0.45, p<0.01) and positively correlated with γ (PRCC: 

+0.48, p<0.01) and ζ (PRCC: +0.55, p<0.01). Parasite stage density was sensitive to the  

parasite input constant (ζ) (PRCC: +0.43, p<0.05), β (PRCC: -0.79, p<0.01), and parasite 

mortality (PRCC: -0.37, p<0.05). 
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Figure 9: We extended each parameter value (Table 2) to range from 0.5 to 1.5 times in magnitude of the value 

used in our initial model runs when exploring sensitivity of the model outputs to model parameters. K was set to 

20 when exploring ranges of other parameter values in simulations. Here we show the resulting prevalence and 

density of infected hosts for the equilibrium, calculated numerically. 
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 S I M Prevalence 

Correlation Coefficient 

α + 0.41* + 0.01 - 0.1 - 0.15 

μS - 0.45* + 0.11 + 0.1 - 0.08 

μI - 0.18 - 0.45* + 0.12 - 0.64* 

K + 0.6* - 0.04 - 0.19 - 0.13 

β - 0.14 - 0.1 - 0.79* + 0.38* 

γ + 0.17 + 0.48* - 0.07  + 0.66* 

ζ + 0.19 + 0.55* + 0.43* + 0.37* 

μM - 0.07 - 0.21 - 0.37* - 0.03 

p-value  

α 0.01 0.97 0.53 0.36 

μS 3.9e-3 0.5 0.52 0.64 

μI 0.26 3.9e-3 0.44 1.1e-5 

K 3.7e-5 0.82 0.25 0.43 

β 0.4 0.55 1.2e-9 0.02 

γ 0.29 1.9e-3 0.68 4.0e-6 

ζ 0.23 2.7e-4 0.01 0.02 

μM 0.65 0.2 0.02 0.84 

 
Table 3: Sensitivity of prevalence, infected host density, and effective contact rate (β) to changes in model 

parameters based on 50 Latin hypercube samples (see Methods). Partial rank correlation coefficients were used 

to quantify sensitivity, including the correlation coefficient and p-value. Significant relationships (p ≤ 0.05) are 

indicated with an asterisk (*). 

 

4.4 Discussion 

Models in disease ecology have yet to find a general framework for considering encounter 

dilution in mathematical representations of natural systems. While the number of field studies 

exploring this pattern is growing, we intend to present a theoretical technique for identifying 

and describing potential encounter dilution effects in macroparasites. We accomplish this is 

by making several manipulations of traditional disease models created for microparasites 

(Anderson and May 1979, May and Anderson 1979) to give flexibility for infective stage 

depletion which may occur between free-living parasite stages and a host population. A key 

modification is to match models to the small spatial scales at which encounter dilution is 

observed. By parameterizing this model with field and experimental data from a well-studied 
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host-parasite community, we were able to 1) echo experimental findings that suggest an 

encounter dilution effect, 2) use this system as a case study to explore a more comprehensive 

set of conditions than may be possible in field experiments to describe this phenomenon, and 

3) assess model sensitivity.  

Model results using the CSM trematode community confirmed experimental work 

that found evidence for an encounter dilution effect. Model results indicated that parasitism 

prevalence was higher in trials with lower K (Figure 8). Additionally, all model outputs 

showed that model results leveled off at a stable equilibrium. We set a contact rate term in the 

model (Table 2) but do not follow the assumption used in simpler SI models that parasite 

stages are coupled with host density and instead are depleted as host density increases. 

Instead, we incorporate a density effect by assuming the observed transmission will be 

dependent on the density of hosts and parasite stages, as well as the likelihood of them 

encountering each other (McCallum et al. 2001). Additionally, we account for infective stage 

depletion of free-living trematode parasite stages by removing stages from the system when 

they encounter either susceptible or infected hosts. There is evidence from field and lab 

studies that hosts in high densities experience reduced per capita infection risk from 

trematode parasite stages as a result of this process (Ewers 1964, Johnson et al. 2012, Rohr et 

al. 2015, Buck and Lutterschmidt 2017, Buck et al. 2017). We expect that infective stage 

depletion is a more general phenomenon that occurs in macroparasites that produce free-

living stages and are candidates for exhibiting an encounter dilution effect. Free-living, 

environmentally transmitted parasite stages have been suggested as a strategy benefiting both 

hosts and parasites in cases where host density is high, including in social animals: hosts 

experience a lower per capita risk of infection, and parasites enjoy a higher likelihood of 
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successfully finding a host (Mooring and Hart 1992, Côté and Poulin 1995, Rifkin et al. 

