
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Iterative methods for large-scale unconstrained optimization

Permalink
https://escholarship.org/uc/item/65t4c5zd

Author
Erway, Jennifer B.

Publication Date
2006

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/65t4c5zd
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA, SAN DIEGO

Iterative Methods for Large-Scale Unconstrained Optimization

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Jennifer B. Erway

Committee in charge:

Professor Philip Gill, Chair
Professor Randolph Bank
Professor Robert R. Bitmead
Professor Michael Holst
Professor Bhaskar D. Rao

2006

Copyright

Jennifer B. Erway, 2006

All rights reserved.

The dissertation of Jennifer B. Erway is approved,

and it is acceptable in quality and form for publi-

cation on microfilm:

Chair

University of California, San Diego

2006

iii

To B.W.

iv

TABLE OF CONTENTS

Signature Page . iii

Dedication . iv

Table of Contents . v

List of Tables . viii

Acknowledgements . ix

Vita . x

Abstract of the Dissertation . xi

1 Introduction . 1
1.1 Overview . 1
1.2 Contributions of this thesis . 6
1.3 Notation . 8

2 Unconstrained Minimization . 10
2.1 Overview . 10
2.2 Line-Search Methods . 14

2.2.1 Modified Newton methods 15
2.2.2 The modified eigensystem paradigm 18
2.2.3 Practical modified Newton methods 19
2.2.4 Properties of the modified Newton direction 19

2.3 Trust-Region Methods . 22
2.3.1 Motivation . 22
2.3.2 Trust-region methods with a line search 24
2.3.3 Convergence of trust-region methods 27
2.3.4 Solving the trust-region subproblem 33
2.3.5 The Moré-Sorensen algorithm 34

3 Iterative Methods for Minimizing a Quadratic Function 37
3.1 Motivation for Iterative Methods 37
3.2 Minimization Over Expanding Subspaces 39

3.2.1 Solving the reduced problem 40
3.3 Generating Conjugate Directions 42
3.4 Conjugate Directions from Lanczos Vectors 45

v

3.4.1 Direct orthogonal reduction to tridiagonal form 45
3.4.2 Lanczos reduction to tridiagonal form 46
3.4.3 Properties of the Lanczos vectors 47
3.4.4 Conjugate directions from the Lanczos process 49
3.4.5 The Lanczos-CG method . 50

3.5 Preconditioned CG Methods . 54
3.5.1 The preconditioned Lanczos-CG method 56

3.6 Economizing Matrix-Vector Products 58
3.7 Computations with the Preconditioner 59

4 Iterative Methods for the Trust-Region Subproblem 62
4.1 Introduction . 62
4.2 Steihaug’s Method . 63
4.3 The GLTR Method . 66
4.4 Hager’s Method . 68

5 An Iterative Trust-Region Method . 74
5.1 Introduction . 74
5.2 Phase One . 75

5.2.1 Estimating the leftmost eigenpair 77
5.3 Phase Two . 79

5.3.1 The augmented penalty function 79
5.3.2 The primal-dual augmented Lagrangian 85
5.3.3 Minimizing the primal-dual augmented Lagrangian 89
5.3.4 Economizing matrix-vector products 91
5.3.5 Solution of the subproblem on a reduced subspace 93
5.3.6 Estimating the elliptical norm 94
5.3.7 The phase-two algorithm . 96

6 Preconditioning . 101
6.1 The Incomplete Cholesky Factorization 102

6.1.1 The modified Cholesky factorization 102
6.1.2 The incomplete Cholesky factorization 106

6.2 Limited-Memory Quasi-Newton Updates 109
6.2.1 Limited-memory BFGS updates 110
6.2.2 Implementing quasi-Newton updates in Phase Two 112
6.2.3 Estimating the elliptical norm 114

vi

7 Numerical Results . 117
7.1 Implementation Details . 118

7.1.1 Termination of phase one . 118
7.1.2 Termination of phase two 119
7.1.3 The line search . 121

7.2 Problem selection . 122
7.3 Results with No Preconditioning . 123
7.4 Quasi-Newton Preconditioning . 125
7.5 Incomplete Cholesky Preconditioning 126
7.6 Concluding Remarks . 130

Bibliography . 146

vii

LIST OF TABLES

Table 7.1: Steihaug and phased-SSM. Problems A–F, M = I; δ0 = 1. . 132
Table 7.2: Steihaug and phased-SSM. Problems G–Z, M = I, δ0 = 1. . . 133
Table 7.3: Steihaug, phased-SSM and Moré-Sorensen. Problems A–F,

M = I, δ0 = 1. 134
Table 7.4: Steihaug, phased-SSM and Moré-Sorensen. Problems G–Z,

M = I, δ0 = 1 . 135
Table 7.5: Quasi-Newton preconditioning. Problems A–F, M = I, δ0 =

1. 136
Table 7.6: Quasi-Newton preconditioning. Problems G–Z, M = I, δ0 =

1. 137
Table 7.7: Comparison of unpreconditioned methods. M = I, δ0 = 1. . 137
Table 7.8: Incomplete Cholesky preconditioning. Problems A–F, δ0 =

100. 138
Table 7.9: Incomplete Cholesky preconditioning. Problems G–Z, δ0 =

100 . 139
Table 7.10: Incomplete Cholesky preconditioning. Results for problems

that could not be solved by unpreconditioned Steihaug or
phased-SSM, δ0 = 100. 140

Table 7.11: Incomplete Cholesky preconditioning using explicit matrix-
vector products with M . Problems A–F, δ0 = 100. 141

Table 7.12: Incomplete Cholesky preconditioning using explicit matrix-
vector products with M . Problems G–Z, δ0 = 100. 142

Table 7.13: Incomplete Cholesky preconditioning using explicit matrix-
vector products with M . Problems that could not be solved
without preconditioning, δ0 = 100. 143

Table 7.14: Function evaluations of direct and indirect methods. Incom-
plete Cholesky preconditioning. Problems A–E, δ0 = 100. . . 144

Table 7.15: Function evaluations for direct and indirect methods. Incom-
plete Cholesky preconditioning. Problems F–Z, δ0 = 100. . . 145

viii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance and support

of my advisor, Philip Gill. His dedication to this research and his patience in

support of me for many years was, and continues to be, the greatest factor in my

accomplishments in mathematics.

I would also like to thank the committee members Randy Bank, Robert Bit-

mead, Mike Holst, and Bhaskar Rao for their support in writing this thesis.

I am grateful to the UCSD math department for their patience during this

endeavor; in particular, I would like to thank the Computational and Applied

Mathematics group. I am especially indebted to Mike Holst and Randy Bank for

their unwavering encouragement and reassurance.

In the writing of this thesis, Josh Griffin’s advice and suggestions were indis-

pensable. And, I also wish to thank Kathleen Dillon who, one trying afternoon

over a decade ago, meticulously criticized a paper I had written; on that day I

learned some valuable lessons about writing.

Finally, I would like to thank my family and friends for their continued support

and confidence in this undertaking. Without them, I would not be where I am

today.

ix

VITA

1997 B. A., summa cum laude, Claremont McKenna College

1999 M. A., University of California, San Diego

2006 Ph. D., University of California, San Diego

x

ABSTRACT OF THE DISSERTATION

Iterative Methods for Large-Scale Unconstrained Optimization

by

Jennifer B. Erway

Doctor of Philosophy in Mathematics

University of California San Diego, 2006

Professor Philip Gill, Chair

An unconstrained minimizer of a general nonlinear function may be found by

solving a sequence of constrained subproblems in which a quadratic model func-

tion is minimized subject to a “trust-region” constraint on the norm of the change

in variables. For the large-scale case, Steihaug has proposed an iterative method

for the constrained subproblem based on the preconditioned conjugate-gradient

(PCG) method. This method is terminated inside the trust region at an approxi-

mate minimizer or at the point where the iterates cross the trust-region boundary.

When the iterates are terminated at the trust-region boundary, the final iterate is

generally an inaccurate solution of the constrained subproblem. This may have an

adverse affect on the efficiency and robustness of the overall trust-region method.

A PCG-based method is proposed that may be used to solve the trust-region

subproblem to any prescribed accuracy. The method starts by using a modified

Steihaug method. If the solution lies on the trust-region boundary, a PCG-based

sequential subspace minimization (SSM) method is used to solve the constrained

problem over a sequence of evolving low-dimensional subspaces. A new regularized

sequential Newton method is used to define basis vectors for the subspace mini-

mization. Several preconditioners are proposed for the PCG iterations. Numerical

results suggest that, in general, a trust-region method based on the proposed solver

is more robust and requires fewer function evaluations than Steihaug’s method.

xi

1

Introduction

1.1 Overview

Unconstrained optimization is fundamental to both the theory and practice

of optimization. Many mathematical modeling and curve-fitting problems, rang-

ing from modeling protein structure energy to designing automobile bodies, may

be formulated as an unconstrained optimization problem. In addition, problems

with constraints may be solved as a sequence of unconstrained problems, making

advances in unconstrained optimization applicable to constrained optimization.

Unconstrained optimization involves finding the vector of variables x such that

an objective function f(x) achieves its minimum or maximum value. Thus, uncon-

strained optimization problems are usually categorized by the characteristics of the

function f . This thesis focuses on techniques for solving general nonlinear uncon-

strained problems, assuming only that f is twice-continuously differentiable. As

minimizing f(x) is mathematically equivalent to maximizing −f(x), all problems

are formulated as minimization problems.

Trust-region methods are a class of methods for unconstrained minimization

that define a sequence of iterates {xj} such that

xj+1 = xj + sj , with f(xj+1) < f(xj).

1

2

Each step sj is the solution of a simpler constrained subproblem that involves

minimizing a local quadratic model of f subject to a “trust-region” constraint on

the norm of sj. This trust-region subproblem has the form

minimize
s∈Rn

f(xj) +∇f(xj)
Ts+ 1

2
sT∇2f(xj)s

subject to ‖s‖ ≤ δj,
(1.1)

where ∇f(xj) and ∇2f(xj) denote the gradient vector and Hessian matrix of f

evaluated at xj . The scalar δj is known as the trust-region radius and is chosen

to provide the descent condition f(xj+1) < f(xj). Trust-region methods are mo-

tivated by the presumption that the local quadratic model can be trusted only

in some sufficiently small neighborhood of xj . Trust-region methods accordingly

adjust the trust-region radius δj to ensure that the reduction in f is comparable

to the reduction predicted by the quadratic model.

The computational complexity of the trust-region subproblem (1.1) depends

on the choice of norm used to restrict the length of s. This thesis will focus on

the two-norm, which guarantees that any step satisfying the necessary and suffi-

cient conditions for solution of (1.1) is a global minimizer of the subproblem (see

Chapter 2). With this choice of norm, the computational complexity of problem

(1.1) is equivalent to that of finding an extremal eigenpair of a symmetric matrix.

However, the method used to solve each subproblem is for the most part little

concerned with the ability to achieve anything near machine-precision accuracy.

Of far greater importance to the overall solver is the ability to obtain approximate

solutions of the subproblem efficiently. Two factors significantly affect the speed

of the overall trust-region method: (i) the average amount of work needed to solve

the trust-region subproblem, and (ii) the total number trust-region subproblems

that must be solved, which in the algorithms to be considered is in direct relation

to the number of evaluations of the objective function f and its first and second

derivatives. Increasing the accuracy of the computed trust-region approximate

solution usually increases the cost of solving each trust-region subproblem while

decreasing the total number of function evaluations. Ultimately there is a point

3

where the total number of function evaluations reaches its minimum value; at this

point, the extra work needed to solve the subproblems more accurately is wasted.

What is relevant is the total work needed to find an unconstrained minimizer.

Broadly speaking there are two types of trust-region method based on the

quality of the approximate trust-region solution. The first type proceeds to define

an infinite sequence of “inner” iterates {si
j} that converges to a solution of (1.1). An

approximate solution is then defined by terminating this infinite sequence when si
j

is judged to be accurate to within some preassigned tolerance. The method of Moré

and Sorensen [32] is one of the principal methods of this type (see Section 2.3.5). In

this method, each inner iterate si
j is found at the cost of computing the Cholesky

factorization of a symmetric positive-definite matrix of the form ∇2f(xj) + σiI,

where σi is a nonnegative scalar.

The second type of method does not even attempt to find a solution of (1.1).

Instead, the step need only satisfy the trust-region constraint and force the overall

convergence of the outer iterates {sj}. The prototype for such methods was pro-

posed by M. J. D. Powell in a seminal series of papers [41, 42, 43]. Powell proposed

that the subproblem (1.1) be solved with the additional restriction that s be in a

one-dimensional subspace spanned by the steepest-descent direction −∇f(xj). The

optimal solution of this restricted problem is easily computed and is known as the

Cauchy step. A fundamental result is that any method delivering an approximate

solution of (1.1) with model value at least as good as the Cauchy step will generate

a sequence {xj} such that ∇f(xj)→ 0 (see Section 2.3.3 for details).

Any computational method based on using the Cauchy step is guaranteed to

converge, but may not converge quickly. Early methods, known as “dog-leg” meth-

ods, attempted to improve the convergence rate by combining the Cauchy step with

a step based on the unconstrained minimizer of the quadratic model (see, e.g., Pow-

ell [42], Dennis and Mei [6], and Shultz, Schnabel and Byrd [47]). This idea has

been refined by Byrd, Schnabel and Shultz [2], who propose solving the subproblem

(1.1) subject to the restriction that s lies in a one- or two-dimensional subspace.

4

In this case, one of the basis vectors for the subspace is found by computing the

Cholesky factors of a positive-definite matrix of the form ∇2f(xj) +σI. The other

basis vector, when needed, is a direction of negative curvature for ∇2f(xj), i.e., a

vector q such that qT∇2f(xj)q < 0.

Line-search methods constitute a different approach to minimizing f . Line-

search methods are also descent methods, but define the step sj by minimizing

an unconstrained local quadratic model of f . The next iterate is then defined

by taking a scalar step along sj that gives a lower value of f . There are various

alternative conditions on the step length that guarantee convergence, but a com-

mon requirement is that the improvement in f be comparable to the improvement

predicted by some a simple linear or quadratic model of f . In general, line-search

methods require more iterations than trust-region methods, but involve less work

per iteration. More recent methods combine classical line-search and trust-region

methods. For example, Gertz [11], Toint [40], and Nocedal and Yuan [36] add a line

search to the standard trust-region method. All of the methods described above for

solving the trust-region subproblem may be used within a combination line-search

trust-region method. Throughout this thesis, a combined method similar to that

proposed by Gertz [11] is used to define the outer iterations (see Section 2.3.2).

The combination line-search trust-region methods mentioned above require the

computation of an explicit matrix factorization and are limited to problems with

dense unstructured Hessian matrices of order . 1000, or medium-to-large sparse

Hessian matrices of order . 10, 000. Very large-scale problems or problems with

large unstructured Hessians must use iterative methods to solve the constituent

linear systems. The main focus of this thesis is the formulation and analysis

of trust-region methods that employ the conjugate-gradient (CG) method as the

linear solver. In their simplest form, CG methods require the storage of at most

four or five one-dimensional vectors and have the potential of solving problems

with up to 109 variables.

Two of the earliest trust-region methods based on the CG method were pro-

5

posed by Steihaug [48] and Toint [40]. These methods are similar, and are of the

second type defined above—i.e., they do not attempt to find an accurate solu-

tion of the constrained subproblem. First, suppose that the Hessian ∇2f(xj) is

positive definite, which implies that the step to the unconstrained minimizer of

the quadratic model satisfies the positive-definite system ∇2f(xj)s = −∇f(xj).

It is well-known that the CG method for the linear system ∇2f(xj)s = −∇f(xj)

may be interpreted as a method for a unconstrained minimizer of the quadratic

model. Suppose that the CG method generates a sequence {s(k)
j } of approximate

unconstrained minimizers. In the positive-definite case, two things can happen.

First, {s(k)
j } may converge to a minimizer of the quadratic model lying inside the

trust-region. In this case, the sequence {s(k)
j } is terminated at an approximate

minimizer. Alternatively, the CG iterates will leave the trust region, in which case

it can be shown that the solution of (1.1) must lie on the trust-region boundary.

In this situation, both Steihaug and Toint terminate the CG sequence {s(k)
j } at

the point where the iterates “cross” the trust-region boundary (see Section 4.2 for

details). If ∇2f(xj) is not positive definite, the CG method will eventually generate

a direction q such that qT∇2f(xj)q ≤ 0. In this situation, Toint’s method reverts

to the Cauchy step and Steihaug’s method uses the direction q to define a point

on the trust-region boundary.

Steihaug’s method is generally preferred because it always gives a point on

the boundary when the trust-region solution lies on the boundary. Trust-region

methods based on using Steihaug’s method to solve the subproblem provide a

viable alternative to direct factorization methods in the large-scale case. However,

in the indefinite case, the point at which the boundary is encountered depends

only on the initial CG iterate, and so the final iterate is generally an inaccurate

solution of the constrained subproblem. This may have an adverse affect on the

efficiency and robustness of the overall trust-region method. This thesis concerns

the formulation and analysis of CG-based methods that are designed to solve the

trust-region subproblem to any prescribed accuracy.

6

One last remark concerning notation is in order. We have outlined iterative

methods that defined sequences of iterates at three different levels: (i) the sequence

{xj} is intended to converge to an unconstrained minimizer of f ; (ii) the sequence

{si
j} converges to a solution of the trust-region subproblem at xj , and (iii) {s(k)

j } is

the sequence of CG iterates associated with the linear system ∇2f(xj)s = −∇f(xj).

Fortunately, the exposition never requires the use of all three sequences simulta-

neously and so when the context is clear the elements of {s(k)
j } will be denoted

sk—i.e., a suffix k denotes an iterate associated with the CG method.

1.2 Contributions of this thesis

Chapter 2 presents a comprehensive review of existing line-search and trust-

region methods for unconstrained optimization.

Chapter 3 considers the derivation of the CG method for solving linear equa-

tions and explores the equivalence between solving linear systems and minimizing

strictly convex quadratic functions. The discussion highlights the equivalence of

the CG method and the Lanczos-CG method. This equivalence allows the use of the

Lanczos vectors as direction generators for the CG method and allows the simul-

taneous approximation of the subproblem solution and the leftmost eigenvector of

the Hessian. The chapter concludes with a discussion of the role of preconditioning

in the CG method and describes the preconditioned Lanczos-CG method.

Chapter 4 considers trust-region methods for large-scale optimization. Both

Steihaug’s method and the generalized Lanczos trust-region (GLTR) method of

Gould, Lucidi, Roma, and Toint [18] are discussed in the context of controlling the

accuracy of the trust-region solution on the boundary. Finally, a variant of the

sequential subspace minimization (SSM) method of Hager [21] and Griffin [20] is

applied to the trust-region subproblem.

In Chapter 5, a new two-phase method (the “phased-SSM method”) is proposed

for solving the trust-region subproblem to within a specified accuracy. The method

7

employs a PCG-based sequential subspace minimization method in each phase. The

first phase can be viewed as an improved version of Steihaug’s method in which

two additional features are provided by the use of the Lanczos-CG method: (i) the

availability of an estimate of the leftmost eigenvector at no extra cost; and (ii) the

ability to compute a better exit point based on solving the trust-region subproblem

on a low-dimensional subspace. Property (i) extends Steihaug’s method to the case

where the initial point is a stationary point but not a local minimizer. Property (ii)

allows the calculation of a substantially better estimate of a trust-region solution

on the boundary.

The second phase of the phased-SSM method is activated if the trust-region

solution lies on the boundary. A PCG-based SSM method is used to solve the

constrained problem over a sequence of evolving subspaces. The subspaces are

spanned by three vectors: (i) the current best approximation to the solution;

(ii) an estimate of the leftmost eigenvector; and (iii) an approximate solution of

the Newton-SQP equations associated with the equality-constraint trust-region

subproblem.

The Newton-SQP equations are not positive definite and so are not amenable

to solution using the CG method. However, the equations may be regularized

by applying a variant of the penalty function method of Forsgren and Gill [8].

The resulting regularized system is transformed into a symmetric positive-definite

system that can be solved using the CG method. A second variant of phase two is

based on minimizing an augmented primal-dual Lagrangian with a barrier function

term. The barrier function allows the use of safeguarding and prevents this system

from becoming indefinite at points that are far from the solution. With appropriate

safeguarding, the associated Newton equations are also positive definite and may

be solved using the PCG method.

In Chapter 6, block preconditioners are considered with the aim of removing ill-

conditioning and accelerating convergence. Two general-purpose preconditioners

are proposed. The first is based on an incomplete Cholesky factorization of∇2f(x).

8

The second utilizes a limited-memory BFGS quasi-Newton approximation.

In Chapter 7, numerical results are presented based on a preliminary Matlab

implementation of the phased-SSM method. The results suggest that, in general,

a trust-region method based on the proposed solver is more robust and requires

fewer function evaluations than Steihaug’s method.

1.3 Notation

Most of the notation in this thesis is standard in the optimization literature.

Subscripts refer to both indices of vectors and iterates, with the precise meaning

determined by the context. For example, xj denotes the kth iterate in the sequence

{xj}, and fj denotes f(xj). Throughout, ei denotes the ith standard basis vector.

Lower-case Roman letters will be used to refer to vectors, and upper-case Ro-

man letters will be reserved for matrices. Lower-case Greek letters will be used to

refer to scalars, and upper-case Greek letters will be reserved for garden-variety

functions. (An important exception to this rule is the letter “f”, which typically

is used for functions in the literature.) Well-known functions (i.e., functions with

names) are generally written with calligraphic (script) Roman letters. Otherwise,

calligraphic (script) Roman letters will refer to sets. These conventions will be

departed from only when standard notation dictates otherwise.

Unless explicitly indicated otherwise, ‖ · ‖ denotes the vector two-norm or its

subordinate matrix norm. The spectrum of a (possibly unsymmetric) matrix A

will be denoted by eig(A). The inertia of a real symmetric matrix A, denoted by

In(A), is the integer triple (a+, a−, a0) giving the number of positive, negative and

zero eigenvalues of A. The ith eigenvalue of a symmetric matrix A with eigenvalues

ordered in decreasing order will be denoted by λi(A), i.e., λ1(A) ≥ λ2(A) ≥ · · · ≥
λn(A). Given vectors x1 and x2, the column vector consisting of the elements of

x1 augmented by the elements of x2 is denoted by (x1, x2). The vector e denotes

the vector of ones with dimension determined by the context.

9

Some sections provide algorithms written in a Matlab-style pseudocode. In

these algorithms, brackets will be used to differentiate between computed and

stored quantities. For example, the expression [Ax]← Ax signifies that the matrix-

vector product of A with x must be computed and assigned to a vector labeled as

[Ax].

2

Unconstrained Minimization

2.1 Overview

Finding a global minimizer of a function f without strong assumptions about

its curvature is an NP-hard problem. Most deterministic optimization methods

are designed to find the “next best thing”, which is a local minimizer. In this

thesis, “minimizing” f implicitly refers to finding a local minimizer of f , unless

stated otherwise. Mathematically speaking, x∗ is a local minimizer of f if and only

if f(x∗) ≤ f(x) for all x in some small neighborhood of x∗. Any local minimizer

x∗ of a differentiable function f is also a stationary point of f , i.e., ∇f(x∗) = 0.

A point x∗ that satisfies ∇f(x∗) = 0 is called a first-order point. Methods that

explicitly seek first-order points are called first-order methods. However, since

maximizers and saddle points are also stationary points, simply finding a root of

the gradient of f is not sufficient and additional care must be taken to ensure

that the root is also a minimizer. Second-order methods use the curvature of f

to distinguish between different types of stationary points. If ∇2f(x∗) is positive

definite and ∇f(x∗) = 0 then x∗ is a local unconstrained minimizer of f . Moreover,

if x∗ is a local unconstrained minimizer of f then it is necessary that ∇2f(x∗) is

positive semidefinite and ∇f(x∗) = 0. Any point that satisfies these necessary

10

11

conditions is called a second-order point. Methods that seek second-order points

are called second-order methods.

The necessary condition ∇f(x∗) = 0 implies that x∗ is a zero or root of the

vector-valued function ∇f . Newton’s method is one of the most commonly used

iterative methods for finding the root of a vector-valued function. Let xj be any

point at which f is twice-differentiable. Suppose that xj is the current best estimate

of a stationary point of f . For all x sufficiently close to xj the linear model function

∇f(xj)+∇2f(xj)(x−xj) will be a good approximation to∇f(x). Newton’s method

is based on approximating a zero of g by a zero of the linear model, i.e., the next

iterate xj+1 is chosen such that ∇f(xj) +∇2f(xj)(xj+1 − xj) = 0, or, equivalently,

xj+1 = xj + sj , where sj satisfies ∇2f(xj)sj = −∇f(xj). (2.1)

If the Hessian ∇2f(xj) is nonsingular, then the Newton step sj is unique and

satisfies sj = −∇2f(xj)
−1∇f(xj).

Theorem 2.1.1 below is arguably the most famous and fundamental result in

optimization—that the pure Newton iterates (2.1) converge quadratically to a sta-

tionary point of f .

Theorem 2.1.1 (Local convergence of Newton’s method.)

Let f : D ⊆ R
n 7→ R

1 be twice-continuously differentiable on D, where D is an

open convex set, and assume that ∇f(x∗) = 0 and ∇2f(x∗) is nonsingular for some

x∗ ∈ D. Then

(a) there exists a neighborhood B(x∗, δ) such that, for any x0 in B, the Newton

iterates

xj+1 = xj −∇2f(xj)
−1∇f(xj), k = 0, . . . , (2.2)

are well defined, remain in B and converge to x∗ at a Q-superlinear rate;

(b) if, in addition, ∇2f satisfies a local Lipschitz condition at x∗,

‖∇2f(x)−∇2f(x∗)‖ ≤ L ‖x− x∗‖ for all x ∈ B, (2.3)

12

where L is a positive constant, the Newton iterates defined by (2.2) converge

Q-quadratically to x∗; and

(c) if, in addition, ∇2f satisfies a Lipschitz condition with constant L in a neigh-

borhood of x∗, ‖∇f(xj)‖ converges Q-quadratically to zero.

Unfortunately, this strong local convergence property applies to all types of

stationary points. Since Newton’s method is unable to discriminate between max-

imizers and minimizers, additional care must be taken to ensure convergence to a

local minimizer. Line-search methods and trust-region methods are designed force

the global convergence of Newton’s method to a local minimizer.

If the Hessian is positive definite at xj , the Newton direction sj defined in (2.1)

may be interpreted as the minimizer of a local quadratic model of f . Given a point

x, the truncated Taylor-series expansion of f gives the following local quadratic

model:

f(x+ s) ≈ q(x+ s) = f(x) +∇f(x)Ts+ 1
2
sT∇2f(x)s. (2.4)

If ∇2f(xj) is positive definite, then sj is the unique minimizer of q(xj + s). A

constant objective term does not affect the location of a minimizer and it follows

that a minimizer of q(x+ s) also minimizes the quadratic function

Q(s) ≡ ∇f(x)Ts+ 1
2
sT∇2f(x)s, (2.5)

which approximates f(x+ s)− f(x), the change in f .

If ∇2f(x) is not positive definite, Q(s) and q(x+s) have unbounded minimizers

and are not suitable quadratic models. Line-search methods solve an unconstrained

model problem of the form

minimize
s∈Rn

QB
j (s) = ∇f(x)Ts + 1

2
sTBjs, (2.6)

where Bj is a positive-definite approximation of ∇2f(xj). Solving (2.6) for sj does

not guarantee f(xj + sj) < f(xj), but it does guarantee that there is some α̂j > 0

13

such f(xj + αjs) < f(xj) for all αj ∈ (0, α̂j), provided ∇f(xj) is not zero. Line-

search methods choose a step length αj that gives at least a sufficient relative

decrease in the objective function. As we will see later, the hallmark of any line

search algorithm is the criteria used to define a sufficient decrease of the objective.

Trust-region methods solve the constrained minimization problem:

minimize
s∈Rn

Qj(s) = ∇f(xj)
Ts+ 1

2
sT∇2f(xj)s

subject to ‖Njs‖ ≤ δj ,
(2.7)

where Nj is a nonsingular matrix that scales the elements of s. The minimization

problem (2.7) is called the trust-region subproblem. A solution to the trust-region

subproblem always exists; that is, Qj(s) always assumes its bounded minimum

value on the compact set {s : ‖Njs‖ ≤ δj}. Thus, in contrast to line-search

methods, the Hessian of f need not be positive definite in a trust-region setting.

Basic trust-region methods evaluate the step xj + s, where s is an approximate

solution to (2.7). If the condition for a sufficient decrease is met, the step xj + s is

accepted. The trust-region radius is then updated for the next iteration to reflect

the degree to which the quadratic model predicts the actual decrease in f . If the

objective is decreased by significantly more than the minimum acceptable decrease,

the trust-region radius is increased with the aim of exploiting the accuracy of the

model in a larger trust-region. If the condition for sufficient decrease is not met,

the step is rejected and the subproblem is solved again with a smaller value of the

trust-region radius.

In order to simplify the notation in subsequent sections, g(x) will denote the

gradient ∇f(x) and H(x) will denote the Hessian ∇2f(x). Similarly, gj and Hj

denote the quantities g(xj) and H(xj).

14

2.2 Line-Search Methods

Almost all line-search methods solve the minimization problem:

minimize
s

QB
j (s) = gT

js+ 1
2
sTBjs, (2.8)

where Bj is a sufficiently positive-definite approximation to the Hessian. Since

Bj is positive definite, the stationary point of QB
j (s) is uniquely defined by the

nonsingular linear system Bjsj = −gj and is the unique minimizer of QB
j (s). In

the simplest line-search methods, the next iterate is then defined as

xj+1 = xj + αjsj ,

where Bjsj = −gj and αj > 0 satisfies f(xj + αjsj) < f(xj). Since Bj is positive

definite, gT
jsj = −sT

jBjsj < 0; that is, the directional derivative of f along sj is

negative. Thus, the vector sj is called a descent direction for f . The following

lemma shows that a descent direction for f is always a direction of decrease, i.e.,

there exists a positive α̂j such that any αj ∈ (0, α̂j), f(xj + αjsj) < f(xj).

Lemma 2.2.1 (Existence of a direction of decrease.) Given f : D ⊆ R
n 7→

R
1 on a convex set D, assume that f is continuously differentiable on D, and let

xj be an interior point of D.

(i) If the vector s satisfies g(xj)
T s < 0, then s is a direction of decrease for f at

xj.

(ii) If, in addition, f has a second derivative at xj, then any vector ŝ satisfying

g(xj)
T ŝj = 0 and ŝT

j H(xj)ŝj < 0 is a direction of decrease for f at xj.

Computing a step length αj with minimal computational effort is the hallmark

of any line-search method. The univariate minimizer αj for the problem

minimize
αj>0

f(xj + αjsj) (2.9)

15

is not easily calculated when f is a general nonlinear function; in fact, it may

require a substantial number of function evaluations of f . Moreover, the require-

ment f(xj+1) < f(xj) and the condition gT
jsj < 0 are not sufficient to guarantee

the sequence {xj} converges to a minimizer of f : It is possible that αj may become

so small that the decrease in f converges to zero before the gradient converges to

zero. Two of the most commonly used line-search methods offer a computationally

inexpensive way to overcome this difficulty by choosing a step length that produces

a sufficient decrease in f .

2.2.1 Modified Newton methods

At the jth iterate xj of a modified Newton method, the next iterate is defined as

xj+1 = xj+pj(αj), where pj(α) is a continuous (possibly nonlinear) path starting at

zero, parameterized by a nonnegative scalar step length α. In order to guarantee a

decrease in f at each step, the path pj(α) must satisfy general conditions defined in

terms of the value and derivatives of the univariate function ϕj(α) = f
(
xj +pj(α)

)
.

These conditions require that either ϕ′
j(0) < 0, or ϕ′

j(0) ≤ 0 and ϕ′′
j (0) < 0 (for

more details, see Moré and Sorensen [31]).

The path pj(α) may be defined in terms of two directions (sj , dj) known as a

descent pair. A descent pair must satisfy the conditions:

gT
j sj < 0 and dT

j Hjdj ≤ 0, if Hj is positive definite;

gT
j sj ≤ 0 and dT

j Hjdj < 0, otherwise.

The additional condition gT
j dj ≤ 0 is enforced by changing the sign of dj if neces-

sary. If no nontrivial descent pair exists at xj , i.e., both sj and dj are zero, then gj

must be zero and Hj must be positive semidefinite, which implies that xj satisfies

the second-order necessary conditions for optimality. At any other point, at least

one of the vectors sj and dj must be nonzero.

Given a descent pair (sj , dj), the search path is defined as

pj(0) = 0, pj(α) = φ1(α)sj + φ2(α)dj, α ∈ [0,∞),

16

where φ1(α) and φ2(α) are nonnegative scalar functions of α ∈ [0,∞) such that the

required conditions on ϕj are satisfied (see [31]). The simplest choice is φ1(α) =

φ2(α) = α, giving pj(α) = α(sj + dj) = αpj, where pj is the vector sj + dj (see,

e.g., Forsgren, Gill and Murray [9]). Another choice is φ1(α) = α2 and φ2(α) = α,

which defines the curvilinear path pj(α) = α2sj + αdj (see, e.g., [28, 15, 31]).

The precise definition of the descent pair depends on the algorithm being used.

However, certain general rules apply. If Hj is positive semidefinite then dj =

0. Otherwise, a common choice for dj is ±|ũTHj ũ|1/2ũ, where ũ is a direction

of negative curvature. For example, if ũ is an estimate of un, the normalized

eigenvector corresponding to the least eigenvalue of Hj, then dT
j Hjdj ≈ −λ2

n. The

sign of dj is chosen so that gT
j dj ≤ 0.

The direction sj is defined as the unconstrained minimizer of the quadratic

model:

QB
j (s) = gT

js+ 1
2
sTBjs, (2.10)

where Bj is a symmetric positive-definite matrix such that Bj ≈ Hj . The restric-

tion that Bj be positive definite ensures that the unconstrained subproblem has a

bounded solution. Each of the many choices for Bj leads to a different method.

Once a suitable descent pair has been defined, the step length αj is chosen

to enforce a sufficient decrease in f . There are a number of alternative sets of

conditions on αj that guarantee a sufficient decrease, but a requirement common

to all of these conditions is that the decrease in f be better than some preassigned

factor η1 of the decrease predicted by some simple line-search model function. The

Armijo line search uses the affine line-search model function Lj(s) = gT
js, which

gives the sufficient decrease criterion:

(
f(xj)− f(xj + αjsj)

)
/Lj(αjsj) ≥ η1, (2.11)

where η1 is a preassigned scalar such that 0 < η1 <
1
2
. If sj is a descent direction,

then this Armijo condition may be stated as

f(xj)− f(xj + αjsj) ≥ −η1αjg
T
jsj. (2.12)

17

Examples of a line-search model function are the affine function Lj(s) = gT
js

and the quadratic Qj(s) = gT
js+ 1

2
sTHjs.

Consider the line-search model

Q−
j (p) = gT

jp+ 1
2

[
pTHjp

]
−
, (2.13)

where [c]− denotes the negative part of c, i.e., [c]− = min{ 0, c }. With this choice

of model, the sufficient decrease condition on αj is

f
(
xj + pj(αj)

)
− f(xj)

Q−
j

(
pj(αj)

) > η1, (2.14)

where η1 is a preassigned scalar such that 0 < η1 <
1
2
. It may be observed that

Q−
j (p) = Qj(p), whenever pTHjp ≤ 0. If pTHjp > 0, then Q−

j (p) = Lj(p), which

imposes the more stringent Armijo condition on αj.

A Wolfe line search chooses a step length αj that satisfies two sufficient reduc-

tion criteria. The first Wolfe condition is the Armijo condition (2.11). The second

Wolfe condition is derived from the observation that if α∗ is the solution to (2.9)

then g(xj +α
∗sj) must be orthogonal to the search direction sj, i.e., α∗ satisfies the

first-order necessary conditions of a local minimizer. The second Wolfe condition

is given by:

|g(xj + αjsj)
Tsj| ≤ ω |gT

jsj |. (2.15)

A Wolfe line search is not backtracking procedure, but rather a minimization

routine that typically uses interpolating polynomials to model the behavior of f

and a safeguarding method to reduce an interval containing a satisfactory step.

If f is bounded below and 0 < η1 < ω < 1, there is always a nontrivial open

interval of step lengths that satisfy (2.12) and (2.15) [35]. Unlike backtracking line

searches, a Wolfe line search is able to determine step sizes that are greater than

one.

The remainder of this section is concerned with the properties of the jth iter-

ation and so the suffix j is omitted.

18

2.2.2 The modified eigensystem paradigm

Almost all algorithms for modifying the Hessian are modeled on a method

originally proposed by Greenstadt [19]. This method uses the properties of the

spectral decomposition of the Hessian. Any symmetric matrix H may be written

in the formH = UΛUT , where U = (u1 u2 · · · un) is the matrix of eigenvectors ofH

and Λ = diag(λ1, λ2, . . . , λn) is the corresponding matrix of eigenvalues. The order

of the eigenvalues is arbitrary; without loss of generality, let λ1 ≥ λ2 ≥ · · · ≥ λn.

The modified eigensystem paradigm defines the positive-definite model Hessian

B as B = H + F , where F is a positive semidefinite matrix computed as follows:

(1) Compute the spectral decomposition H = UΛUT .

(2) Define the positive scalar ǫ (the magnitude of the smallest eigenvalue of B).

(3) Define modified eigenvalues Λ̃ = Λ+ E, such that

λ̃i = max{ |λi|, ǫ }, for i = 1 :n. (2.16)

(4) Define the modified Hessian H + F = UΛ̃UT = U(Λ + E)UT .

If β is a preassigned upper bound on the spectral condition number of B, then the

value ǫ = ‖H‖/β, ensures that cond(B) ≤ β.

An alternative modification F is defined by replacing all small or negative

eigenvalues by ǫ, i.e.,

λ̃i = max{ λi, ǫ }, for i = 1 :n. (2.17)

This modification may be interpreted as giving the modified matrix that minimizes

‖H − B‖ subject to the restriction that cond(B) ≤ β. This modification appears

prominently in the literature, but for reasons discussed in Section 2.2.4, it is not

to be recommended for modified Newton line-search methods.

Given the spectral decompositions of H and B, a descent pair (s, d) is easily

computed. The vector s may be written as s = −UT Λ̃−1UT g. If λn ≥ 0 then d = 0.

19

Otherwise, d = − sign(gTun)|λn|1/2un, where un is the normalized eigenvector

corresponding to λn. With this choice, the vector d satisfies dTHd = −λ2
n < 0.

2.2.3 Practical modified Newton methods

In practice, it is too expensive to compute the spectral decomposition every

iteration. Instead, modified Newton methods implicitly define transformed vari-

ables y such that y = Sx, where S is a nonsingular matrix that depends on H .

The transformation S is chosen so that the Hessian with respect to the y-variables

Hy = S−THS−1, has an inexpensive spectral decomposition Hy = UΛUT . If Λ is

modified so that Λ̃ = Λ+ E, then a modified Hessian for the original variables is

B = STU(Λ + E)UTS = H + F, where F = STUEUTS.

Similarly, if dy is a direction of negative curvature for Hy, then d = S−1dy satisfies

dTHd = dT
y S

−THS−1dy = dT
yHydy < 0 and d is an appropriate direction of negative

curvature for H .

In the context of guaranteeing the convergence of the sequence {xj}, it is

necessary to require that the sequence {cond(Sj)} be bounded independently of

j. Note that, although Hy and H have the same inertia, the magnitudes of their

eigenvalues are different unless S is orthogonal. This implies that the better the

conditioning of S, the better the curvature of Hy reflects the true curvature of H .

The identity H = STHyS indicates that the matrices S and Hy may be com-

puted efficiently in terms of a symmetric matrix factorization of H – for example,

the symmetric indefinite factorization H = LDLT , where L is a row-permuted unit

lower-triangular matrix and D is block diagonal.

2.2.4 Properties of the modified Newton direction

This section focuses on properties of the vector s obtained using the modified

eigensystem paradigm. Recall that the scalar ǫ determines the eigenvalue of small-

20

est magnitude of B. If H = UΛUT , then Λ and U may be partitioned conformally

so that

Λ =

Λ+

Λǫ

Λ−

 and U =

(
U+ Uǫ U−

)
,

where Λ+, Λǫ and Λ− are the diagonal matrices of eigenvalues satisfying, respec-

tively, λi ≥ ǫ, |λi| < ǫ, and λi ≤ −ǫ.

Lemma 2.2.2 Consider the positive-definite matrix B computed from H using the

modified eigensystem paradigm. If Bs = −g with g 6= 0 then s may be written in

the form s = s+ + sǫ + s−, where

(i) s+ is a direction of positive curvature that minimizes Q(s) in the space

spanned by U+;

(ii) (−s−) is a direction of negative curvature that maximizes Q(s) in the space

spanned by U−; and

(iii) sǫ is a multiple of the steepest-descent direction in the space spanned by Uǫ,

with ‖sǫ‖ = O
(
1/ǫ
)
.

Proof. Using the orthogonality of the eigenvectors, we obtain

s = −UΛ̃−1UTg = −U+Λ̃
−1
+ UT

+g − UǫΛ̃
−1
ǫ UT

ǫ g − U−Λ̃
−1
− UT

−g.

And, the definitions Λ̃+ = Λ+, Λ̃ǫ = ǫI and Λ̃− = −Λ− give

s = −U+Λ
−1
+ UT

+g −
1

ǫ
UǫU

T
ǫ g + U−Λ

−1
− UT

−g.

A simple calculation shows that s+ = −U+Λ
−1
+ UT

+g is the unique minimizer of Q(s)

over all s ∈ span(U+). Similarly, −s− = −U−Λ̃
−1
− UT

−g is the unique maximizer of

Q(s) over all s ∈ span(U−). The vector sǫ = UǫU
T
ǫ g has length ‖UT

ǫ g‖/ǫ and is

the unique portion of the gradient in the space spanned by the columns of Uǫ.

21

Finally, from the definition of s+, we have

sT
+Hs+ =

∑

λi≥ǫ

λi

(
uT

i g/λi

)2
> 0,

where { ui } are the columns of U . This implies that s+ is a direction of positive

curvature for H . A similar calculation for s− gives sT
−Hs− < 0 as required.

These results imply that if g 6= 0, then s+ and s− are descent directions of

positive and negative curvature for f . The decomposition of s into sǫ, s+ and s−

provides a simple interpretation of the strategy (2.16) used to modify the Hessian.

If H is not sufficiently positive definite, then the modification reverses the portion

of s that steps to the maximizer of the quadratic model in the subspace U−.

In this subspace, the quadratic model provides an incorrect estimate of the step

to a minimizer of f—in particular, the model is implying that an infinite step

is appropriate, when this unlikely for any reasonable f . Reversing the step to

the maximizer rejects this scaling and chooses instead a step that reflects scaling

implied by the step to the maximizer of the model.

Unfortunately, Lemma 2.2.2 also reveals that if H is near-singular, then the

modified Newton direction is almost parallel to the portion of the steepest-descent

direction in the subspace spanned by the eigenvectors with small eigenvalues. This

implies that near a singular point, a modified Newton method is condemned to use

the method of steepest descent regardless of magnitudes of the larger eigenvalues

of H . This behavior can adversely affect performance.

This feature of the method is even more marked if the alternative modification

(2.17) is used. The next result is a direct consequence of Lemma 2.2.2.

Corollary 2.2.1 Assume that H has at least one eigenvalue less than ǫ. If B

is defined using the modification (2.17), i.e., λ̃i = max{ λi, ǫ }, then the modified

Newton direction s such that Bs = −g is almost parallel to a large multiple of the

steepest-descent direction in the subspace spanned by the eigenvectors associated

with the eigenvalues λi such that λi ≤ ǫ.

22

2.3 Trust-Region Methods

2.3.1 Motivation

Trust-region methods define the step by solving the constrained minimization

problem

minimize
s

Qj(s) = gT
js+ 1

2
sTHjs

subject to ‖Njs‖ ≤ δj .
(2.18)

The matrix Nj may be used to scale the components of s. If ‖ · ‖ is vector norm,

then ‖Njx‖ is also a vector norm for all nonsingular Nj . In the simplest case, Nj

is chosen as the identity matrix. There is no consensus on what choice of Nj is

appropriate. Convergence theory allows the choice Nj = I for all j, and this choice

seems to be acceptable for well-scaled problems. Choosing Nj to be a constant

matrix in order to improve the scaling of the problem is a trivial modification to

a trust-region algorithm. However, some methods, particularly those considered

in this thesis, must vary Nj at each iteration in order to compute the trial step

efficiently (see Chapter 4).

The extreme-value theorem implies that the quadratic model Qj(s) achieves its

minimum value on the compact set B(xj , δj) = { s : ‖Njs‖ ≤ δj }, and hence the

trust-region subproblem (2.18) is always well-posed. This means that, in contrast

to the line-search problem (2.8), the quadratic model need not be convex.

The behavior of f near the point xj determines the size of the region in which

the quadratic model can be “trusted” to predict the change in f . Thus, trust-

region methods systematically adjust the trust-region radius to reflect the accuracy

of the previous quadratic model in a nearby region. Upon finding an approximate

solution sj to (2.18), trust-region methods evaluate f at the trial point xj + sj .

If the actual reduction in f is within a given factor of the reduction predicted by

the quadratic model, then f is assumed to have achieved a sufficient decrease and

the trial point is accepted as the next iterate. Moreover, if the actual reduction

in f is sufficiently larger than predicted, the trust-region radius is increased under

23

the assumption that a larger trust-region radius will also give an acceptable step

in the next iteration. If the trial step does not give a sufficient decrease, the trial

step is rejected and the subproblem is solved again with a smaller trust-region

radius. This strategy is based on the assumption that the change in f will be

better predicted by the quadratic model at points closer to xj .

Algorithm 2.3.1 below is an example of a basic trust-region algorithm for min-

imizing f .

Algorithm 2.3.1. Basic Trust-Region Algorithm

Specify constants 0 < η1 < η2 < 1, 0 < η1 <
1
2
, 0 < γ2 < 1 < γ3;

Choose x0; j = 0; δj = 1;

while not converged do

Compute sj , an approximate solution of min {Qj(s) : ‖Njs‖ ≤ δj};
ρj =

(
f(xj + sj)− f(xj)

)
/Qj(sj);

if ρj ≥ η1 then

Successful iteration: xj+1 = xj + sj;

if ρj ≥ η2 then δj+1 = max{δj , γ3‖Njsj‖} else δj+1 = δj ;

else

xj+1 = xj ; δj+1 = γ2‖Njsj‖;
end

j ← j + 1;

end while

The shape of the trust region is determined by the choice of norm in (2.18).

The two most popular choices for the norm are the Euclidean two-norm and the

infinity-norm. In two-dimensions, the Euclidean norm corresponds to a circular

region and the infinity-norm corresponds to a square region. Although, it is simple

to test component-wise if a vector lies inside a trust region defined by the infinity

norm, it is relatively easier to compute an approximation solution to a trust-region

subproblem defined by the Euclidean norm. In particular, when Hj is indefinite,

the infinity-norm trust-region subproblem is a nonconvex quadratic program. For

24

any nonconvex quadratic program there may exist certain dead points at which the

second-order necessary conditions hold, but the second-order sufficient conditions

do not hold. The verification of such a point as a local minimizer of the subproblem

is an NP-hard problem (see Murty and Kabadi [33] and Pardalos and Schnitger

[39]), and all quadratic programming methods cannot be expected to verify op-

timality in a reasonable amount of computational effort. There is still another

compelling reason to prefer the Euclidean-norm problem: The global minimizer of

the trust-region subproblem is completely characterized in the Euclidean norm.

Theorem 2.3.1 (Gay [10].) Let δ be a given positive constant. A vector s is a

global solution of the trust-region subproblem if and only if ‖Ns‖ ≤ δ and there

exists a unique σ ≥ 0 such that

(H + σNTN)s = −g, σ(δ − ‖Ns‖) = 0, (2.19)

with H +σNTN positive semidefinite. Moreover, if H +σNTN is positive definite,

then the global minimizer is unique.

Not only is this theorem the basis for many trust-region algorithms, but it also

provides a convenient measure for the quality of approximate solutions from any

type of trust-region subproblem solver. For all of these reasons, we only consider

methods that solve the trust-region subproblem defined by the Euclidean norm.

2.3.2 Trust-region methods with a line search

Modern trust-region algorithms avoid the need to re-solve the trust-region sub-

problem when the trial step does not give a sufficient decrease. These methods use

a line search to ensure that f is sufficiently reduced after the solution of every trust-

region subproblem. Toint [40], and Nocedal and Yuan [36] employ line searches to

obtain a positive step length αj such that xj+1 = xj + αjsj gives f(xj+1) < f(xj).

Gertz [11] proposes two trust-region algorithms that use line searches to enforce

25

popular sufficient decrease criteria. The first algorithm ensures that iterates satisfy

an Armijo-type condition.

Algorithm 2.3.2. Armijo Trust-Region Algorithm

Specify constants 0 < η1 < η2 <
1
2
, 0 < γ2 < 1 < γ3, 1 ≤ ν ≤ 1/γ2;

Choose x0; j = 0; δj = 1;

while not converged do

Compute sj , an approximate solution of min {Qj(s) : ‖Njs‖ ≤ δj};
ρj =

(
f(xj + sj)− f(xj)

)
/Q−

j (sj);

if ρj ≥ η1 then

Successful iteration: xj+1 = xj + sj;

if ρj ≥ η2 then choose δj+1 ∈ [δj ,max{δj, γ3‖Njsj‖}] else δj+1 = δj;

else

Find smallest ℓ in {1, 2, . . .} such that αj = γ−ℓ
2 satisfies:

(
f(xj + αjsj)− f(xj)

)
/Q−

j (αjsj) ≥ η1;

xj+1 = xj + αjsj ;

Choose δj+1 ∈ [αj‖Njsj‖, αjν‖Njsj‖]
end

j ← j + 1;

end while

If sT
jHjsj < 0, the sufficient reduction in f is determined relative to a quadratic

model. In this case, the sufficient reduction criterion in Algorithm 2.3.2 is the

same as that used in vanilla trust-region methods. If sT
jHjsj ≥ 0, the sufficient

reduction in f is determined relative to a linear model. In this case, the condition

that is enforced is the Armijo condition (2.11). In this case, the sufficient reduction

criterion is stronger than the criterion used in vanilla trust-region methods.

Gertz [11] also proposes the following Wolfe-type trust-region algorithm:

Algorithm 2.3.3. Wolfe Trust-Region Algorithm

Specify constants 0 < η1 < ω < 1;

26

Choose x0; j = 0; δj = 1;

while not converged do

Compute sj , an approximate solution of min {Qj(s) : ‖Njs‖ ≤ δj};
Find αj satisfying the conditions

f(xj + αjsj) ≤ f(xj) + η1Q−
j (αjsj) and |g(xj + αjsj)

Tsj| ≤ −ωQ− ′
j (αjsj);

xj+1 = xj + αjsj ;

Choose δj+1 ∈ [αj‖Njsj‖, αjν‖Njsj‖]
j ← j + 1;

end while

Algorithms 2.3.2 and 2.3.3 use the line search to control the size of the trust

region. Intuitively speaking, a good trust-region radius for the subproblem would

have been δj = αj‖Njsj‖; that is, a basic trust-region method would have accepted

the trial step αjsj if the trust-region radius been at least of size αj‖Njsj‖. It is

reasonable to hope that Qj+1 will adequately model decreases in f in a similarly-

sized trust region. Thus, the subsequent trust-region radius may be taken to be

δj+1 = αj‖Njsj‖. Note that if the exact solution(s) to the trust-region subproblem

lies on the boundary of the trust region, it is more accurate to set δj+1 = αjδj ,

since sj can only be computed within some tolerance to satisfy the trust-region

constraint, i.e., ‖Njsj‖ ≈ δj . The scalar ν in both algorithms is used to compensate

for this numerical inaccuracy.

Lemma 2.2.1 guarantees the existence of a step that satisfies the Armijo-style

condition in Algorithm 2.3.2 whenever the approximate trust-region subproblem

solution is a descent direction. Gertz proves the following lemma, which guarantees

the existence of steps satisfying the Wolfe conditions used in Algorithm 2.3.3.

Lemma 2.3.1 Given f : D ⊆ R
n 7→ R

1 be twice continuously differentiable and

bounded below. If gT
jsj < 0 or gT

jsj = 0 and sT
jHjsj < 0 then there are constants

0 < αl < αh such that αj satisfies the conditions in Algorithm 2.3.3 whenever

αl ≤ α ≤ αh.

27

2.3.3 Convergence of trust-region methods

This section begins by considering first-order convergence behavior of trust-

region methods. Broadly speaking, “first-order convergence” refers to character-

izations of the limit of the gradient, i.e., limj→∞ g(xj). Typically, the strongest

first-order convergence theory gives conditions such that limk→∞ ‖gj‖ → 0, re-

gardless of the choice of starting point. However, without additional assumptions

about the number of isolated stationary points or the proximity of an iterate to

an isolated stationary point, it is not often possible to prove that the sequence of

iterates {xj} converges to a stationary point.

Convergence theory for trust-region methods relies on the accuracy of the ap-

proximate solution to the trust-region subproblem (2.18). For efficiency, it is im-

portant that the trust-region subproblem not be solved exactly. Broadly speaking,

it is desirable to compute a solution with as little effort as possible, subject to

the requirement that the computed solution does not interfere with the overall

convergence of the method.

In trust-region methods, the steepest-descent direction p = −g(x) plays a vital

role in defining viable approximate solutions of the subproblem. It will be shown

that convergence will not be compromised as long as an approximate sj gives a

reduction in the objective function that is within a fixed factor of the reduction

predicted by a constrained steepest-descent step.

We start by considering a simple trust-region algorithm that defines an approx-

imate solution of the trust-region subproblem known as the Cauchy step sc
j. This

vector is a solution of the trust-region problem

Qj(s
c
j) = min

s,α
{Qj(s) : s = −αgj, ‖s‖ ≤ δj}. (2.20)

Thus, the Cauchy step can be written as sc
j = −αc

jgj, where αc
j is given by

αc
j =

gT
jgj/g

T
jHjgj if gT

jgj/g
T
jHjgj ≤ δj/‖gj‖ and gT

jHjgj > 0;

δj/‖gj‖ otherwise.

28

If gj 6= 0, the Cauchy step can be interpreted as a constrained steepest-descent

step. The choice of norm here is arbitrary, but whatever norm is chosen, it affects

only the scaling of the Cauchy step, not its direction.

The next lemma shows that if the Cauchy step (as an approximate solution to

the trust-region subproblem), is sufficiently accurate to ensure the convergence of

the trust-region method.

Lemma 2.3.2 (Powell [41, 42, 43].) Given any norm ‖ · ‖, let κ be a constant

such that ‖s‖2 ≥ κ‖s‖ for all s. If sc
j is the Cauchy step, i.e., the solution of

(2.20), then

Qj(s
c
j) ≤ −1

2
κ2‖gj‖min{δj , ‖gj‖/‖Bj‖2}. (2.21)

Proof. First we consider the case gT
jBjgj > 0. Let pj denote the steepest-descent

direction pj = −gj . From the definition of Qj we have Qj(αpj) = −αgT
jgj +

1
2
α2gT

jBjgj. Since gT
jBjgj > 0 by assumption, a unique unconstrained minimizer of

Qj(αpj) exists and is given by α∗ = gT
jgj/g

T
jBjgj . The change in the objective by

this step is

Qj(α
∗pj) = −α∗gT

j gj + 1
2
(α∗)2gT

j Bjgj = −1
2
gT

jgj

(gT
jgj

gT
jBjgj

)
≤ −1

2
κ2‖gj‖2/‖Bj‖2.

If gT
jgj/g

T
jBjgj ≤ δj/‖gj‖, then ‖α∗gj‖ ≤ δj and the minimizer subject to the trust

region constraint is αc = α∗. If gT
jgj/g

T
jBjgj > δj/‖gj‖, then αc

j = δj/‖gj‖ < α∗

and the corresponding predicted change is

Qj(s
c
j) = −gT

j gjα
c + 1

2
(αc)2gT

jBjgj

≤ −gT
j gjα

c + 1
2
α∗αcgT

jBjgj = −1
2
gT

jgj

(
δj
‖gj‖

)
≤ −1

2
κ2‖gj‖δj .

If gT
jBjgj ≤ 0, no unconstrained minimizer exists and αc = δj/‖gj‖. In this

case

Qj(s
c
j) = −αcgT

jgj + 1
2
(αc)2gT

jBjgj ≤ −αcgT
jgj = −gT

jgj

(
δj
‖gj‖

)
≤ −1

2
κ2‖gj‖δj .

29

The result now follows by combining the inequalities from each of these cases.

As long as ‖gj‖ is nonzero the trust-region algorithm defined in Algorithm 2.3.1

will eventually compute a trust-region radius δj such that the objective value

f(xj +sj) satisfies the sufficient decrease condition f(xj)−f(xj +sj) ≥ −η1Qj(sj).

Moreover, for any approximate solution sj such thatQj(sj) ≤ Qj(s
c
j), Lemma 2.3.2

gives the following upper bound on Qj(sj):

Qj(sj) ≤ −1
2
η1κ

2‖gj‖min{δj , ‖gj‖/‖Hj‖}.

Of all the results on first-order convergence, the next result requires the weakest

conditions for convergence.

Theorem 2.3.2 (Powell [43].) Let f : D ⊆ R
n 7→ R be continuously differen-

tiable on the open convex set D. Let {xj} ⊂ D be a sequence of iterates generated

by the basic trust-region method of Algorithm 2.3.1. Assume that an approximate

solution sj of the trust-region subproblem (2.18) satisfies

Qj(sj) ≤ −τ‖gj‖min{δj, ‖gj‖/‖Hj‖} and ‖sj‖ ≤ δj, (2.22)

for some τ > 0. Assume further that {‖Hj‖} is bounded above. If f is bounded

below in D, then either lim infk→∞ ‖gj‖ = 0 or some xj satisfies the algorithm’s

convergence criterion and the algorithm terminates.

Lemma 2.3.2 provides a way to determine τ . (For example, if ‖ · ‖ is the

Euclidean norm then τ < 1/2.)

It is possible to derive stronger results when g is uniformly continuous in some

region containing the iterates {xj}. In particular, if the iterates lie in a compact re-

gion orH(x) is bounded, then limk→∞ ‖gj‖ = 0 (for more details, see Thomas [49]).

Theorem 2.3.3 Let all the assumptions of Theorem 2.3.2 hold. Assume further

that the sequence of iterates {xj} lies in a region in which g(x) is uniformly con-

tinuous. Then Algorithm 2.3.1 will either terminate at a point that satisfies its

convergence criterion, or limk→∞ ‖gj‖ = 0.

30

Gertz [11] proves that line searches in Algorithms 2.3.2 and 2.3.3 do not interfere

with the first-order convergence properties of basic trust-region method.

Theorem 2.3.4 Let all the assumptions of Theorem 2.3.3 hold. If the solution to

the trust-region subproblem sj always satisfies gT
jsj ≤ 0, then Algorithms 2.3.2 and

2.3.3 will either terminate at a point that satisfies their convergence criterion, or

limk→∞ ‖gj‖ = 0.

Obviously, no stronger results (such as convergence to a minimizer of f) can

be proved without utilizing curvature information, since we know from Section 2.1

that a minimizer is distinguished from other stationary points by (at the least) a

positive semidefinite Hessian. Nonetheless, in practice the strategy of reducing f

at every iteration means that descent methods usually converge to minimizers.

Second-order methods seek limit points that satisfy second-order necessary

conditions. Line-search methods based on a modified Newton method are unable

to progress beyond a stationary point that is not a local minimizer; that is, the

solution to the modified Newton equation at any stationary point will always be

zero. Thus, a second-order line search must be able to use second-order information

to move away from local maximizers and saddle points. It is relatively easy to

implement a second-order line search that uses directions of negative curvature to

generate a sequence {xj} such that

gj → 0 and min {λn (Hj) , 0} → 0,

where λn(H) denotes the smallest eigenvalue of H . Clearly, if {xj} converges, it

will converge to a point that satisfies the second-order necessary conditions for a

local minimizer of f .

Convergence results for trust-region methods depend on the quality of the ap-

proximate solution to the trust-region subproblem (2.18). The requirements for

second-order convergence should be no weaker than the requirements for first-order

31

convergence, i.e.,

Qj(sj) ≤ Qj(s
c
j) = min

s,α
{Qj(s) : s = −αgj, ‖s‖ ≤ δj}. (2.23)

The following second-order convergence theorem and proof are adapted from Moré

and Sorensen [32].

Theorem 2.3.5 Let f(x) be twice continuously differentiable in an open convex

subset D of R
n, and assume that x0 ∈ D is chosen so that the level set L(f(x0)) is

compact. Suppose λmin(N
T
jNj) ≥ m > 0 for all k. And, suppose the sequence {xj}

is defined by Algorithm 2.3.1 and sj is an approximate solution to the subproblem

(2.18) such that

−Qj(sj) ≥ β1|Q∗j | with ‖Njsj‖ ≤ β2δj , (2.24)

where Q∗j denotes the unique global minimum of (2.18) and β1 and β2 are strictly

positive constants. Then, either the algorithm terminates at xl ∈ L with g(xl) = 0

and H(xl) positive semidefinite, or {xj} has a limit point x∗ ∈ L with g(x∗) = 0

and H(x∗) positive semidefinite.

Proof. If g(xl) = 0 and H(xl) is positive semidefinite for some iterate xl ∈ L, the

algorithm terminates with sl = 0. Otherwise, Qj(sj) < 0 for all k > 0, and thus

{xj} is well defined and lies in L(f(x0)).

First, assume that a subsequence of {σj} converges to zero. The compactness

of L(f(x0)) shows that the same subsequence of {xj} converges to x∗ ∈ L(f(x0)).

By Theorem 2.3.1, there exists some σj that Hj + σjN
T
jNj is positive semidefinite.

Moreover, H(x∗) must be converging to a positive semidefinite matrix for the given

subsequence. Let Rj be the Cholesky factor of Hj + σjN
T
jN , so that

RT
j Rjs

∗
j = (Hj + σjN

T
jNj)s

∗
j = −gj . (2.25)

To show that g(x∗) = 0, note that, using (2.25) and norm inequalities, we have

‖Rjs
∗
j‖2 ≥

‖gj‖2
‖Hj‖+ σj‖NT

jNj‖
. (2.26)

32

Finally, the descent condition in Algorithm 2.3.1 ensures that

f(xk)− f(xj+1) ≥ −η1Qj(sj)

≥ η1|Q∗j | (2.27)

= η1

∣∣gT
js
∗
j + 1

2
s∗Tj (Hj + σjN

T
jNj)s

∗
j − 1

2
σj‖(s∗j)TNT

jNjs
∗
j‖2
∣∣

= η1|12g
T
js
∗
j − 1

2
σjδ

2
j |

= η1‖Rjs
∗
j‖2 + 1

2
σjδ

2
j . (2.28)

Since {f(xj)} is a decreasing sequence that is bounded below, inequality (2.28)

shows that ‖Rjsj‖ converges to zero. It follows from (2.26) that gj converges to

zero for the given subsequence.

It now remains to show that {σj} cannot remain bounded away from zero. To

do so, assume the contrary, i.e., that for some ǫ > 0,

σj ≥ ǫ for all k. (2.29)

The string of inequalities from (2.27) to (2.28) show that

−Qj(sj) ≥ β1(‖Rjsj‖2 + 1
2
σjδ

2
j),

and hence,

−Qj(sj) ≥ 1
2
β1σjδ

2
j ≥ 1

2

(
β1

β2
2

)
ǫ‖Njsj‖2. (2.30)

The second-order mean-value theorem gives the standard estimate

‖f(xj + sj)− f(xj)−Qj(sj)‖ ≤ 1
2
‖sj‖2 max

0≤ξ≤1
‖H(xj + ξsj)−Hj‖.

Combining this equation and (2.30), we have

|ρj − 1| ≤ 1

m2

(
β2

2

β1ǫ

)
max
0≤ξ≤1

‖H(xj + ξsj)−H(xj)‖ (2.31)

where ρj =
(
f(xj + sj)− f(xj)

)
/Qj(sj).

Since f is bounded below in L(f(x0)), inequalities (2.28) and (2.29) imply that

{δj} converges to zero, and hence {‖Njsj‖} also converges to zero. Since η2 < 1 in

33

Algorithm 2.3.1, and the constants β1, β2, ǫ, and 1/m2 are bounded, then (2.31)

and the continuity of H(x) on the compact region L(f(x0)) imply that ρj > η2 for

all k sufficiently large. The updating rules for δj in Algorithm 2.3.1 then imply

that {δj} is bounded away from zero. However, this contradicts the fact that {δj}
converges to zero, and hence (2.29) must be false.

Gertz [11] shows that the line search in Algorithms 2.3.2 and 2.3.3 does not in-

terfere with the second-order convergence properties of basic trust-region method.

The remainder of this chapter is concerned with solving the trust-region sub-

problem and so the suffix j is omitted.