2012, Patterson and Ruckstuhl 2013). This pattern is echoed in our findings using data from 

the CSM system as a spatial encounter dilution effect. 

Depletion of infective stages is essential to the encounter dilution effect and is not 

only a result of the limited supply of parasites shed from a host into the environment. 

Parasites such as the trematodes in CSM are also limited because transmission (i.e., infection 

of the intermediate host) is spatially decoupled from infective stage production (i.e., infective 

stages that are infective to an intermediate host) when the parasite uses a mobile final host 

(Buck and Lutterschmidt 2017, Buck et al. 2017). This can be the case of trematodes and 

other parasites that exhibit complex life cycles. For example, the focal trematode guild in 

CSM uses birds and mammals as final hosts, and other trematodes with complex life cycles 

also use vertebrates (including humans) as final hosts (Roberts et al. 2013). Vector-

transmitted parasites and macroparasites have also been shown to experience parasite stage 

depletion and would likely show similar evidence of encounter dilution in this theoretical 

model (Ostfeld et al. 1996, Fauchald et al. 2007, Samsing et al. 2014). Our results suggest 

that we can account for infective stage depletion in these communities by incorporating a 

host and parasite density transmission term and removing parasite stages based on contact 

rate (β).  

We also found that the density of infected hosts is positively related to host carrying 

capacity, K, in model time series as well as in sensitivity analyses (Figure 8, 9). This follows 

previous theoretical and empirical explorations about how encounter dilution and infective 

stage depletion can benefit parasites as there are more successful infections in hosts, 

suggesting improved parasite recruitment (Mooring and Hart 1992, Côté and Poulin 1995, 
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Rifkin et al. 2012, Patterson and Ruckstuhl 2013). While hosts experience lower per capita 

infection risk when at high densities, parasites are more likely to find and infect a susceptible 

host.  

The increased success of parasites at high host density should lead to an increase in 

the production of infective stages. This feedback is not considered in our model, and it is 

important to emphasize that an encounter dilution effect is a small-scale phenomenon that 

might reverse at larger spatial scales. That is, overall increases in host density would be 

expected to eventually increase the infective stage input term (which we keep constant). How 

that affects parasite dynamics is a difficult problem in need of more sophisticated models. 

Infected host density and prevalence were both sensitive to a number of model 

parameters (Figure 9). Prevalence and infected host density naturally declined with higher 

mortality in infected hosts and increased with more parasite stages regardless of whether K 

was high or low. Prevalence and infected host density were also positively associated with γ. 

The γ term reflects the likelihood of infectious stages to successfully find and infect a 

susceptible host and was positively correlated with prevalence. Conceptually, many systems 

such as the CSM community explored here will have a generous inflow of infective stages 

from final hosts, but only a fraction of these will find physical contact with and successfully 

infect an encountered, susceptible intermediate host. As our sensitivity analysis shows, when 

the likelihood of individual infectious stages encountering a host increases, parasite 

prevalence and infected host density increases (Figure 9, Table 3). Interestingly, prevalence 

and infected host density were both sensitive to contact rate (β) but in opposite directions. 

Infected hosts were negatively correlated with higher contact rate, while prevalence increased 

with contact rate. This is an indication of infective stage depletion leading to an encounter 
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dilution effect. Despite hosts and parasites having an increased rate of transmission and thus 

a higher prevalence of parasitism, the density of infected host individual still declines as 

parasites become depleted and reduce the per capita risk to susceptible hosts. This is further 

supported by the negative relationship between parasite stage density and contact rate in our 

sensitivity analysis (Table 3). 

In the CSM system, Buck et al. found that the effect of host density on contact rate 

was more pronounced for egg transmission over larval transmission in experiment treatments 

(2017). In this guild of parasites, both eggs and mobile larva (miracidia) can be infectious to 

the first intermediate host, depending on trematode species (Sousa 1983, Kuris 1990). Buck 

et al. suspected that because mobile miracidia could actively search for hosts, the effect of 

host density on parasite infection was less intense at broader observation scales, despite 

having shorter viable period than an egg (2017). We speculate that the impact of mobility in 

parasite stages can be represented as a variance in the γ term, where more active stages have 

a higher likelihood of encountering a host. This may also extend to the experimental 

difference in infection between eggs and miracidia seen in different trematode species in the 

CSM system. While mobile miracidia larva seek out snail hosts, trematodes that are egg 

transmitted rely on being consumed by snails. The likelihood of an egg being consumed by a 

snail may be greater than the likelihood of an active larva successfully finding a host and 

infecting it. This relationship between parasite stage motility and transmission also aligns 

with experimental and theoretical expectations that transmission saturates in systems that 

exhibit encounter dilution as host density increases to very high densities (McCallum et al. 