2.3.4 Solving the trust-region subproblem

There are two general approaches to finding an approximate solution of the

trust-region subproblem (2.18). The first approach is to proceed with the solution

of the unconstrained problem and consider the constraint only if the unconstrained

solution appears to lie outside the trust-region. The class of dog-leg methods are

of this type (see, e.g., Shultz, Schnabel and Byrd [47] and Byrd, Schnabel and

Shultz [3]), as are the methods considered in this thesis. The second approach is

to start with the equality-constraint problem

minimize
s∈Rn

gTs+ 1
2
sTHs subject to ‖Ns‖ = δ. (2.32)

and switch to the Newton step if it appears that the optimal σ (of Theorem 2.3.1)

is zero. Methods of this type include those of Gay [10] and Moré and Sorensen [32].

Methods based on solving (2.32) attempt to find a root of the nonlinear equation

‖N(H+σNTN)−1g‖ = δ, such that σ is in the interval (−λn,∞), where λn denotes

the left-most generalized eigenvalue for the matrix pair (H,NTN). Each step

involves solving a positive-definite system (H+σNTN)s = −g for a given σ. If the

iterates appear to be converging to a negative root in (−λn,∞), the value σ = 0

is selected, implying that the Newton step lies inside the trust-region.

34

The trust-region problem is said to be degenerate if ‖NsL‖ < δ, where sL is

the least-length solution of (H − λnN
TN)s = −g (i.e., sL = −(H − λnN

TN)†g).

In the degenerate case, there are two situations to consider. If λn is positive, the

quantities σ = 0 and s = −H−1g satisfy the optimality conditions (Theorem 2.3.1),

since ‖Ns‖ < ‖NsL‖ < δ. Alternatively, if λn is negative or zero, the system

(H+σNTN)s = −g cannot be used alone to determine the optimal s. In this case,

the generalized eigenvector un is a null vector of H − λnN
TN , and there exists a

scalar τ such that

(H − λnN
TN)(sL + τun) = −g and ‖N(sL + τun)‖ = δ. (2.33)

Taking σ = −λn and s = sL + τun satisfies the optimality conditions (Theo-

rem 2.3.1), and thus, constitutes a global solution of the trust-region subproblem.

2.3.5 The Moré-Sorensen algorithm

The Moré-Sorensen algorithm [32] is a direct method for solving the trust-

region subproblem in the sense that each iteration involves an explicit matrix

factorization. The algorithm approximates a global solution to the trust-region

subproblem by finding a point s such that

Q(s) ≤ τQ∗,

where Q∗ is the optimal value of Q(s) and τ is a scalar such that 0 < τ < 1.

If s lies in the interior of the trust-region, then H is positive definite and σ = 0

satisfies the optimality conditions. On the other hand, if a solution s lies on the

boundary of the trust-region, there are two important cases to consider. If g is

not perpendicular to the eigenspace associated with λn, then there is an optimal

solution pair (s, σ) with σ > 0 that satisfies

s = −(H + σNTN)−1g and σ ∈ [−λn,∞). (2.34)

The so-called “hard case” occurs when g is perpendicular to the eigenspace

associated with the generalized eigenvalue λn and there is no solution (s, σ) with

35

σ > 0 that satisfies (2.34). In other words, the so-called hard case occurs if

H+σNTN is positive definite and there no solution s on the boundary that satisfies

(H + σNTN)s = −g. This corresponds to the degenerate case with λn ≤ 0, and

thus, a global solution to the trust-region subproblem is given by (2.33). In theory,

this case should not occur often since it requires that both g is orthogonal to the

eigenspace associated with the generalized eigenvalue λn and H must be indefinite.

One approach to approximating an optimal solution that lies on the boundary

of the trust region is to find a zero of the equation ψ(σ) = ‖Nsσ‖ − δ, such that

s = −(H + σNTN)−1g. However, it turns out that ψ is nonlinear; in particular, ψ

has poles. Instead, Moré and Sorensen focus on solving

φ(σ) =
1

δ
− 1

‖Npσ‖
, (2.35)

where pσ satisfies (H + σNTN)pσ = −g.
It is worth noting that Newton’s method is particularly well-suited for finding

a root of (2.35) due in part to the following properties of φ:

Lemma 2.3.3 Suppose φ is defined as in (2.35).

(i) φ(σ) is twice-continuously differentiable on (−λn,∞);

(ii) φ(σ) is strictly decreasing on (−λn,∞);

(iii) φ(σ) is strictly convex on (−λn,∞);

(iv) if limσ→−λ
n+
φ(σ) > 0 then φ(σ) has a unique zero in (−λn,∞);

(v) if limσ→−λ
n+
φ(σ) ≤ 0 if and only if the linear system (H − λnN

TN)s = −g
is compatible.

Proof. See Gay [10] and Moré and Sorensen [32].

Upon finding a new approximation to σ∗, the Cholesky decomposition of H +

σNTN is used to obtain a solution to the system

(H + σNTN)p = −g, (2.36)

36

and (if required) an approximate null vector z is computed. And, a safe-guarded

Newton scheme is used to find a root of (2.35) and ensure that σ remains within

(−λn,∞).

An optimal trust-region subproblem solution may be written as solutions s =

p+z, where p = sL and z = τun in the hard case (see (2.33)), and z = 0 otherwise.

The following lemma shows that if the pair (s, σ) is sufficiently close to satisfying

the optimality conditions, then the pair satisfies the inequalities in (2.24) required

for second-order convergence.

Lemma 2.3.4 Let ǫ be any scalar such that 0 < ǫ < 1. Let σ be a nonnegative

scalar such that H +σNTN is positive semidefinite. Suppose that s = p+ z, where

p satisfies

(H + σNTN)p = −g, (2.37)

and z is a (possibly zero) vector satisfying the conditions

zTHz ≤ ǫ(2− ǫ)(pTHp+ σδ2), and ‖N(p+ z)‖ ≤ (1 + ǫ)δ.

Then s satisfies the inequality

Q(s) ≤ τQ∗ and ‖Ns‖ ≤ δ̄, (2.38)

where τ = ((1− ǫ)/(1 + ǫ))2, δ̄ = (1 + ǫ)δ, and Q∗ = min{Q(s) : ‖Ns‖ ≤ δ̄}.

Proof. See Moré and Sorensen [32] and Gertz [11].

Given constants c1, c2 ∈ (0, 1), Moré and Sorensen prove convergence to an

approximate solution s̄ satisfying

Q(s̄)−Q∗ ≤ c1(2− c1) max(|Q∗|, c2), and ‖Ns̄‖ ≤ (1 + c1)δ, (2.39)

where Q∗ denotes the unique global minimum of the trust-region subproblem.

Moré and Sorensen also prove second-order convergence by meeting the conditions

of Lemma 2.3.4, and thus, satisfying equation (2.38). In the context of uncon-

strained optimization, the Moré-Sorensen algorithm is guaranteed to converge to

points that satisfy the first-order and second-order necessary conditions for opti-

mality.

3

Iterative Methods for Minimizing

a Quadratic Function

3.1 Motivation for Iterative Methods

As the number of variables increase, the time and storage associated with fac-

toring large sparse matrices becomes prohibitive. Thus, direct methods such as

Moré and Sorensen’s method are only suitable for problems for which n is suffi-

ciently small or H is sufficiently sparse.

In large-scale optimization, iterative methods are used to help speed up com-

putations and economize storage requirements. Iterative trust-region methods are

primarily concerned with approximating trust-region subproblem solutions quickly

and efficiently. These methods avoid forming large dense matrices and must assume

that sparse matrices are generally not stored as a full matrix. Computationally

speaking, iterative trust-region methods must rely on the ability to access H only

through matrix-vector products.

More economical iterative trust-region methods also try to minimize the num-

ber of (possibly very costly) function evaluations, as well as the required linear

algebra, i.e., the number of matrix-vector products with H . However, there is a

37

38

well-known trade-off: Increasing the accuracy of the approximate trust-region sub-

problem solution usually decreases the number of required trust-region subproblem

solves, but increases the cost of solving each subproblem. Practically speaking, the

result is a method that requires fewer function evaluations but more matrix-vector

products with H . Ultimately, there is a point at which increasing the accuracy of

the subproblem solver is unproductive because the number of required subproblem

solves is at a minimum.

If H is positive definite, then the unique unconstrained minimizer s∗ of the

quadratic function Q(s) = gTs+ 1
2
sTHs satisfies the positive-definite linear system

Hs∗ = −g. This implies that any iterative method for minimizing a quadratic

implicitly defines an associated method for solving a positive-definite linear system

of equations Ax = b. The method of conjugate gradients (CG) is one of the most

widely used iterative methods for solving positive-definite systems Ax = b. In

order to emphasize the link between minimization and solving positive-definite

linear equations, we will consider the following general quadratic function:

minimize
x∈Rn

q(x), where q(x) = 1
2
xTAx− bTx. (3.1)

The main intention of this chapter is to discuss methods that solve Ax = b without

directly accessing the elements of A or computing its factorization. In particular,

the matrix A need be available only as an operator, i.e., it is used only to compute

a matrix-vector product Av for a given v.

The methods to be discussed have the property that, in exact arithmetic, the

function q is minimized in a finite number of steps. In particular, there is sequence

of iterates x0, x1, . . . , xm with m ≤ n, such that q(xk+1) < q(xk) and xm = x∗.
We will see that the number m is independent of the initial point x0, except in the

special situation where b is an eigenvector of A (see Section 3.4.4). In practice,

computer arithmetic is not exact and the methods to be discussed may need far

more iterations, or far fewer if the eigenvalues of A are clustered into groups.

This section solely approximates the solution to minimization problems of the

39

form in (3.1); thus, in this section, g(x) will denote the vector ∇q(x), and gk will

denote g(xk) for simplicity.

3.2 Minimization Over Expanding Subspaces

A fundamental idea in the development of optimization methods is that of

minimizing a function over a sequence of expanding subspaces. More precisely,

given the points x0, x1, x2 . . . , xk, we seek the point xk+1 that minimizes the

objective function over all vectors x such that

x ∈ xk + span{p0, p1, . . . , pk}, (3.2)

where p0, p1, . . . , pk form a set of linearly independent vectors to be determined.

(Although it is commonly referred to as a sequence of expanding subspaces, the

set xk + span{p0, p1, . . . , pk} is really a manifold, i.e., a subspace shifted by the

vector x0.). Let Pk denote span{p0, p1, . . . , pk}, the subspace of R
n consisting

of all linear combinations of the vectors {pi}. Similarly, let Pk be the matrix

Pk = (p0 p1 · · · pk) whose columns form a basis for Pk. Then, every vector

x on the manifold (3.2) may be written uniquely in the form xk + Pky for some

vector y. The point xk+1 that minimizes q(x) on the manifold may be written in

the form:

xk+1 = xk + Pkyk, where yk = argmin
y∈Rk+1

q(xk + Pky). (3.3)

If each iterate xi is determined in this way, it follows immediately that this al-

gorithm must minimize q in at most n iterations, since the linear independence

assumption for the n vectors p0, p1, . . . , pn−1 implies that xn must minimize q(x)

over all x ∈ R
n. Of course, as k increases, the subspace dimension increases, and

eventually, the cost of solving the subproblem will be comparable to that of solving

the original problem. The idea is to use information gained while minimizing over

Pk−1 to accelerate the minimization over Pk.

40

3.2.1 Solving the reduced problem

Consider the following unconstrained minimization problem:

minimize
y∈Rn

q(xk + Pky) = q(xk) + yTP T
k ∇q(xk) +

1

2
yTP T

k APky. (3.4)

First order optimality conditions imply that for fixed xk, the optimal y must satisfy

∇yq(xk + Pkyk) = 0, i.e., yk satisfies the system

P T
k APkyk = −P T

k gk. (3.5)

This is an example of a reduced system that involves the solution of an optimization

problem restricted to a subspace of R
n. The (necessarily positive-definite) matrix

P T
k APk is called the reduced Hessian and the vector P T

k gk is the reduced gradient.

The iterates generated by this scheme have a number of interesting properties.

First, gk+1, the gradient at xk+1, is orthogonal to all of the vectors {pi} that define

Pk. To see this, using the definition of g(x) and xk+1, we obtain

P T
k gk+1 = P T

k (∇q(xk+1)) = P T
k gk − P T

k APk(P
T
k APk)

−1P T
k gk = 0.

It follows that gT
k+1pi = 0 for i = 0, . . . , k, and a simple inductive argument may

be used to establish the identity:

gT
j pi = 0 for i < j and 0 ≤ j ≤ k. (3.6)

These relations imply that the reduced gradient is simply a multiple of the unit

vector ek+1, with P T
k gk = (pT

k gk)ek+1. Hence, the system (3.5) for yk simplifies to

P T
k APkyk = −(pT

k gk)ek+1. (3.7)

One way of solving these equations is to choose the directions {pk} in such

a way that xk+1 is easily computed from xk. Suppose that the k + 1 vectors

{p0, p1, . . . , pk} are mutually conjugate with respect to the matrix A, i.e., it holds

that

pT
i Apj = 0 for i 6= j and 0 ≤ i, j ≤ k. (3.8)

41

The vectors {pi} are called a set of conjugate directions. When A is positive

definite, an important property of conjugate directions is that they are necessarily

linearly independent.

If the vectors {pi} are conjugate, then the solution of the (diagonal) system

(3.7) is the unit vector yk = −(gT
k pk/p

T
kApk)ek+1. If the last component of yk is

denoted by αk, we obtain the simple recurrence:

xk+1 = xk + αkpk, where αk = −gT
k pk/p

T
kApk. (3.9)

The value of αk is the step to the minimizer of q along pk. Thus (3.9) indicates

that the (k + 1)th vector pk may be considered as a search direction in the usual

model algorithm for unconstrained optimization. Note that this implies that

xk+1 = xk + αkpk = x0 + α0p0 + α1p1 + · · ·+ αkpk.

so that xk+1 is the unique linear combination of x0 and the k + 1 vectors p0, p1,

. . . , pk that minimizes q.

The preceeding discussion may be summarized the following theorem.

Theorem 3.2.1 Assume that A is an n × n symmetric positive-definite matrix

and b is an n-vector. Let {p0, p1, . . . , pm} be a set of m + 1 vectors such that

pT
i Apj = 0 for i 6= j, 0 ≤ i, j ≤ m. If {xk} is the sequence of minimizers of

q(x) on the sequence of expanding manifolds xk + Pk, the following holds for all

0 ≤ k ≤ m:

(i) The vectors {pj}mj=0 are linearly independent;

(ii) xk+1 = xk + αkpk, where αk = −gT
k pk/p

T
kApk;

(iii) gT
k+1pi = 0, 0 ≤ i ≤ k.

42

3.3 Generating Conjugate Directions

Suppose that a set of k mutually conjugate vectors p0, p1, . . . , pk−1 is known

at the start of the kth step. We seek a new vector pk such that

pT
kApj = 0 for 0 ≤ j ≤ k − 1.

An appropriate set of directions may be defined by taking p0 = −g0 and computing

pk as a linear combination of gk and the previous k directions, i.e.,

pk = −gk +

k−1∑

j=0

βkjpj. (3.10)

The definition pk from (3.10) implies that gk is a linear combination of p0, p1, . . . ,

pk, and thus for 1 ≤ i ≤ k, it must hold that gk ∈ Pk. Since p0 = −g0, it also

holds trivially that g0 ∈ Pk. Therefore, from (3.6)

gT
k gi = 0 for 0 ≤ i ≤ k − 1. (3.11)

The derivation of the required values of βkj uses the important property of subspace

minimization methods whereby the gradients are mutually orthogonal when pk is

defined by (3.10). This property is used to show that βk,0, βk,1, . . . , βk,k−1 of (3.10)

can be chosen so that pk is conjugate to p0, p1, . . . , pk−1. Premultiplying (3.10) by

pT
i A and using the previous conjugacy conditions (3.8) yields

pT
i Apk = −pT

i Agk +
k−1∑

j=0

βkj p
T
i Apj = −pT

i Agk + βki p
T
i Api. (3.12)

From the definition of the gradient of q(x), we have

gi+1 − gi = A(xi+1 − xi) = αiApi,

and the conjugacy conditions (3.11) imply that −pT
i Agk = (gi+1 − gi)

Tgk/αi = 0

for i < k−1. Thus, to make pk conjugate to pi for i < k−1, we can simply choose

βki to be zero in (3.12). Since only βk,k−1 is nonzero, the first subscript on β may

43

be dropped, so that βk−1
△

= βk,k−1. To obtain the value of βk−1 that makes pk

conjugate to pk−1, we premultiply (3.10) by pT
k−1A and impose the orthogonality

condition pT
k−1Apk = 0; this gives 0 = −pT

k−1Agk +βk−1p
T
k−1Apk−1, or, equivalently,

βk−1 = pT
k−1Agk/p

T
k−1Apk−1.

Therefore pk may be written as

pk = −gk + βk−1pk−1,

where βk−1 = pT
k−1Agk/p

T
k−1Apk−1. The orthogonality of the gradients and the

definition of pk implies the following (equivalent) definitions of βk−1:

βk−1 = pT
k−1Agk/‖gk−1‖22, or βk−1 = ‖gk‖22/‖gk−1‖22. (3.13)

The conjugate-direction method based on these recurrences is known as the con-

jugate-gradient method. A vanilla conjugate-gradient method for minimizing q is

given in Algorithm 3.3.1.

Algorithm 3.3.1. Vanilla Conjugate-Gradient Method

Choose x0; Set g0 = g(x0); k = 0;

while gk 6= 0 do

if k = 0 then

pk = −gk;

else

βk−1 = gT
k [Apk−1]/p

T
k−1[Apk−1];

pk = −gk + βk−1pk−1;

end if

[Apk] = Apk; αk = −gT
k pk/p

T
k [Apk];

xk+1 = xk + αkpk;

gk+1 = gk + αk[Apk];

k = k + 1;

end do

44

Note that the relations

gk+1 = ∇q(xk+1) = ∇q(xk + αkpk) = gk + αkApk,

allow us to update the gradient rather than compute it from scratch. With this

refinement, the vector Apk may be stored until pk is updated, which allows the

conjugate-gradient method to be implemented with one matrix-vector product

each iteration.

The next result states that in exact arithmetic the conjugate-gradient method

will terminate in a finite number of steps.

Theorem 3.3.1 If A has r distinct eigenvalues, the conjugate-gradient method

will compute the solution in at most r iterations.

Proof. See Conn, Gould and Toint [4].

Unfortunately, Theorem 3.3.1 only holds in exact arithmetic; finite termination

relies on the orthogonality of the conjugate directions. In finite-precision arithmetic

the conjugate-gradient method may not converge in r iterations or even in a finite

number of iterations. The following theorem is arguably the most well-known

convergence result for the method of conjugates gradients:

Theorem 3.3.2 Suppose A is a symmetric positive-definite matrix, and x∗ is the

unique minimizer of q(x). Then, the sequence of iterates {xk} generated by Algo-

rithm 3.3.1 satisfies the inequality

‖x∗ − xk‖A ≤ 2‖x∗ − x0‖A
(√

κ2(A)− 1√
κ2(A) + 1

)k

where κ2(A) denotes the condition number of A in the two-norm and ‖ ·‖A denotes

the elliptic norm, i.e., ‖x‖A ≡
√
xTAx for all x ∈ R

n.

Proof. See Luenberger [27].

Notice that the conjugate-gradient method converges faster when κ2(A) ≈ 1.

This observation is the basis for preconditioned conjugate-gradient methods, which

apply the conjugate gradient method to a related linear system with the hope of

obtaining faster convergence (see Section 3.5).

45

3.4 Conjugate Directions from Lanczos Vectors

An important tool in the formulation of methods for the solution of symmetric

systems is the orthogonal reduction of a symmetric matrix to tridiagonal form. A

tridiagonal matrix T has the property that tij = 0 for all |i− j| > 2. A tridiagonal

form is the closest we can get to a diagonal matrix using an iterative procedure

with a finite number of steps.

3.4.1 Direct orthogonal reduction to tridiagonal form

Theorem 3.4.1 If A is an n × n symmetric matrix, there exists a tridiagonal T

and an orthogonal V with unit first row and column such that V TAV = T .

Proof. The proof is by induction. The result is obviously true for matrices of order

one and two because such matrices are trivially in tridiagonal form. Now assume

that the result is true for matrices of order k and consider any symmetric matrix

A of order k + 1. Partition A so that

A =

(
α0 aT

1

a1 A2

)
,

where A2 is k × k. Define a Householder matrix H so that Ha1 = ‖a1‖2e1, with

e1 the first column of the identity matrix of order k. Then, if

V =

(
1 0

0 H

)
, we have V TAV =

(
α0 β1e

T
1

β1e1 Â

)
, where Â = HTA2H.

The matrix Â is of order k, and the inductive hypothesis asserts the existence of

an orthogonal V̂ and tridiagonal T̂ such that V̂ TÂV̂ = T̂ and V̂ e1 = e1. Simple

multiplication then gives
(

1 0

0 V̂ T

)
V TAV

(
1 0

0 V̂

)
=

(
α0 β1e

T
1

β1e1 T̂

)
,

which is the required orthogonal reduction to tridiagonal form of the matrix A.

46

3.4.2 Lanczos reduction to tridiagonal form

Another technique for generating conjugate directions is based on the Lanczos

reduction of A to tridiagonal form. This may be achieved directly by equating

columns on the left-hand and right-hand sides of the identity AV = V T . Let the

elements of the tridiagonal matrix T be written as

T =

γ0 β1

β1 γ1 β2

β2
. . .

. . .

. . .
. . . βn−1

βn−1 γn−1

, (3.14)

and the columns of V be denoted by v0, v1, . . . , vn−1. Equating columns in the

identity AV = V T , gives

β1v1 = Av0 − γ0v0, βk+1vk+1 = Avk − γkvk − βkvk−1, k = 1, 2, (3.15)

The orthonormality of the vk (see Lemma 3.4.1) implies that γk = vT
k Avk. More-

over, if the vector sk+1 = Avk−γkvk−βkvk−1 is nonzero, then vk+1 = (1/βk+1)sk+1,

where βk+1 = ±‖sk+1‖2. If βk+1 = 0, the process terminates. Note that v0 is arbi-

trary, and we can define v0 = v/‖v‖2 for any nonzero vector v.

The iteration described above for computing V and T is known as the Lanczos

process and the vectors v0, v1, . . . , vk are known as the Lanczos vectors. An

algorithm for computing the Lanczos vectors is given in Algorithm 3.4.1.

Algorithm 3.4.1. Lanczos process

Set s0 = v; β0 = −‖s0‖2; j = −1;

while βj+1 6= 0 do

vj+1 = sj+1/βj+1; j = j + 1;

[Avj] = Avj; γj = vT
j [Avj];

if j = 0 then

sj+1 = [Avj]− γjvj ;

47

else

sj+1 = [Avj]− γjvj − βjvj−1;

end if

βj+1 = −‖sj+1‖2;
end do

The Lanczos process will only break down if an off-diagonal element of T is

zero, i.e., T is reducible. A breakdown indicates that the set of Lanczos vectors

forms an invariant subspace. In order to continue the reduction to tridiagonal

form, the Lanczos process must be restarted.

Note that T is called irreducible if it is not reducible.

3.4.3 Properties of the Lanczos vectors

The Lanczos iteration will terminate with sm+1 = 0 for some integer m ≤ n−1.

The following lemma establishes some basic properties of the Lanczos vectors.

Lemma 3.4.1 If vk, 0 ≤ k ≤ m are the Lanczos vectors generated by the Lanczos

process, then

(i) The vectors {vj}mj=0 are linearly independent;

(ii) The vectors {vj}mj=0 are orthonormal;

(iii) For 0 ≤ k ≤ m, span{v0, v1, . . . , vk} = span{v0, Av0, . . . , A
kv0},

Proof. Induction proofs for (ii) and (iii) may be found in Golub and Van Loan

[16]. Note that (i) follows immediately from (ii).

In the literature, span{v0, Av0, . . . , A
k−1v0} is called the k-th Krylov subspace

of A, and often denoted by K(A, v0, k). The following theorem from Golub and

Van Loan [16] summarizes the Lanczos process that reduces A to a tridiagonal

matrix.

48

Theorem 3.4.2 Let A be an n× n symmetric matrix. Then the Lanczos process

terminates at k = m, where m+ 1 = rank(K(A, v0, n)). Moreover, for 0 ≤ k ≤ m,

it holds that

AVk = VkTk + βk+1vk+1e
T
k+1 = VkTk + sk+1e

T
k+1, (3.16)

where

Tk =

γ0 β1

β1 γ1 β2

β2
. . .

. . .

. . .
. . . βk

βk γk

. (3.17)

In exact arithmetic, Theorem (3.4.2) implies that V T
k AVk = Tk for any k ∈

{0, . . . , m}. However, in finite-precision arithmetic, roundoff error will lead to a loss

of orthogonality of the Lanczos vectors; moreover, rounding errors will compound

upon each other. Even for small values of n (e.g. n = 15) the roundoff error may be

very considerable, and the Lanczos vectors may lose all semblance of orthogonality.

It is worth noting that equation (3.16) is independent of the orthogonality of the

Lanczos vectors (Paige [37], and Paige and Saunders [38]).

As it is, Algorithm 3.4.1 is unsuitable for finite-precision arithmetic; in partic-

ular, it is unlikely that βk+1 = 0 will ever be achieved. Moreover, a test comparing

βk+1 to a small fixed constant will be a poor convergence test when the elements

of Tk+1 are either very large or very small. Intuitively, any test on βk+1 should be

both relative and scale-independent so that the Lanczos process terminates if βk+1

is significantly smaller than the elements of Tk+1. Reasonable tests for convergence

may look at the ratio of |βk+1| to ‖Tk+1‖2 or the ratio of |βk+1| to the largest (in

modulus) element of Tk+1.

49

3.4.4 Conjugate directions from the Lanczos process

Given an arbitrary nonzero vector v with norm β0 = −‖v‖2, the Lanczos process

generates scalars γ0, γ1, . . . , γk, nonzero scalars β1, β2, . . . , βk+1, and orthonormal

vectors v0, v1, . . . , vk+1, such that

Tk =

γ0 β1

β1 γ1 β2

β2
. . .

. . .

. . .
. . . βk

βk γk

, (3.18)

and AVk = VkTk +βk+1vk+1e
T
k+1, where Vk denotes the matrix with columns v0, v1,

. . . , vk.

The matrix Tk is positive definite and its LDLT factorization is given by Tk =

LkDkL
T , where Lk unit-lower triangular and Dk a diagonal with positive diagonal

entries. The columns of the matrix Pk such that Vk = PkL
T
k form a set of conjugate

directions because

P T
k APk = L−1

k V T
k AVkL

−T
k = L−1

k TkL
−T
k = Dk. (3.19)

The columns of Pk may be computed using a simple two-term recurrence in-

volving the Lanczos vectors. To see this, notice that the lower-triangular factor Lk

is unit lower-bidiagonal, with

Lk =

1

l1 1
. . .

. . .

lk 1

and Dk =

d0

d1

. . .

dk

.

As the calculation of the Lanczos vectors proceeds, the matrix Tk increases in

dimension and a new row and column are added to its LDLT factors. If we define

T0 = γ0, L0 = 1, and D0 = γ0, then the LDLT factors of Tk are related to the

50

factors of Tk−1 by the identity

(
Tk−1 βkek

βke
T
k γk

)
=

(
Lk−1 0

lke
T
k 1

)(
Dk−1 0

0 dk

)(
LT

k−1 lkek

0 1

)
. (3.20)

At the end of the kth stage of the Lanczos process, the factors Lk−1 and Dk−1 of

Tk−1 are known, and it is necessary to find only the last row of Lk and last diagonal

of Dk. Comparing both sides of (3.20) yields

lk = βk/dk−1 and dk = γk − βklk. (3.21)

This convenient bidiagonal structure leads to a simple recurrence relation for the

required columns of Pk. From the definition of Pk we have Vk = PkL
T
k , which can

be written column-wise as

(
v0 v1 · · · vk

)
=
(
p0 l1p0 + p1 · · · lkpk−1 + pk

)
.

This identity allows us to solve for each column of Pk, giving the recurrence rela-

tions:

p0 = v0, pi = vi − lipi−1, i = 1, . . . , k. (3.22)

Note that different sets of conjugate-directions are generated with each choice

of initial vector v. In the next section, it will be shown that the choice v = b gives

directions that are rescaled versions of the directions generated by the conjugate-

gradient method.

3.4.5 The Lanczos-CG method

A disadvantage of using Lanczos vectors to generate the conjugate directions (as

in (3.22)) is that both the Lanczos process and the subspace minimization each

require a product of A with a vector—thereby doubling the work per iteration

compared to the vanilla conjugate-gradient method.

However, by rearranging the computation, it is possible to derive an effi-

cient Lanczos-based conjugate-direction method that requires the same number

51

of matrix-vector products as the vanilla CG method. The derivation is based on

the observation that the new iterate xk+1 is uniquely defined as a linear combi-

nation of x0 and the k + 1 columns of Pk, and that the columns of Pk may be

written as linear combinations of the Lanczos vectors. This implies that xk+1 may

be found by minimizing q over all points x such that

x ∈ x0 + span{v0, v1, . . . , vk} = x0 + Vkw,

for some vector w. If wk is the unique optimal value of w, then the reduced

equations analogous to (3.5) are

xk+1 = x0 + Vkwk, with V T
k AVkwk = −V T

k g0,

where the right-hand side now involves the initial gradient g0 = ∇q(x0). If we

choose v0 = −g0/‖g0‖2, the orthogonality of the Lanczos vectors gives V T
k g0 =

vT
0 g0e1 = β0e1, and the reduced system is equivalent to

xk+1 = x0 + Vkwk, with Tkwk = −β0e1, (3.23)

where Tk is the tridiagonal matrix such that Tk = V T
k AVk. These equations may

be solved efficiently using the factorization Tk = LkDkL
T
k and the auxiliary vector

yk such that yk = LT
kwk. Substituting for Tk and wk in (3.23) gives

xk+1 = x0 + Pkyk, with LkDkyk = −β0e1, (3.24)

where Pk is the matrix such that Vk = PkL
T
k (see Section 3.4.4).

The crucial feature of the lower-bidiagonal system LkDkyk = −β0e1 is that the

first k elements of yk are just the elements of yk−1. To show this, consider Lk and

Dk in terms of the quantities Lk−1 and Dk−1 associated with the previous step.

Then, the lower-triangular system LkDkyk = −β0e1 may be written as

(
Lk−1Dk−1 0

lkdk−1e
T
k dk

)(
yk−1

αk

)
= −β0e1,

52

where α0, α1, . . . , αk denotes the elements of yk. Hence, using the relation lkdk−1 =

βk (see 3.21), we have for all k > 0, xk+1 = xk + αkpk, with

αk =

{
β0/d0 if k = 0;

−βkαk−1/dk otherwise.
(3.25)

The next result shows that each Lanczos vector vk is a (negative) scalar multiple

of the gradient vector gk.

Theorem 3.4.3 If v0 is chosen so that v0 = −g0/‖g0‖2, then

gk = ∇q(xk) = αk−1βkvk. (3.26)

Proof. The Lanczos recurrence (3.15) implies that

AVk−1 = Vk−1Tk−1 + βkvke
T
k . (3.27)

Post-multiplying this identity by wk−1 and substituting xk−x0 for Vk−1wk−1 gives

A(xk − x0) = Vk−1Tk−1wk−1 + βkvke
T
kwk−1.

To simplify this expression, note that Tk−1wk−1 = −β0e1, and the relation yk−1 =

LT
k−1wk−1 implies that the kth (i.e., last) element of wk−1 is αk−1, the last element

of yk−1. It follows that

A(xk − x0) = −β0Vk−1e1 + βkvke
T
kwk−1 = −β0v0 + αk−1βkvk = −g0 + αk−1βkvk.

The definition g0 = ∇q(x0) now implies that Axk − b = αk−1βkvk, as required.

This theorem provides an alternative way of computing the two-norm of the

gradient gk:

‖gk‖2 = ‖βkvkαk−1‖2 = βk|αk−1|. (3.28)

In exact arithmetic, βk will be zero in a finite number of steps, and hence the

gradient will also be zero.

53

If x0 = 0 (with a suitable shift of the constant vector b), then xk+1 lies in

span{v0, v1, . . . , vk} and we seek a solution of the form xk+1 = Vkwk for some

unique vector wk. In this case we have

Axk = Vk−1(β0e1) + βkvke
T
kwk−1 = b+ αk−1βkvk, (3.29)

Note that Vk−1(β0e1) = b exactly for all k because v0 is a multiple of b. Also, the

system Tkwk = −β0e1 can be solved accurately (and cheaply). Thus, in finite-

precision arithmetic, (3.29) holds accurately for any wk even though the columns

of Vk−1 are not orthogonal.