2001, Buck et al. 2017).  
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Our mathematical model provides a general modeling approach for considering the 

encounter dilution effect sometimes observed in environmentally transmitted macroparasites. 

Infective stage depletion caused by spatial decoupling of transmission and infectious stage 

supply is an essential component to consider for generalizing the dynamics of encounter 

dilution in this type of host-parasite system. By using a community of digenean trematodes 

infecting an invertebrate snail host as a case study, we demonstrated how encounter dilution 

can be represented with simple adjustments to more traditional macroparasite models. Our 

case study from CSM mirrors experimental findings that encounter dilution effects exist in 

this system result when host density is variable in space (Buck et al. 2017). Generally, we 

would expect to observe an encounter dilution effect in any host-parasite system that also had 

limited, environmentally transmitted infective stages. In the CSM observed here, limitation 

of stages came as decoupling transmission from stage production. Transient dynamics like 

seasonal activity of hosts or movement patterns may also generate depletion of parasite 

stages and thus encounter dilution patterns over space-time and are a noteworthy direction 

for future work (Woolhouse 1996, Atkinson et al. 2013, Tao et al. 2021). We were also able 

to explore a wider distribution of conditions in this case study by using a theoretical 

approach. In doing so, we found that the observed encounter dilution was notably sensitive to 

certain infection terms and vital rates. We expect that this general model could be adapted to 

other systems. 
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Appendices 
 

 
APPENDIX CHAPTER 1 

 

 
 
Appendix Figure 1: A simplified life cycle of the trematode guild described in Carpinteria Salt Marsh. The life 

cycle begins (and ends) in the definitive host, which are often birds, where adult trematodes release trematode 

eggs into the environment through host feces. Miracidia and seek out the first intermediate host (such as C. 

californica) and cercaria are shed into the environment where they may encyst on the second intermediate host 

(such as a fish or crab) or on substrate in the environment. The final host may encounter metacercaria 

environmentally or trophically. 
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Scientific Name Family Superfamily Species 

Abbreviation 

Acanthotrema hancocki Heterophyidae Opisthorchioidea acha 

Acanthoparyphium spinulosum Himasthlidae Echinostomatoidea acsp 

Austrobilharzia sp. Schistosomatidae Schistosomatoidea ausp 

Catatropis johnstoni Notocotylidae Pronocephaloidea cajo 

Cloacitrema michiganensis Philophthalmidae Echinostomatoidea clmi 

Euhaplorchis californiensis Heterophyidae Opisthorchioidea euca 

Himasthla rhigedana Himasthlidae Echinostomatoidea hirh 

Himasthla sp. B  Himasthlidae Echinostomatoidea hisb 

Mesostephanus appendiculatus Cyathocotylidae Diplostomoidea meap 

Parorchis sp. Philophthalmidae Echinostomatoidea pasp 

Phocitremoides ovale Heterophyidae Opisthorchioidea phov 

Probolocoryphe uca Microphallidae Microphalloidea pruc 

Pygidiopsoides spindalis Heterophyidae Opisthorchioidea pysp 

Renicola buchanani Renicolidae Microphalloidea rebu 

Renicola cerithidicola Renicolidae Microphalloidea rece 

Renicola sp. "martini" Renicolidae Microphalloidea rema 

Renicola sp. "polychaetophila" Renicolidae Microphalloidea repo 

Small cyathocotylid Cyathocotylidae Diplostomoidea smcy 

Small microphallid Microphallidae Microphalloidea smmi 

 
Appendix Table 1: Trematode species described in this study across 5 replicated field surveys of the trematode 

community. Species abbreviations were used for trematode species and were consistent with other studies 

conducted on this guild of trematodes (see details in Hechinger 2019).  
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Season Collection Date C2 C3 C6 C7 C8 F1 F2 F3 F4 F5 