Algorithm 3.4.2. Lanczos-CG Method

Choose τtol > 0;

s0 = −g(x0); β0 = −‖s0‖; γ−1 = 1; τ = β0; k = −1;

while τ > τtol do

vk+1 = sk+1/βk+1; k = k + 1;

[Avk] = Avk; γk = vT
k [Avk];

if k = 0 then

lk = 0; pk = vk;

sk+1 = [Avk]− γkvk;

else

lk = βk/dk−1; pk = vk − lkpk−1;

sk+1 = [Avk]− γkvk − βkvk−1;

end

dk = γk − βklk; αk = −βkαk−1/dk;

xk+1 = xk + αkpk;

βk+1 = −‖sk+1‖; τ = −βk+1αk;

end do

54

3.5 Preconditioned CG Methods

The preconditioned conjugate-gradient (PCG) method for solving Ax = b is

based on two fundamental properties of the CG method: (i) the rate of conver-

gence is sensitive to the condition number of A (see, e.g., Theorem 3.3.2); and

(ii) the CG method converges faster when A has few distinct eigenvalues (see,

e.g., Theorem 3.3.1). The PCG method attempts to exploit these properties by

replacing an original system Ax = b with a related system of the form

M−1/2AM−1/2x̂ = M−1/2b, (3.30)

whereM is a symmetric positive-definite matrix (the preconditioner) chosen so that

M−1/2AM−1/2 has eigenvalues clustered around unity. Notice that solving Ax = b

for x is equivalent to solving system (3.30) for x̂ and then forming x = M−1/2x̂.

Since M−1/2AM−1/2 is similar to M−1A, the problem reduces to finding M such

that M−1A is well-conditioned and has many unit eigenvalues. (Ideally, M−1A

will be approximately the identity matrix).

In practice, the computation is arranged so that only solves withM are required

(i.e., M1/2 never appears). To see this, consider one iteration of the CG method

(Algorithm 3.3.1) applied to the system Âx̂ = b̂, with vectors x̂k, p̂k and ĝk, and

scalars α̂k and β̂k. If xk, pk and gk are defined so that xk = M−1/2x̂k, pk = M−1/2p̂k

and gk = M1/2ĝk, then M1/2 no longer appears. The simplified recurrence relations

are given in the following algorithm.

Algorithm 3.5.1. The PCG method

Choose x0; Set g0 = g(x0); k = 0;

while gk 6= 0 do

if k = 0 then

pk = −M−1gk;

else

βk−1 = gT
kM

−1Apk−1/p
T
k−1Apk−1;

55

pk = −M−1gk + βk−1pk−1;

end if

αk = −gT
k pk/p

T
kApk;

xk+1 = xk + αkpk;

gk+1 = gk + αkApk;

k = k + 1;

end do

The scalars αk and βk are the quantities α̂k and β̂k associated with the CG

method applied to Âx̂ = b̂. It follows that both αk and βk are positive, as in the

unpreconditioned case.

The orthogonality and conjugacy properties associated with the vectors defined

by the preconditioned CG method are summarized in the following result.

Lemma 3.5.1 Consider the PCG method with symmetric positive-definite precon-

ditioner M applied to the symmetric system Ax = b. At the kth step, the directions

{pi}ki=0 and gradients {gi}ki=0 satisfy

pT
i Apj = 0, and gT

i Mgj = 0 0 ≤ i, j ≤ k, i 6= j.

Moreover, gT
k+1pi = 0 for 0 ≤ i ≤ k.

The next result is crucial for the development of trust-region methods based

on the conjugate-gradient method. It implies that for i 6= j, the directions satisfy

0 < pT
j Mpi/‖pi‖M‖pj‖M < 1, which means that the PCG directions form acute

angles with each other.

Lemma 3.5.2 The directions generated by the conjugate-gradient method satisfy

pT
j Mpi > 0 for i < j and 0 ≤ j ≤ k.

Proof. The proof is by induction. Observe that pT
0Mp0 = ‖g0‖2M−1 > 0, and so the

result holds for k = 0. Assume that the result holds for i < j and 0 ≤ j ≤ k − 1.

56

The CG direction is given by pk = −M−1gk + βk−1pk−1. It follows that, for all pi

such that 0 ≤ i ≤ k − 1,

pT
kMpi = −gT

kpi + βk−1p
T
k−1Mpi.

The orthogonality property gT
k+1pi = 0 for 0 ≤ i ≤ k of Lemma 3.5.1, the sec-

ond form of βk−1 given in (3.13), and the inductive hypothesis give pT
kMpi =

βk−1p
T
k−1Mpi > 0, as required.

3.5.1 The preconditioned Lanczos-CG method

The Lanczos-CG method may also be defined with a preconditioner. In this

case, the Lanczos process is applied to the matrix M−1/2AM−1/2, giving orthonor-

mal directions wk such that M1/2Wk transforms A to tridiagonal form. This is

equivalent to applying the Lanczos process directly to A but with the Lanczos vec-

tors vk being M-orthogonalized. In this case, it is easy to see that vk and wk are

related by the identity Mvk = wk). The following algorithm provides the details

of this process. Note that, as in the PCG method, only solves with M are required

to generate the directions {vk}—the explicit elements of M are not required.

Algorithm 3.5.2. The Preconditioned Lanczos process

Set s0 = v; β0 = −‖s0‖M−1 ; j = −1;

while βj+1 6= 0 do

wj+1 = sj+1/βj+1; Solve Mvj+1 = wj+1; j ← j + 1;

[Avj] = Avj; γj = vT
j [Avj];

if j = 0 then

sj+1 = [Avj]− γjwj ;

else

sj+1 = [Avj]− γjwj − βjwj−1;

end if

βj+1 = −‖sj+1‖M−1 ;

57

end do

Using the vectors {vk} the preconditioned Lanczos process (Algorithm 3.5.2)

may be viewed as a method for tridiagonalizing A; namely, for k > 1

AVk = MVkTk +Msk+1e
T
k , (3.31)

i.e., in exact arithmetic, V T
k AVk = Tk. Thus, Algorithm 3.4.2 may be rewritten as

follows to accommodate a preconditioner.

Algorithm 3.5.3. The Lanczos-PCG Method

Choose τtol > 0;

x0 = 0; s0 = g(x0); β0 = −‖s0‖M−1; γ−1 = 1; τ = β0; k = −1;

while τ > τtol do

wk+1 = sk+1/βk+1; Solve Mvk+1 = wk+1; k ← k + 1;

[Avk] = Avk; γk = vT
k [Avk];

if k = 0 then

lk = 0; pk = vk;

sk+1 = [Avk]− γkwk;

else

lk = βk/dk−1; pk = vk − lkpk−1;

sk+1 = [Avk]− γkwk − βkwk−1;

end

dk = γk − βklk; αk = −βkαk−1/dk;

xk+1 = xk + αkpk;

βk+1 = −‖sk+1‖M−1; τ = −βk+1αk;

end do

Note that the Lanczos-PCG method of Algorithm 3.5.3 reduces to the Lanczos-

CG method of Algorithm 3.4.2 if M = I.

58

3.6 Economizing Matrix-Vector Products

The major computational cost involved with solving Ax = b using an iterative

method is associated with forming the matrix-vector products with A. In the

context of large-scale optimization, it may be necessary to know the product of

A with the final CG iterate xk. Since this quantity is not a by-product of the

standard CG method it must be computed directly using an extra matrix-vector

product, or indirectly by means of a recurrence relation.

Here we consider forming this product indirectly while solving Ax = b. The al-

gorithm presented below is specifically in the context of the Lanczos-PCG method.

The details are similar for the other CG-type methods presented earlier.

Algorithm 3.6.1. The extended Lanczos-PCG Method

Choose τtol > 0;

x0 = 0; [Ax0] = 0;

s0 = g(x0); β0 = −‖s0‖M−1; γ−1 = 1; τ = β0; k = −1;

while τ > τtol do

wk+1 = sk+1/βk+1; Solve Mvk+1 = wk+1; k ← k + 1;

[Avk] = Avk; γk = vT
k [Avk];

if k = 0 then

lk = 0;

pk = vk; [Apk] = [Avk];

sk+1 = [Avk]− γkwk;

else

lk = βk/dk−1;

pk = vk − lkpk−1; [Apk] = [Avk]− lk[Apk−1];

sk+1 = [Avk]− γkwk − βkwk−1;

end

dk = γk − βklk; αk = −βkαk−1/dk;

xk+1 = xk + αkpk; [Axk+1] = [Axk] + αk[Apk];

59

βk+1 = −‖sk+1‖M−1; τ = −βk+1αk;

end do

Only one matrix-vector product is required for each Lanczos-PCG iteration.

In particular, the product Avk must be calculated as an explicit matrix-vector

product involving A and vk. Once this vector is known, the calculation of Axk+1

requires no additional work.

3.7 Computations with the Preconditioner

The preconditioned Lanczos-CG method for solving Ax = b involves a positive-

definite matrix M that approximates A and is such that systems of the form

My = x can be solved efficiently. In general, the elements of the matrices M and

M−1 are not known explicitly and it is necessary to arrange the computation so

that only solves with M are required.

Lanczos-PCG requires only products with M−1 so there are no computational

difficulties in Algorithm 3.5.3 (nor in the extend algorithm (Algorithm 3.6.1)).

However, in later sections, it will be desirable to compute ‖xk+1‖M and Mxk+1.

It turns out that these quantity cannot be computed exactly; they can only be

estimated.

The following algorithm details how this estimation is performed in the context

of preconditioned Lanczos-CG. Once again, the bracket notation (introduced in

Section 1.3), will be used to emphasize stored quantities. The following algorithm is

an extension of the basic preconditioned Lanczos-CG algorithm (Algorithm 3.5.3).

Algorithm 3.7.1. Lanczos-PCG with Elliptical Norm Estimates

Choose τtol > 0;

x0 = 0; [Mx0] = 0;

s0 = g(x0); β0 = −‖s0‖M−1 ; γ−1 = 1; τ = β0; k = −1;

while τ > τtol do

wk+1 = sk+1/βk+1; Solve Mvk+1 = wk+1; k ← k + 1;

60

[Avk] = Avk; γk = vT
k [Avk];

if k = 0 then

lk = 0;

pk = vk; [Mpk] = [Mvk];

sk+1 = [Avk]− γkwk;

else

lk = βk/dk−1;

pk = vk − lkpk−1; [Mpk] = [Mvk]− lk[Mpk−1];

sk+1 = [Avk]− γkwk − βkwk−1;

end

dk = γk − βklk; αk = −βkαk−1/dk;

xk+1 = xk + αkpk; [Mxk+1] = [Mxk] + αk[Mpk];

‖xk+1‖2M = xT
k+1[Mxk+1];

βk+1 = −‖sk+1‖M−1; τ = −βk+1αk;

end do

Observe that the calculation of ‖xk‖M assumes that the Lanczos vectors are ex-

actly M-orthogonal. Unfortunately, this property does not hold in finite-precision

arithmetic and in general, the recurrence relations give only an estimate of ‖xk‖M .

For completeness, the following algorithm implicitly forms both Axk+1 (as in

Algorithm 3.7.1) and Mxk+1 (as in Algorithm 3.6.1).

Algorithm 3.7.2. The combined Lanczos-PCG method

Choose τtol > 0;

x0 = 0; [Ax0] = 0; [Mx0] = 0;

s0 = g(x0); β0 = −‖s0‖M−1 ; γ−1 = 1; τ = β0; k = −1;

while τ > τtol do

wk+1 = sk+1/βk+1; Solve Mvk+1 = wk+1; k ← k + 1;

[Avk] = Avk; γk = vT
k [Avk];

if k = 0 then

lk = 0;

61

pk = vk; [Apk] = [Avk]; [Mpk] = [Mvk];

sk+1 = [Avk]− γkwk;

else

lk = βk/dk−1;

pk = vk− lkpk−1; [Apk] = [Avk]− lk[Apk−1]; [Mpk] = [Mvk]− lk[Mpk−1];

sk+1 = [Avk]− γkwk − βkwk−1;

end

dk = γk − βklk; αk = −βkαk−1/dk;

xk+1 = xk + αkpk; [Axk+1] = [Axk] + αk[Apk]; [Mxk+1] = [Mxk] + αk[Mpk];

‖xk+1‖2M = xT
k+1[Mxk+1];

βk+1 = −‖sk+1‖M−1; τ = −βk+1αk;

end do

4

Iterative Methods for the

Trust-Region Subproblem

4.1 Introduction

This chapter concerns methods for solving the trust-region subproblem that

are based on iterative methods for linear equations. The discussion will focus on

the problem

minimize
s

Q(s) subject to ‖Ns‖ ≤ δ, (4.1)

where the outer iteration subscript j has been omitted to simplify notation.

In the methods to be discussed, each iterate solves the trust-region subproblem

(4.1) subject to the additional restriction that the solution lies in a certain subspace

of R
n. One of the first methods of this type was proposed by Powell [41, 42, 43].

Powell proposed approximating the solution of (4.1) by solving a single subspace

minimization of the form

minimize
s

Q(s) subject to ‖Ns‖ ≤ δ, s ∈ span{−g}. (4.2)

This idea has been refined by Byrd, Schnabel and Shultz [2], who define the two-

62

63

dimensional subproblem

minimize
s

Q(s) subject to ‖Ns‖ ≤ δ, s ∈ span{p, q}, (4.3)

where p is the solution of a positive-definite system of the form (H+σNTN)p = −g
and q is a direction of negative curvature for H .

The methods considered here generate a sequence of subspaces {Sk}. Given

the kth iterate sk such that sk ∈ Sk, the next iterate sk+1 is the solution of

minimize
s

Q(s) subject to ‖Ns‖ ≤ δ, s ∈ Sk. (4.4)

The CG method for minimizing the unconstrained function Q(s) is a particular

subspace minimization method that generates a sequence of expanding subspaces,

i.e., {Sk} satisfies Sk+1 ⊃ Sk with dim(Sk+1) > dim(Sk).

4.2 Steihaug’s Method

There are two difficulties associated with using the CG method to solve the

trust-region subproblem. First, the CG method is intended for unconstrained

minimization and cannot be used directly to solve a constrained problem. Both

Toint [40] and Steihaug [48] proposed using the CG method to minimize the un-

constrained quadratic model until an iterate leaves the trust region. In this case,

the approximate solution of the subproblem is defined as the point where the

piecewise-linear path of CG iterates crosses the trust-region boundary.

It might appear that subsequent CG iterates could re-enter the trust region

and converge to an unconstrained point. The next result, due to Steihaug [48],

shows that, under certain conditions, if the CG method is preconditioned with

M = NTN , then the PCG iterates are increasing in the M-norm. This result is

fundamental because it implies that once the PCG iterates leave the trust-region

they cannot return.

64

Theorem 4.2.1 Let {sk} denote the sequence of iterates defined by the PCG me-

thod with preconditioner M = NTN when applied to minimize a positive-definite

quadratic function Q(s). If s0 = 0 then the sequence {sk} satisfies

‖sk+1‖M > ‖sk‖M for all k ≥ 0.

Proof. The PCG iterates satisfy sk+1 = sk + αkpk. Forming the square of the

M-norm of sk+1 gives

‖sk+1‖2M = ‖sk + αkpk‖2M = ‖sk‖2M + 2αks
T
kMpk + α2

k‖pk‖2M . (4.5)

If s0 = 0, then the kth iterate may be written in the form

sk = α0p0 + α1p1 + · · ·+ αk−1pk−1 = Pk−1yk−1,

where Pk−1 is the matrix Pk−1 = (p0 p1 · · · pk−1) and yk−1 is the vector of PCG

step lengths (α0, α1, . . . , αk−1). The matrix H is positive definite, which implies

that the scalars αk−1 are all positive. It follows from Lemma 3.5.2 that

sT
kMpk = yT

k P
T
k Mpk = α0p

T
kMp0 + α1p

T
kMp1 + · · ·+ αk−1p

T
kMpk−1 > 0.

The result now follows directly from (4.5).

This result implies that PCG generates a sequence of iterates that are strictly

increasing in the M-norm, i.e., ‖sk+1‖M > ‖sk‖M for all k ≥ 0. Thus, PCG iterates

may be generated to minimize Q(s) (or, equivalently, solve Hs = −g) until an

iterate does not lie inside the trust region, i.e., ‖sk + αkpk‖M ≥ δ. Theorem 4.2.1

implies that once a PCG iterate leaves the trust-region, then the solution of the

constrained problem (4.1) must lie on the boundary.

A second difficulty that arises when applying PCG to minimize a general func-

tion Q(s) is that the iterates may not be well-defined when H is not positive

definite. The PCG algorithm recognizes an indefinite H if it computes a negative

entry in D while updating the LDLT decomposition. In this case, the conjugate

direction generated in this iteration is a direction of negative or zero curvature.

65

In Steihaug’s method, the PCG iterations are terminated and the final iterate is a

point on the direction of negative curvature that lies on the trust-region boundary.

The approach outlined above is formally known as Steihaug’s method, and

forms the basis of one of the most widely-used iterative trust-region methods.

PCG iterates are computed until the quantities sk, pk and αk associated with the

kth PCG iteration satisfy one of the following three termination conditions hold:

(T1) sk + αkpk is an approximate minimizer of Q(s) such that ‖sk + αkpk‖M < δ;

(T2) ‖sk + αkpk‖M ≥ δ;

(T3) p
T
kHpk ≤ 0.

If termination occurs because of condition (T1) then the subproblem is terminated

with the approximate solution sk + αkpk. In this case, Steihaug’s method and the

PCG method are equivalent.

If termination occurs because of (T2) or (T3), the trust-region solution must

lie on the boundary and the subproblem is terminated with the point sk + α′
kpk,

where α′
k is defined so that ‖sk + α′

kpk‖M = δ. If PCG terminates under condition

(T2) or (T3), the final iterate is known as the Steihaug point.

The first PCG iterate s1 is the Cauchy step for (4.1), and it follows that Stei-

haug’s method generates an approximate solution that is at least as good as the

Cauchy step because any subsequent iterates must give an additional reduction

in Q(s). Hence, under minimal additional assumptions on the geometry of f ,

Steihaug’s algorithm is globally convergent to first-order points (see Section 2.3.3).

It remains to determine the precise form of the termination condition (T1). For

inexact Newton methods (i.e., Newton-based methods that approximately solve

the Newton equations at each iteration), a commonly used termination condition

requires that the norm of the residual of the Newton system should be less than

a fixed multiple of the norm of the right-hand side (the residual for s0 = 0). This

implies that the final iterate sk must satisfy

‖Hsk + g‖ ≤ η‖g‖, (4.6)

66

where η ∈ (0, 1) and may be a member of a forcing sequence. The following

theorem is adapted from Dembo, Eisenstat and Steihaug [5].

Theorem 4.2.2 Suppose that a Newton-PCG method for minimizing f generates

iterates {xj} that converge to x∗, where xj+1 = xj + sj and sj denotes an ap-

proximate solution of the Newton equations Hjs = −gj. Then, xj → x∗ at a

Q-superlinear rate if and only if ‖Hjsj + gj‖ = o(‖gj‖), as j →∞.

A desirable quality of any trust-region method is that the trust-region radius

should not interfere with the natural rate of convergence of Newton’s method. This

implies that the outer iterates sj must satisfy Hjsj = −gj in the neighborhood of

a local minimizer. If this is to happen, Steihaug’s method must coincide with

the PCG method, with each subproblem ending at a point inside the trust region.

In this context, Theorem 4.2.2 implies that superlinear convergence of the outer

iterates requires Hjsj = −gj to be solved with increasing accuracy as {xj} → x∗.
(For more details, see Dembo, Eisenstat and Steihaug [5], and Conn, Gould and

Toint [4].)

4.3 The GLTR Method

An inherent weakness of Steihaug’s method is its inability to control the accu-

racy of approximate subproblem solutions on the boundary. The Steihaug point is

always at least as accurate as the Cauchy step, but the Cauchy step may be a poor

approximate solution to the trust-region subproblem. In particular, the Steihaug

point may be a poor approximate solution to the subproblem if the CG method

terminates after a few iterations.

Gould, Lucidi, Roma, and Toint [18] propose the generalized Lanczos trust-

region (GLTR) method, which may be viewed as a natural extension of the CG

method to the constrained case. If the trust-region solution lies on the boundary,

the GLTR method solves the constrained trust-region subproblem over an expand-

67

ing sequence of subspaces. As in Steihaug’s method, the monotone norm property

of the CG iterates is used first to find an interior solution or a Steihaug point.

If the PCG method terminates at a Steihaug point, the trust-region subproblem

is solved on a sequence of expanding subspaces defined by the Lanczos vectors.

Each iteration beyond the Steihaug point requires a matrix-vector product to form

the new Lanczos vector and the solution of a reduced-space trust-region problem

minimize
h∈Rk+1

β0e
T
1 h + 1

2
hTTkh subject to ‖h‖ ≤ δ, (4.7)

where Tk is the tridiagonal matrix obtained from the Lanczos process (see (3.17)).

Gould et al. [18] adapt the Moré-Sorensen algorithm to find an approximate solu-

tion of (4.7) such that

‖(H + σkM)sk + g‖M−1 ≤ τ. (4.8)

Their algorithm exploits the tridiagonal structure of T . (The method uses an equiv-

alent form of (4.8) that does not involve σk, but relies on the M-orthogonality of

the Lanczos vectors.) If the Lanczos process terminates (i.e, Tk is reducible—see

Section 3.4.2), the Lanczos process is restarted, but the trust-region solver contin-

ues. Thus, even after Lanczos restarts, GLTR continues to solve the subproblem

or reduced subproblem over a sequence of expanding subspaces.

The GLTR method may require two passes through the algorithm. If the

quadratic function evaluated at the Steihaug point (or at a point within the trust

region) is within a required percentage (say, 90%) of the smallest value of the

quadratic function obtained by any iterate during first pass, the algorithm may

terminate with either the Steihaug point or the last iterate inside the trust region.

Otherwise, the reduced-space solution hk+1 is expanded into the full space to ob-

tain the approximate solution sk = Vkhk of the trust-region subproblem. Since

the calculation of sk requires Vk the Lanczos vectors must be regenerated using a

second pass through the Lanczos process.

Although the GLTR method may be viewed as a natural extension of Steihaug’s

method, its susceptibility to rounding error limits its practical effectiveness. If a

68

substantial number of Steihaug or GLTR iterations are required, the columns of

Vk lose their orthogonality and the matrices V T
k HVk and Tk no longer correspond

to each other. In this case, there is a significant difference between the solution of

the original subproblem and the solution of the reduced subproblem. In practice,

the expanded reduced-space solution hk+1 rapidly ceases to be effective.

If Tk is reducible, the Lanczos process must be restarted with a vector that

is M-orthonormal with respect the previous Lanczos vectors. This reorthogonal-

ization requires that the Lanczos vectors be formed one more time. Also, in this

case, GLTR will possibly require more work than PCG to solve the unconstrained

minimization problem

minimize
s

Q(s) = gTs+ 1
2
sTHs.

To see this, recall that the Lanczos process breaks down only if an off-diagonal ele-

ment is zero, i.e., the residual to the linear system Hs+g is small (Theorem 3.4.3).

A break down of the Lanczos process signals that the PCG iterates (would have)

converged to a solution outside the trust region; however, GLTR may continue to

optimize beyond this point. Thus, the amount of work required by GLTR for this

subproblem solve will be at least as much as the amount of work required to solve

the unconstrained quadratic minimization problem using the PCG method.

4.4 Hager’s Method

In contrast to Steihaug’s method and GLTR, Hager’s subproblem solver ob-

tains theoretical global convergence without relying on a sequence of expanding

subspaces. Global convergence relies on generating better quality subspaces rather

than generating subspaces of increasing dimension. Hager [21] uses a sequential

subspace minimization (SSM) method as the basis for a trust-region solver but

restarts the Lanczos process at fixed intervals to help minimize the loss of orthog-

onality of the Lanczos vectors.

69

Hager’s method uses two phases to approximate a solution for the equality

constrained trust-region subproblem

minimize
s

Q(s) = gTs+ 1
2
sTHs subject to ‖Ns‖ = δ. (4.9)

The first phase generates a small number of Lanczos vectors (four or five, say),

and then solves the subproblem over the subspace

Sk = span{sk, ũ
k
n, v1, . . . , vl},

where sk denotes the previous iterate, ũk
n denotes the kth approximation to the

leftmost generalized eigenvector of the matrix pair (H,M), and {vi} denotes the

set of Lanczos vectors. Each subspace solve yields (sk+1, σk+1), an approximation

to a global solution pair in Theorem 2.3.1, and (λ̃k+1
n , ũk+1

n), an approximation to

the leftmost eigenpair of the generalized eigenvalue problem Hu = λMu.

Hager’s first phase is similar to the GLTR method with Lanczos restarts at

fixed intervals. After each iteration of the first phase, the previous Lanczos vectors

are discarded and the Lanczos process is restarted with the residual of the current

best approximation to a solution of the trust-region subproblem.

The second phase of Hager’s method generates a sequence {(sk, σk)} that is

intended to converge to the optimal (s, σ) associated with the solution of (4.1) (see

Theorem 2.3.1, p. 24). At the start of the kth iteration, values (sk, σk) are known

such that ‖Nsk‖ = δ and σk ∈ (−λn(H),∞), Hager defines the (k + 1)th iterate

(sk+1, σk+1) as a solution of the subspace minimization problem

minimize
s

Q(s) subject to ‖Ns‖ = δ, s ∈ Sk, (4.10)

where Sk = span{sk, ũn,∇Q(sk), sSQP}. The vector ũn is the best estimate of the

leftmost eigenvector computed in phase one, and sSQP is computed from one step

of Newton’s method applied to the constrained minimization problem

minimize
s∈Rn

gTs + 1
2
sTHs subject to 1

2
δ2 − 1

2
sTNTNs = 0. (4.11)

70

(This problem is equivalent to (4.9). The “1
2
” has been introduced to simplify the

derivatives.)

Next, we focus on the definition of sSQP. The Lagrangian associated with prob-

lem (4.11) is

L(s, σ) = gTs + 1
2
sTHs− σ

2
(δ2 − sTNTNs) = Q(s) + σr(s),

where σ is a scalar Lagrange multiplier and r(s) = 1
2
(sTNTNs− δ2). At the point

(s, σ), the gradient and Hessian of the Lagrangian are given by

∇L(s, σ) =

(
(H + σM)s + g

r(s)

)
and ∇2L(s, σ) =

(
H + σM d

dT 0

)
,

where M = NTN and d = ∇r(s) = NTNs = Ms. To simplify the notation,

H(σ) will be used to denote the Hessian of the Lagrangian with respect to s, i.e.,

H(σ) = H + σNTN .

Since optimal values of s and σ define a stationary point of the Lagrangian,

they may be found by applying Newton’s method to find a zero of the function

F (s, σ)
△

= ∇L(s, σ). Given a solution estimate wk = (s̄k, σ̄k), the Newton update

is defined as a solution ∆wk = (∆sk, ∆σk) of the linear system F ′(wk)∆wk =

−F (wk). This gives the next Newton iterate as wk +∆wk, with
(
H(σ̄k) dk

dT
k 0

)(
∆s̄k

∆σ̄k

)
= −

(
g +H(σ̄k)s̄k

r(s̄k)

)
. (4.12)

The next result gives the conditions under which these Newton equations have a

solution.

Lemma 4.4.1 If d 6= 0, then the inertia of the Newton matrix is given by

In

(
H(σ) d

dT 0

)
= In

(
H(σ)

)
+ (0, 1, 0).

In particular, if σ ∈ (−λn,∞), where λn is the leftmost eigenvalue of Hu = λMu,

then the Newton matrix is nonsingular with n positive eigenvalues and one negative

eigenvalue.

71

This result implies that Newton’s method is well defined only for values of σ̄k in

the interval (−λn,∞). Moreover, even with this restriction on σ̄k, the Newton

equations are indefinite and the CG method cannot be used. Instead, Hager uses

a variant of the CG method of Gould, Hribar and Nocedal [17], which is defined

for general KKT systems. For this method to be applied, the equations must be

modified so that the solution ∆s lies in the null space of dT . Then, under a suitable

nonsingularity assumption, if all CG iterates are arranged to lie in null(dT), then

the CG method is well-defined.

In the case of the Newton equations (4.12), the conditions required for the

Gould-Hribar-Nocedal method to be applied are simple to arrange. Suppose that

the current Newton iterate s̄k satisfies the trust-region constraint, i.e., r(s̄k) = 0.

The Newton equations are then

(
H(σ̄k) dk

dT
k 0

)(
∆s̄k

∆σ̄k

)
= −

(
g +H(σ̄k)s̄k

0

)
, (4.13)

and the last equation implies that dT
k∆sk = 0. Consider the projection matrix

P = I − dkd
T
k /‖dk‖2,

which projects vectors in R
n onto the set of vectors orthogonal to dk (i.e., the null

space of dT
k). Applying this projection to (4.13) gives

(
P 0

0 1

)(
H(σ̄k) dk

dT
k 0

)(
P 0

0 1

)(
∆s̄k

∆σ̄k

)
= −

(
P 0

0 1

)(
g +H(σ̄k)s̄k

0

)
, (4.14)

which implies that ∆σk is arbitrary, and ∆s̄k satisfying the positive semidefinite

equations

PH(σ̄k)P∆s̄k = −P
(
g +H(σ̄k)s̄k

)
. (4.15)

It can be shown that applying the CG method to these equations is equivalent to

applying the PCG method (Algorithm 3.5.1, p. 54) to H(σ̄k)∆s̄k = −(g+H(σ̄k)s̄k)

with preconditionerM−1 = P (= P 2). Moreover, the PCG iterates are well-defined,

remain in the null-space of dT
k and converge to the solution of (4.15).

72

Hager defines an approximate solution sSQP of (4.9) by performing a single

Newton step with s̄k = sk, which satisfies r(sk) = 0, as required. The single

Newton system is solved for an approximate step ∆s̄k using the CG-based method

MINRES (Paige and Saunders [38]). The approximate Newton direction sSQP is

then defined as sSQP = sk +∆s̄k.

Hager proves that any SSM method based on subspaces containing the vectors

sk, sSQP, ũ
k
n, and ∇Q(sk) is locally, quadratically convergent to a solution of the

trust-region subproblem. For more details, see Hager [21].

In a subsequent paper, Hager and Park [22] show that only three vectors are

needed to define Sk.

Theorem 4.4.1 If each step of an SSM method uses an Sk spanned by the vec-

tors sk, ∇Q(sk) and the leftmost generalized eigenvector un, then the SSM method

converges to a solution of the equality constrained trust-region subproblem (4.9).

If sk is not a stationary point, then including sk and ∇Q(sk) the subspace guar-

antees that the next iterate decreases Q (i.e., Q(sk) < Q(sk−1)) and gives a point

that is at least as good as the restricted steepest descent direction. Similarly, in-

cluding sk−1 and un in the subspace ensures that the method will move away from

nonoptimal stationary points.

As mentioned above, Hager recommends generating only four or five Lanczos

vectors in the first phase to avoid a significant loss of orthogonality. Moreover, as

only a few Lanczos vectors are required, they may be stored explicitly. A drawback

to this phase is that each iteration has a fixed cost, regardless of how close the

current approximate solution is to an acceptable solution.

Hager uses projection to change the indefinite system (4.12) into a positive

semidefinite system (4.15). If r(s) = 0 and dT∆s = 0 then sSQP = s + ∆s does

not satisfy the trust-region constraint. Hence, Hager is unable to repeatedly solve

the Newton equations because the first iterate will not satisfy the trust-region

73

constraint. One advantage of applying the reduced subspace solve after each SQP

iterate is that the subspace solve yields an iterate sk+1 that satisfies the trust-region

constraint. Thus, a new SQP iterate can be defined once again.

Hager and Park point out that even though only three vectors (sk−1, ∇Q(sk−1),

and un) are required for convergence, including the SQP vector in the subspace sig-

nificantly improves the convergence rate. In fact, Hager proves quadratic conver-

gence when the SQP vector is included in the subspace; however, Hager and Park

are only able to prove linear convergence when the SQP vector is not included in

the subspace.

The Hager-Park result is primarily of theoretical interest because it relies on

having the exact leftmost generalized eigenpair ofHu = λMu. In practice, approx-

imating the leftmost eigenpair is equivalent to solving the trust-region subproblem

(4.4) with g = 0, i.e.,

minimize
z∈Rn

E(z) = 1
2
zTHz subject to ‖Nz‖ ≤ δ.

Thus, although Hager and Park prove theoretical convergence to a solution of the

constrained subproblem, it is difficult to utilize the convergence results in practice.