Wet 2012-02-14 33 16 44 0 0 0 0 0 0 26 

Wet 2012-02-15 0 0 0 14 16 26 36 17 43 0 

Wet 2012-04-09 49 33 0 32 26 31 36 16 28 35 

Dry 2012-05-08 42 29 0 18 48 31 32 25 35 18 

Dry 2012-06-08 40 23 0 35 28 0 40 22 50 5 

Dry 2012-06-13 0 0 0 0 0 50 0 0 0 15 

Dry 2012-07-09 51 26 0 41 36 23 38 37 36 26 

Dry 2012-08-16 38 22 0 36 21 28 44 27 55 17 

Dry 2012-09-14 45 19 0 38 36 21 46 22 43 28 

Dry 2012-10-16 26 34 0 42 36 27 37 35 47 19 

Wet 2012-11-09 47 33 0 34 30 27 42 29 39 32 

Wet 2012-12-04 56 38 0 42 20 33 39 25 57 21 

Wet 2013-01-08 58 27 0 43 37 22 40 20 47 44 

Wet 2013-02-05 23 32 0 34 27 29 35 16 45 24 

Wet 2013-03-05 52 28 0 37 20 26 24 11 44 15 

Wet 2013-04-03 0 31 0 24 26 0 31 0 0 0 

Wet 2013-04-04 34 0 0 0 0 36 0 21 35 26 

Dry 2013-06-14 43 27 0 17 18 32 33 20 40 9 

Dry 2013-07-16 31 37 0 13 20 19 38 17 56 35 

Dry 2013-08-12 44 24 0 17 31 26 33 16 46 29 

Dry 2013-09-17 55 26 0 15 24 31 34 18 28 25 

Dry 2013-10-15 42 12 0 14 29 37 38 5 46 34 

Wet 2013-11-12 54 32 0 17 36 22 29 6 55 40 

Wet 2013-12-12 46 7 0 0 0 24 0 35 46 22 

Wet 2013-12-13 0 0 0 29 25 0 19 0 0 0 

Wet 2014-01-13 54 29 0 0 0 48 0 32 50 45 

Wet 2014-01-14 0 0 0 31 22 0 28 0 0 0 

 
Appendix Table 2: Number of snails (i.e., C. californica individuals) out of the 58 snails collected on a given 

sample date at each of the 10 sites in CSM that were infected with trematodes. Sites were not consistently 

sampled on every survey date, but all but one site was sampled consistently every season. On each sample date, 

58 snail hosts were collected and dissected, and trematodes were identified to species (see Kuris et al. 2008 for 

details).  
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Variable Description Unit Use 

Species occurrence Presence/absence of each 

trematode species in an 
infected C. californica host, 

collected at each site on 

multiple sample dates via 
dissection (Appendix Table 

1) 

Binary Dependent variable 

Mean host size Size (body length) of the 

infected host, including soft 

and hard parts, collected 
during dissections of hosts 

that generated species 
occurrence data 

mm Occupancy 

covariate, 

Detection covariate 

Bird diversity Shannon index of bird 

species identified at sample 
sites 

index Occupancy 

covariate 

Bird density The density of birds at a 
sample site, based on 

biomass per unit area 

collected at each site 

g/m2 Occupancy 
covariate 

Habitat Habitat type of the site 

sampled (may be either sub-
tidal channel or mudflat) 

character Occupancy 

covariate 

Pickleweed cover The percent of space in a 

sample site that was 
occupied by Sarcocornia 

virginica vegetation, 
calculated as the average of 

three vegetation surveys 

collected at each site 

% Occupancy 

covariate 

Organic matter The percent of sediment 

mass that is organic 
material, based on samples 

collected once at each site 

% Occupancy 

covariate 

Season The season (wet, dry) of the 
sample date, based on the 

quarter of the year  

character Detection covariate 

Year Year of the sample date Year Detection covariate 

Coordinates Spatial coordinates 

(latitude/longitude) of each 
site sampled 

Spatial 

coordinates 

Spatial covariate 

 

 
Appendix Table 3: Covariates in each multi-species occupancy model described environmental and spatial 

conditions of C. californica hosts and their trematode parasites.  
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 Bayesian p-values 

Species Freeman-Tukey Chi-Squared 

acha 0.44 0.44 

acsp 0.33 0.24 

ausp 0.63 0.48 

cajo 0.46 0.45 

clmi 0.38 0.35 

euca 0.45 0.45 

hirh 0.62 0.61 

hisb 0.53 0.52 

meap 0.19 0.28 

pasp 0.78 0.77 

phov 0.14 0.14 

pruc 0.64 0.62 

pysp 0.55 0.55 

rebu 0.39 0.38 

rece 0.45 0.63 

rema 0.38 0.33 

repo 0.18 0.20 

smcy 0.46 0.46 

smmi 0.35 0.32 

Community 0.44 0.43 

 
Appendix Table 4: Bayesian p-values reported for each species described in this DECEMS analysis, generated 

in posterior predictive checks of the species occupancy model. See Appendix Table 1 for species abbreviations. 