5

An Iterative Trust-Region

Method

5.1 Introduction

There are two fundamental criteria used to evaluate iterative trust-region meth-

ods: (i) how does the method compares to methods based on direct factorization

(e.g., the Moré-Sorensen algorithm); and (ii) whether the iterative method is ef-

ficient. The criteria used to compare iterative and direct trust-region methods is

the number of function evaluations; the fewer the function evaluations on average,

the better the method. Even if an iterative trust-region method is able to solve

the subproblem as accurately as a direct method, the question remains whether

the method is relatively efficient compared to other iterative trust-region methods.

As the dimension of the problem increases, the time required to perform basic

linear algebra tasks increases. The predominant linear algebra cost is in perform-

ing matrix-vector products; thus, efficiency is measured in terms of the number of

matrix-vector products.

The proposed trust-region subproblem solver has two phases. The first phase is

based on Steihaug’s method; it applies Lanczos-CG to minimize Q(s). This phase

74

75

will terminate with either a point inside the trust-region boundary that satisfies

the convergence criteria, or the phase will terminate when either a direction of

negative curvature is encountered or a Lanczos-CG step leaves the trust region.

In the latter two cases, rather than follow the direction of negative curvature or

the last Lanczos-CG iterate to the boundary as in Steihaug’s method, the first

phase obtains an approximate solution on the boundary by minimizing Q(s) over

a three-dimensional subspace. The cost for the first phase is one matrix-vector

product with H for each Lanczos-CG iterate.

The second phase allow for accuracy control in the constrained case; it is en-

tered only in the case when the solution(s) of the trust-region subproblem lies on

the boundary. This phase uses two approaches to solve the constrained trust-region

subproblem. First, it approximates the solution of an evolving related constrained

trust-region subproblem. Second, it solves the original trust-region subproblem

over a sequence of three-dimensional subspaces. These two approaches are com-

bined in such a way that they are made dependent upon each other—accelerating

the overall rate of convergence of both approaches. The cost for this phase is also

one matrix-vector product with H each Lanczos-CG iterate.

The proposed method may terminate in either phase with an approximate

solution of the trust-region subproblem.

5.2 Phase One

In the first phase, the proposed method follows the PCG iterates until an ap-

proximate interior solution is found or it becomes evident that the solution lies on

the trust-region boundary. The Lanczos-PCG method is used to generate the PCG

iterates, and the Lanczos vectors are also used as direction generators to obtain

an approximation to the leftmost generalized eigenpair (λn, un) of the eigenvalue

problem Hu = λMu (see Section 5.2.1). The Lanczos-PCG iterates are computed

until the quantities sk, pk and αk associated with the kth PCG iteration satisfy

76

one of the four conditions:

(T′
1) sk + αkpk is an approximate minimizer of Q(s) such that ‖sk + αkpk‖M < δ;

(T′
2) ‖sk + αkpk‖M ≥ δ;

(T′
3) p

T
kHpk ≤ 0;

(T′
4) λ̃

k+1
n ≤ 0.

If termination occurs because of condition (T′
1) then the phased-SSM method is

terminated with the approximate solution sk +αkpk. If termination occurs because

of (T′
2), (T′

3) or (T′
4), the trust-region solution must lie on the boundary and a

single constrained subspace minimization problem is solved for an exit point sk+1.

This problem is given by

minimize
s

Q(s) subject to ‖Ns‖ = δ, s ∈ span{sk, pk, ũ
k+1
n }, (5.1)

where sk is the last interior PCG iterate, pk is the last PCG direction, and ũk+1
n is the

current approximation to the leftmost eigenvector of the eigenvalue problem Hu =

λMu (for details of the method applied to a similar problem, see Section 5.3.5).

The inclusion of the last PCG iterate sk in the subspace guarantees that the final

phase-one iterate satisfies Q(sk+1) < Q(sk).

The three-dimensional reduced problem (5.1) may be solved approximately

using the Moré-Sorensen method. The solution of the reduced problem is then

expanded to R
n to obtain sk+1. The Moré-Sorensen algorithm also provides σk+1,

the first estimate of σ for the second phase.

If one of the conditions (T′
2) or (T′

3) hold, the exit point is at least as good as

the Steihaug point because the exit point minimizes Q(s) over a larger subspace.

Note that this phase may terminate earlier than Steihaug’s method because of the

additional test on the approximate leftmost eigenvalue.

The proposed method retains many of the properties of Steihaug’s method.

First, if ‖NH−1g‖ < δ and H is positive definite, then the algorithm is identical to

77

the Lanczos-PCG method. Termination with condition (T′
1) is likely to occur with

increasing frequency as the outer iterations converge. Second, the first Lanczos-CG

step is the Cauchy point; thus, the underlying trust-region method is guaranteed

to converge to a first-order point.

The cost associated with this phase is one matrix-vector product to form each

Lanczos vector. The Lanczos-PCG routine requires the storage of two Lanczos

vectors and their product with H (for details, see Sections 3.6 and 3.7).

5.2.1 Estimating the leftmost eigenpair

The leftmost eigenpair estimation routine approximates the leftmost general-

ized eigenpair of the matrix pair (H,M) by solving the eigenproblem over a reduced

space. In particular, the generalized eigenvalue problem is solved over the subspace

Yk = span{vk+1, vk, ũ
k+1
n },

where vk+1 and vk are the two most current Lanczos vectors and ũk+1
n is the previous

estimate of the leftmost generalized eigenvector. The reduced problem is at most

three dimensional, and thus, can be solved via a direct method.

By including the current approximation to the leftmost generalized eigenvector

in the reduced space, the leftmost eigenvector routine is guaranteed to generate

a sequence of monotonically decreasing estimates of the leftmost eigenvalue, i.e.,

λ̃k+1
n ≤ λ̃k

n.

There is no additional cost for estimating leftmost eigenpair. In particular, if

the columns of Q are formed from a subset of the vectors {vk, vk−1, ũ
k−1
n }, no addi-

tional matrix-vector products are required. To see this, note that the reduced gen-

eralized eigenvalue problem may be written as the generalized eigenvalue problem

associated with the pencil QTHQ− λQTMQ, where Q is a matrix whose columns

are a basis for span{vk, vk−1, ũ
k−1
n }. If the leftmost generalized eigenvector in the

reduced space is ūk, then ũk
n = Qūk and ũk

n is a linear combination of the vectors

vk, vk−1 and ũk−1
n .

78

Each approximate eigenpair iteration requires the matrices QTHQ and QTMQ.

In Section 3.6, we saw how to compute Hvk, Hvk−1, Mvk, and Mvk−1. If the

columns of Q are made up of a subset of the vectors vk, vk−1 and ũk−1
n , then with

the vectors Hũk−1
n and Mũk−1

n , it is trivial to explicitly form QTHQ and QTMQ.

However, notice that since ũk
n is a linear combination of the vectors vk, vk−1 and

ũk−1
n , then Hũk

n and Mũk
n are also linear combinations of the products of H and

M , respectively, with the vectors vk, vk−1 and ũk−1
n .

The initial estimate ũ0
n can be taken to be the leftmost generalized eigenvec-

tor estimate obtained during the solution of the previous trust-region subprob-

lem. Thus, the initial generalized eigenvalue problem is solved over the subspace

span{v0, ũ
0
n}. As the trust-region solver converges and the sequence {Hk} con-

verges, ũ0
n will be a good initial estimate for the leftmost eigenvector of the current

Hessian.

In order to include ũ0
n in the subspace (and to allow the efficient formation of

QTHQ and QTMQ), it is necessary to know the vectors Hũ0
n and Mũ0

n. The vector

Hũ0
n is computed by direct multiplication. However, it is not possible to compute

Mũ0
n without knowing M . Thus, for the (j+1)th subproblem, the initial estimate

ũ0
n of the current generalized eigenvector is defined to be

ũ0
n

△

= M−1
j+1[Mũ](j), (5.2)

where [Mũ](j) estimates the product of Mj and ũ
(j)
n , and ũ

(j)
n denotes the final

estimate of a leftmost eigenvector for Hj. The idea is that as the trust-region algo-

rithm converges, not only does the sequence {Hj} converge, but also the sequence

{Mj} converges; in this case, ũ0
n = M−1

j+1[Mũ](j) ≈ ũ
(j)
n . This choice of ũ0

n yields

the following convenient definition:

[Mũ0
n] = Mj+1M

−1
j+1[Mũ](j) = [Mũ](j).

79

5.3 Phase Two

The kth iteration of the second phase generates a new point sk+1 by solving

the subspace minimization problem

minimize
s

Q(s) = gTs+ 1
2
sTHs subject to ‖s‖M ≤ δ, s ∈ Sk, (5.3)

where Sk = span{sk, s̄k, ũ
k
n} and s̄k is defined as one step of Newton’s method

applied to a related constrained problem.

Hager [21] includes the subspace basis vector sSQP that is one step of Newton’s

method for the constrained problem

minimize
s

Q(s) = gTs+ 1
2
sTHs subject to 1

2
δ2 − 1

2
sTMs = 0. (5.4)

Newton’s method is used to compute a stationary point of the Lagrangian

L(s, σ) = Q(s) + σr(s), (5.5)

where r(s) = 1
2
(sTMs− δ2) and σ is a nonnegative Lagrange multiplier. Each step

of Newton’s method requires the solution of an indefinite system with matrix

(
H(σ) d

dT 0

)
.

Instead of solving an indefinite system, the second phase solves a related system

that may be viewed as a regularized Newton system. The aim is to define a

step satisfying a related positive-definite system that can be solved using the CG

method.

5.3.1 The augmented penalty function

An alternative to using Newton’s method to find a root of ∇L(s, σ) is to mini-

mize the quadratic penalty function

P2(s) = Q(s) +
1

2µ
r(s)2

80

for a sequence of decreasing positive penalty parameters µ. A minimizer s = s(µ)

must satisfy the first-order condition

∇P2(s) = g +Hs+
1

µ
r(s)NTNs = 0.

If σ denotes the auxiliary quantity σ = r(s)/µ, then the penalty minimizer s(µ)

may be computed as part of the root
(
s(µ), σ(µ)

)
of the nonlinear equations

G(s, σ) = 0, where

G(s, σ) =

(
g + (H + σNTN)s

r(s)− µσ

)
. (5.6)

Forsgren and Gill [8] propose the augmented quadratic penalty function

Pµ(s, σ) = Q(s) +
1

2µ
r(s)2 +

1

2µ
(µσ − r(s))2, (5.7)

which is the usual quadratic penalty function augmented with a term that penalizes

deviations of r(s) from µσ. The gradient and Hessian of Pµ(s, σ) may be written

in the form

∇Pµ(s, σ) =

(
g +H(σ̂)s

µσ − r(s)

)

and

∇2Pµ(s, σ) =

(
H(σ̂) + 2

µ
NTNssTNTN −NTNs

−sTNTN µ

)
,

whereH(σ) = H+σNTN and σ̂ = σ+2
(
r(s)−σµ

)
/µ. If we define the intermediate

vector π = π(s) = r(s)/µ, we may write

σ̂ = σ + 2(π(s)− σ). (5.8)

A key property is that a minimizer (s(µ), σ(µ)) of Pµ(σ, µ) is a zero of G(s, σ),

and hence satisfies the first-order necessary conditions for a minimizer of the

quadratic penalty function. Moreover, if H + σNTN is positive definite then

(s(µ), σ(µ)) is a minimizer of Pµ(s, σ) if and only if s(µ) is a minimizer of P2(s).

(For further details on the augmented quadratic penalty function Pµ, see Forsgren

and Gill [8] and Gertz and Gill [12].)

81

Given an approximate solution wk = (s̄k, σ̄k), the Newton step associated with

minimizing Pµ(s, σ) is the solution ∆wk = (∆sk, ∆σk) of the linear system

(
H(σ̂k) + 2

µ
dkd

T
k dk

dT
k µ

)(
∆s̄k

−∆σ̄k

)
= −

(
g +H(σ̂k)s̄k

r(s̄k)− µσ̄k

)
, (5.9)

where dk denotes the vector dk = NTNs̄k.

As (s̄k, σ̄k) →
(
s(µ), σ(µ)

)
, it holds that r(s̄k)/µ → σ(µ) and hence π(s̄k) →

σ(µ) and σ̂k → σ(µ) (see, e.g., (5.8)). It follows that the matrix H(σ̂) on the left-

hand side of (5.9) may be approximated by H(σ), giving the approximate Newton

system (
H(σ̄k) + 2

µ
dkd

T
k dk

dT
k µ

)(
∆s̄k

−∆σ̄k

)
= −

(
g +H(σ̂)s̄k

r(s̄k)− µσ̄k

)
. (5.10)

If both sides of this equation are multiplied by the nonsingular matrix
(
I − 2

µ
dk

0 1

)
,

and the last column is scaled by −1, we obtain
(
H(σ̄k) dk

dT
k −µ

)(
∆s̄k

∆σ̄k

)
= −

(
g +H(σ̄k)s̄k

r(s̄k)− µσ̄k

)
,

which is a perturbation of the SQP Newton equation (4.12) (p. 70). Equation

(5.10) may be viewed as a regularization of the SQP Newton equation (4.12).

There are several advantages of solving (5.10) rather than the SQP Newton

equations (4.12). First, provided H(σ) is positive semidefinite with σ > 0 and µ >

0, then (5.10) is positive definite. To see this, consider the following decomposition

of the left-hand side:
(
H(σ̄k) + 2

µ
dkd

T
k −dk

−dT
k µ

)
=

(
I − 1

µ
dk

0 1

)(
H(σ̄k) + 1

µ
dkd

T
k 0

0 µ

)(
I 0

− 1
µ
dT

k 1

)
.

(5.11)

It follows that if H(σ̄k) is positive definite, then (5.10) can be solved using a

preconditioned CG method.

82

Theorem 5.3.1 Suppose that pTH(σ)p > 0 for all vectors p 6= 0 such that dTp = 0.

Then H(σ) + 2
µ
ddT is positive definite for all µ < µ̄, where

1

µ̄
= −1

2
min{0, λn(H(σ))}/‖d‖22,

and λn(H(σ)) denotes the leftmost eigenvalue of H(σ).

Proof. Let H(σ) = QΛQT denote the spectral decomposition of H(σ), where

Q =
(
q1 q2 · · · qn

)
and Λ = diag

(
λi(H(σ)

)
with λ1(H(σ)) ≥ · · · ≥ λn(H(σ)).

Let p be any vector of unit norm such that dTp 6= 0 (otherwise, it holds that

pT
(
H(σ) + 2

µ
ddT
)
p = pTH(σ)p > 0 and the result holds immediately). Then, there

exist scalars βi such that

p =
n∑

i=1

βiqi, with
n∑

i=1

βi = 1,

and we may write

pTH(σ)p =
(n∑

i=1

βiq
T
i

)
H(σ)

(n∑

i=1

βiqi

)
=

n∑

i=1

β2
i λi(H(σ)) > 0.

Then, for all p such that dTp 6= 0, it holds that

pT
(
H(σ) +

2

µ
ddT
)
p =

n∑

i=1

β2
i λi(H(σ)) +

2

µ
(dTp)2

≥
n∑

i=1

β2
i λi(H(σ)) +

2

µ
‖d‖22

>
n∑

i=1

β2
i min{0, λn(H(σ))}+

2

µ
‖d‖22

= min{0, λn(H(σ))}+
2

µ
‖d‖22.

It follows that pT(H(σ) + 2
µ
ddT)p > 0 for all µ < µ̄, where

1

µ̄
=
−min{0, λn(H(σ))}

2‖d‖22
,

83

as required.

The following result shows that the scalar µ serves as regularization parameter

in the so-called “hard case” (see Section 2.3.5).

Theorem 5.3.2 (Regularization of the hard-case.) Let (s∗, σ∗) denote a so-

lution of the trust-region problem:

minimize
s

gTs+ 1
2
sTHs subject to ‖s‖M ≤ δ,

in the situation where H(σ∗) = H + σ∗M is positive semidefinite and singular,

g ∈ null(H(σ∗))⊥ and ‖(H + σ∗M)†g‖ < δ. If the leftmost generalized eigenvalue

of the matrix pair (H,M) is simple, then the augmented system matrix (with d =

Ms∗) (
H(σ∗) + 2

µ
ddT −d

−dT µ

)

is positive definite.

Proof. This is the hard case; thus, σ∗ = −λn where λn is the leftmost gener-

alized eigenvalue of the matrix pair (H,M). The solution s∗ of the trust-region

subproblem is given by

s∗ = −(H − λnM)†g + βz, (5.12)

where z is a unit vector such that z ∈ null(H − λnM) and β is a nonzero scalar

such that ‖s∗‖M = δ.

Suppose that the generalized eigenvalues of the matrix pair (H,M) are such

that

λ1 ≥ λ2 ≥ · · · ≥ λr > λr+1 = · · · = λn,

i.e., the left-most eigenvalue λn has multiplicity n− r. Let the generalized spectral

decomposition of H be denoted by H = UΛUT , where Λ = diag(λ1, λ2, . . . , λn)

and UTM−1U = I. Consider the matrix V such that V = U−T and partition V so

that V = (Vr Vn−r), where Vr is n × r and Vn−r is n × (n− r). The columns of

84

Vr and Vn−r form bases for range(H−λnM) and null(H−λnM), respectively. We

have

p = −(H − λnM)†g

= −U−T

(
(Λr − λnIr)

−1 0

0 0

)
U−1g,

and z = Vn−rq for some nonzero (n− r)-vector q.

From (5.11) we have that the inertia of the augmented system is determined

by the inertia of H(σ∗) + 1
µ
ddT , i.e.,

H(σ∗) +
1

µ
ddT = U

(
(Λr − λnI) 0

0 0

)
UT +

1

µ
ddT

= U

((
Λr − λnIr 0

0 0

)
+

1

µ
vvT

)
UT ,

where v = U−1d. Using (5.12), we obtain

v = (UTMU)UT s∗ = UTMU

(
−(Λr − λnIr)

−1UT
r g

βq

)
.

The eigenvalue interlacing theorem (see, e.g., Wilkinson [50, p.97]) and Sylvester’s

law of inertia now gives

In
(
H(σ∗) +

1

µ
ddT
)

= (r + 1, 0, n− r − 1).

If λn is a simple eigenvalue, then r = n− 1 and the result follows directly.

These theorems imply that a CG-type algorithm will minimize Pµ(s, σ) until

a conjugate direction (p1, p2) is obtained such that pT
1H(σ)p1 ≤ 0. Intuitively this

means that if µ is sufficiently small, the function Pµ does not introduce additional

directions of negative or zero curvature into the subproblem.

A preconditioner that removes any ill-conditioning resulting from a small value

of µ is given by

P =

(
M + 2

µ
ddT d

dT µ

)
,

85

where M is a preconditioner for H(σ). Consider the case when M is a positive-

definite diagonal approximation to H(σ). The equations Pv = r used to apply the

preconditioner are solved by exploiting the equivalence of the systems:

(
M + 2

µ
ddT d

dT µ

)(
v1

v2

)
=

(
r1

r2

)
, (5.13a)

and

(
M −d
−dT −µ

)(
v1

v2

)
=

(
r1 − 2r2

µ
d

−r2

)
. (5.13b)

As M is diagonal and d = Ms is a column vector, this system may be solved

analytically.

Unlike Hager’s projected CG-type method to solve the SQP Newton equations,

this approach does not require that the constraint is satisfied exactly, i.e., this

approach does not require that r(s) = 0.

5.3.2 The primal-dual augmented Lagrangian

Given a positive scalar µ and a nonnegative scalar σe, consider the function of

n+ 1 variables:

Lµ,σe
(s, σ) = Q(s) + σer(s) +

1

2µ
r(s)2 +

1

2µ

(
µ(σ − σe)− r(s)

)2
.

The gradient and Hessian of Lµ,σe
(s, σ) with respect to (s, σ) are

∇Lµ,σe
(s, σ) =

(
g +H(σ̂)s

µ(σ − π)

)
,

and

∇2Lµ,σe
(s, σ) =

(
H(σ̂) + 2

µ
ddT −d

−dT µ

)
,

where σ̂ = σ + 2(π − σ) with π = π(s) = σe + r(s)/µ.

A key property of Lµ,σe
(s, σ) is that a solution of the trust-region subproblem

is a minimizer of Lµ,σe
(s, σ) with respect to both (s, σ).

86

Theorem 5.3.3 Let (s∗, σ∗) be a solution of the trust-region subproblem (4.4) with

‖s∗‖M = δ, then for all µ > 0, the point (s∗, σ∗) minimizes the function

L∗µ,σe
(s, σ) = Q(s) + σ∗r(s) +

1

2µ
r(s)2 +

1

2µ

(
µ(σ − σ∗)− r(s)

)2
.

Proof. We verify the first-order and second-order sufficient conditions for a mini-

mizer. First, differentiating L∗µ,σe
(s, σ) with respect to s yields

∇sL
∗
µ,σe

(s, σ) = g +Hs+ σ∗Ms +
1

µ
r(s)d+

1

µ
(µ(σ∗ − σ) + r(s))d.

Since r(s∗) = 0, then

∇sL
∗
µ,σe

(s∗, σ∗) = g +H(σ∗)s∗ = 0.

Differentiating with respect to σ and evaluating at the point (s∗, σ∗) yields

∇σL
∗
µ,σe

(s∗, σ∗) = µ(σ∗ − σ∗)− r(s∗) = 0.

Now, we verify the second-order conditions for an unconstrained minimizer.

Observe that

∇2
s,σL
∗
µ,σe

(s, σ) = −d, ∇2
σ,sL
∗
µ,σe

(s, σ) = −dT , ∇2
σ,σL
∗
µ,σe

(s, σ) = µ.

And,

∇2
s,sL
∗
µ,σe

(s, σ) = H + σ∗M +
2

µ
(ddT + r(s)M) + (σ∗ − σ)M

= H(σ) + 2(σ∗ − σ)M +
2

µ
(ddT + r(s)M).

Hence, ∇2L∗µ,σe
(s, σ) evaluated at the point (s∗, σ∗) is given by

(
H(σ∗) + 2

µ
ddT −d

−dT µ

)
.

The inertia of this matrix is given by a factorization analogous to (5.11). Since

H(σ∗) is positive semidefinite, H(σ∗) + 1
µ
ddT is positive semidefinite for all µ > 0,

implying ∇2L∗µ,σe
(s∗, σ∗) is positive semidefinite.

87

Hence, the point (s∗, σ∗) satisfies the necessary conditions for an unconstrained

minimizer of L∗µ,σe
.

This result suggests that, given an approximate value σe, a good strategy to

find an approximate solution to the trust-region subproblem is to minimize

Lµ,σe
(s, σ) = Q(s) + σer(s) +

1

2µ
r(s)2 +

1

2µ

(
µ(σ − σe)− r(s)

)2

with respect to both (s, σ). The Newton equations for minimizing Lµ,σe
(s, σ) are:

(
H(σ̂) + 2

µ
ddT −d

−dT µ

)(
∆s

∆σ

)
= −

(
g +H(σ̂)s

µ(σ − π)

)
,

or, equivalently,
(
H(σ̂) + 2

µ
ddT d

dT µ

)(
∆s

−∆σ

)
= −

(
g +H(σ̂)s

µ(π − σ)

)
.

where, as before, σ̂ = σ + 2(π − σ) with π = π(s) = σe + r(s)/µ.

This regularization needs two parameters: µ and σe. The value of σe must

be chosen so that if H(σ) is positive definite, then the Newton system is positive

definite. As the second phase converges, π ≈ σ and this system will be positive

definite provided H(σ) is positive definite; however, far from a solution to the

trust-region subproblem, if σe is much smaller than σ, then π = σe + r(s)/µ≪ σ

and this system can be indefinite. Nevertheless, additional care can be taken to

guarantee that this system is positive definite whenever H(σ) is positive definite

(for more details, see Section 5.3.7).

As the second phase converges, σe ≈ σ∗, and thus, µ need not approach zero.

In particular, if σe is the optimal σ, then one minimization is required without

µ needing to be small. This implies that it is unnecessary to precondition for µ,

which is required for the penalty function regularization (see (5.13)). However, if

σe does not converge to the optimal σ, then µ must go to zero.

There are two beneficial properties of the function Lµ,σe
(s, σ). First, a good

value for σe is available from the reduced trust-region subproblem solve (see Sec-

tion 5.3.5). Second, an explicit lower bound σL may be imposed on σ by including

88

a barrier term in the definition of Lµ,σe
. This is beneficial because the Newton sys-

tem is positive definite if σ > −λn, where λn denotes the exact leftmost generalized

eigenvalue of the matrix pair (H,M).

Consider the function

Lν
µ,σe

(s, σ) = Q(s) + σer(s) +
1

2µ
r(s)2 +

1

2µ

(
µ(σ − σe)− r(s)

)2 − ν ln(σ − σL),

where ν is a small positive constant. The gradient and Hessian of Lν
µ,σe

(s, σ) with

respect to (s, σ) are

∇Lν
µ,σe

(s, σ) =

(
g +H(σ̂)s

µ(σ − π)− ν/(σ − σL)

)
,

and

∇2Lν
µ,σe

(s, σ) =

(
H(σ̂) + 2

µ
ddT −d

−dT µ+ ν/(σ − σL)2

)
.

This gives the Newton equations

(
H(σ̂) + 2

µ
ddT d

dT µ+ ν/(σ − σL)2

)(
∆s

−∆σ

)
= −

(
g +H(σ̂)s

µ(π − σ) + ν/(σ − σL)

)
,

with σ̂ = σ + 2(π − σ).

The function Lν
µ,σe

shares many of the advantages of Lµ,σe
. The Newton system

arising from minimizing Lν
µ,σe

with respect to both (s, σ) can be made positive

definite whenever σ > −λn, and thus, a CG-type method may be used to solve the

Newton equations (see Section 5.3.7). Another advantage of both schemes is that

the initial pair (s, σ) need not be feasible, i.e., ‖s‖M 6= δ.

The optimal σ∗ must lie in the interval [−λn,∞); thus, σL is initially set to be

σL = max{−λ̃n, 0},

and is then updated by a suitable safeguarding algorithm. There are two possi-

ble sources of updates for σL. First, if the Newton system is determined to be

indefinite for a trial value of σ, then σL may be set to this value. Second, a new

89

estimate of the leftmost generalized eigenvalue may provide a better value of σL

(see Section 5.3.3). In the hard case, the function Lν
µ,σe

may become undefined if

σ ≈ σL; thus, the lower bound σL may need to be reset to be made slightly smaller

than the approximate leftmost generalized eigenvalue.

In practice, it is not efficient to solve the Newton equations very accurately. If

the current approximate subproblem solution is close to an optimal solution, only

a few iterations of a CG-type algorithm may be needed to sufficiently solve the

subproblem.

5.3.3 Minimizing the primal-dual augmented Lagrangian

Each iteration of the second phase involved the computation of one Newton

step for a minimizer of

Lν
µ,σe

(s, σ) = Q(s) + σer(s) +
1

2µ
r(s)2 +

1

2µ

(
µ(σ − σe)− r(s)

)2 − ν ln(σ − σL).

In order to focus on this one step, we will use (s, σ) to denote the kth Newton

iterate, and (∆s,∆σ) to denote the kth Newton direction.

The Lanczos-PCG method is used to find an approximate solution of the New-

ton equations
(
H(σ̂) + 2

µ
ddT d

dT µ+ ν/(σ − σL)2

)(
∆s

−∆σ

)
= −

(
g +H(σ̂)s

µ(π − σ) + ν/(σ − σL)

)
,

where σ̂ = σ + 2(π − σ). A block preconditioner is used to exploit the structure

of these equations. If M is a preconditioner for H , then a suitable preconditioner

for the Newton equations is

P =

(
(1 + σ̂)M + 2

µ
ddT d

dT µ

)
. (5.14)

Note that P can be written as the product of three matrices

P =

(
1 2

µ
d

0 1

)(
1 − 2

µ
d

0 1

)(
(1 + σ̂)M + 2

µ
ddT d

dT µ

)
,

90

which may be simplified as

P =

(
1 2

µ
d

0 1

)(
(1 + σ̂)M −d

dT µ

)
,

This provides a convenient expression for P−1 as

P−1 =

(
(1 + σ̂)M −d

dT µ

)−1(
1 2

µ
d

0 1

)−1

. (5.15)

Equation (5.15) can be further simplified by using the following decomposition:

(
(1 + σ̂)M −d

dT µ

)−1

= WDW−T ,

where

W =

(
1 σtM

−1d

0 1

)
D =

(
σtM

−1 0

0 1/(µ+ σtd
TM−1d)

)
,

and σt ≡ 1/(1 + σ̂). Using this decomposition, P−1 can be written as:

P−1 =

(
σtM

−1 (1/(µ(1 + σ̂) + dTs))M−1d

0 1/(µ+ σtd
Ts)

)(
I − 2

µ
d

−σts
T 2σt

µ
sTd+ 1

)
, (5.16)

Thus, matrix-vector products with P−1 may be performed as products with block

matrices.

If H(σ) is not positive definite then Lanczos-PCG may encounter a direction

of negative curvature. If Lanczos-PCG computes a negative diagonal element of D

in the LDLT decomposition of the tridiagonal matrix, the algorithm terminates

prematurely and returns the current Lanczos-PCG iterate. In all cases, the Newton

update is a descent direction (of positive curvature) for Lν
µ,σe

.

The cost of a Lanczos-PCG solve is one matrix-vector product for each Lanc-

zos vector. Even with the block preconditioner, Lanczos-PCG may converge very

slowly or not at all. To guard against this situation, an upper limit is imposed

on the number of Lanczos vectors computed for each Lanczos-PCG solve. In the

numerical results of Chapter 7, this limit was n/10.

91

Each Lanczos vector is used to generate a new estimate of the leftmost gener-

alized eigenpair. However, the Lanczos vectors have n + 1 components, i.e., the

Newton system is one dimension larger than the original subproblem. Nevertheless,

the estimation routine is able to proceed as in the first phase since the Lanczos

vectors only serve as direction generators (see Section 5.2.1). In particular, the

estimation routine generates new subspaces using only (the first) n components of

each Lanczos vector.

The Newton iterates in this section are distinct from the iterates used to ap-

proximate the solution to the trust-region subproblem. However, upon entering

the second phase, the initial s is taken to be a the current approximation to the

trust-region subproblem solution, and the initial value of σ is taken to be the ap-

proximation generated by the Moré-Sorensen solve at the end of the first phase.

Thus, upon entering the second phase, the Newton iterate and the current approx-

imation to the trust-region subproblem are equivalent.

5.3.4 Economizing matrix-vector products

The solution to the Newton equations in the second phase provides an update

(∆s̄k, ∆σ̄k) to the Newton iterate. The Newton iterate is then given by (s̄k+1, σ̄k+1)

where s̄k+1 = s̄k+αk∆s̄k and σk+1 = σ̄k+αk∆σ̄k. After each Newton iteration, the

vector Hs̄k+1 must be updated. This vector is needed to form both the left-hand

and right-hand sides of the next Newton system associated with minimizing Lν
µ,σe

.

This section presents details associated with forming Hs̄k+1; however, since

Hs̄k+1 = Hs̄k +αkH∆s̄k, the task of forming Hs̄k+1 reduces to the task of forming

H∆s̄k. The method presented below is specifically in the context of the Lanczos-

PCG method; however, the details are similar for other CG-type methods.

In Section 3.6, the Lanczos-CG algorithm was extended to solve the system

Ax = b and then indirectly form A∆xj . Recall that forming A∆xj reduced to

one matrix-vector product for each Lanczos-CG iteration; namely, the products

Avk were computed for all k. However, forming products of the form H∆s̄k is

92

complicated by the fact that the update is the augmented vector (∆s̄k, ∆σ̄k), i.e.,

∆s̄k is only part of the solution vector. Practically, this means that additional care

must be taken because the Lanczos vectors are constructed to solve an augmented

system of one dimension higher.

Consider the following version of Lanczos-PCG for the Newton system associ-

ated with minimizing Lν
µ,σe

. For simplicity, the Newton equations are denoted by

H̄x = ḡ, and the Lanczos-PCG iterates are denoted by {xi}. For simplicity, x̂i will

denote the first n components of xi. In this notation, the vector H∆s̄k is denoted

by Hx̂l, where xl is the final Lanczos-PCG iterate, i.e., xl = (∆s̄k, ∆σ̄k). Finally,

let P denote the preconditioner for the augmented system. Apart from these dif-

ferences, the notation in the algorithm below is consistent with the notation in the

original Lanczos-CG algorithm.

Algorithm 5.3.1. Lanczos-PCG for the augmented system

Choose τtol > 0;

x0 = 0; [Hx̂0] = 0;

s0 = ḡ(x0); β0 = −‖s0‖P−1; γ−1 = 1; τ = β0; i = −1;

while τ > τtol do

wi+1 = si+1/βi+1; i← i+ 1; Solve Pvi = wi; [Hv̂i] = Hv̂i;

γi = vT
i [H̄vi];

if k = 0 then

li = 0;

pi = vi; [Hp̂i] = [Hv̂i];

si+1 = [H̄vi]− γiwi;

else

li = βi/di−1;

pi = vi − lipi−1; [Hp̂i] = [Hv̂i]− li[Hp̂i−1];

si+1 = [H̄vi]− γiwi − βiwi−1;

end

di = γi − βili; αi = −βiαi−1/di;

93

xi+1 = xi + αipi; [Hx̂i+1] = [Hx̂i] + αi[Hp̂i];

βi+1 = −‖si+1‖P−1; τ = −βi+1αi;

end do

There is a subtle detail in this algorithm: only one matrix-vector product is

needed each iteration. In particular, given Hv̂i, the vector H̄vi can be formed

implicitly by utilizing the block structure of H̄ . An important implication of this

is that the algorithm for the leftmost generalized eigenvalue requires no additional

matrix-vector products with H . In the augmented Newton solve, the vectors {v̂i}
are used as direction generators (Section 5.3.3), and consequently, only {Hv̂i} and

{Mv̂i} are required for the estimation (see Section 5.2.1). (For details on the

implicit formation of the vectors {Mv̂i}, see Section 5.3.6.)

5.3.5 Solution of the subproblem on a reduced subspace

The Newton iterate s̄k+1 is obtained using a Wolfe line search (see Section 5.3.7).

With s̄k, the second phase solves the trust-region subproblem over a reduced space.

In particular, each iteration of the second phase solves the reduced problem

minimize
s

Q(s) = gTs+ 1
2
sTHs subject to s ∈ Sk, ‖s‖M ≤ δ, (5.17)

where Sk = span{sk, s̄k+1, ũ
k+1
n }. The reduced problem is at most three dimen-

sional, and can be solved efficiently using a direct method (e.g., the Moré-Sorensen

algorithm).

No additional matrix-vector multiplications are required for the reduced sub-

space solve provided that the subspace is formed explicitly using a subset of the

vectors {sk, s̄k+1, ũ
k+1
n }. To see this, note that the reduced subproblem has the

form

minimize
p

Q(p) = (Qg)Tp + 1
2
pT(QTHQ)p, subject to ‖p‖C ≤ δ, (5.18)

where Q is a matrix whose columns span Sk and C = QTMQ. The QR decompo-

sition can be used to fill the columns of Q with a maximally linearly independent

94

subset of the vectors {sk, s̄k+1, ũ
k+1
n }. Since the quantities Hsk, Hs̄k+1, and Hũk+1

n

are already known (see Sections 3.6, 5.2.1, and 5.3.4, respectively), the matrix

QTHQ can be formed explicitly. Similarly, QTMQ can be calculated from the

vectors Msk, Ms̄k+1, and Mũk+1
n (see Sections 3.6, 5.2.1, and 5.3.6, respectively).

Once a solution p (say) of the reduced problem is known, it may be expanded into

the full space as sk+1 = Qp, which implies that sk+1 is a linear combination of the

columns of Q; thus, sk+1 is a linear combination of the vectors {sk, s̄k+1, ũ
k+1
n }.

Observe that Hsk+1 may also be formed as a linear combination of Hsk, Hs̄k+1,

and Hũk+1
n . Similarly, Msk+1 may be formed from Msk, Ms̄k+1, and Mũk+1

n .

If the elements of M are available, the vector ∇Q(sk) can be included in the

subspace, at the cost of one additional matrix-vector multiply with H , to ob-

tain a subspace of at most four dimensions. (In order to form C, the product

M∇Q(sk) must be computed, which involves the product Mg; having no way to

form Mg restricts our ability to include ∇Q(sk) in the reduced subspace.) In this

case, the subspace solve is very similar to the subspace solve used by Hager (see

equation (4.10), Section 4.4).

5.3.6 Estimating the elliptical norm

The quantity Ms̄k+1 is needed for the reduced subspace solve and the leftmost

generalized eigenvalue approximation routine for (H,M). Moreover, this quantity

can be used to estimate the elliptical norm of s̄k+1, i.e., ‖s̄k+1‖M , which is used to

determine whether an iterate satisfies the optimality conditions. Since Ms̄k+1 =

Ms̄k + αkM∆s̄k, the task of estimating Ms̄k+1 reduces to the task of estimating

M∆s̄k.

Algorithm 5.3.2. Lanczos-PCG for the augmented system (2)

Choose τtol > 0;

x0 = 0; [Mx̂0] = 0;

s0 = ḡ(x0); β0 = −‖s0‖P−1 ; γ−1 = 1; τ = β0; i = −1;

95

while τ > τtol do

wi+1 = si+1/βi+1; Solve Pvi+1 = wi+1; [Mv̂i+1] = Mv̂i+1; i = i+ 1;

[H̄vi] = H̄vi; γi = vT
i [H̄vi];

if k = 0 then

li = 0;

pi = vi; [Mp̂i] = [Mv̂i];

si+1 = [H̄vi]− γiwi;

else

li = βi/di−1;

pi = vi − lipi−1; [Mp̂i] = [Mv̂i]− li[Mp̂i−1];

si+1 = [H̄vi]− γiwi − βiwi−1;

end

di = γi − βili; αi = −βiαi−1/di;

xi+1 = xi + αipi; [Mx̂i+1] = [Mx̂i] + αi[Mp̂i];

‖x̂i+1‖2M = x̂T
i+1[Mx̂i+1];

βi+1 = −‖si+1‖P−1; τ = −βi+1αi;

end do

By assumption, it is not possible to compute Mv̂i+1 directly. Nevertheless, it

may be implicitly formed by considering the block preconditioner P . To see this,

consider the matrix E ∈ R
n×(n+1) such that

E =
(
I 0

)
,

where I is the n × n identity matrix. Note that the matrix-vector product Ex is

an n-vector containing the first n components of the vector x. Using this notation,

Mv̂i+1 = MEP−1wi+1.

The block preconditioner for the Newton equations for minimizing Lν
µ,σe

was

given by

P =

(
(1 + σ̄)M + 2

µ
ddT d

dT µ

)
.

96

From Section 5.3.3 (Equation (5.16)), P−1 can be written as:

P−1 =

(
σtM

−1 (σt/(µ+ σtd
Ts))M−1d

0 1/(µ+ σtd
Ts)

)(
I − 2

µ
d

−σts
T 2σt

µ
sTd+ 1

)
,

where σt ≡ 1/(1 + σ̂).

Let wi+1 = (w1, w2) where w1 is an n-vector and w2 is a scalar. Then, the first

n components of P−1wi+1 are given by:

EP−1wi+1 =
(
M−1 0

)(σtI σtσµd

0 σµ

)(
w1 − w2

2
µ
d

−σts
Tw1 + w2(

2σt

µ
sTd+ 1)

)
,

where σµ = 1/(µ+ σtd
Ts). And, finally,

MEP−1wi+1 =
(
I 0

)(σtI σtσµd

0 σµ

)(
w1 − w2

2
µ
d

−σts
Tw1 + w2(

2σt

µ
sTd+ 1)

)
. (5.19)

Thus, Mv̂i+1 = MEP−1wi+1 can be computed via products with block matri-

ces.

The quantity Mv̂k+1 is crucial for continuing the leftmost generalized eigen-

value approximations inside the augmented Lanczos-CG solve. In particular, this

quantity is required to form the reduced space for the generalized eigenproblem

(see Sections 5.3.4 and 5.2.1).

5.3.7 The phase-two algorithm

The second phase allows for user-specified accuracy; thus, it can obtain accu-

racy comparable to the Moré-Sorensen algorithm in the constrained case. The

cost of this phase depends on the desired accuracy of each subproblem solve:

the more accurate, the more expensive. However, the cost associated with en-

tire trust-region algorithm is only the cost in forming Lanczos vectors; there are

no additional matrix-vector multiplications in the entire algorithm. The following

algorithm gives an overview of the second phase.

97

Algorithm 5.3.3. Outline of the Second Phase

Choose ηtol > 0, ν > 0;

ηk = +∞;

s̄k = sk; [Hs̄k] = [Hsk]; [Ms̄k] = [Msk];

σe = σk; σL = max{−λ̃k
n, 0}

Compute an acceptable µ; (Theorem 5.3.1, using λn(H(σ)) ≈ λ̃k
n)

while ηk > ηtol do

Compute one step (∆s̄k, ∆σ̄k) of Newton’s method for minimizing Lν
µ,σe

;

(The quantities λ̃k+1
n and ũk+1

n are updated simultaneously);

Set s̄k+1 = s̄k + αk∆s̄k; σ̄k+1 = σ̄k + αk∆σ̄k;

[Hs̄k+1] = [Hs̄k] + αk[H∆s̄k]; [Ms̄k+1] = [Ms̄k] + αk[M∆s̄k];

Update σL, if necessary;

Solve the subproblem over a reduced subspace to obtain:

sk+1; σk+1; [Hsk+1]; [Msk+1];

σe = σk+1;

Safeguard σk+1 and σ̄k+1;

Update µ; (via Theorem 5.3.1)

ηk = ‖(H + σk+1M)pk+1 + g‖M−1 + 1
2
|sT

k+1Msk+1 − δ2|;
σL ← max{λ̃k+1

n , σL};
k ← k + 1;

end do

At the start of the second phase, s̄k is initialized at sk, the current approxima-

tion to the trust-region subproblem solution. (Thus, Hs̄k = Hsk and Ms̄k = Msk,

which are computed in the first phase.) If the first Newton step for minimizing

Lν
µ,σe

is denoted by (∆s̄k, ∆σ̄k), then the next Newton iterate is (s̄k+1, σ̄k+1), where

s̄k+1 = s̄k + βk∆s̄k and σ̄k+1 = σ̄k + βk∆σ̄k,

with βk denoting the step length obtained via a Wolfe line search. The compu-

tation of Hs̄k+1 = Hsk + βkH∆s̄k and Ms̄k+1 = Msk + βkM∆s̄k is discussed in

98

Sections 5.3.4 and 5.3.6, respectively.

The error in the optimality conditions for the subproblem iterate (sk+1, σk+1)

is defined as

‖(H + σk+1M)pk+1 + g‖M−1 + 1
2
|sT

k+1Msk+1 − δ2|, (5.20)

where pk+1 approximately solves (2.36). This test takes into account that the Moré-

Sorensen solve is only an approximation to the solution for the reduced subproblem.

There are several important issues associated with safeguarding this algorithm.

In the hard case, care must be taken so that σL 6= σk for any k; otherwise ∇Lν
µ,σe

and ∇2Lν
µ,σe

are undefined. The Lanczos-PCG algorithm terminates immediately

it detects that ∇2Lν
µ,σe

is indefinite. This can occur only if σk /∈ [−λn,∞), in which

case σk is a new lower bound on σ, and σL is redefined as σk. The lower bound σL is

also updated if a new, more negative, approximate leftmost generalized eigenvalue

is computed during the Lanczos-PCG solve. These two possible updates to σL are

separated in the code to emphasize that they are unrelated.

Safeguarding σk+1 requires additional care. There are several situations in

which the Newton system may be indefinite in the following iteration. First, the

solution of the reduced problem may terminate with a point (sk+1, σk+1) that is

a less accurate solution of the subproblem than (sk, σk), i.e., ηk+1 > ηk. Second,

the solution of the reduced subproblem may generate a value of σk+1 such that

σk+1 < σL. In both these cases, the iterate from the reduced problem is rejected

and (sk+1, σk+1) is set to the previous value (sk, σk). This forces a monotonic

decrease in the error of the optimality conditions and guards against using a poor

value of σe in the subsequent iteration.

Another possibility is that σe and σ̄k+1 are in the interval [−λn,∞), but the

subsequent Newton system can be indefinite (for details, see Section 5.3.2). As-

suming σ̄k+1 ∈ [−λn,∞), the Newton system will be positive definite if π− σ̄ > 0,

i.e., σe + r(s̄k+1)/µ− σ̄k+1 > 0. However, it is acceptable for this inequality to not

99

hold as long as

σ̄k+1 + 2(σe + r(sk+1)/µ− σ̄k+1) > σL. (5.21)

If this inequality does not hold, then the next Newton system is guaranteed to be

indefinite; in this case, it is desirable to only make a change to σ̄k+1 in dire cases so

as not to disrupt the convergence of the Newton iterates. The following algorithm

details how this situation is handled; moreover, it guarantees that if σ̄ ∈ [−λn,∞)

then the subsequent Newton system will be positive definite.

The following algorithm details the safeguarding procedure. (In this algorithm,

ǫM denotes machine precision.)

Algorithm 5.3.4. Safeguarding for the Newton System

if ηk+1 > ηk or σk+1 < σL

sk+1 = sk; σk+1 = σk; σe = σk; [Hsk+1] = [Hsk]; [Msk+1] = [Msk];

end

if σ̄k+1 < σL < σk+1 then

σ̄k+1 = σk+1; s̄k+1 = sk+1; [Hs̄k+1] = [Hsk+1]; [Ms̄k+1] = [Msk+1];

end

if σ̄k+1 + 2(σe + r(s̄k+1)/µ− σ̄k+1) ≤ σL then

if σe < σL < σ̄k+1 then

if r(s̄k+1) > 0 then σe = σ̄k+1; else σe = σ̄k+1 + |r(s̄k+1)|/µ;

else if σe > σL and σk+1 > σL then

if ηk+1 < 10−1(‖(H + σ̄k+1M)s̄k+1 + g‖M−1 + 1
2
|s̄T

k+1Ms̄k+1 − δ2|) then

σ̄k+1 = σk+1; s̄k+1 = sk+1;

[Hs̄k+1] = [Hsk+1]; [Ms̄k+1] = [Msk+1];

end

else if σ̄k+1 < σL and σe < σL

σ̄k+1 = σL +
√
ǫM ;

if ηk+1 < (‖(H + σ̄k+1M)s̄k+1 + g‖M−1 + 1
2
|s̄T

k+1Ms̄k+1 − δ2|) then

σ̄k+1 = σk+1; s̄k+1 = sk+1;

[Hs̄k+1] = [Hsk+1]; [Ms̄k+1] = [Msk+1];

100

end

end

if σ̄k+1 + 2(σe + r(s̄k+1)/µ− σ̄k+1) ≤ σL then σe = σ̄k+1 + |r(s̄k+1)|/µ;

end

Notice that the Newton iterates can only modified in the case when the follow-

ing Newton system is guaranteed to be indefinite. Even then, the Newton iterates

are only modified if either σ̄k+1 < σL or the error associated with the Newton iter-

ates is significantly greater than the error associated with the subproblem iterate

(sk+1, σk+1). Subsequent Newton systems are most likely to be positive definite

because of the modifications to σe. As the second phase converges, σe ≈ σ̄k+1 and

r(s̄k+1)/µ should be very small; thus, modifications to σe will also be small.

6

Preconditioning

Preconditioning may not only accelerate the convergence of a CG-type method,

but it may also prevent a form of stalling in which many CG iterates are computed

with negligible progress towards a solution. Using preconditioned Lanczos-CG to

solve the (linear) Newton equations in both phases of the proposed trust-region

algorithm may increase efficiency by reducing the number of computed Lanczos

vectors, and thus, requiring fewer matrix-vector multiplications.

This chapter presents two preconditioning methods. The first method uses in-

complete Cholesky factorizations to generate preconditioners for ∇2f . The second

method is based on limited-memory quasi-Newton updating to improve the block

preconditioner P for the augmented Newton system in the second phase. These

methods are not mutually exclusive; they may be used in tandem to generate

preconditioners for both phases.

It is not always desirable to use the preconditioning methods described in this

chapter. In particular, when a good preconditioner is already available based on

the problem formulation (e.g., a multigrid preconditioner for PDE constrained

optimization), it may be unhelpful or counterproductive to try to improve upon

the preconditioner. In this case, it is not recommended to use the additional

preconditioning techniques of this chapter.

101

102

6.1 The Incomplete Cholesky Factorization

The preconditioner M should be a matrix that approximates H (i.e., M−1H ≈
I) such that it is possible to form matrix-vector products with M−1 by implicit or

indirect means (i.e., without requiring explicit multiplies with M−1).

Any symmetric positive-definite matrixH may be written uniquely as the prod-

uct H = LDLT where D is a diagonal matrix with positive entries, and L is

unit-lower triangular. The Cholesky factorization of H is then H = RTR, where

R = LD1/2. The Cholesky factor R is also unique.

The incomplete Cholesky factorization is one of the most widely used methods

to obtain a sparse, positive-definite approximation to H . If H is positive definite,

incomplete Cholesky factors may be regarded as sparse approximations to the true

Cholesky factors. In the case where H is not positive definite, it is possible to com-

pute a modified incomplete Cholesky factorization. If the (modified) incomplete

Cholesky factorization is taken to be M , then matrix-vector products with M−1

may be computed implicitly using triangular solves with R and RT . For this rea-

son, incomplete Cholesky factorizations make preconditioning practical for large

problems.

6.1.1 The modified Cholesky factorization

If H is not positive definite, modified Cholesky algorithms define an upper-

triangular matrix R such that H + E = RTR where E is positive semidefinite. If

H is well-conditioned, then R should be well-conditioned. Furthermore, E should

be as small as possible.

The first numerically stable modified Cholesky factorization was due to Gill

and Murray [13], and was later refined to include symmetric interchanges in [14].

Given positive scalars β and δ, the modified Cholesky factorization of Gill and

Murray [13] computes an upper-triangular matrix R and a diagonal E such that

H + E = RTR, (6.1)

103

where the elements of R satisfy

|rki| ≤ β and |rii| > δ, for i = 1 :n, k > i. (6.2)

The idea is to implicitly increase the diagonal elements of H until (6.2) holds. The

value of eii, the ith diagonal of E, is then the amount that hii must be increased.

Suppose that the smallest possible e11 that makes h11 + e11 sufficiently positive

leads to a large off-diagonal element in the first row of R, i.e., an element whose

magnitude exceeds β. Let m denote the index of the off-diagonal element in the

first row of H that is largest in magnitude; we then increase e11 further, until

|h1m|√
h11 + e11

= β.

This fixes r11 to be |h1m|/β, and the factorization proceeds to the next stage. Note

that

|r1j | =
|h1j |√
h11 + e11

≤ |h1m|√
h11 + e11

= β, j = 1, 2, . . . , n.

Hence, the elements of the first row of R are bounded in magnitude by β. This

procedure is summarized by the following algorithm.

Algorithm 6.1.1. Modifed Cholesky Factorization

Let β (β > 0), δ (δ > 0) be given;

Ĥ = H ;

for k = 1 :n do

νk = max{ |ĥkj| : j = k + 1 :n };
rkk = max{ δ,

√
|ĥkk|, νk/β };

ekk = r2
kk − ĥkk;

for j = k + 1 :n do

rkj = ĥkj/rkk;

for i = k + 1 : j do

ĥij ← ĥij − rkjĥki;

end do ;

104

end do ;

end do .

The bound β should be large enough that H is not modified if it is sufficiently

positive definite. The following lemma shows that if

β2 > γ ≡ max{ |hii| : i = 1 :n}, (6.3)

then the modification E = 0 in (6.1) if H is “sufficiently” positive definite.

Lemma 6.1.1 Let H be a symmetric matrix and assume that the modified Cho-

lesky factorization of H has been obtained using Algorithm 6.1.1 with β2 > γ. If q

is the smallest integer that satisfies

ĥqq ≤ ĥjj, j = 1 :n,

and d satisfies Rd = rqqeq, then dTHd ≤ ĥqq. Moreover, if δ = 0 and H has at

least one negative eigenvalue, then ĥqq < 0.

Proof. At the kth stage of the factorization, the elements (ĥkk, . . . , ĥk,k+1, ĥkn) of

the first row and column of the k × k unfactorized block can be written as

ĥkj = hkj −
k−1∑

i=1

rijrik, k ≤ j ≤ n, (6.4)

and ĥkk = hkk −
k−1∑

i=1

r2
ik. (6.5)

If Rd = rqqeq, then dq = 1 and di = 0 for i > q. Moreover, since H +E = RTR,

dTHd = dT(RTR−E)d = r2
qq − eqq −

q−1∑

j=1

d2
je

2
jj = ĥqq −

q−1∑

j=1

d2
je

2
jj,

and consequently, dTHd ≤ ĥqq.

To show the second result, assume that δ = 0. If ĥqq ≥ 0, (6.5) and the

definition of q imply that

β2 > hkk ≥
k−1∑

i=1

r2
ik, for 1 ≤ k ≤ n.

105

This inequality shows that |rik| < β for i < k, so that ekk does not need to be

chosen to enforce a bound on the off-diagonal elements of R. This implies that

if rkk 6= 0, then rkk > νk/β, giving r2
kk = |ĥkk| and ekk = 0. If rkk = 0, clearly

ekk = 0. It follows that E = 0 and H = RTR. Thus we have shown that if ĥqq ≥ 0,

H must be positive semi-definite.

In addition to satisfying the lower bound β2 > γ, β should not be “too large”,

to prevent excessively large elements in R. For a given matrix H , the diagonal

modification E depends on β. The following theorem derives a bound on ‖E‖∞ as

a function of β.

Theorem 6.1.1 (Gill and Murray [13]) For a given β > 0,

‖E(β)‖∞ ≤
(ξ
β

+ (n− 1)β
)2

+ 2
(
γ + (n− 1)β2

)
+ δ, (6.6)

where ξ is the largest in modulus of the off-diagonal elements of H, and γ is defined

by (6.3).

If n > 1, the bound of Lemma 6.1.1 is minimized when β2 = ξ/
√
n2 − 1. Thus,

a practical choice of β is

β2 = max{γ, ξ/
√
n2 − 1, ǫM}, (6.7)

where ǫM is the relative machine precision, and is included to allow for the case

where ‖H‖2 is small. Note that (6.7) always satisfies the lower bound (6.3).

The modified Cholesky factorization is numerically stable, and produces a

positive-definite matrix differing from the original matrix only in its diagonal ele-

ments. The diagonal modification E with β defined by (6.7) is “optimal”, in the

sense that the a priori bound (6.6) on ‖E‖∞ is minimized, subject to satisfying

(6.3). In practice, the actual value of ‖E‖∞ is almost always substantially less

than the a priori bound.

An alternative modified Cholesky procedure was suggested by Schnabel and

Eskow [46], which often gives a smaller bound on E. The algorithm uses the

106

Gerschgorin circle theorem to bound the elements of E and to prove the following

theorem:

Theorem 6.1.2 (Schnabel and Eskow [46]) Suppose that at each step of the

modified Cholesky factorization (Algorithm 6.1.1), the remaining matrix Hj ∈
R

(n+1−j)×(n+1−j) is given by

Hj =

(
αj hT

j

hj Ĥj

)
,

and H1
△

= H. Furthermore, suppose that Hj+1 is defined as Hj+1 = Ĥj−hjh
T
j /(αj+

δj), where

δj = max{0, ‖hj‖1 − αj}.

If E ≡ diag(δ1, . . . , δn), then H + E is positive semidefinite and

‖E‖∞ ≤ γ + (n− 1)ξ.

6.1.2 The incomplete Cholesky factorization

There are two general strategies used to define an incomplete Cholesky factor-

ization

H = RTR + E,

where R is a sparse, upper-triangular matrix. The first strategy is to use a drop

tolerance to limit the number of nonzero elements in the upper-triangular Cholesky

factor R. In this approach, an incomplete Cholesky factorization is computed and

elements in R are set to zero if they are smaller in magnitude than the drop toler-

ance. A disadvantage to this approach is that the number of nonzero elements in

R can be unpredictable; there is often no way to foretell the “magical” drop toler-

ance needed to meet a specific memory requirement. Another approach of many

incomplete Cholesky methods is to use a fixed fill-in strategy. In this approach,

the memory requirements are fixed; however, the sparsity pattern in R is explicitly

tied to the structure of H rather than the entries.

107

There are several incomplete Cholesky methods that attempt to combine these

two strategies. In [44] and [45], Saad proposes storing a maximum number of

nonzero elements in each column of RT and also implementing a drop tolerance.

This approach uses an incomplete LU factorization of H ; however, the method

does not attempt to preserve the symmetry of H .

Jones and Plassmann [23] suggest an incomplete Cholesky factorization that

sets the sparsity pattern of R dependent on the entries of H . This method limits

the number of nonzero entries in each column of RT to the number of nonzero

entries in the strict lower-triangular portion of the original matrix H ; moreover,

the method determines which entries are maintained based on the magnitude of

the entries rather than the sparsity structure of H . This approach enjoys the

advantages of a drop tolerance-based factorization without actually fixing a drop

tolerance.

In this same spirit, Lin and Moré [25] propose an incomplete Cholesky fac-

torization that controls memory requirements and can be extended to indefinite

matrices. Given a scalar p ≥ 0, Lin and Moré count the number of nonzero entries

in the jth column of the strict lower-triangular portion of H , denoted nj , and

compute the jth column of the incomplete Cholesky factor RT but retain only the

largest (in magnitude) nj + p entries. (Notice that this is equivalent to Jones and

Plassmann’s method with p = 0.) The following incomplete Cholesky algorithm

details this process [25]. The algorithm overwrites the jth column of Ĥ with the

jth column of RT ; thus, the matrix R can be recovered by taking the transpose of

the lower-triangular portion of Ĥ .

Algorithm 6.1.2. Incomplete Cholesky Factorization

Choose p > 0;

Ĥ = H ;

for j = 1 :n do

ĥjj =
√
ĥjj;

nj = number of nonzero entries ĥij such that i > j;

108

for k = 1 :n and ĥjk 6= 0 do

for i = j + 1 :n and ĥik 6= 0 do

ĥij = ĥij − ĥikĥjk;

end do

end do

for i = j + 1 :n and ĥik 6= 0 do

ĥij ← ĥij/ĥjj;

ĥii ← ĥii − ĥ2
ij ;

end do

Retain the largest nj + p elements of {ĥj+1,j, . . . , ĥnj};
end do

Incomplete Cholesky factorizations may fail on general positive-definite matri-

ces; this occurs when a computed diagonal of element of R is not strictly posi-

tive (for an example, see [24]). One approach to extend the incomplete Cholesky

factorization to general positive-definite matrices is to use a scaling and shifting

technique. The following algorithm is similar to Jones and Plassman’s method

with p = 0 on positive-definite matrices; however, Lin and Moré have modified the

scaling to extend the algorithm to general indefinite matrices.

Algorithm 6.1.3. ICFM for general matrices

Choose αs > 0; p ≥ 0;

D = diag(‖Hei‖2); Ĥ = D−1/2HD−1/2;

if min(Ĥii) > 0 then α0 = 0 else α0 = −min(Ĥii) + αs;

for k = 1 : . . . do

Apply Algorithm 6.1.2 to Ĥk = Ĥ + αkI;

if successful then

αF = αk; break;

end

αk+1 = max(2αk, αs);

end do

109

Small values of αF provide better preconditioners for H . Lin and Moré prove

that this algorithm successfully computes an incomplete Cholesky factorization

of H for values of α such that α > β−1/2, where β is the maximum number of

nonzero entries in any column of H ; thus, αF ≤ 2β−1/2. Lin and Moré find that

increasing the additional memory allowance p usually decreases the value of αF .

This is consistent with the idea that allowing for more fill-in should increase the

quality of the preconditioner.

6.2 Limited-Memory Quasi-Newton Updates

The fundamental idea of quasi-Newton updates is to use second-order informa-

tion, in the form of finite-differences, to update an approximation to the Hessian.

In the context of preconditioning, second-order information can be used to update

a (possibly simple) initial preconditioner in order to obtain a better approximation

of H . This strategy will be used to help construct a better preconditioner P for

the augmented Newton system in the second phase.

Quasi-Newton preconditioning methods can be adapted to help precondition

in the case when it is prohibitively expensive to store updated (dense) matri-

ces. In this case, a limited number of pairs of vectors {(ηl, γl)} can be saved

and then implicitly used to form matrix-vector multiplies with the new, updated

preconditioner. These types of methods are called limited-memory quasi-Newton

preconditioning methods.

Quasi-Newton updates can be performed to either a preconditioner or its in-

verse. In the context of the proposed trust-region solver, it is numerically more

stable to apply the quasi-Newton updates to P−1 (i.e., recall that PCG requires

multiplies with P−1). Thus, this section will focus on quasi-Newton updates to

the inverse of the block preconditioner P .

110

6.2.1 Limited-memory BFGS updates

Quasi-Newton BFGS updates can be used to solve linear systems, and more

generally, unconstrained optimization problems. In particular, the BFGS method

with an exact line search to solve a positive-definite system Ax = b is equivalent

to applying CG to the linear system Ax = b to solve the unconstrained quadratic

minimization problem

minimize
x∈Rn

q(x) = 1
2
xTAx− bTx. (6.8)

The BFGS method can also be used to generate a sequence of updates to P−1
0

to precondition a linear system Ax = b by generating a sequence of iterates {xl}
and then applying the formula

P−1
l+1 = GT

l P
−1
l Gl + ρlηlη

T
l , (6.9)

where

ηl = xl+1 − xl, γl = A(xl+1 − xl),

ρl = 1/γT
l ηl, Gl = I − ρlγlη

T
l .

Provided the initial P−1
0 is positive definite and ρl > 0 for all l, this formula will

produce a sequence of positive-definite matrices {P−1
l }. (For more details, see

Dennis and Schnabel [7] or Gill, Murray and Wright [14]).

The limited-memory BFGS method is designed to be an (efficient) alternative

to the BFGS method for large problems. Instead of performing explicit updates

to P−1, the limited-memory BFGS algorithm implicitly updates P−1 by storing

a small sequence of pairs {(ηl, γl)}. Specifically, limited-memory BFGS stores

at most m pairs {(ηl, γl)} at one time, and always maintains the most recently

computed pairs. Typical values for m range between 2 and 20 (e.g., [30], [29], [26],

or [34]).

The following algorithm outlines the limited-memory BFGS algorithm to up-

date P−1 in the context of building a preconditioner for the (linear) Newton system

associated with minimizing a general function f .

111

Algorithm 6.2.1. The limited-memory BFGS to update P−1

Define constants m, ω (0 < η1 < ω < 1), η1 (η1 < 1/2);

Choose x0 and symmetric positive-definite matrix P−1
0 ;

k ← 0; m̂← 0;

while ∇f(xk) 6= 0 do

sk = −P−1
k ∇f(xk);

xk+1 ← xk + αksk, where αk satisfies the Wolfe conditions:

f(xk + αksk) ≤ f(xk) + η1αk∇f(xk)
Tsk,

∇f(xk + αksk)
Tsk ≥ ω∇f(xk)

Tsk.

Update P−1
k using the pairs {(ηj, γj)}kj=k−bm:

for j = k − m̂, . . . , k do

P−1
j+1 = GT

jP
−1
j Gj + ρjηjη

T
j

end

k ← k + 1;

m̂← min{k,m− 1}
end do

As written, this algorithm is misleading because the sequence {P−1
l } is not

explicitly computed. Even if P−1
0 is sparse, matrices in the sequence {P−1

l } may

be dense. Thus, updates to P−1
l are never formed; instead, the following recursive

formula using only the pairs {(ηl, γl)} is used to compute products with P−1
l ([34]):

Algorithm 6.2.2. Recursive formula to compute P−1y = r

Let m denote the number of stored pairs {(ηl, γl)};
q ← y;

for i = m− 1 : 0

α = ρjη
T
j q;

q = q − αγi;

end

r = P−1
0 q;

for i = 0 :m− 1

112

β = ργT
i r;

r = r + ηi(α− β);

end

Notice that the additional storage requirement for forming products with P−1

is negligible.

There are two additional subtleties in the limited-memory BFGS algorithm.

First, the matrix P−1
0 must be positive definite; moreover, it should be sparse. A

common choice initialization is the scaled identity matrix

P−1
0 =

ηT
bmγ bm

γT
bmγ bm

I,

where (η bm, γ bm) denotes the last computed pair. Second, the type of line search

is not arbitrary—the Wolfe conditions are used to guarantee ρl > 0, and thus,

ensures that the algorithm will generate a sequence of positive-definite matrices

{P−1
l } (e.g., see [29]).

6.2.2 Implementing quasi-Newton updates in Phase Two

It is relatively simple to incorporate Algorithm 6.2.1 into the second phase to

update the inverse of the block preconditioner P . By construction, the Lanczos-CG

algorithm generates iterates {si} to solve Newton system associated with minimiz-

ing Lν
µ,σe

. During each Lanczos-CG iteration the pairs (ηl, γl) may be defined as

ηi = si+1 − si, γi = ∇2
ssL

ν
µ,σe

(s, σ)(si+1 − si).