We concluded that our model predictions are similar to observed data since both the community-level and most 

species-specific Bayesian p-values are close to 0.5 and none are below 0.1 or above 0.9 (i.e., p-values do not 

suggest a strong bias for high or low predicted values). Below we report the posterior predictive check Bayesian 

p-values using both a Freeman-Tukey and a chi-squared fit statistic. 
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APPENDIX CHAPTER 2 

 

 
 
Appendix Figure 2: Dominance hierarchy of trematode species (add detail from Hechinger 2019). The top 

species (“aust”) is considered the most dominant species, meaning it will outcompete other species that are 

shown below it within a snail host. The most dominant position is referred to as rank 1 for shorthand (e.g., 

Figure 6). Trematode species that are grouped together (e.g., “clmi” and “acsp”) are considered competitive 

equals. Species abbreviations are listed in Appendix Table 1 with additional taxonomic detail. 

 

 

 
 
Appendix Figure 3: Posterior predictive plots of the trematode community data (dark line) and the predicted 

(posterior) samples (light lines). Panel A shows the model without a spatial term, and Panel B shows the model 

with the spatial autocorrelation term.  

 

 
 

 

 



92 

 

Scientific Name Family Superfamily Species 

Abbreviation 

Acanthotrema hancocki Heterophyidae Opisthorchioidea acha 

Acanthoparyphium spinulosum Himasthlidae Echinostomatoidea acsp 

Austrobilharzia sp. Schistosomatidae Schistosomatoidea ausp 

Catatropis johnstoni Notocotylidae Pronocephaloidea cajo 

Cloacitrema michiganensis Philophthalmidae Echinostomatoidea clmi 

Euhaplorchis californiensis Heterophyidae Opisthorchioidea euca 

Himasthla rhigedana Himasthlidae Echinostomatoidea hirh 

Himasthla sp. B  Himasthlidae Echinostomatoidea hisb 

Mesostephanus appendiculatus Cyathocotylidae Diplostomoidea meap 

Parorchis sp. Philophthalmidae Echinostomatoidea pasp 

Phocitremoides ovale Heterophyidae Opisthorchioidea phov 

Probolocoryphe uca Microphallidae Microphalloidea pruc 

Pygidiopsoides spindalis Heterophyidae Opisthorchioidea pysp 

Renicola buchanani Renicolidae Microphalloidea rebu 

Renicola cerithidicola Renicolidae Microphalloidea rece 

Renicola sp. "martini" Renicolidae Microphalloidea rema 

Small cyathocotylid Cyathocotylidae Diplostomoidea smcy 

Small microphallid Microphallidae Microphalloidea smmi 

 
Appendix Table 5: 18 digenean trematodes were described in the empirical data that informed species 

distribution models. We used species abbreviations in analyses that were consistent with other studies conducted 

on this guild of trematodes (see details in Hechinger 2019).  
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Variable Description Unit Source 

Trematode data Trematodes were identified in 

infected C. californica snails at 
local sampling sites; trematode 

abundance was calculated as the 

number of infections by a trematode 
species at a site 

NA Kuris et al. 

2008 

Dominance rank The rank of a trematode species in 
the dominance hierarchy described 

for this system (Appendix Figure 2) 

with 1 indicating the most dominant 
species (e.g. Figure 6) 

NA Hechinger 
2019 

Transmission type Whether the trematode species is 
transmitted to the first intermediate 

host as an egg or a miracidium larva 

NA Buck et al. 
2017 

Mean snail 
biomass 

The mean biomass density of all 
(uninfected and infected) snail hosts 

in a sample site 

g/m2 Kuris et al. 
2008 

Mean host size Mean (infected) snail host body 

mass within a sample site 

grams Kuris et al. 

2008 

Bird density The density of bird biomass 
observed within a sample site 

g/m2 Kuris et al. 
2008 

Bird diversity The Shannon index (H) of bird 
diversity observed in each sample 

site, calculated from bird 

observations using the diversity 
function from the R package 

‘vegan’ (Oksanen et al. 2022) 

NA Kuris et al. 
2008 

Pickleweed cover The percent cover of pickleweed 

(Sarcocornia virginica) within a 

sample site, based on three transects 

% Kuris et al. 

2008 

Organic matter The percent of sediment from 

sediment cores that was organic 
matter; natural log-transformed in 

all models and averaged by replicate 

for the estuary- and habitat-scale 

% Kuris et al. 