Recall, however, that only m pairs may be stored. Thus, as new Lanczos-

CG iterates are computed only the last m iterates are maintained each iteration.

Notice that these iterates are the same iterates generated by CG to minimize the

quadratic

q(p) = Lν
µ,σe

(s, σ) + pT∇sL
ν
µ,σe

(s, σ) + 1
2
pT∇2

ssL
ν
µ,σe

(s, σ)p, (6.10)

113

with the exception that only the last m iterates are stored for the limited-memory

BFGS implementation. In other words, the Lanczos-CG iterates used to form finite

differences to update the preconditioner are the same iterates that BFGS would

use to form finite differences in order to minimize the quadratic approximation to

Lν
µ,σe

(s, σ). The implication is that, by construction, ρl > 0 for all l. Thus, the

Wolfe line search used to ensure ρl > 0 for all l is not necessary in this application.

During each Lanczos-CG iteration information is gathered to form the pairs

{(ηl, γl)}. This information is used to update the inverse of the block preconditioner

for the subsequent Lanczos-CG solve. As the second phase converges, the hope

is that ∇2Lν
µ,σe

(s̄k, σ̄k) ≈ ∇2Lν
µ,σe

(s̄k+1, σ̄k+1); in this case, the limited-memory

updates built into P−1 should improve the quality of the preconditioner. The

following algorithm outlines this process:

Algorithm 6.2.3. The second phase with updates

while not converged do

Newton-SQP solve to obtain (∆s̄k, ∆σ̄k):

while not converged do

one iteration of PCG with preconditioner P ;

(si+1, σi+1)← (si, σi) + βipi; (PCG update)

Update the pairs (ηi, γi);

end do

s̄k+1 = s̄k + αk∆s̄k;

σ̄k+1 = σ̄k + αk∆σ̄k;

Solve the reduced trust-region subproblem;

k ← k + 1;

end do

As noted before, the inverse of the preconditioner is never explicity updated;

instead, the pairs {ηl, γl} are used to form multiplies with P−1, as needed.

114

6.2.3 Estimating the elliptical norm

Recall that the quantity Ms̄k+1 is required to form the reduced subspace used

in the three-dimensional trust-region subproblem solve and to form the Newton

equations associated with minimizing Lν
µ,σe

in the subsequent iteration. Moreover,

this quantity can be used to estimate ‖s̄k+1‖M to determine whether the Newton

iterate satisfies optimality conditions. As in Section 5.3.6, the task of estimating

Ms̄k+1 reduces to the task of estimating M∆s̄k. However, the limited-memory

quasi-Newton updating scheme introduces additional complications in estimating

the quantity M∆s̄k. In this section there will be many references to Section 5.3.6,

due to their similarity. To facilitate understanding, the notational devices used in

Section 5.3.6 will be continued here without pause to restate definitions.

As in Section 5.3.6, Algorithm 5.3.2 will be used to update the quantity Ms̄k+1;

however, the expression for Mv̂i+1 given by (5.19) is no longer valid because of the

quasi-Newton updates. Fortunately, by storing an additional set of vectors there

is an simple way to calculate Mv̂i+1 ≡ MEP−1wi+1 by modifying the recursion

algorithm used to calculate matrix-vector products with P−1 (Algorithm 6.2.2).

To see this, we begin by considering the first iteration in the second phase.

During the first iteration, P is the block preconditioner given by

P =

(
(1 + σ̃)M + 2

µ
ddT d

dT µ

)
.

The formula given by (5.19) can be used to obtain the quantities Mη̂l = MEηl

for all l. For this quasi-Newton preconditioning scheme the pairs {(ηl, γl)} and the

vectors {Mη̂l} must be stored. With this, the following algorithm can be used to

calculate r
△

= P−1wi+1 = vi+1 as well as Mr
△

= Mv̂i+1 = MEP−1wi+1.

Algorithm 6.2.4. Recursive formula to compute P−1y and MEP−1
l y

Let m denote the number of stored pairs {(ηl, γl)};
q ← y;

for i = m− 1 : 0 do

115

α = ρjη
T
j q;

q = q − αγi;

end

r = P−1
0 q;

Compute Mr using (5.19);

for i = 0 :m− 1 do

β = ργT
i r;

r = r + ηi(α− β);

[Mr] = [Mr] + [Mη̂i](α− β);

end

Hence, Algorithm (5.3.2), together with this formula to obtain Mv̂i+1, can be

used to update Ms̄k+1.

Being able to form Mv̂i+1 also means that it is possible to continue the leftmost

generalized eigenpair estimation routine inside the Lanczos-CG solve beyond the

first iteration of the second phase (see Sections 5.3.4 and 5.2.1).

The following algorithm details the Lanczos-CG method to solve the augmented

Newton systems with limited-memory quasi-Newton updating. The algorithm

combines the two previous algorithms (Algorithm 5.3.1 and 5.3.2) used for the

preconditioned Lanczos-CG algorithm for the augmented Newton solve. More-

over, it has features to accommodate the limited-memory quasi-Newton updating

scheme. For further details on the notation, see Algorithm 5.3.1 (in Section 5.3.4)

and Algorithm 5.3.2 (in Section 5.3.6).

Algorithm 6.2.5. Lanczos-PCG with QN preconditioning

Choose τtol > 0;

x0 ← 0; [Mx̂0] = 0;

s0 = ḡ(x0); β0 = −‖s0‖P−1 ; γ−1 = 1; τ = β0; i = −1;

while τ > τtol do

wi+1 = si+1/βi+1; Solve Pvi+1 = wi+1;

[Hv̂i+1] = Hv̂i+1; [Mv̂i+1] = Mv̂i+1; i = i+ 1;

116

γi = vT
i [H̄vi];

if k = 0 then

li = 0;

pi = vi; [H̄pi] = [H̄vi]; [Hp̂i] = [Hv̂i]; [Mp̂i] = [Mv̂i];

si+1 = [H̄vi]− γiwi;

else

li = βi/di−1;

pi = vi − lipi−1; [H̄pi] = [H̄vi]− li[H̄pi−1];

[Hp̂i] = [Hv̂i]− li[Hp̂i−1]; [Mp̂i] = [Mv̂i]− li[Mp̂i−1];

si+1 = [H̄vi]− γiwi − βiwi−1;

end

di = γi − βili; αi = −βiαi−1/di;

xi+1 = xi + αipi;

[Hx̂i+1] = [Hx̂i] + αi[Mp̂i]; [Mx̂i+1] = [Mx̂i] + αi[Mp̂i];

ηi+1 = αipi; γi+1 = α[H̄pi];

[Mη̂i+1] = αi[Mp̂i];

‖x̂i+1‖2M = x̂T
i+1[Mx̂i+1];

βi+1 = −‖si+1‖P−1; τ = −βi+1αi;

end do

For notational simplicity, the above algorithm does not limit the number of

limited-memory quasi-Newton updates. However, during each iteration the pairs

{ηl, γl)} and vectors {Mη̂i} can be updated so that only the m most recent pairs

and corresponding vectors are stored.

Notice that this algorithm still requires only one matrix-vector multiply per

iteration; specifically, a matrix-vector multiply is only required to compute Hv̂i

for each i—everything else can be estimated from this one quantity.

7

Numerical Results

A combination line-search trust-region method based on the proposed phased-

SSM method was tested on unconstrained problems from the CUTE test collection

(see Bongartz et al. [1]). For comparison purposes, tests were also made using the

same trust-region algorithm but with the subproblem solved using the Steihaug

and Moré-Sorensen methods.

The first set of results compares unpreconditioned versions of the phased-SSM

method and Steihaug’s method. The second set of tables shows the results of

implementing a quasi-Newton limited-memory updating scheme (as described in

Section 6.2.2) to help precondition the second phase of the phased-SSM method.

These tables focus on the effects of the quasi-Newton preconditioning scheme on

the overall performance of the proposed method. The final set of tests compare

the phased-SSM method and Steihaug’s method when both are implemented with

the incomplete Cholesky preconditioning scheme of Section 6.1.2.

117

118

7.1 Implementation Details

The trust-region method is considered to have solved a problem successfully

when a trust-region iterate xj satisfies

‖g(xj)‖ ≤ 10−6 max{‖g(x0)‖, |f(x0)|} and λ̃j
n ≥ 0,

where λ̃j
n is the best estimate of the leftmost eigenvalue of Hj. The alternative

criterion

‖g(xj)‖ ≤ 10−6 and λ̃j
n ≥ 0,

is used if g(x0) = 0 and f(x0) = 0. If x0 is a maximizer, the presence of the

term f(x0) prevents the trust-region algorithm from terminating at the initial

non-optimal stationary point. However, additional measures would have to be

taken if f(x0) was also small. If a solution is not found within n iterations, the

algorithm terminates unsuccessfully, and the problem is considered unsolved.

In each iteration of the second phase, a suitable µ must satisfy Theorem 5.3.1.

For the numerical results in this section, if λ̃k+1
n < 0 then µ = min{0.1, µ∗}, where

1

µ∗
= − λ̃k+1

n

sT
k+1Msk+1

.

Otherwise, if λ̃k+1
n ≥ 0, then µ = 0.1. And, for each iteration of the second phase

ν was taken to be the constant 10−4.

7.1.1 Termination of phase one

In Steihaug’s method and phase one of the phased-SSM method, the principal

termination condition was based on the Dembo-Eisenstat-Steihaug criterion (Sec-

tion 4.2). In particular, the Lanczos-PCG method terminated successfully with a

point sk inside the trust region if

‖Hjsk + gj‖M−1 ≤ min
{
10−1, ‖gj‖0.1

M−1

}
‖gj‖M−1, (7.1)

119

where ‖ · ‖M−1 denotes the elliptic norm associated with M = Mj . This condi-

tion forces a relative decrease in the residual and is equivalent to the termination

criterion used by Gould et al. [18].

Two additional tests are used to determine if the Lanczos-PCG method has a

sufficiently accurate solution of Hjs = −gj . Theorem 3.4.3 (p. 52) indicates that a

small off-diagonal element in the Lanczos tridiagonal Tk implies a small residual.

In practice, it is reasonable to terminate Lanczos process if the ratio of an off-

diagonal element to the maximum diagonal element is small. If the ratio drops

below the square-root of the machine precision, the subproblem is terminated with

an approximate unconstrained minimizer of the quadratic model Qj(s).

The third and final phase-one test guards against over-solving the subproblem

or attempting to solve the subproblem to an unattainable accuracy. This test

terminates the Lanczos-PCG method if the residual norm satisfies

‖Hjsk + gj‖ ≤ τ‖Hj‖‖xj‖,

where τ is a small positive constant. To implement this test, the quantity ‖Hj‖ is

approximated by the largest diagonal element of the tridiagonal Tk.

7.1.2 Termination of phase two

The phase-two test for convergence occurs after computing an iterate from

the reduced subspace solve. The test is based on the optimality conditions of

Theorem 2.3.1 and involves the tolerance

τj = min
{
10−1, ‖gj‖0.1

M−1

}
‖gj‖M−1 , (7.2)

which is defined in terms of the M−1 norm to be consistent with the phase one

condition. Given τj, the phase-two iterations are terminated when

∥∥(Hj + σkMj

)
pk + gj

∥∥
M−1 + 1

2

∣∣sT
kMjsk − δ2

j

∣∣ ≤ τj , (7.3)

120

where pk an approximate solution of (2.36), p. 35. The vector pk is given by

pk = Qkp̄k, where p̄k is the solution of the reduced system analogous to (2.36), i.e.,

(QT
kHjQk + σkQ

T
kMjQk)p̄k = QT

kgj

(see Section 5.3.5). The condition (7.3) takes into account that the Moré-Sorensen

algorithm gives only an approximate solution of the reduced subproblem (see Sec-

tion 2.3.5).

It is also possible to test the Newton iterate (s̄k, σ̄k), the approximate minimizer

of Lν
µ,σe

, for convergence in the M−1-norm. In this case, the error estimate can be

computed as follows:

∥∥(Hj + σ̄kMj

)
s̄k + gj

∥∥
M−1 + 1

2

∣∣s̄T
kMj s̄k − δ2

j

∣∣ .

In practice, the error associated with Newton iterates {s̄k} is usually larger than

the error associated with the iterates obtained from the solution of the reduced

problem. For the results in this chapter, only the iterates of the reduced problem

were tested for convergence.

The reduced trust-region problem must be solved to an accuracy that is as least

as good as that required for the full problem. Accordingly, the constants c1 and c2

of (2.39) were set at c1 = min{10−1τj , 10−6} and c2 = 0, where τj is the tolerance

defined in (7.2).

The phase-two method also guards against over-solving the subproblem using

a two-norm residual test in the unconstrained case:

‖ηk‖ ≤ τ‖H(xj)‖ ‖xj‖.

In all the runs, a limit of n/10 was imposed on the number Lanczos vectors

computed in phase two. If the Lanczos-PCG method reaches the iteration limit,

the Lanczos-PCG iterate associated with the smallest residual is returned as the

approximate Newton step.

The second phase is also bound by a smaller iteration limit than the first phase.

If the second phase is not converging well, this most likely indicates that the

121

estimate of the leftmost generalized eigenpair is poor. In this case, it is sensible

to terminate the subproblem. In all the runs reported here, a maximum of 10

iterations was allowed in the second phase.

7.1.3 The line search

The approximate solution sj of the jth trust-region subproblem is used to

update the trust-region iterate as xj+1 = xj + αjsj, where αj is obtained using a

line search similar to Gertz’s “biased” Wolfe line search (see Gertz [11]).

Algorithm 7.1.1. A biased Wolfe line search

Specify constants 0 < η1 < η2 < 1, 0 < η1 <
1
2
, 0 < η1 < ω < 1, 1 < γ3;

Find αj satisfying the Wolfe conditions:

f(xj + αjsj) ≤ f(xj) + η1Q−
j (αjsj) and |g(xj + αjsj)

Tsj | ≤ −ωQ− ′
j (αjsj);

xj+1 = xj + αjsj;

if
(
f(xj+1 − f(xj)

)
/Q−

j (sj) ≥ η2 then

if ‖sj‖M = δj and αj = 1 then

δj+1 = γ3δj;

else if ‖sj‖M < δj and αj = 1 then

δj+1 = max{δj , γ3‖sj‖M};
else

δj+1 = αj‖sj‖M ;

end if

else

δj+1 = min{αj‖sj‖M , αjδj};
end if

The line search parameters used for the experiments were η1 = 10−3, η2 = 0.25,

ω = 0.9, and γ3 = 1.5.

A key feature of the Wolfe line search proposed by Gertz is that the trust-region

radius is updated as a function of αj. The term “biased” is used by Gertz to refer

122

to a deliberate bias against reducing the trust-region radius when αj is small.

Algorithm 7.1.1 above differs from Gertz’s line search in that it is possible for the

trust-region radius to be reduced even when αj is small. However, Algorithm 7.1.1

still retains a natural bias against decreasing the trust-region radius; in particular,

the trust-region radius is not decreased if ‖sj‖M < δ and αj = 1. Overall, this line

search was more effective than both the traditional Wolfe line search and Gertz’s

biased Wolfe line search.

7.2 Problem selection

The test set was constructed using the CUTE interactive select tool, which

allows the identification of groups of problems with certain features. In our case,

the šelect tool was first used to locate the twice-continuously differentiable un-

constrained problems for which the number of variables in the data file can be

varied. Of these problems, the number of variables was set to a value in the range

100 ≤ n ≤ 1000 according to criteria that we discuss below. The input for the

šelect tool was as follows:

Objective function type : *

Constraints type : U (No constraints)

Regularity : R (twice-cont. differentiable)

Degree of available derivatives : *

Problem interest : *

Explicit internal variables : *

Number of variables : v (variable dimension)

Number of constraints : 0.

A total of 87 problems were obtained via the CUTE select tool, and one

problem (eg2) of fixed-dimension was added separately to the test set.

Several test problems were unsuitable for large values of n, i.e., n ≥ 1000. In

particular, the problems chrosnb, errinros, and watson had specific limits on the

size of n, (i.e., less than 100); and, for three additional problems (eigenals, eigenbls,

and eigencls) the recommended sizes of n were also well below 100. Other problems

123

could not be decoded using the CUTE tool sifdec for n ≥ 1000. These problems

included arglina, arglinb, arglinc, brownal , hilberta, hilbertb, mancino, penalty3 ,

and sensors. Lastly, several problems were removed from the test set because

convergence could not be obtained by either the phased-SSM method or Steihaug’s

method; these problems include fletcbv3 , fletchcr , indef , nonmsqrt , scosine, and

sparsine.

The final test set was thus composed of the following 67 problems suitable

for minimization with n ≥ 1000: arwhead , bdqrtic, broydn7d , brybnd , chainwoo,

cosine, cragglvy, curly10 , curly20 , curly30 , dixmaana, dixmaanb, dixmaanc, dix-

maand, dixmaane, dixmaanf , dixmaang, dixmaanh, dixmaani, dixmaanj , dix-

maank, dixmaanl , dixon3dq, dqdrtic, dqrtic, edensch, eg2 , engval1 , extrosnb, flet-

cbv2, fletchbv , fminsrf2 , fminsurf , freuroth, genhumps, genrose, liarwhd , morebv ,

msqrtals, msqrtbls, ncb20 , ncb20b, noncvxu2 , noncvxun, nondia, nondquar , pen-

alty1, penalty2 , powellsg, power , quartc, sbrybnd , schmvett , scurly10 , scurly20 ,

scurly30 , sinquad , sparsqur , smpsrtls, srosenbr , testquad , tointgss , tquartic, tridia,

vardim, vareigvl , and woods . For all problems, the dimension was n = 1000 unless

otherwise recommended by CUTE documentation; however, in all cases, n ≥ 1000.

All methods were implemented and run in Matlab.

7.3 Results with No Preconditioning

The first set of results compare the phased-SSM method with Steihaug’s method

when both methods are implemented without preconditioning. In order to obtain

results that reflect real differences in the solvers, certain problems were excluded

from the test set if the CG method appeared not to be converging in Steihaug’s

method and the first phase of the phased-SSM method. This behavior is caused

by the lack of a good preconditioner and is independent of the method used to

solve the subproblem. As a rule of thumb, a problem was excluded if more than

n/10 Lanczos vectors (CG iterations) were required for the Lanczos-CG solve.

124

Based on this criterion, problems curly10 , curly20 , curly30 , dixmaani, dixon3dq,

fletcbv2 , fletchbv , genhumps, morebv , msqrtals, msqrtbls, sbrybnd , scurly10 , scur-

ly20, scurly30 , sinquad , and tridia were excluded, leaving a total of 50 problems

in the test set.

Tables 7.1–7.2 give the results of applying Steihaug’s method and the phased-

SSM method on this reduced set of problems. For each solver the columns list

the total number of function evaluation (“Fe”), the total number of matrix-vector

products (“Prods”), the total cpu seconds required (“Cpu”), and the final value of f

found by the solver. The final value of f is listed to help identify situations in which

the solvers converged to a different local minimizer. In this case the computational

effort cannot be compared directly because the number of iterations and function

evaluations needed to find different local solutions may be completely different.

Tables 7.1–7.2 show that Steihaug’s method and the phased-SSM method be-

have very similarly on many problems. If both methods require the same number of

function evaluations, this implies that the approximate solutions of every subprob-

lem is in the interior of the trust region. In these cases, the phased-SSM method

never enters the second phase and is as efficient as Steihaug’s method. (Note that

the extra matrix-vector products are associated with the initial estimate of the

leftmost generalized eigenvector for each subproblem (see Section 5.2.1).)

Tables 7.3–7.4 compare the number of function evaluations of Steihaug’s me-

thod, phased-SSM, and the Moré-Sorensen method. The function evaluations re-

ported for the Moré-Sorensen method may be interpreted as the number of evalu-

ations required if the iterative methods were able to solve the subproblem to the

accuracy of 10−7, i.e., the same tolerance as that used for the Moré-Sorensen solve.

(Recall that the accuracy of the subproblem solve for the iterative methods is a

function of norm of the initial residual, i.e., see (7.1).)

On the few problems where phased-SSM required more function evaluations

that Steihaug’s method, the performance of phased-SSM was often similar to that

of the Moré-Sorensen method. The superiority of Steihaug’s method in these

125

cases is likely to be the effect of good fortune rather than a consistently better

subproblem solution.

The results of Tables 7.1–7.2 are summarized in Table 7.7. The phased-SSM

method was able to solve one more problem than Steihaug’s method. On the

49 problems on which both methods converge, the phased-SSM method required

30.4% fewer function evaluations than Steihaug’s method. In comparison, Gould

et al. [18] reported that GLTR solved 16 out of 17 problems and only obtained a

12.5% improvement in the number of function evaluations relative to Steihaug’s

method.

7.4 Quasi-Newton Preconditioning

Tables 7.5–7.6 give the results of using quasi-Newton preconditioning for the

Newton solve in the second phase. The results imply that quasi-Newton pre-

conditioning has little or no effect on the efficiency of the method. Moreover,

preconditioning does not lead to any additional problems being solved. The un-

preconditioned results in Table 7.7 did not include results from problem genrose.

If this problem is included, then the results suggest that quasi-Newton precondi-

tioning had little impact on the total number of function evaluations, but had a

negative impact on the number of matrix-vector products.

In theory, the limited-memory quasi-Newton preconditioning scheme should be

helpful as the second phase converges. However, up until that time, it could be

unhelpful by building irrelevant information into the preconditioner. To see this,

consider the case when Lν
µ,σe

varies widely between iterations. In this case, second-

order information from a very different function is built into the preconditioner for

the Newton equations associated with minimizing the current Lν
µ,σe

function.

Based on the results in Tables 7.5–7.6, there seems little benefit in using limited-

memory quasi-Newton preconditioning in the phased-SSM method.

126

7.5 Incomplete Cholesky Preconditioning

It is generally accepted by the optimization community that so-called “general-

purpose” preconditioners are not always beneficial. For well-conditioned problems,

such preconditioners can disturb an eigenvalue spectrum that is already clustered.

However, for ill-conditioned problems, a preconditioner can be essential.

Incomplete Cholesky preconditioners, generally work best with problems with

very sparse or highly structured Hessians. In this situation, given sufficient mem-

ory, the incomplete Cholesky factorization may be exact and yield an ideal precon-

ditioner. However, on problems with dense or unstructured Hessians, the spectrum

of a preconditioner based on an incomplete Cholesky factorization may look noth-

ing like the spectrum of the Hessian.

The incomplete Cholesky preconditioners of Section 6.1.2 depend on the num-

ber of nonzeros in the matrix—in particular, it will build a dense preconditioner for

a dense matrix. For large problems, the time required to factorize a dense matrix

is prohibitive, and so the following problems with dense Hessians were excluded

from the test set: fminsurf , msqrtals, msqrtbls, penalty1 , penalty2 , power , vardim,

and vareigvl .

The results obtained using an incomplete Cholesky preconditioner are found

in Tables 7.8–7.10. In particular, Table 7.10 concerns those CUTE problems that

could not be solved using an unpreconditioned versions of both Steihaug’s method

and the phased-SSM method.

The results of Tables 7.8 and 7.9 provide a good indication of when precondi-

tioning is beneficial. For example, for problem brybnd , Steihaug’s method requires

33 function evaluations and 19 matrix-vector products, compared to 12 function

evaluations and 46 matrix-vector products without preconditioning. The Hessian

of brybnd is a band matrix and the preconditioner is exact. This implies that only

one PCG iterate is required for each solve. (The trust-region iteration may require

more than one function evaluation because of the Wolfe line search.) In these ta-

127

bles, this relationship between the number of function evaluations and the number

of matrix-vector products is generally indicative of the quality of the precondi-

tioner. On other banded problems such as bdqrtic, broydn7d , brybnd , cragglvy,

ncb20 , ncb20b, and spmsrtls, the number of function evaluations for Steihaug’s

method is at least as large as the number of matrix-vector products, indicating

that a preconditioner was beneficial.

There are several peculiarities in the tables of the incomplete Cholesky precon-

ditioning results. First, in several cases, a considerably better solution was found

via the preconditioned algorithms, e.g., as in the case for dqrtic and testquad .

Another peculiarity is that when the incomplete Cholesky preconditioner is used

on a (frequently indefinite) banded Hessian, the proposed method may not be as

effective as Steihaug’s method, e.g., see ncb20 and spmsrtls. One final peculiarity

is that the proposed method terminated unsuccessfully on ncb20b because of a

failure in the Wolfe line search, but was (unknowingly) close to a minimum. This

run is marked with a superscript d.

Incomplete Cholesky preconditioning is not always beneficial. On problems

such as genrose and chainwoo, the unpreconditioned algorithms appear to be much

more efficient. However, care must be taken when drawing conclusions based only

on differences in the number of function evaluations. In particular, the choice

of initial trust-region radius is more complicated for preconditioned algorithms.

Consider the initial radius δ0 = 1 used for the unpreconditioned algorithm. If

the condition number of the preconditioner is large, then any PCG step s will be

such that sTMs > 1, i.e., the choice of δ0 = 1 causes the iterates to repeatedly

hit the boundary until the trust region is expanded to an appropriate size. In

practice, this means that the number of function evaluations for the preconditioned

and unpreconditioned algorithms cannot be compared directly. (The initial value

δ0 = 100 was used for the preconditioned runs.)

The preconditioned phased-SSM method also exhibits numerical instability on

some CUTE problems. The table entries for these problems are marked with as-

128

terisks. In the second phase, the preconditioner plays a fundamental role in the

proposed method. Implicit products with the preconditioner are required to form

the Newton equations and to implement the reduced subspace solve. Unfortu-

nately, the (implicitly-formed) matrix-vector products with the preconditioner are

subject to rounding errors associated with a loss of orthogonality amongst the

Lanczos vectors. The more Lanczos vectors needed to solve the linear system, the

more likely the implicit preconditioner matrix-vector products will be contami-

nated by rounding error.

During the second phase, the loss of accuracy in the implicit matrix-vector

products can be significant. In this case, the subspaces formed using H and M

will differ significantly from their true values. For many of the CUTE problems, this

inconsistency leads to the failure of the Moré-Sorensen algorithm for the reduced

problem.

It is of interest to understand why these failures do not occur when precondi-

tioning is not used. The condition number of the preconditioner is a key factor in

the loss of accuracy in the implicit matrix-vector products with the preconditioner.

Moreover, if one considers that the unpreconditioned case is effectively using a per-

fectly well-conditioned preconditioner (i.e., M = I), then it is not surprising that

there is more numerical inaccuracy when M is an incomplete Cholesky precon-

ditioner. This suggests that additional care must be taken to prevent artificial

breakdowns when preconditioning is used.

This explanation of the cause of the failures may be verified experimentally.

For the case of incomplete Cholesky preconditioning it is possible to form “exact”

explicit products with M = RTR. In an experiment, the phased-SSM method was

modified so that products with M were formed explicitly. The justification for this

is that the breakdown occurs during the reduced subspace solve; thus, instead of

performing explicit matrix-vector products with M during the Newton solve, it is

more efficient to wait until the Newton update is found before forming the explicit

matrix-vector product with M . Consequently, before each reduced subspace solve,

129

three explicit products with M are computed, resulting in six additional matrix-

vector products for each iteration of the second phase. Tables 7.11–7.13 give the

results of this more stable implementation. There were no numerical breakdowns

in the reduced subspace solve as a result of this implementation. As noted, this im-

plementation is more expensive because it requires explicit matrix-vector products

with M .

Preconditioning has two effects on CG-based trust-region methods. Most obvi-

ously, preconditioners are designed to accelerate the convergence of CG-type meth-

ods. A little less obviously, they impose a scaling on the trust-region subproblem.

To understand the effect of the incomplete Cholesky preconditioner on the CUTE

problems, it is helpful to consider the result of using a direct method (e.g., the

Moré-Sorensen method) on subproblems scaled by the incomplete Cholesky pre-

conditioner, i.e., solve

minimize
s∈Rn

gTs+ 1
2
sTHs subject to ‖Ns‖ = δ,

where M = NTN and M is the incomplete Cholesky preconditioner for H .

A sparse implementation of the preconditioned Moré-Sorensen method was

used in place of the iterative subproblem solvers in the generic trust-region algo-

rithm. Tables 7.14–7.15 compare the function evaluations required by the direct

Moré-Sorensen implementation to Steihaug’s method and the proposed method.

(The dense problems fminsurf , penalty1 , penalty2 , power , vardim, and vareigvl

were removed from the test set because of excessive run times.) Surprisingly, the

iterative trust-region methods often required fewer function evaluations than the

direct method. This suggests that when the subproblem solution is found to high

accuracy, the number of function evaluations may increase. One possible reason

for this is that incomplete Cholesky preconditioning may induce a poor scaling of

the subproblem variables. Moreover, if the preconditioners change dramatically

between iterations, then updating the trust-region radius based on its value from

the previous iteration may be problematic.

130

Based on their numerical results, Gould et al. [18] also conclude that, over-

all, incomplete Cholesky preconditioning is not beneficial. Results obtained using

the GLTR method indicate that unpreconditioned iterative solvers perform better

than their preconditioned counterparts—which include a banded preconditioner,

an incomplete Cholesky preconditioner, and a modified Cholesky preconditioner.

The results presented in this thesis and the observations of Gould et al. cast doubt

on the effectiveness of “general-purpose” preconditioning methods on this test set.

7.6 Concluding Remarks

The proposed phased-SSM method can obtain highly accurate approximate

solutions to the trust-region subproblem regardless of whether a solution lies in the

interior or on the boundary of the trust region. The first phase of the phased-SSM

method is almost identical to Steihaug’s method. If the solution to the subproblem

lies in the strict interior of the trust region, the phased-SSM method generates

pure CG iterates to solve the Newton system. In the second phase, is a solution

to the subproblem lies on the boundary, then the phased-SSM method can obtain

solutions to any prescribed accuracy. Numerical results suggest that obtaining

approximate subproblem solutions of higher accuracy reduces the required number

of function evaluations: In the unpreconditioned case, the proposed trust-region

method required 30% fewer function evaluations than Steihaug’s method.

A trust-region method based on the phased-SSM method will generally be more

efficient than Steihaug’s method when the cost of performing function evaluations

is relatively expensive. Note that this is not usually the case for the unconstrained

problems in the CUTE set. On more realistic problems, the evaluation of the ob-

jective may require considerably more CPU time, and thus, it would be preferable

to invest more matrix-vector products in order to reduce the number of function

evaluations. In this case, the results in this thesis suggest that a trust-region

method will be more efficient if it is based on the proposed method rather than on

131

Steihaug’s method.

132

Table 7.1: Steihaug and phased-SSM. Problems A–F, M = I; δ0 = 1.

Steihaug phased-SSM

Problem n Fe Prods Cpu f Fe Prods Cpu f

arwhead 1000 6 6 1 1.7e-10 6 11 1 1.7e-10

bdqrtic 1000 14 41 4 4.0e+03 13 47 5 4.0e+03

broydn7d 1000 137 414 34 3.8e+02 77 1661 158 3.4e+02

brybnd 1000 12 46 4 6.7e-07 12 58 5 3.9e-07

chainwoo 1000 27 57 6 1.3e+01 23 73 9 3.9e+03

cosine 1000 12 10 2 -1.0e+03 12 18 2 -1.0e+03

cragglvy 1000 14 36 4 3.4e+02 14 49 5 3.4e+02

dixmaana 1500 13 11 4 1.0e+00 13 22 6 1.0e+00

dixmaanb 1500 13 11 5 1.0e+00 13 22 6 1.0e+00

dixmaanc 1500 13 11 4 1.0e+00 13 22 6 1.0e+00

dixmaand 1500 14 12 5 1.0e+00 14 24 6 1.0e+00

dixmaane 1500 14 93 14 1.0e+00 14 95 15 1.0e+00

dixmaanf 1500 15 30 7 1.0e+00 15 43 9 1.0e+00

dixmaang 1500 15 24 7 1.0e+00 15 37 8 1.0e+00

dixmaanh 1500 15 19 6 1.0e+00 15 32 7 1.0e+00

dixmaanj 1500 16 40 9 1.0e+00 16 54 11 1.0e+00

dixmaank 1500 16 30 8 1.0e+00 16 44 9 1.0e+00

dixmaanl 1500 16 25 7 1.0e+00 16 39 8 1.0e+00

dqdrtic 1000 14 11 2 1.9e-03 14 21 2 3.5e-05

dqrtic 1000 27 20 3 1.6e+11 28 40 5 5.5e+10

edensch 1000 19 19 3 6.0e+03 19 33 4 6.0e+03

eg2 1000 4 3 1 -1.0e+03 4 6 1 -1.0e+03

engval1 1000 14 17 2 1.1e+03 14 28 3 1.1e+03

extrosnb 1000 31 70 7 2.2e-02 29 75 7 4.4e-02

fminsrf2 1024 336 1072 99 1.0e+00 78 1702 169 1.0e+00

fminsurf 1024 318 672 343 1.0e+00 79 1430 206 1.0e+00

freuroth 1000 16 19 3 1.2e+05 16 30 3 1.2e+05

133

Table 7.2: Steihaug and phased-SSM. Problems G–Z, M = I, δ0 = 1.

Steihaug phased-SSM

Problem n Fe Prods Cpu f Fe Prods Cpu f

genrose 1000 > n — — — 805 24529 2070 1.0e+00

liarwhd 1000 19 27 4 4.0e-07 19 42 5 1.5e-07

ncb20 1010 60 447 32 9.1e+02 114 2761 257 9.2e+02

ncb20b 1000 10 62 5 1.7e+03 9 68 6 1.7e+03

noncvxu2 1000 36 26 4 1.2e+06 45 242 31 1.6e+06

noncvxun 1000 37 28 4 6.9e+05 50 313 43 7.8e+05

nondia 1000 4 3 1 6.3e-03 4 6 1 6.3e-03

nondquar 1000 23 116 9 5.5e-04 23 194 21 6.4e-03

penalty1 1000 28 17 17 3.0e+13 28 34 18 3.0e+13

penalty2 1000 2 1 1 1.4e+83 2 2 1 1.4e+83

powellsg 1000 16 40 4 4.6e-03 15 54 5 6.8e-03

power 1000 15 33 15 3.6e+04 15 47 16 3.6e+04

quartc 1000 27 20 3 1.6e+11 28 40 5 5.5e+10

schmvett 1000 9 37 3 -3.0e+03 8 37 3 -3.0e+03

sparsqur 1000 14 23 3 4.2e-03 14 48 5 4.3e-03

spmsrtls 1000 18 126 8 2.8e-09 29 503 43 3.3e-09

srosenbr 1000 9 10 2 1.6e-09 9 18 2 2.3e-09

testquad 1000 12 103 7 7.1e+01 12 123 9 7.1e+01

tointgss 1000 15 13 2 1.0e+01 15 23 3 1.0e+01

tquartic 1000 17 23 3 5.7e-14 16 35 4 5.8e-14

vardim 1000 14 13 23 5.4e+14 14 26 24 5.4e+14

vareigvl 1000 14 26 13 3.5e-04 14 38 14 3.5e-04

woods 1000 12 14 2 2.0e+03 13 28 3 2.0e+03

134

Table 7.3: Steihaug, phased-SSM and Moré-Sorensen. Problems A–F, M = I,

δ0 = 1.

Steihaug phased-SSM Moré-Sorensen

Problem n Fe f Fe f Fe f

arwhead 1000 6 1.7e-10 6 1.7e-10 6 6.7e-13

bdqrtic 1000 14 4.0e+03 13 4.0e+03 11 3.9e+03

broydn7d 1000 137 3.8e+02 77 3.4e+02 39 3.8e+02

brybnd 1000 12 6.7e-07 12 3.9e-07 17 1.9e-07

chainwoo 1000 27 1.3e+01 23 3.9e+03 264 1.0e+02

cosine 1000 12 -1.0e+03 12 -1.0e+03 48 -7.1e+02

cragglvy 1000 14 3.4e+02 14 3.4e+02 14 3.6e+02

dixmaana 1500 13 1.0e+00 13 1.0e+00 12 1.0e+00

dixmaanb 1500 13 1.0e+00 13 1.0e+00 12 1.0e+00

dixmaanc 1500 13 1.0e+00 13 1.0e+00 22 1.0e+00

dixmaand 1500 14 1.0e+00 14 1.0e+00 13 1.0e+00

dixmaane 1500 14 1.0e+00 14 1.0e+00 13 1.0e+00

dixmaanf 1500 15 1.0e+00 15 1.0e+00 32 1.0e+00

dixmaang 1500 15 1.0e+00 15 1.0e+00 37 1.0e+00

dixmaanh 1500 15 1.0e+00 15 1.0e+00 33 1.0e+00

dixmaanj 1500 16 1.0e+00 16 1.0e+00 39 1.0e+00

dixmaank 1500 16 1.0e+00 16 1.0e+00 51 1.0e+00

dixmaanl 1500 16 1.0e+00 16 1.0e+00 47 1.0e+00

dqdrtic 1000 14 1.9e-03 14 3.5e-05 12 2.5e-27

dqrtic 1000 27 1.6e+11 28 5.5e+10 32 3.2e+10

edensch 1000 19 6.0e+03 19 6.0e+03 22 6.0e+03

eg2 1000 4 -1.0e+03 4 -1.0e+03 7 -1.0e+03

engval1 1000 14 1.1e+03 14 1.1e+03 13 1.1e+03

extrosnb 1000 31 2.2e-02 29 4.4e-02 27 1.7e-02

fminsrf2 1024 336 1.0e+00 78 1.0e+00 111 1.0e+00

freuroth 1000 16 1.2e+05 16 1.2e+05 13 1.2e+05

135

Table 7.4: Steihaug, phased-SSM and Moré-Sorensen. Problems G–Z, M = I,

δ0 = 1

Steihaug phased-SSM Moré-Sorensen

Problem n Fe f Fe f Fe f

genrose 1000 > n — 805 1.0e+00 807 1.0e+00

liarwhd 1000 19 4.0e-07 19 1.5e-07 12 4.7e-08

ncb20 1010 60 9.1e+02 114 9.2e+02 71 9.3e+02

ncb20b 1000 10 1.7e+03 9 1.7e+03 11 1.7e+03

noncvxu2 1000 36 1.2e+06 45 1.6e+06 48 9.9e+05

noncvxun 1000 37 6.9e+05 50 7.8e+05 48 1.3e+06

nondia 1000 4 6.3e-03 4 6.3e-03 5 1.0e-07

nondquar 1000 23 5.5e-04 23 6.4e-03 15 6.7e-05

powellsg 1000 16 4.6e-03 15 6.8e-03 15 6.1e-03

quartc 1000 27 1.6e+11 28 5.5e+10 32 3.2e+10

schmvett 1000 9 -3.0e+03 8 -3.0e+03 6 -3.0e+03

sparsqur 1000 14 4.2e-03 14 4.3e-03 14 3.2e-03

spmsrtls 1000 18 2.8e-09 29 3.3e-09 29 1.0e-09

srosenbr 1000 9 1.6e-09 9 2.3e-09 9 1.5e-15

testquad 1000 12 7.1e+01 12 7.1e+01 9 2.3e+01

tointgss 1000 15 1.0e+01 15 1.0e+01 16 1.0e+01

tquartic 1000 17 5.7e-14 16 5.8e-14 11 1.0e-17

woods 1000 12 2.0e+03 13 2.0e+03 13 2.0e+03

136

Table 7.5: Quasi-Newton preconditioning. Problems A–F, M = I, δ0 = 1.

phased-SSM phased-SSM-QN

Problem n Fe Prods Cpu f Fe Prods Cpu f

arwhead 1000 6 11 1 1.7e-10 6 11 1 1.7e-10

bdqrtic 1000 13 47 5 4.0e+03 13 47 5 4.0e+03

broydn7d 1000 77 1661 158 3.4e+02 76 1986 204 3.4e+02

brybnd 1000 12 58 5 3.9e-07 12 58 5 3.9e-07

chainwoo 1000 23 73 9 3.9e+03 24 106 11 3.9e+03

cosine 1000 12 18 2 -1.0e+03 12 18 2 -1.0e+03

cragglvy 1000 14 49 5 3.4e+02 14 49 5 3.4e+02

dixmaana 1500 13 22 6 1.0e+00 13 22 6 1.0e+00

dixmaanb 1500 13 22 6 1.0e+00 13 22 6 1.0e+00

dixmaanc 1500 13 22 6 1.0e+00 13 22 6 1.0e+00

dixmaand 1500 14 24 6 1.0e+00 14 24 6 1.0e+00

dixmaane 1500 14 95 15 1.0e+00 14 95 14 1.0e+00

dixmaanf 1500 15 43 9 1.0e+00 15 43 9 1.0e+00

dixmaang 1500 15 37 8 1.0e+00 15 37 8 1.0e+00

dixmaanh 1500 15 32 7 1.0e+00 15 32 7 1.0e+00

dixmaanj 1500 16 54 11 1.0e+00 16 54 10 1.0e+00

dixmaank 1500 16 44 9 1.0e+00 16 44 9 1.0e+00

dixmaanl 1500 16 39 8 1.0e+00 16 39 8 1.0e+00

dqdrtic 1000 14 21 2 3.5e-05 14 21 2 3.5e-05

dqrtic 1000 28 40 5 5.5e+10 28 40 5 5.5e+10

edensch 1000 19 33 4 6.0e+03 19 33 4 6.0e+03

eg2 1000 4 6 1 -1.0e+03 4 6 1 -1.0e+03

engval1 1000 14 28 3 1.1e+03 14 28 3 1.1e+03

extrosnb 1000 29 75 7 4.4e-02 29 75 7 4.4e-02

fminsrf2 1024 78 1702 169 1.0e+00 68 1673 165 1.0e+00

fminsurf 1024 79 1430 206 1.0e+00 88 2021 280 1.0e+00

freuroth 1000 16 30 3 1.2e+05 16 30 3 1.2e+05

137

Table 7.6: Quasi-Newton preconditioning. Problems G–Z, M = I, δ0 = 1.

phased-SSM phased-SSM-QN

Problem n Fe Prods Cpu f Fe Prods Cpu f

genrose 1000 805 24529 2070 1.0e+00 813 25544 2292 1.0e+00

liarwhd 1000 19 42 5 1.5e-07 19 42 5 1.5e-07

ncb20 1010 114 2761 257 9.2e+02 104 3047 306 9.2e+02

ncb20b 1000 9 68 6 1.7e+03 9 68 6 1.7e+03

noncvxu2 1000 45 242 31 1.6e+06 45 255 33 1.6e+06

noncvxun 1000 50 313 43 7.8e+05 49 281 38 9.6e+05

nondia 1000 4 6 1 6.3e-03 4 6 1 6.3e-03

nondquar 1000 23 194 21 6.4e-03 23 194 21 6.4e-03

penalty1 1000 28 34 18 3.0e+13 28 34 18 3.0e+13

penalty2 1000 2 2 1 1.4e+83 2 2 1 1.4e+83

powellsg 1000 15 54 5 6.8e-03 15 54 5 6.8e-03

power 1000 15 47 16 3.6e+04 15 47 16 3.6e+04

quartc 1000 28 40 5 5.5e+10 28 40 5 5.5e+10

schmvett 1000 8 37 3 -3.0e+03 8 37 3 -3.0e+03

sparsqur 1000 14 48 5 4.3e-03 14 48 4 4.3e-03

spmsrtls 1000 29 503 43 3.3e-09 28 520 46 1.6e-08

srosenbr 1000 9 18 2 2.3e-09 9 18 2 2.3e-09

testquad 1000 12 123 9 7.1e+01 12 123 8 7.1e+01

tointgss 1000 15 23 3 1.0e+01 15 23 3 1.0e+01

tquartic 1000 16 35 4 5.8e-14 16 35 4 5.8e-14

vardim 1000 14 26 24 5.4e+14 14 25 24 5.4e+14

vareigvl 1000 14 38 14 3.5e-04 14 38 14 3.5e-04

woods 1000 13 28 3 2.0e+03 13 28 3 2.0e+03

Table 7.7: Comparison of unpreconditioned methods. M = I, δ0 = 1.

Steihaug phased-SSM phased-SSM-QN

Number of problems solved 49 50 50

Total function evals. (excl. genrose) 1572 1094 1081

Total mat-vec mults. (excl. genrose) 4027 10398 11602

Percent improvement in function evals. — 30.4% 31.2%

138

Table 7.8: Incomplete Cholesky preconditioning. Problems A–F, δ0 = 100.

Steihaug phased-SSM

Problem n Fe Prods Cpu f Fe Prods Cpu f

arwhead 1000 6 5 3 6.7e-13 6 10 4 6.7e-13

bdqrtic 1000 10 9 5 4.0e+03 10 18 7 4.0e+03

broydn7d 1000 87 44 23 4.0e+02 97 179 95 4.3e+02

brybnd 1000 33 19 10 3.6e-09 21 27 12 2.2e-11

chainwoo 1000 86 59 27 6.3e+01 ** ** ** **

cosine 1000 5 4 3 -1.0e+03 30 445 176 -9.6e+02

cragglvy 1000 14 13 7 3.4e+02 14 26 9 3.4e+02

dixmaana 1500 7 6 5 1.0e+00 10 13 9 1.0e+00

dixmaanb 1500 23 14 15 1.0e+00 45 60 57 1.0e+00

dixmaanc 1500 23 14 15 1.0e+00 55 138 136 1.0e+00

dixmaand 1500 25 16 17 1.0e+00 51 69 64 1.0e+00

dixmaane 1500 41 23 18 1.0e+00 63 138 100 1.0e+00

dixmaanf 1500 24 15 17 1.0e+00 ** ** ** **

dixmaang 1500 24 25 17 1.0e+00 ** ** ** **

dixmaanh 1500 30 18 19 1.0e+00 48 71 67 1.0e+00

dixmaani 1500 33 22 17 1.0e+00 ** ** ** **

dixmaanj 1500 31 18 20 1.0e+00 19 68 64 1.0e+00

dixmaank 1500 19 14 16 1.0e+00 ** ** ** **

dixmaanl 1500 31 20 22 1.0e+00 ** ** ** **

dqdrtic 1000 8 6 3 2.3e-24 8 12 4 2.9e-24

dqrtic 1000 37 22 9 3.9e+10 37 44 15 3.9e+10

edensch 1000 15 12 6 6.0e+03 15 24 8 6.0e+03

eg2 1000 4 3 2 -1.0e+03 4 6 2 -1.0e+03

engval1 1000 8 7 4 1.1e+03 8 14 5 1.1e+03

extrosnb 1000 22 19 9 3.0e-02 22 38 13 3.0e-02

fminsrf2 1024 21 12 7 1.0e+00 21 23 11 1.0e+00

freuroth 1000 9 7 3 1.2e+05 9 14 5 1.2e+05

139

Table 7.9: Incomplete Cholesky preconditioning. Problems G–Z, δ0 = 100

Steihaug phased-SSM

Problem n Fe Prods Cpu f Fe Prods Cpu f

genrose 1000 > n — — — > n — — —

liarwhd 1000 15 23 28 3.1e-08 15 36 36 9.3e-10

ncb20 1010 76 49 46 9.0e+02 105 236 238 9.3e+02

ncb20b 1000 27 15 13 1.7e+03 13d 17d 20d
1.7e+03

d

noncvxu2 1000 60 41 21 2.0e+06 178 468 271 2.6e+06

noncvxun 1000 52 35 18 1.5e+06 303 575 319 2.0e+06

nondia 1000 7 6 8 1.5e-03 7 12 13 2.3e-03

nondquar 1000 13 12 7 3.5e-06 13 24 9 3.5e-06

powellsg 1000 12 11 6 3.8e-03 12 22 8 3.8e-03

quartc 1000 37 22 9 3.9e+10 37 44 14 3.9e+10

schmvett 1000 4 3 2 -3.0e+03 4 6 2 -3.0e+03

sparsqur 1000 14 13 15 1.8e-03 14 26 21 1.8e-03

spmsrtls 1000 33 20 9 4.6e-09 76 166 70 3.7e-01

srosenbr 1000 10 8 4 3.5e-09 10 16 6 3.5e-09

testquad 1000 15 9 4 1.9e-25 15 18 6 4.5e-25

tointgss 1000 3 2 1 1.0e+01 3 4 2 1.0e+01

tquartic 1000 4 4 6 3.4e-13 4 7 7 3.4e-13

woods 1000 14 11 5 2.0e+03 14 22 8 2.0e+03

140

Table 7.10: Incomplete Cholesky preconditioning. Results for problems that could

not be solved by unpreconditioned Steihaug or phased-SSM, δ0 = 100.

Steihaug phased-SSM

Problem n Fe Prods Cpu f Fe Prods Cpu f

curly10 1000 16 11 7 -1.0e+05 27 98 56 -1.0e+05

curly20 1000 16 12 11 -1.0e+05 15 65 57 -1.0e+05

curly30 1000 30 18 23 -1.0e+05 22 72 83 -1.0e+05

dixon3dq 1000 2 1 1 5.5e-28 2 2 2 5.5e-28

fletcbv2 1000 2 1 1 -5.0e-01 2 2 2 -5.0e-01

genhumps 1000 437 421 172 7.1e+01 ** ** ** **

morebv 1000 2 1 1 7.3e-13 2 2 1 7.3e-13

sbrybnd 1000 30 17 9 1.6e-09 63 65 27 2.0e-10

scurly10 1000 16 11 7 -1.0e+05 42 96 50 -1.0e+05

scurly20 1000 14 10 10 -1.0e+05 21 68 54 -1.0e+05

scurly30 1000 21 13 17 -1.0e+05 36 77 88 -1.0e+05

sinquad 1000 94 90 110 1.1e-06 97 199 278 1.3e-06

tridia 1000 6 4 2 1.5e-26 6 8 3 8.5e-27

141

Table 7.11: Incomplete Cholesky preconditioning using explicit matrix-vector

products with M . Problems A–F, δ0 = 100.

Steihaug phased-SSM

Problem n Fe Prods Cpu f Fe Prods Cpu f

arwhead 1000 6 5 3 6.7e-13 6 10 4 6.7e-13

bdqrtic 1000 10 9 5 4.0e+03 10 30 12 4.0e+03

broydn7d 1000 87 44 23 4.0e+02 99 689 163 4.3e+02

brybnd 1000 33 19 10 3.6e-09 21 73 27 2.2e-06

chainwoo 1000 86 59 27 6.3e+01 123 612 163 1.0e+00

cosine 1000 5 4 3 -1.0e+03 30 981 133 -9.5e+02

cragglvy 1000 14 13 7 3.4e+02 14 42 15 3.4e+02

dixmaana 1500 7 6 5 1.0e+00 10 39 31 1.0e+00

dixmaanb 1500 23 14 15 1.0e+00 45 232 184 1.0e+00

dixmaanc 1500 23 14 15 1.0e+00 55 514 270 1.0e+00

dixmaand 1500 25 16 17 1.0e+00 51 245 196 1.0e+00

dixmaane 1500 41 23 18 1.0e+00 63 446 248 1.0e+00

dixmaanf 1500 24 15 17 1.0e+00 74 231 244 1.0e+00

dixmaang 1500 24 25 17 1.0e+00 52 276 173 1.0e+00

dixmaanh 1500 30 18 19 1.0e+00 47 161 139 1.0e+00

dixmaani 1500 33 22 17 1.0e+00 120 734 455 1.0e+00

dixmaanj 1500 31 18 20 1.0e+00 19 117 79 1.0e+00

dixmaank 1500 19 14 16 1.0e+00 19 156 92 1.0e+00

dixmaanl 1500 31 20 22 1.0e+00 27 122 89 1.0e+00

dqdrtic 1000 8 6 3 2.3e-24 8 32 12 2.9e-24

dqrtic 1000 37 22 9 3.9e+10 37 116 43 3.9e+10

edensch 1000 15 12 6 6.0e+03 15 44 16 6.0e+03

eg2 1000 4 3 2 -1.0e+03 4 6 2 -1.0e+03

engval1 1000 8 7 4 1.1e+03 8 22 8 1.1e+03

extrosnb 1000 22 19 9 3.0e-02 22 62 23 3.0e-02

fminsrf2 1024 21 12 7 1.0e+00 21 59 27 1.0e+00

freuroth 1000 9 7 3 1.2e+05 9 26 10 1.2e+05

142

Table 7.12: Incomplete Cholesky preconditioning using explicit matrix-vector

products with M . Problems G–Z, δ0 = 100.

Steihaug phased-SSM

Problem n Fe Prods Cpu f Fe Prods Cpu f

genrose 1000 > n — — — > n — — —

liarwhd 1000 15 23 28 3.1e-08 15 52 44 9.3e-10

ncb20 1010 76 49 46 9.0e+02 100 839 305 9.3e+02

ncb20b 1000 27 15 13 1.7e+03 13d 121d 22d
1.7e+03

d

noncvxu2 1000 60 41 21 2.0e+06 278 2378 566 2.5e+06

noncvxun 1000 52 35 18 1.5e+06 285 2452 586 2.0e+06

nondia 1000 7 6 8 1.5e-03 7 28 20 2.3e-03

nondquar 1000 13 12 7 3.5e-06 13 24 9 3.5e-06

powellsg 1000 12 11 6 3.8e-03 12 30 11 3.8e-03

quartc 1000 37 22 9 3.9e+10 37 116 44 3.9e+10

schmvett 1000 4 3 2 -3.0e+03 4 6 2 -3.0e+03

sparsqur 1000 14 13 15 1.8e-03 14 38 26 1.8e-03

spmsrtls 1000 33 20 9 4.6e-09 60 523 112 3.7e-01

srosenbr 1000 10 8 4 3.5e-09 10 24 9 3.5e-09

testquad 1000 15 9 4 1.9e-25 15 50 19 4.5e-25

tointgss 1000 3 2 1 1.0e+01 3 8 3 1.0e+01

tquartic 1000 4 4 6 3.4e-13 4 7 7 3.4e-13

woods 1000 14 11 5 2.0e+03 14 42 16 2.0e+03

143

Table 7.13: Incomplete Cholesky preconditioning using explicit matrix-vector
products with M . Problems that could not be solved without preconditioning,

δ0 = 100.

Steihaug phased-SSM

Problem n Fe Prods Cpu f Fe Prods Cpu f

curly10 1000 16 11 7 -1.0e+05 27 344 81 -1.0e+05

curly20 1000 16 12 11 -1.0e+05 15 243 70 -1.0e+05

curly30 1000 30 18 23 -1.0e+05 22 196 101 -1.0e+05

dixon3dq 1000 2 1 1 5.5e-28 2 2 1 5.5e-28

fletcbv2 1000 2 1 1 -5.0e-01 2 2 2 -5.0e-01

genhumps 1000 437 421 172 7.1e+01 — — — —

morebv 1000 2 1 1 7.3e-13 2 2 1 7.3e-13

sbrybnd 1000 30 17 9 1.6e-09 19 65 23 3.7e-11

scurly10 1000 16 11 7 -1.0e+05 30 238 71 -1.0e+05

scurly20 1000 14 10 10 -1.0e+05 21 199 72 -1.0e+05

scurly30 1000 21 13 17 -1.0e+05 20 170 87 -1.0e+05

sinquad 1000 94 90 110 1.1e-06 94 497 267 1.1e-06

tridia 1000 6 4 2 1.5e-26 6 20 8 8.5e-27

144

Table 7.14: Function evaluations of direct and indirect methods. Incomplete

Cholesky preconditioning. Problems A–E, δ0 = 100.

Problem n Steihaug phased-SSM M-S

arwhead 1000 6 6 6

bdqrtic 1000 10 10 10

broydn7d 1000 87 99 116

brybnd 1000 33 21 70

chainwoo 1000 86 123 114

cosine 1000 5 30 49

cragglvy 1000 14 14 14

curly10 1000 16 27 29

curly20 1000 16 15 15

curly30 1000 30 22 24

dixmaana 1500 7 10 10

dixmaanb 1500 23 45 48

dixmaanc 1500 23 55 71

dixmaand 1500 25 51 108

dixmaane 1500 41 63 151

dixmaanf 1500 24 74 254

dixmaang 1500 24 52 306

dixmaanh 1500 30 47 193

dixmaani 1500 33 120 152

dixmaanj 1500 31 19 424

dixmaank 1500 19 19 304

dixmaanl 1500 31 27 145

dixon3dq 1000 2 2 4

dqdrtic 1000 8 8 8

dqrtic 1000 37 37 37

edensch 1000 15 15 15

eg2 1000 4 4 49

engval1 1000 8 8 8

extrosnb 1000 22 22 22

145

Table 7.15: Function evaluations for direct and indirect methods. Incomplete

Cholesky preconditioning. Problems F–Z, δ0 = 100.

Problem n Steihaug phased-SSM M-S

fletcbv2 1000 2 2 3

fminsrf2 1024 21 21 26

freuroth 1000 9 9 9

liarwhd 1000 15 15 15

morebv 1000 2 2 2

ncb20 1010 76 100 **

ncb20b 1000 27 13d 28

noncvxu2 1000 60 278 213

noncvxun 1000 52 285 272

nondia 1000 7 7 8

nondquar 1000 13 13 13

powellsg 1000 12 12 12

quartc 1000 37 37 37

sbrybnd 1000 30 19 42

scurly10 1000 16 30 35

scurly20 1000 14 21 21

scurly30 1000 21 20 33

schmvett 1000 4 4 4

sinquad 1000 94 94 13

sparsqur 1000 14 14 14

spmsrtls 1000 33 60 114

srosenbr 1000 10 10 10

testquad 1000 15 15 15

tointgss 1000 3 3 3

tquartic 1000 4 4 2

tridia 1000 6 6 6

woods 1000 14 14 14

Bibliography

[1] I. Bongartz, A. R. Conn, N. I. M. Gould, and Ph. L. Toint. CUTE: Con-
strained and unconstrained testing environment. ACM Trans. Math. Softw.,
21(1):123–160, 1995.

[2] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. A trust region algorithm for
nonlinearly constrained optimization. SIAM J. Numer. Anal., 24:1152–1170,
1987.

[3] R. H. Byrd, R. B. Schnabel, and G. A. Shultz. Approximate solution of the
trust region problem by minimization over two-dimensional subspaces. Math.
Programming, 40(3, (Ser. A)):247–263, 1988.

[4] A. R. Conn, N. I. M. Gould, and Ph. L. Toint. Trust-Region Methods. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000.

[5] R. S. Dembo, S. C. Eisenstat, and T. Steihaug. Inexact Newton methods.
SIAM J. Numer. Anal., 19(2):400–408, 1982.

[6] J. E. Dennis Jr. and H. H. Mei. Two new unconstrained optimization al-
gorithms which use function and gradient values. J. Optim. Theory Appl.,
28:453–482, 1979.

[7] J. E. Dennis, Jr. and R. B. Schnabel. Numerical Methods for Unconstrained
Optimization and Nonlinear Equations. Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1983.

[8] A. Forsgren and P. E. Gill. Primal-dual interior methods for nonconvex non-
linear programming. SIAM J. Optim., 8:1132–1152, 1998.

[9] A. Forsgren, P. E. Gill, and W. Murray. Computing modified Newton direc-
tions using a partial Cholesky factorization. SIAM J. Sci. Comput., 16:139–
150, 1995.

146

147

[10] D. M. Gay. Computing optimal locally constrained steps. SIAM J. Sci. Statist.
Comput., 2(2):186–197, 1981.

[11] E. M. Gertz. Combination Trust-Region Line-Search Methods for Uncon-
strained Optimization. PhD thesis, Department of Mathematics, University
of California, San Diego, 1999.

[12] E. M. Gertz and P. E. Gill. A primal-dual trust-region algorithm for nonlinear
programming. Math. Program., Ser. B, 100:49–94, 2004.

[13] P. E. Gill and W. Murray. Newton-type methods for unconstrained and lin-
early constrained optimization. Math. Program., 7:311–350, 1974.

[14] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic
Press, London and New York, 1981.

[15] D. Goldfarb. Curvilinear path steplength algorithms for minimization which
use directions of negative curvature. Math. Program., 18:31–40, 1980.

[16] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins
University Press, Baltimore, Maryland, third edition, 1996.

[17] N. I. M. Gould, M. E. Hribar, and J. Nocedal. On the solution of equality
constrained quadratic programming problems arising in optimization. SIAM
J. Sci. Comput., 23(4):1376–1395 (electronic), 2001.

[18] N. I. M. Gould, S. Lucidi, M. Roma, and Ph. L. Toint. Solving the trust-region
subproblem using the Lanczos method. SIAM J. Optim., 9(2):504–525, 1999.

[19] J. Greenstadt. On the relative efficiencies of gradient methods. Math. Comp.,
21:360–367, 1967.

[20] J. D. Griffin. Interior-point methods for large-scale nonconvex optimization.
PhD thesis, Department of Mathematics, University of California, San Diego,
March 2005.

[21] W. W. Hager. Minimizing a quadratic over a sphere. SIAM J. Optim.,
12(1):188–208 (electronic), 2001.

[22] W. W. Hager and S. Park. Global convergence of SSM for minimizing a
quadratic over a sphere. Math. Comp., 74(74):1413–1423, 2004.

[23] M. T. Jones and P. E. Plassmann. An improved incomplete Cholesky factor-
ization. ACM Trans. Math. Softw., 21:5–17, 1995.

148

[24] D. S. Kershaw. The incomplete Cholesky-conjugate gradient method for the
iterative solution of systems of linear equations. J. Comput. Phys., 26:43–65,
1978.

[25] C.-J. Lin and J. J. Moré. Incomplete Cholesky factorizations with limited
memory. SIAM J. Sci. Comput., 21:24–45, 1999.

[26] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large
scale optimization. Math. Program., 45:503–528, 1989.

[27] D. Luenberger. Introduction to Linear and Nonlinear Programming. Addison-
Wesley, New York, 1973.

[28] G. P. McCormick. A modification of Armijo’s step-size rule for negative cur-
vature. Math. Program., 13:111–115, 1977.

[29] J. L. Morales. A numerical study of limited memory BFGS methods. Appl.
Math. Lett., 15(4):481–487, 2002.

[30] J. L. Morales and J. Nocedal. Automatic preconditioning by limited memory
quasi-Newton updating. SIAM J. Optim., 10(4):1079–1096 (electronic), 2000.

[31] J. J. Moré and D. C. Sorensen. On the use of directions of negative curvature
in a modified Newton method. Math. Program., 16:1–20, 1979.

[32] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci.
and Statist. Comput., 4:553–572, 1983.

[33] K. G. Murty and S. N. Kabadi. Some NP-complete problems in quadratic
and nonlinear programming. Math. Program., 39:117–129, 1987.

[34] J. Nocedal. Updating quasi-Newton matrices with limited storage. Math.
Comput., 35:773–782, 1980.

[35] J. Nocedal and S. J. Wright. Numerical Optimization. Springer-Verlag, New
York, 1999.

[36] J. Nocedal and Y.-x. Yuan. Combining trust region and line search techniques.
In Advances in Nonlinear Programming (Beijing, 1996), volume 14 of Appl.
Optim., pages 153–175. Kluwer Acad. Publ., Dordrecht, 1998.

[37] C. C. Paige. The Computation of Eigenvalues and Eigenvectors of Very Large
Sparse Matrices. PhD thesis, University of London, 1971.

149

[38] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear
equations. SIAM J. Numer. Anal., 12:617–629, 1975.

[39] P. M. Pardalos and G. Schnitger. Checking local optimality in constrained
quadratic programming is NP-hard. Operations Research Letters, 7:33–35,
1988.

[40] Ph. L. Toint. Towards an efficient sparsity exploiting Newton method for
minimization. In I. S. Duff, editor, Sparse Matrices and Their Uses, pages
57–88, London and New York, 1981. Academic Press.

[41] M. J. D. Powell. A hybrid method for nonlinear equations. In P. Rabinowitz,
editor, Numerical Methods for Nonlinear Algebraic Equations, pages 87–114.
Gordon and Breach, 1970.

[42] M. J. D. Powell. A new algorithm for unconstrained optimization. In Nonlin-
ear Programming (Proc. Sympos., Univ. of Wisconsin, Madison, Wis., 1970),
pages 31–65. Academic Press, New York, 1970.

[43] M. J. D. Powell. Convergence properties of a class of minimization algorithms.
In Nonlinear Programming, 2 (Proc. Sympos. Special Interest Group on Math.
Programming, Univ. Wisconsin, Madison, Wis., 1974), pages 1–27. Academic
Press, New York, 1974.

[44] Y. Saad. ILUT: A dual threshold incomplete LU factorization. Numer. Linear
Algebra Appl., 4:387–402, 1994.

[45] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Com-
pany, Boston, MA, 1996.

[46] R. B. Schnabel and E. Eskow. A new modified Cholesky factorization. SIAM
J. Sci. and Statist. Comput., 11:1136–1158, 1990.

[47] G. A. Shultz, R. B. Schnabel, and R. H. Byrd. A family of trust-region based
algorithms for unconstrained minimization with strong global convergence
properties. SIAM J. Numer. Anal., 22:47–67, 1985.

[48] T. Steihaug. The conjugate gradient method and trust regions in large scale
optimization. SIAM J. Numer. Anal., 20:626–637, 1983.

[49] S. W. Thomas. Sequential estimation techniques for quasi-Newton algorithms.
PhD thesis, Cornell University, 1975.

[50] J. H. Wilkinson. The Algebraic Eigenvalue Problem. Clarendon Press, Oxford,
1965.