2008 

Habitat The habitat type (marsh, mudflats, 

pans, sub-tidal channel) occurring at 
a sample site; covariate not used in 

estuary-scales analyses, and used as 

a random effect rather than fixed 
effect at the habitat-scale 

NA Kuris et al. 

2008 

Euclidean distance The latitude and longitude for local 
sites that were sampled in CSM, 

EPB, and BSQ were used for 
calculated the Euclidean distance 

x-y 
coordinates; 

distance 
matrix 

Kuris et al. 
2008 



94 

 

between each pair of sites, and 
informed the spatial conditional 

autoregressive term 

 
Appendix Table 6: List and description of environmental and trait covariates in SDMs. See Methods for details 

on data sources and collection. 

 

 

 Non-spatial model Spatial model 

Predictors Estimate CI Estimate CI 

Intercept 1.71 0.57 - 2.83 1.35 0.046 - 2.55 

Habitat (flat) 0.22 0.16 - 0.28 0.31 -0.17 - 0.78 

Habitat (marsh) -0.57 -0.67 - -0.47 -0.55 -1.10 - 0.005 

Habitat (pan) -0.05 -0.12 - 0.033 0.01 -0.59 - 0.55 

Organic matter -0.10 -0.14 - -0.062 -0.14 -0.38 - 0.089 

Pickleweed cover 0.08 0.046 - 0.10 0.11 -0.1 - 0.32 

Bird diversity -0.09 -0.12 - -0.066 -0.15 -0.34 - 0.039 

Bird density 0.07 0.048 - 0.099 0.08 -0.11 - 0.27 

Mean host size -0.06 -0.10 - -0.023 -0.15 -0.42 - 0.13 

Mean snail biomass 0.08 0.051 - 0.12 0.11 -0.13 - 0.37 

Spatial CAR term NA NA 0.51 0.03 - 0.98 

Transmission (miracidia) 0.09 -0.98 - 1.20 0.14 -0.96 - 1.26 

Dominance 2 -0.21 -1.69 - 1.27 -0.25 -1.72 - 1.27 

Dominance 3 0.44 -1.06 - 1.93 0.41 -1.10 - 1.89 

Dominance 4 0.51 -1.01 - 1.98 0.57 -0.95 - 2.05 

Dominance 5 0.06 -1.26 - 1.40 0.06 -1.28 - 1.40 

Dominance 6 0.29 -0.89 - 1.47 0.36 -0.85 - 1.55 

Dominance 7 -0.16 -1.37 - 1.05 -0.13 -1.33 - 1.07 

Dominance 8 -0.63 -1.91 - 0.66 -0.61 -1.88 - 0.69 

 
Appendix Table 7: Each species distribution model describing trematode abundance was run with and without 

spatial autocorrelation informed by the Euclidean distance between sample site locations. This produced two 

total model versions. Here we provide the covariate estimate (model coefficients) and 95% credible intervals. 

Note that the intercept of both models accounts for the tidal channel habitat type, species with dominance rank 

1, and species that transmit using eggs (Appendix Table 2). 
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 Observed I Expected I Std Dev p-value 

Euclidean Distance 

Organic matter 0.222 -0.019 0.058 2.87e-5* 

Pickleweed cover 0.762 -0.019 0.060 0* 

Bird diversity  0.019 -0.019 0.059 0.51 

Bird density -0.008 -0.019 0.058 0.85 

Mean host size 0.479 -0.019 0.059 0* 

Mean snail biomass 0.090 -0.019 0.058 0.061 

Binary for Estuary Connectivity 

Organic matter -0.140 -0.019 0.018 9.37e-12* 

Pickleweed cover -0.370 -0.019 0.018 1.42e-80* 

Bird diversity  -0.006 -0.019 0.018 0.49 

Bird density -0.011 -0.019 0.018 0.65 

Mean host size -0.242 -0.019 0.018 1.55e-34* 

Mean snail biomass -0.027 -0.019 0.018 0.66 

 
Appendix Table 8: We tested for spatial autocorrelation using Moran’s I for all environmental covariates, which 

were measured at each sample site. We calculated Moran’s I using both Euclidean distance between all sites, 

and using a binary that indicated whether pairs of sites were in the same estuary or not. We presented the 

standard deviation and p-value (p-values < 0.05 are indicated by an asterisk) of each test as well as the observed 

(the computed Moran’s I) and expected value under a null hypothesis.  

 




